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SUMMARY

The rice XA21-mediated immune response is activated on recog-

nition of the RaxX peptide produced by the bacterium 

Xanthomonas oryzae pv. oryzae (Xoo). The 60-residue RaxX pre-

cursor is post-translationally modified to form a sulfated tyrosine 

peptide that shares sequence and functional similarity with the 

plant sulfated tyrosine (PSY) peptide hormones. The 5-kb raxX-

raxSTAB gene cluster of Xoo encodes RaxX, the RaxST tyrosyl-

protein sulfotransferase, and the RaxA and RaxB components of 

a predicted type I secretion system. To assess raxX-raxSTAB gene 

cluster evolution and to determine its phylogenetic distribution, 

we first identified rax gene homologues in other genomes. We 

detected the complete raxX-raxSTAB gene cluster only in 

Xanthomonas spp., in five distinct lineages in addition to X. ory-

zae. The phylogenetic distribution of the raxX-raxSTAB gene 

cluster is consistent with the occurrence of multiple lateral (hori-

zontal) gene transfer events during Xanthomonas speciation. 

RaxX natural variants contain a restricted set of missense substi-

tutions, as expected if selection acts to maintain peptide hor-

mone-like function. Indeed, eight RaxX variants tested all failed 

to activate the XA21-mediated immune response, yet retained 

peptide hormone activity. Together, these observations support 

the hypothesis that the XA21 receptor evolved specifically to rec-

ognize Xoo RaxX.

Keywords: raxX-raxSTAB gene cluster, XA21, Xoo, plant 

immunity.

INTRODUC TION

Host receptors activate innate immunity pathways on patho-

gen recognition (Ronald and Beutler, 2010). The gene encoding 

the rice XA21 receptor kinase (Song et al., 1995) confers re-

sistance against most strains of the gamma-proteobacterium 

Xanthomonas oryzae pv. oryzae (Xoo) (Wang et al., 1996). Xoo 

causes bacterial leaf blight disease of rice, which seriously con-

strains yields in Africa, Asia and South America. This well-studied 

XA21–Xoo interaction provides a basis from which to under-

stand the molecular and evolutionary mechanisms of host–mi-

crobe interactions.

Four Xoo genes required for the activation of XA21-mediated 

immunity are located in the raxX-raxSTAB gene cluster (Fig. 1). 

The 60-residue RaxX predicted precursor protein undergoes sul-

fation by the RaxST tyrosylprotein sulfotransferase at residue 

tyrosine-41 (Tyr-41) (Pruitt et al., 2015). The RaxB component 

of the RaxAB type I secretion complex (da Silva et al., 2004) 

further processes the sulfated RaxX precursor by removing its 

double-glycine leader peptide prior to secretion (Holland et al., 

2016; Luu et al., 2018). Core (‘housekeeping’) genes encode the 

predicted outer membrane TolC channel for the RaxAB complex 

(da Silva et al., 2004), as well as enzymes to assimilate sulfate 

into 3′-phosphoadenosine 5′-phosphosulfate (PAPS) (Shen et al., 

2002), the sulfodonor for the RaxST sulfotransferase (Han et al., 

2012).

In both plants and animals, the post-translational modifica-

tion catalysed by tyrosylprotein sulfotransferase is restricted to a 

subset of cell surface and secreted proteins that influence a va-

riety of eukaryotic physiological processes (Matsubayashi, 2014; 

Stone et al., 2009). For example, tyrosine sulfation of the chemo-

kine receptors CCR5 and CXCR4 is essential for their functions, 

including as coreceptors for the human immunodeficiency virus 

gp120 envelope glycoprotein (Farzan et al., 1999; Kleist et al., 

2016). In plants, sulfated tyrosine peptides influence cellular 

proliferation and expansion in root growth and/or plant immune 

signalling (Matsubayashi, 2014; Tang et al., 2017). In contrast 

with these and other examples of protein tyrosine sulfation in 

animals and plants, RaxX sulfation by the RaxST enzyme is the 

only example of tyrosine sulfation documented in bacteria (Han 

et al., 2012; Pruitt et al., 2015).
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Mature RaxX is predicted to comprise the carboxyl-terminal 

residues 40–60, numbered according to the precursor protein 

(Pruitt et al., 2015, 2017). RaxX residues 40–52 share sequence 

similarity with mature plant sulfated tyrosine (PSY) peptide hor-

mones (Amano et al., 2007; Pruitt et al., 2015, 2017) (Fig. 2). 

RaxX, like PSY1, can enhance root growth in diverse plant spe-

cies (Pruitt et al., 2017). The XA21-mediated response in rice re-

quires residues 40–55, whereas growth stimulation requires only 

residues 40–52 (Pruitt et al., 2015).

RaxX sequences are generally well conserved within different 

Xanthomonas species (Pruitt et al., 2017). In Xoo, however, RaxX 

from strain IXO685, which evades XA21-mediated immunity, dif-

fers from active RaxX at the critical positions proline-44 (Pro-44) 

and Pro-48 (Pruitt et al., 2015). Nevertheless, this RaxX protein 

stimulates root growth, as do two other RaxX Pro-48 variants 

from other Xanthomonas spp. (Pruitt et al., 2017).

These results suggest that RaxX recognition by XA21 is re-

strained by different sequence and length requirements compared 

with its recognition by the root growth-promoting receptor(s) for 

PSY hormone(s). It also suggests that the recognition of RaxX by 

XA21 is specific to Xoo, whereas PSY mimicry is a general feature 

of RaxX from other Xanthomonas spp. Accordingly, we have hy-

pothesized previously that PSY hormone mimicry is the original 

function of RaxX, whereas immune recognition by XA21 evolved 

later in response to Xoo (Pruitt et al., 2017).

Here, we report tests of two general predictions derived from 

this hypothesis. The first prediction, that PSY hormone mim-

icry is broadly selective, is supported here by the presence of 

the raxX-raxSTAB gene cluster in a range of Xanthomonas spp., 

and by the ability of all RaxX variants tested to stimulate root 

growth in an assay for PSY function. The second prediction, that 

recognition by XA21 is restricted to X. oryzae lineages, is val-

idated here by the observation that XA21-mediated immunity 

is not activated by RaxX variants from other Xanthomonas spp. 

These results illustrate how a pathogen protein has evolved to 

retain its ability to modulate host physiology without being rec-

ognized by the host immune system.

RESULTS

The raxX-raxSTAB gene cluster is present in a subset of 

Xanthomonas spp.

We searched databases at the National Center for Biotechnology 

Information (NCBI) to identify bacterial genomes with the raxX-

raxSTAB gene cluster. We found the intact raxX-raxSTAB gene 

cluster exclusively in Xanthomonas spp., and detected it in more 

than 200 unique genome sequences (File S1, see Supporting 

Information) among 413 accessed through the RefSeq database 

(O’Leary et al., 2016).

