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Variation at 3p24.1 and 6q23.3 influences
the risk of Hodgkin’s lymphoma
Matthew Frampton1, Miguel Inacio da Silva Filho2, Peter Broderick1, Hauke Thomsen2, Asta Försti2,3,

Jayaram Vijayakrishnan1, Rosie Cooke1, Victor Enciso-Mora1, Per Hoffmann4,5, Markus M. Nöthen4,6,

Amy Lloyd1, Amy Holroyd1, Lewin Eisele7, Karl-Heinz Jöckel7, Sabine Ponader8, Elke Pogge von Strandmann8,

Tracy Lightfoot9, Eve Roman9, Annette Lake10, Dorothy Montgomery10, Ruth F. Jarrett10, Anthony J. Swerdlow1,11,

Andreas Engert8, Kari Hemminki2,3 & Richard S. Houlston1

In addition to HLA, recent genome-wide association studies (GWASs) of Hodgkin’s

lymphoma (HL) have identified susceptibility loci for HL at 2p16.1, 8q24.21 and 10p14. In this

study, we perform a GWAS meta-analysis with published GWAS (totalling 1,465 cases

and 6,417 controls of European background), and follow-up the most significant association

signals in 2,024 cases and 1,853 controls. A combined analysis identifies new HL

susceptibility loci mapping to 3p24.1 (rs3806624; P¼ 1.14� 10� 12, odds ratio (OR)¼ 1.26)

and 6q23.3 (rs7745098; P¼ 3.42� 10� 9, OR¼ 1.21). rs3806624 localizes 50 to the EOMES

(eomesodermin) gene within a p53 response element affecting p53 binding. rs7745098

maps intergenic to HBS1L and MYB, a region previously associated with haematopoiesis.

These findings provide further insight into the genetic and biological basis of inherited

susceptibility to HL.
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H
odgkin’s lymphoma (HL) is a common lymph node
cancer of germinal centre B-cell origin, which is
characterized by malignant Hodgkin and Reed–Sternberg

(HRS) cells mixed with a dominant background population of
reactive lymphocytes and other inflammatory cells1. Although
Epstein–Barr virus (EBV) infection may be causally related to a
number of cases, there is little evidence to support the involvement
of other environmental risk factors2.

Evidence for inherited genetic influence on susceptibility is
provided by the increased familial risk and very high concordance
between monozygotic twins3. Although the risk of HL is well
recognized to be influenced by HLA genotype variation within
the major histocompatibility complex, much of the familial risk is
thought to be the consequence of non-HLA genotype variation.
Support for this hypothesis has come from recent genome-wide
association studies (GWASs) of HL that, in addition to demon-
strating multiple HLA associations4–7, have identified non-HLA
susceptibility loci at 2p16.1 (REL), 8q24.21 and 10p14 (GATA3)7.

In this study to identify additional susceptibility loci for HL, we
conducted an independent primary scan of German patients with
classical HL (cHL) and performed a genome-wide meta-analysis
with one previously published GWAS of UK cHL patients. The
most significant single nucleotide polymorphisms (SNPs) were
analysed in two additional series totaling 2,024 cases and 1,853
controls. A combined analysis identified new HL susceptibility
loci mapping to 3p24.1 and 6q23.3.

Results
GWAS and meta-analysis. In the primary scan (German-GWAS),
1,001 cHL cases, ascertained by the German Hodgkin Study Group
during 1998–2007, were genotyped using the Illumina Human
OmniExpress-12 v1.0 arrays. For controls, we used genotype
data on 1,226 individuals enrolled into