Xanthomonas taxonomy has undergone several changes over 

the years (Vauterin et al., 2000; Young, 2008) (for a represen-

tative example, see Midha and Patil, 2014). At one point, many 

strains were denoted as pathovars of either X. campestris or 

X. axonopodis, but, today, over 20 species are distinguished, sev-

eral with multiple pathovars (Rademaker et al., 2005; Vauterin 

et al., 1995). Because many of the genome sequences we exam-

ined are from closely related strains, in some cases associated 

with different species designations, we constructed a whole-ge-

nome phylogenetic tree as described in Experimental procedures 

in order to organize these sequences by relatedness (Fig. S1, 

see Supporting Information). The topology of the resulting tree 

shares broad similarity with several other Xanthomonas phylo-

genetic trees in defining relationships between well-sampled 

species (Ferreira-Tonin et al., 2012; Gardiner et al., 2014; Hauben 

et al., 1997; Midha and Patil, 2014; Parkinson et al., 2007, 2009; 

Rademaker et al., 2005; Triplett et al., 2015; Young, 2008).

To examine raxX-raxSTAB gene cluster organization and in-

heritance more closely, we selected 15 genomes from strains that 

represent the phylogenetic range of Xanthomonas spp. (Table 1 

and Fig. S1). Where possible, we chose complete genome se-

quences that are accompanied by published descriptions. The 

close relative Stenotrophomonas maltophilia, which does not 

contain the raxX-raxSTAB gene cluster, served as the outgroup 

(Moore et al., 1997).

To facilitate discussion, we represent phylogenetic relation-

ships between these strains as a cladogram that emphasizes 

the relative positions of the raxX-raxSTAB gene cluster-positive 

lineages (Fig. 3). Six distinct Xanthomonas lineages contain the 

raxX-raxSTAB gene cluster, one being X. oryzae. A second lin-

eage includes related strains, currently denoted as X. vasicola or 

X. campestris pv. musacearum (Aritua et al., 2008); for concise 

Fig. 1 The raxX-raxSTAB gene cluster. The raxX-raxSTAB gene cluster 

is located between the flanking gcvRP and ‘mfsX’ genes. Gene cluster 

acquisition through lateral gene transfer is hypothesized to occur by general 

recombination in the flanking gcvR and ‘mfsX’ sequences as described in the 

text. Sequences at the left and right boundaries are shown in Fig. S2 (see 

Supporting Information). Sequences for length polymorphisms in the gcvP 

gene are shown in Fig. S3 (see Supporting Information).
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presentation, we refer to these collectively as X. vasicola. The 

third lineage includes X. euvesicatoria and related species 

(Rademaker group 9.2; Barak et al., 2016; Rademaker et al., 

2005). The fourth lineage includes strains denoted as X. axono-

podis, such as pv. manihotis (Rademaker group 9.4; Mhedbi-Hajri 

et al., 2013; Rademaker et al., 2005). The fifth lineage includes 

X. translucens (Langlois et al., 2017), within the distinct cluster of 

‘early-branching’ species whose divergence from the remainder 

apparently occurred relatively early during Xanthomonas specia-

tion (Parkinson et al., 2007). The sixth lineage comprises X. ma-

liensis, associated with, but non-pathogenic on, rice (Triplett 

et al., 2015). Phylogenetic analyses place this species between the 

‘early-branching’ species and the remainder (Triplett et al., 2015).

Notably, the raxX-raxSTAB gene cluster is absent from the 

group of strains classified as X. citri pathovars (Rademaker group 

9.5; Bansal et al., 2017; Rademaker et al., 2005). These strains 

(some of which are denoted as X. axonopodis or X. campestris) 

cluster phylogenetically among four of the raxX-raxSTAB gene 

cluster-positive groups: X. oryzae, X. vasicola, X. euvesicato-

ria and X. axonopodis pv. manihotis (Midha and Patil, 2014; 

Rademaker et al., 2005; Vauterin et al., 1995). The simplest ex-

planation for this pattern is that the raxX-raxSTAB gene cluster 

was lost from an ancestor of the X. citri lineage (Fig. 3); other 

explanations are not excluded.

Sequence conservation of the raxX-raxSTAB gene 

cluster suggests lateral gene transfer between 

Xanthomonas spp.

Both the organization and size of the raxX-raxSTAB gene clus-

ter are conserved across all six lineages. To assess inheritance 

Fig. 2 RaxX and plant sulfated tyrosine (PSY) sequences. RaxX sequences show the presumed leader-cleaved forms of RaxX, numbered from the beginning 

of the precursor sequence. The extent of sequence comprising the RaxX16 and RaxX13 synthetic peptides is indicated above the alignment. Residues are 

shaded according to conservation in PSY sequences (Pruitt et al., 2017): positions with nearly invariant residues are shaded black, and those with only two or 

three substitutions are shaded blue. The sulfated tyrosine (Tyr) residue is shaded red. Gaps are indicated by dots. Sequence groups are described elsewhere in 

detail (Pruitt et al., 2017). The subgroups B1–B3 differ only in the carboxyl-terminal sequence beginning with residue 53. Xanthomonas oryzae strains X8-1A 

and X11-5A are non-pathogenic and therefore do not have pathovar designations. The mature form of Arabidopsis thaliana PSY1 (Amano et al., 2007) and the 

corresponding region from Oryza sativa PSY1a (Amano et al., 2007; Pruitt et al., 2017) are shown for comparison. Residues Pro-16 and Pro-17 in AtPSY1 are both 

hydroxylated [†,‡], and Pro-16 is glycosylated with L-Ara3 [‡] (Amano et al., 2007).
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patterns, we constructed a phylogenetic tree for the raxX-rax-

STAB gene cluster (as the catenation of the four rax genes; Fig. 4) 

(Kuo and Ochman, 2009). The rax genes in X. translucens, in the 

early-branching group, cluster separately from their homologues 

in the other lineages. This finding is consistent with the hypoth-

esis that X. translucens acquired the raxX-raxSTAB gene cluster 

relatively early during Xanthomonas speciation. For X. maliensis, 

the raxX-raxSTAB genes are most similar to those from X. euvesi-

catoria and the X. axonopodis pathovars manihotis and phaseoli 

(Fig. 4), even though the X. maliensis genome sequence itself is 

more distantly related (Fig. 3). This finding suggests that X. ma-

liensis acquired the raxX-raxSTAB gene cluster relatively late dur-

ing Xanthomonas speciation.

Boundaries flanking the raxX-raxSTAB gene cluster 

and adjacent genes suggest lateral gene transfer 

through general recombination

The raxX-raxSTAB gene cluster lies between two core (house-

keeping) genes (Fig. 1). One, gcvP, encodes the pyridoxal-

phosphate subunit of glycine dehydrogenase. An approximately 

170-nucleotide riboswitch (gcvR in Fig. 1) controls GcvP protein 

synthesis in response to glycine (Mandal et al., 2004). The other, 

‘mfsX’, encodes a major facilitator subfamily (MFS) transporter 

related to Bcr and CflA efflux proteins (da Silva et al., 2004). 

Here, ‘mfsX’ is only a provisional designation in the absence of 

functional characterization.

Comparing the gcvP–[raxX-raxSTAB]–‘mfsX’ region from the 

reference genomes reveals sharp boundaries flanking the position 

of the raxX-raxSTAB gene cluster. On the left flank, substantial 

nucleotide identity spans the gcvP gene, the gcvR riboswitch and 

a predicted gcvR promoter –10 element (Mitchell et al., 2003) 

(Fig. S2, see Supporting Information). On the right flank, iden-

tity begins shortly after the ‘mfsX’ initiation codon. Accordingly, 

upstream sequence elements for initiating ‘mfsX’ gene transcrip-

tion (Mitchell et al., 2003) and translation (Ma et al., 2002) are 

conserved within, but not between, raxX-raxSTAB gene clus-

ter-positive and cluster-negative sequences (Fig. S2).

Between these boundaries in genomes that lack the raxX-rax-

STAB gene cluster, the compact (≤200 nucleotide) gcvP–‘mfsX’ 

intergenic sequence is modestly conserved in most genomes 

(about 60%–80% overall identity; Fig. S2). Much of this iden-

tity comes from the ‘mfsX’ potential transcription and translation 

initiation sequences described above. The overall intergenic se-

quence is less conserved in the early-branching species (X. albil-

ineans, X. hyacinthi and X. sacchari), displaying about 50%–65% 

overall identity.

We hypothesize that raxX-raxSTAB gene cluster phylogenetic 

distribution results from general recombination between con-

served genes flanking each side (e.g. in or beyond the gcvP and 

‘mfsX’ genes). Two observations are consistent with this hypoth-

esis. First, we observed that the sequences flanking the raxX-rax-

STAB gene cluster are different from the gcvP–‘mfsX’ intergenic 

sequence in genomes that lack the raxX-raxSTAB gene cluster 

(Fig. S2). This is inconsistent with a mechanism through which 

the raxX-raxSTAB gene cluster integrated into the gcvP–‘mfsX’ 

intergenic sequence during lateral gene transfer events.

Table 1 Reference strains for sequence comparisons.

Species Strain raxX-raxSTAB Accession Reference

Stenotrophomonas maltophilia K279a – NC_010943.1 Crossman et al. (2008)

Xanthomonas albilineans GPE PC73 – NC_013722.1 Pieretti et al. (2015)

X. arboricola pv. juglandis Xaj 417 – NZ_CP012251.1 Pereira et al. (2015)

X. axonopodis pv. manihotis UA536 + NZ_AKEQ00000000 Bart et al. (2012)

X. campestris pv. campestris ATCC 33913 – NC_003902.1 da Silva et al. (2002)

X. campestris pv. musacearum NCPPB 4392 + NZ_AKBI00000000.1 Wasukira et al. (2012)

X. cannabis NCPPB 2877 – NZ_JSZE00000000.1 Jacobs et al. (2015)

X. citri ssp. citri 306 – NC_003919.1 da Silva et al. (2002)

X. euvesicatoria 85-10 + NZ_CP017190.1 Thieme et al. (2005)

X. fragariae LMG 25863 – NZ_AJRZ00000000.1 Vandroemme et al. (2013)

X. hyacinthi DSM 19077 – JPLD00000000.1 Naushad et al. (2015)

X. maliensis M97 + NZ_AQPR00000000.1 Triplett et al. (2015)

X. oryzae pv. oryzae PXO99A + NC_010717.2 Salzberg et al. (2008)

X. sacchari R1 – NZ_CP010409.1 Studholme et al. (2011)

X. translucens DAR61454 + GCA_000334075.1 Gardiner et al. (2014)

X. vesicatoria 15b – NZ_JSXZ00000000.1 Vancheva et al. (2015)
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The second observation consistent with lateral gene transfer 

via general recombination is that gcvP length polymorphisms 

(Figs 1 and S3, see Supporting Information) do not align with 

Xanthomonas phylogenetic relationships (Fig. 3). Inheritance 

patterns such as this often result from general recombination in 

the vicinity (Nelson et al., 1997).

Notably, this gcvP–‘mfsX’ intergenic region is also conserved 

in the X. citri lineage (Fig. S2). If the raxX-raxSTAB gene cluster 

was lost during formation of this lineage (see above), general 

recombination would replace the resident raxX-raxSTAB gene 

cluster with a donor conserved gcvP–‘mfsX’ region.

raxST, but not raxX, homologues are present in 

genomes from diverse bacterial species

Our GenBank database searches identified raxX homologues 

and the raxX-raxSTAB gene cluster only in Xanthomonas spp. 

However, these searches did identify raxST homologues encod-

ing proteins with about 40% identity to, and approximately the 

same length as, the Xoo RaxST protein. These sequences include 

the PAPS binding motifs that define sulfotransferase activity 

(Negishi et al., 2001; da Silva et al., 2004). Regardless of its cur-

rent function, a raxST homologue potentially could evolve to en-

code tyrosylprotein sulfotransferase activity.

None of these raxST homologues is associated with a raxX ho-

mologue, and most are also not associated with raxA or raxB ho-

mologues. Presumably, the enzymes by these raxST homologues 

act on substrates other than RaxX. These raxST homologues sup-

port the hypothesis that the raxSTAB cluster arose from a new 

combination of pre-existing raxST, raxA and raxB homologues. 

Proteolytic maturation and ATP-dependent peptide secretion sys-

tems are broadly distributed, and so raxA and raxB homologues 

are plentiful in bacterial genomes (Holland et al., 2016).

These raxST homologues occur in diverse genetic contexts 

in a range of bacterial phyla, including Proteobacteria and 

Cyanobacteria (Fig. S4, see Supporting Information). Nevertheless, 

for most species represented by multiple genome sequences, the 

Fig. 3 Model for raxX-raxSTAB inheritance during Xanthomonas speciation. The Xanthomonas spp. cladogram is based on published phylogenetic trees (see 

text for references). Red lines depict lineages for strains that lack the raxX-raxSTAB gene cluster, whereas blue lines depict those that carry the cluster. Numbers 

indicate gcvP length polymorphism in each species (Fig. S3, see Supporting Information). Hypothetical events are: A, formation of the raxX-raxSTAB gene cluster; 

B, lateral gene transfer to X. translucens relatively early during speciation (indicated by the long blue line); C, lateral gene transfer to X. maliensis relatively late 

during speciation (indicated by the short blue line); D, loss from X. citri. Strain numbers denote sources of RaxX proteins chosen for functional tests, as described 

in the text.
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Fig. 4 Phylogenetic tree for raxX-raxSTAB nucleotide sequences. The best scoring maximum likelihood tree for the catenated raxA, raxB, raxX and raxST coding 

sequences. Numbers shown on the branches represent the proportion of branches supported by 10 000 bootstrap replicates (0–100). Bootstraps are not shown 

for branches with less than 50% support, or for branches too short to easily distinguish. Species names are coloured according to phylogenetic group.
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raxST homologue was detected in a minority of individuals, and so 

it is not part of the core genome in these strains. Moreover, rela-

tionships between species in a raxST gene phylogenetic tree bear 

no resemblance to those in the overall tree of bacterial species. For 

example, in the raxST gene tree, sequences from Cyanobacteria 

are flanked on both sides by sequences from Proteobacteria 

(Fig. S4). Together, these findings provide evidence for lateral 

gene transfer of raxST homologues (Kuo and Ochman, 2009).

RaxX protein sequence variants representing all six 

raxX-raxSTAB gene cluster-positive lineages

RaxX protein sequences from diverse Xanthomonas spp. assort 

into several sequence groups differentiated by polymorphisms 

within the predicted mature peptide sequence (Fig. 2) (Pruitt et al., 

2017). Many of these groups are subdivided further according to 

polymorphisms in the predicted leader protein sequence (residues 

1–39) or carboxyl-terminal region distal to residue Pro-52. Most 

leader polymorphisms lie between residues 2 and 24, and are un-

likely to affect the function of the mature RaxX protein. Here, we 

only consider polymorphisms in the predicted mature form.

To assess the function of RaxX variants, we focused on fre-

quently observed variants in species represented by numerous 

genome sequences (Fig. S1). These include sequence groups A, 

B and D from X. oryzae pv. oryzae and X. oryzae pv. oryzicola, 

as well as sequence groups E, G and H, representing most ge-

nomes for the X. euvesicatoria and X. vasicola groups (Fig. 2). 

Finally, sequence group K is most numerous among X. translu-

cens genomes. The comparison reference is the RaxX protein 

sequence from the Philippines Xoo strain PXO99A (sequence 

group A). Examples from lower frequency (mostly unique) 

sequence groups were analysed by complementation, as de-

scribed below.

Fig. 5 RaxX variant peptides promote root growth. (A) Stimulation of Arabidopsis root growth. Fourteen-day-old tpst-1 seedlings were grown on half-strength 

Murashige and Skoog (½ MS) vertical plates with or without 100 nM of the indicated full-length peptides. Bars indicate the average seedling root length measured 

after 14 days (n > 10). Error bars show the standard deviation. Asterisk indicates a statistically significant difference from Mock using Dunnett’s test (P < 0.05). 

Peptide RaxX sY21 is a 21-residue sulfated peptide with potent RaxX activity (Pruitt et al., 2015). Strain abbreviations: Xvv, Xanthomonas vasicola pv. vasculorum; 

Xt, X. translucens; Xe, X. euvesicatoria; Xcm, X. campestris pv. musacearum; PXO99A, IXO685, AXO1947, strains of X. oryzae pv. oryzae. (B) Arabidopsis 
seedlings from a representative experiment. (C) Activation of rice PR10b gene expression. Purified peptide (500 nM) was used to treat detached leaves as 

described in Experimental procedures. Expression levels of the PR10b gene (normalized to actin gene expression) were determined after 12 h. Data are the mean 

values from four biological replicates. Error bars show the standard deviation. Asterisk indicates a statistically significant difference from Mock using Dunnett’s 

test (P < 0.05).
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RaxX variants promote root growth, but fail to 

activate the XA21-mediated immune response

We generated and purified tyrosine-sulfated, full-length (un-

processed) RaxX peptides for these seven variants using an ex-

panded genetic code approach (see Experimental procedures) 

(Fig. 2), together representing all five pathogenic lineages that 

contain the raxX-raxSTAB gene cluster. The positive control is 

RaxX21-sY, a synthetic 21-residue tyrosine-sulfated peptide with 

strong activity; non-sulfated peptides have undetectable activ-

ity (Pruitt et al., 2015). The seven RaxX variant peptides were 

used in two separate assays for function. First, we performed 

root growth experiments with an Arabidopsis thaliana tpst-1 

mutant lacking tyrosylprotein sulfotransferase, which is required 

for all known sulfated tyrosine peptide hormones, including PSY 

(Matsubayashi, 2014). This eliminates endogenous PSY activity, 

so that the effects of the added peptides are more easily observed 

(Matsubayashi, 2014; Pruitt et al., 2017). Root lengths for seed-

lings grown without added peptide averaged 23.5 mm, whereas 

root lengths for seedlings grown with 100 nM peptide were at 

least twice as long (Fig. 5A,B). This observation is consistent with 

the hypothesis that these peptides mimic PSY1 peptide hormone 

activity. It should be noted that three of these variants (groups 

D, E and G) have been examined previously (Pruitt et al., 2017) 

and are included here to facilitate direct comparisons, as well as 

to monitor the consistency of the results.

In the second assay, we tested each RaxX peptide for direct 

activation of XA21-mediated immunity by assaying the induction 

of the PR10b marker gene as a readout for immune activation 

(Pruitt et al., 2015; Thomas et al., 2016). In contrast with the re-

sults from the root growth assay, only the group A RaxX protein 

(from Xoo strain PXO99A) was able to induce XA21-mediated 

PR10b marker gene expression (Fig. 5C).

In a separate test for the activation of XA21-mediated im-

munity, we used a ∆raxX deletion mutant of Xoo strain PXO99A 

as a host for genetic complementation. We tested each of the 

raxX alleles shown in Fig. 2, which includes examples from lower 

frequency (mostly unique) sequence groups. We introduced 

each raxX allele into the ∆raxX test strain, and monitored dis-

ease progression in leaves of whole plants. Only the group A 

raxX allele (from Xoo strain PXO99A) was able to complement 

the Xoo PXO99A ∆raxX strain to activate XA21-mediated immu-

nity (Fig. 6). The expression of each raxX allele was confirmed 

by quantitative polymerase chain reaction (qPCR) (Fig. S5, see 

Supporting Information).

Together, these results provide direct evidence that the 

activation of XA21-mediated immunity is restricted to RaxX 

proteins from sequence group A, found in most strains of Xoo. 

None of the other X. oryzae RaxX variants tested (including 

RaxX from X. oryzae pv. oryzicola, for which the mature se-

quence is identical to that of Xoo strain IXO685), was able 

to activate XA21-mediated immunity. The observation that 

all RaxX proteins tested stimulated Arabidopsis root growth 

Fig. 6 RaxX variants fail to activate XA21-mediated immunity. Different 

raxX genes were cloned into vector pVSP6 (see Experimental procedures) 

to test for complementation of the Xanthomonas oryzae pv. oryzae (Xoo) 

strain PXO99A ∆raxX strain. Leaf tips of rice varieties TP309 (A) or XA21-

expressing TP309 (B) were inoculated by clipping with scissors dipped in 

bacterial suspensions (approximate cell density of 8 × 108 cells/mL). Lesion 

lengths were measured 14 days after inoculation. Data are the mean values 

from measurements of 10–20 leaves. Error bars show the standard error of 

the mean, and asterisks indicate a statistically significant difference from 

Xoo strain PXO99A according to Dunnett’s multiple comparison procedure 

(P < 0.05). Values in (A) are insignificantly different. Strain abbreviations: 

Xvv, X. vasicola pv. vasculorum; Xt, X. translucens; Xoc, X. oryzae pv. 

oryzicola; Xe, X. euvesicatoria; Xcm, X. campestris pv. musacearum; X8-1A, 

X11-5A, strains of X. oryzae; M97, X. maliensis M97; PXO99A, IXO685, 

AXO1947, strains of X. oryzae pv. oryzae.
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suggests that the RaxX PSY peptide mimicry function is not 

restricted to rice.

African Xoo strain AXO1947 RaxX and RaxST natural 

variants both lead to evasion of the XA21 immune 

receptor

The raxX alleles from Xoo strains IXO685 and AXO1947 failed to 

complement the ∆raxX mutant of Xoo strain PXO99A for XA21 

immune activation (Fig. 6). In addition to its variant raxX allele 

(Fig. 2), we noted that Xoo strain AXO1947 (Huguet-Tapia et al., 

2016) carries seven missense polymorphisms in the raxST gene 

(Fig. S6, see Supporting Information) not present in other Xoo 

strains, such as IXO685. To determine if the variant raxST al-

lele from strain AXO1947 encodes a functional protein, we per-

formed additional complementation tests.

We found that the raxX allele from strain PXO99A conferred 

the XA21 immune activation phenotype on strain IXO685, 

but not on strain AXO1947 (Fig. 7B). This result suggests that 

the raxX variant allele is not the only factor that prevents 

strain AXO1947 from activating the XA21 immune response. 

Consistent with this hypothesis, the raxST allele from strain 

PXO99A failed to confer the XA21 immune activation pheno-

type on strain AXO1947 (Fig. 7D). In contrast, the addition of 

both the raxX and raxST alleles from strain PXO99A was suf-

ficient to confer the XA21 immune activation phenotype on 

strain AXO1947 (Fig. 7F).

Taken together, these results suggest that Xoo strain AXO1947 

contains mutant versions of both genes, raxST and raxX. Analysis 

by quantitative reverse transcription-polymerase chain reaction 

(qRT-PCR) confirms that these genes are expressed in the com-

plemented strains (Fig. S7, see Supporting Information).

RaxST variants from Xoo strain AXO1947

To determine which of the RaxST missense polymorphisms is 

responsible for the apparent reduction in enzyme activity, we 

used site-specific mutagenesis to introduce each individually 

into the raxST gene from strain PXO99A. Genes encoding two 

of these [histidine-50 (His-50) to aspartic acid (Asp) (H50D) and 

arginine-129 (Arg-129) to leucine (Leu) (R129L)] were unable to 

complement the ∆raxST mutant of Xoo strain PXO99A for XA21 

immune activation (Fig. 8), indicating that both His-50 and Arg-

129 are necessary for RaxST activity.

Little is known about RaxST structure and function. Diverse 

sulfotransferases share limited sequence similarity, mostly com-

prising two relatively short sequence motifs involved in PAPS 

binding (Negishi et al., 2001). These motifs are conserved in the 

Xoo RaxST sequence (da Silva et al., 2004). Research with di-

verse sulfotransferases has identified three essential residues: a 

positively charged residue (corresponding to Arg-11 in RaxST) in 

one PAPS binding motif, an invariant serine (Ser) (corresponding 

to Ser-118 in RaxST) in the other and a catalytic base [His or glu-

tamic acid (Glu)] located between the two PAPS binding motifs 

(Negishi et al., 2001).

We generated a RaxST molecular model with the program 

iTasser (Yang and Zhang, 2015) using the crystal structure of 

human tyrosylprotein sulfotransferase-2 (TPST2) as a template 

(PDB: 3AP1). The sequence alignment is shown in Fig. S8 (see 

Supporting Information). TPST2 is a functional dimer (Teramoto 

et al., 2013), which is replicated in the RaxST structural model 

(Fig. S9, see Supporting Information). The two essential residues 

identified from Xoo strain AXO1947, His-50 and Arg-129, display 

surface-exposed side chains in close proximity to the correspond-

ing position for the bound substrate peptide co-crystallized with 

TPST2. These residues are distal to the catalytic site. Therefore, 

we hypothesize that these RaxST residues are involved in RaxX 

peptide binding.

DISCUSSION

Previously, we hypothesized that RaxX mimics the actions 

of PSY hormones, and that the XA21 receptor evolved spe-

cifically to recognize RaxX from Xoo (Pruitt et al., 2015, 

2017). This prediction is supported here by our finding that 

all the RaxX variants tested stimulate root growth (Fig. 5A,B) 

(Pruitt et al., 2017), but fail to activate the XA21-mediated 

immune response (Figs 5C and 6). Thus, RaxX sequence de-

terminants are more stringent for XA21-mediated immunity 

activation than for root growth stimulation. In this discussion, 

we consider two questions: (1) what are the potential selec-

tive pressures acting on RaxX that affect sequence variation; 

and (2) how was the raxX-raxSTAB gene cluster inherited in  

Xanthomonas spp.?

Opposing selection pressures drive RaxX natural 

variation

Maintenance of the raxX-raxSTAB gene cluster (Fig. 3) suggests 

that RaxX provides fitness benefits to diverse Xanthomonas spp., 

presumably during their interactions with hosts that collectively 

encompass a range of monocot and dicot species. This hypothesis 

is supported by in vivo data showing that Xoo strains lacking the 

raxX or raxST genes are compromised for virulence (Pruitt et al., 

2015, 2017). On the other hand, rice-restricted XA21-mediated 

immunity would select specifically against RaxX maintenance by 

Xoo. Analysis of raxX-raxSTAB gene cluster sequence polymor-

phisms suggests that both types of selection occur.

The Xa21 gene has been introgressed into commercial rice va-

rieties (Khush et al., 1990; Midha et al., 2017). Widespread plant-

ing of Xa21 rice presumably increases selection for Xoo variants 

that evade XA21-mediated immunity. All RaxX missense vari-

ants examined mimicked PSY hormone activity (Fig. 5A,B) (Pruitt 

et al., 2017), suggesting that this property confers a selective 



© 2019 THE AUTHORS. Molecul ar Pl ant Pathology  PUBL ISHED BY BR IT ISH SOCIET Y FOR PL ANT PATHOLOGY  

AND JOHN WILEY & SONS LTD  Molecul ar Pl ant Pathology  (2019) 20 (5),  656 – 672

raxX-raxSTAB gene cluster in Xanthomonas spp.  665

Fig. 7 The raxX and raxST genes are dysfunctional in Xanthomonas oryzae pv. oryzae (Xoo) strain AXO1947. Different combinations of the raxX and raxST 

genes were cloned into vector pVSP61 (see Experimental procedures) to test for complementation. Leaf tips of rice varieties TP309 (A, C and E) or XA21-

expressing TP309 (B, D and F) were inoculated by clipping with scissors dipped in bacterial suspensions (approximate cell density of 8 × 108 cells/mL). Lesion 

measurements were taken 14 days after inoculation. Data are the mean values from measurements of 10–20 leaves. Error bars show the standard error of the 

mean, and asterisks indicate a statistically significant difference from Xoo strain PXO99A according to Dunnett’s multiple comparison procedure (P < 0.05). Values 

in (A), (C) and (E) are not significantly different. (A) and (B) show complementation results for the raxX gene, (C) and (D) show results for the raxST gene, and (E) 

and (F) show results for the combination of both the raxX and raxST genes. Specific combinations of genes and complementation hosts are described in the figure 

labels.
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advantage. Consistent with this, we did not observe any raxX 

frameshift or nonsense alterations. Instead, RaxX variant se-

quences contain a restricted set of missense substitutions, con-

sistent with the hypothesis that selection acts to retain PSY-like 

function (Fig. 2; see Pruitt et al., 2017).

Among all RaxX variants tested, only that from Xoo strain 

PXO99A (which represents the large majority of Xoo raxX alleles) 

activated the XA21-mediated immune response (Figs 5C and 

6). This result demonstrates that recognition of RaxX by XA21 

is strictly limited to Xoo, and confirms and extends a previous 

conclusion from our laboratory that residues Pro-44 and Pro-48 

are both required for Xoo RaxX recognition by XA21 (Pruitt et al., 

2015).

Thus, it appears that some Xoo strains that evade activa-

tion of XA21-mediated immunity arise from a restricted set of 

raxX missense substitution alleles encoding variants that re-

tain PSY-like function. This observation suggests that it may be 

possible to engineer novel XA21 variants that recognize these 

variant RaxX proteins. If so, it may then be possible to engineer 

broad-spectrum resistance against Xoo (and other raxX-rax-

STAB gene cluster-positive Xanthomonas spp.) by expressing 

multiple XA21 proteins that collectively recognize multiple RaxX 

variants.

We also identified raxST and/or raxA gene loss-of-function 

alterations in Xoo field isolates (Fig. 7; da Silva et al., 2004), 

which presumably cannot express the PSY mimicry phenotype 

of RaxX. Such loss-of-function alterations could temper the 

effectiveness of production strategies that rely on engineered 

Xa21 alleles.

raxX-raxSTAB gene cluster origin

The raxAB genes are homologous to those encoding proteolytic 

maturation and ATP-dependent peptide secretion complexes (Lin 

et al., 2015; da Silva et al., 2004), related to type I secretion sys-

tems, but specialized for the secretion of small peptides, such 

as bacteriocins and peptide pheromones (Holland et al., 2016). 

Frequently, the gene encoding the secreted substrate is adjacent 

to genes encoding components of the secretion complex (Dirix 

et al., 2004). We hypothesize that the intact raxX-raxSTAB gene 

cluster originated in an ancestor to the lineage containing X. ory-

zae, X. euvesicatoria and related species, with subsequent gains 

or losses through lateral gene transfer (Fig. 2). Relatively few 

events appear to have been necessary to form the raxX-raxSTAB 

gene cluster. The raxX gene might have evolved from the gene 

for the secreted peptide substrate of the RaxAB ancestor. The 

complete cluster would result from the incorporation of the an-

cestral raxST gene, homologues of which are distributed broadly 

(Fig. S4).

Fig. 8  Two missense substitutions inactivate RaxST in Xoo strain 

AXO1947. Each of the seven raxST missense polymorphisms from Xoo strain 

AXO1947 was introduced singly into the wild-type raxST gene from Xoo 

strain PXO99A (see Experimental Procedures).  These mutant alleles then 

were tested for complementation of the Xoo strain PXO99A ∆raxST strain.  

Leaf tips of rice varieties TP309 (panel A) or XA21-expressing TP309 (panel 

B) were inoculated by clipping with scissors dipped in bacterial suspensions 

(approximate cell density of 8 × 108 cells mL−1). Lesion measurements 

were taken 14 days after inoculation.  Data are the mean values from 

measurements of 10–20 leaves.  Error bars show the standard error of the 

mean, and “*” indicates a statistically significant difference from Xoo strain 

PXO99A according to Dunnett’s multiple comparison procedure (P < 0.05).
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Role of the raxX-raxSTAB gene cluster in 

Xanthomonas biology

The raxX-raxSTAB gene cluster does not exhibit features char-

acteristic of self-mobile genomic islands, such as a gene for a 

site-specific recombinase (Hacker et al., 1997). Instead, evidence 

suggests that raxX-STAB gene cluster lateral gene transfer oc-

curred through general recombination between genes flanking 

each side of the raxX-STAB gene cluster (Figs 1 and S2). In bac-

teria, gene acquisition through lateral gene transfer contributes 

to the emergence of new pathovars (for one example, see Ogura 

et al., 2009). Conceivably, lateral acquisition of the raxX-raxSTAB 

gene cluster might allow a particular strain to infect a previously 

inaccessible host.

Xanthomonas pathovar phenotypes (Jacques et al., 2016) 

are not predicted by the presence or absence of the raxX- 

raxSTAB gene cluster. For example, some raxX-raxSTAB gene 

cluster-positive species can infect only monocots (e.g. X. oryzae, 

X. translucens) or only dicots (e.g. X. euvesicatoria), just as some 

raxX-raxSTAB gene cluster-negative species can also infect only 

monocots (e.g. X. arboricola, X. hyacinthi) or only dicots (e.g. 

X. campestris pv. campestris, X. citri). Similarly, some raxX-rax-

STAB gene cluster-positive species are specific for vascular tissue 

(e.g. Xoo, X. vasicola) or for non-vascular tissue (e.g. X. ory-

zae pv. oryzicola, X. euvesicatoria), just as some raxX-raxSTAB 

gene cluster-negative species are also specific for vascular tis-

sue (e.g. X. hortorum, X. albilineans) or for non-vascular tissue 

(e.g. X. citri, X. arboricola). Thus, selective function(s) for the 

raxX-raxSTAB gene cluster in Xanthomonas spp. remain to be 

determined.

E XPERIMENTAL PROCEDURES

Survey of raxX-STAB homologues in publicly available 

databases

We used the 5-kb-long Xoo PXO99A raxX-raxSTAB genomic 

region, including 600 bp upstream of raxST and 70 bp down-

stream of raxB, as query to search the following NCBI data-

bases with BLASTn and MEGABLAST using an e-value cut-off of 

1e-3: nr/nt, htgs, refseq_genomic_representative_genomes, 

refseq_genomic and gss. To identify RaxX homologues, we 

used the protein sequence of RaxX from Xoo PXO99A as query 

to search the same databases using tBLASTn with a PAM30 scor-

ing matrix to account for the short sequence length of RaxX. 

In case of raxST from Xoo PXO99A, we used the genomic cod-

ing sequence to search the same databases using the same 

cut-offs. In addition, we used the RaxST protein sequence to 

search the following database using BLASTp with an e-value 

cut-off of 1e-3 and a BLOSUM62 scoring matrix: nr, ref-

seq_protein, env_nr. The databases were last accessed on 6 

January 2016 for the initial manuscript submission and 25 June 

2018 during preparation of the resubmission. Searches were 

restricted to bacteria (taxid: 2) in the case of refseq_genomic_

representative_genomes. The observations of the specificity 

of raxX and the intact raxX-raxSTAB gene cluster to the genus 

Xanthomonas were consistent across all queries.

Whole-genome-based phylogenetic tree for 

Xanthomonas spp.

All available Xanthomonas genomes were downloaded from the 

NCBI ftp server on 29 January 2016 (413 genome accessions). 

The genome fasta files were used to build a local BLAST database 

using BLASTv2.27+ (Camacho et al., 2009). For all genes in and 

surrounding the raxSTAB cluster, BLASTn (e-value cut-off of 1e-3) 

was used to identify homologues in the local BLAST database. As 

a result of the small size of RaxX, tBLASTn was required to identify 

homologues (e-value cut-off of 1e-3). Fasta files for each BLAST hit 

were generated using a custom python script (available on re-

quest). Alignments of all genes were performed with Muscle v3.5 

(Edgar, 2004) implemented in the desktop tool Geneious v9.1.8 

(Kearse et al., 2012). Alignment ends were trimmed so that each 

sequence was equal in length and in the first coding frame. 

Maximum likelihood (ML) trees were built with RaxML v8.2.4 

(Stamatakis, 2014) with the following settings: (-m GTRGAMMA 

F -f a -x 3298589 -N 10000 -p 23). Trees shown in all figures are 

the highest scoring ML trees, and the numbers shown on the 

branches are the resampled bootstrap values from 1000 repli-

cates. Trees were drawn in FigTree v1.4.0 (http://tree.bio.ed.ac.

uk/software/figtree/).

Whole-genome phylogenies were generated using the en-

tire genome assembly with the program Andi v0.10 (Haubold 

et al., 2015; Klotzl and Haubold, 2016). These distance matri-

ces were plotted as neighbour-joining trees using Phylip v3.695 

(Felsenstein, 1981). The numbers on the branches represent 

the proportion (0–100) that the branch appeared in the ‘boot-

strapped’ distance matrices using Andi.

Sequence analyses

Nucleotide and deduced amino acid sequences were edited 

and analysed with the programs EditSeq™ (version 14.1.0), 

MegAlign™ (version 14.1.0) and SeqBuilder™ (version 14.1.0), 

DNASTAR, Madison, WI, USA. The Integrated Microbial Genomes 

interface (Chen et al., 2017) was used to compare genome seg-

ments from different species.

Bacterial growth

Xanthomonas strains were cultured at 28 °C. Solid medium was 

peptone sucrose agar (PSA; pH 7.0), which contains (per litre) 

peptone (10 g), sucrose (10 g), sodium glutamate (1 g) and agar 

(15 g). Liquid cultures were aerated at 230 rpm in YEB medium 

(pH 7.3), which contains (per litre) yeast extract (5 g), tryptone 

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
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(10 g), NaCl (5 g), sucrose (5 g) and MgSO4 (0.5 g). Antibiotics 

were kanamycin, carbenicillin, spectinomycin (all at 50 µg/mL) 

and cephalexin (20 µg/mL).

Rice growth and inoculation

Oryza sativa ssp. japonica rice varieties were TP309 and 

XA21-TP309, which is a 106-17-derived transgenic line of TP309 

carrying the Xa21 gene expressed from its native promoter 

(Song et al., 1995). TP309 rice does not contain the Xa21 gene. 

Seeds were germinated in distilled water at 28 °C for 1 week and 

then transplanted into sandy soil (80% sand, 20% peat; Redi-

Gro, Sacramento, CA) in 5.5-in square pots with two seedlings 

per pot. Plants were grown in tubs in a glasshouse, and were 

top watered daily with fertilizer water (N, 58 ppm; P, 15 ppm; 

K, 55 ppm; Ca, 20 ppm; Mg, 13 ppm; S, 49 ppm; Fe, 1 ppm; Cu, 

0.06 ppm; Mn, 0.4 ppm; Mo, 0.02 ppm; Zn, 0.1 ppm; B, 0.4 ppm) 

for 4 weeks, followed by water for 2 weeks. Six weeks after 

planting, rice pots were transferred to a growth chamber with 

the following day/night settings: 28 °C/24 °C, 80%/85% humid-

ity and 14-h/10-h lighting. Plants were inoculated 2–3 days after 

transfer using the scissors clipping method (Song et al., 1995). 

Bacteria for inoculation were taken from PSA plates and resus-

pended in water at a density of approximately 8 × 108 colony-

forming units (CFU)/mL. Water-soaked lesions were measured 

14 days after inoculation.

Complementation tests

The Xoo strain PXO99A marker-free deletions ∆raxX and 

∆raxST have been described previously (Pruitt et al., 2015). 

Site-specific mutational alterations were introduced by PCR 

using the In-Fusion HD cloning system (Takara, Mountain View, 

CA). The raxX and raxST genes from different Xanthomonas spp. 

were cloned into plasmid vector pVS61 and electrotransformed 

into the appropriate recipient strains, as described previously 

(Pruitt et al., 2015). qRT-PCR was performed as described pre-

viously (Pruitt et al., 2015). Gene expression was normalized 

to the chromosomal gene PXO_01660 (annotated as a homo-

logue of the ampC gene encoding β-lactamase). DNA prim-

ers for qRT-PCR were: ampC-F, GACTCGTAATGCCTACGACC; 

ampC-R, AATTGCTCGTAGAAGCTGCC; qraxST-F, CTTCCAACGT 

GCAGATCGAC; qraxST-R, TATCGACGATCCAACCAAC; qraxX-F, A 

AAATCGCCCGCCAAGGGT; qraxX-R, TCAATGGTGCCCGGGGTTG.

RaxX peptide stimulation of PR10b gene expression

Full-length sulfated RaxX proteins were purified from an 

Escherichia coli strain with an expanded genetic code that di-

rects the incorporation of sulfotyrosine at the appropriate posi-

tion (Schwessinger et al., 2016). The resulting MBP-3C–RaxX-His 

fusion proteins were incubated with 3C protease, followed 

by anion exchange chromatography, in order to remove the 

amino-terminal maltose binding protein tag, as described previ-

ously (Schwessinger et al., 2016). The control peptide, sulfated 

RaxX21-sY, has been described previously (Pruitt et al., 2015).

Rice plants were grown in a hydroponic system in growth 

chambers at 24 or 28 °C with a 14-h/10-h light–dark cycle at 

80% humidity. Seedlings were grown in A-OK Starter Plugs 

(Grodan, Milton, ON, Canada) and watered with Hoagland’s 

solution twice a week. Peptide influence on PR10b marker gene 

expression was measured as described previously (Pruitt et al., 

2015). Briefly, leaves of 4-week-old hydroponically grown rice 

plants were cut into 2-cm-long strips and incubated for at least 

12 h in double-distilled H2O to reduce residual wound signals. 

Leaf strips were treated with the indicated peptides and then 

snap-frozen in liquid nitrogen before processing. qRT-PCR was 

performed as described previously (Pruitt et al., 2015). Gene ex-

pression was normalized to the actin gene expression level and 

to the respective mock-treated control at 0 or 9 h. DNA prim-

ers for qRT-PCR were: PR10b-F, TGTGGAAGGTCTGCTTGGAC; 

PR10b-R, CCTTTAGCACGTGAGTTGCG.
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SUPPORTING INFORMATION

Additional supporting information may be found in the online 

version of this article at the publisher’s web site:

Fig. S1 Whole-genome-based Xanthomonas phylogenetic tree. 

This tree was constructed by the analysis of whole-genome se-

quences, as described in Experimental procedures. Blue indicates 

genomes that contain the raxX-raxSTAB gene cluster; red indi-

cates genomes that do not. Group numbers are arbitrary.

Fig. S2 Sequences flanking the raxX-raxSTAB gene cluster. 

Sequences are from the reference strains described in Table 1. 

Sequences conserved within a group, but different from other 

groups, are coloured green (‘early-branching’ species), brown 

(raxX-raxSTAB cluster-negative strains) or yellow (raxX-raxSTAB 

cluster-positive strains). For presentation, the sequence is divided 

into left and right boundaries. The green and brown sequences 

are contiguous, whereas the yellow sequences are interrupted by 

the c. 5-kb raxX-raxSTAB gene cluster, depicted as a yellow rect-

angle. For presentation, approximately 60–80 nucleotides with 

relatively low similarity were removed from the sequence shown 

in the right boundary panel. These conceptual deletions are de-

noted by the number of nucleotides removed in each case. Black 

sequences are conserved in all lineages, and include both cod-

ing regions as well as matches to transcription and translation 

initiation consensus sequences, which are described in the text. 

An ‘mfsX’ + 1 frameshift in Xoo sequences is indicated by the 

vertical red line. Abbreviations are in red for raxX-raxSTAB clus-

ter-negative strains and in blue for raxX-raxSTAB cluster-positive 

strains: Sm, Stenotrophomonas maltophilia; Xa, Xanthomonas 

albilineans; Xac, X. citri ssp. citri; Xaj, X. arboricola pv. juglan-

dis; Xam, X. axonopodis pv. manihotis; Xc, X. cannabis; Xcc, 

X. campestris pv. campestris; Xcm, X. campestris pv. mu-

sacearum; Xe, X. euvesicatoria; Xf, X. fragariae; Xh, X. hyacinthi; 

Xm, X. maliensis; Xoo, X. oryzae pv. oryzae; Xs, X. sacchari; Xt, 

X. translucens; Xv, X. vesicatoria.

Fig. S3 GcvP length polymorphisms in different Xanthomonas 

lineages. The relevant portion of the GcvP amino acid sequence 

is shown for each of the reference strains. Species in red lack the 

raxX-raxSTAB gene cluster, whereas those in blue carry the clus-

ter. Numbers denote different allelic types for reference to Fig. 3. 

The positions of residues Gly-733 and Val-738 (numbering for al-

lelic type 1) are indicated. Abbreviations: Sm, Stenotrophomonas 

maltophilia; Xa, Xanthomonas albilineans; Xac, X. citri ssp. 

citri; Xaj, X. arboricola pv. juglandis; Xam, X. axonopodis pv. 

manihotis; Xc, X. cannabis; Xcc, X. campestris pv. campestris; 

Xcm, X. campestris pv. musacearum; Xe, X. euvesicatoria; Xf, 

X. fragariae; Xh, X. hyacinthi; Xm, X. maliensis; Xoo, X. oryzae 

pv. oryzae; Xs, X. sacchari; Xt, X. translucens; Xv, X. vesicatoria.

Fig. S4 Phylogenetic tree for raxST homologues. Distribution of 

raxST homologues across bacterial genera, including the major 

groups of proteobacteria as well as cyanobacteria. The tree 

shown was constructed by neighbour-joining with 1000 boot-

strap replicates; branches with <50% bootstrap support are not 

drawn. The raxST sequence from Xanthomonas oryzae pv. ory-

zae (Xoo) strain PXO99A was used as query for tBLASTn.

Fig. S5 raxX expression in Xanthomonas oryzae pv. oryzae (Xoo) 

PXO99A complemented strains. Data show raxX gene expression 

in the complemented strains with different raxX alleles with its 

promoter region on plasmids. The expression is shown as the log-

arithm of raw data using quantitative reverse transcription-poly-

merase chain reaction (qRT-PCR). Data are the mean values from 

two biological replicates. Error bars show the standard deviation.

Fig. S6  RaxST sequence polymorphisms in Xanthomonas ory-

zae pv. oryzae (Xoo) strain AXO1947. The RaxST sequence from 

Xoo strain PXO99A is shown. The seven missense substitutions 

in the sequence from Xoo strain AXO1947 (Huguet-Tapia et al., 
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2016) are indicated. The boundaries of the 3′-phosphoadenos-

ine 5′-phosphosulfate (PAPS) binding motifs (5′-PSB and 3′-PB; 

Negishi et al., 2001), enclosed in boxes, include the catalytic res-

idues Arg-11 and Ser-118.

Fig. S7 raxX and raxST expression in Xanthomonas oryzae pv. 

oryzae (Xoo) PXO99A complemented strains. Data show raxX and 

raxST gene expression in the complemented strains (with raxX and 

raxST on plasmids) relative to expression in Xoo strain PXO899A 

(with raxX and raxST on the chromosome). Expression was deter-

mined by quantitative reverse transcription-polymerase chain reac-

tion (qRT-PCR) (see Experimental procedures), and is shown as the 

logarithm of the fold change. Gene expression was normalized to 

the chromosomal gene PXO_01660 (annotated as an ampC gene 

homologue encoding-lactamase). Data are the mean values from 

two biological replicates. Error bars show the standard deviation.

Fig. S8  RaxST structural alignment. Sequence alignment 

of the human tyrosylprotein sulfotransferase-2 (TPST2) and 

Xanthomonas oryzae pv. oryzae (Xoo) RaxST sequences 

formatted with ESPript 3.0 (Robert & Gouet, 2014). Secondary 

structure elements derived from the respective structural models 

are shown. Stars show TPST2 residues involved in 3′-phosphoad-

enosine 5′-phosphosulfate (PAPS) binding, and arrows show 

RaxST missense substitutions.

Fig. S9  Model for RaxST structure. Predicted RaxST struc-

ture shown in cartoon and surface representation, based 

on the dimeric structure of tyrosylprotein sulfotransferase-2 

(TPST2). The two RaxST monomers are coloured in dark and 

light green. The 3′-phosphoadenosine 5′-phosphate (PAP) 

and C4 substrate peptide that were co-crystallized with 

TPST2 are superimposed on the RaxST model. PAP is rep-

resented as labelled and the substrate peptide is shown in 

yellow cartoon with the acceptor tyrosine represented as la-

belled. Residues His-50 and Arg-129 are coloured in magenta 

and highlighted.

File S1 Xanthomonas strains analysed for whole-genome phy-

logeny. Excel file (.XLS format).


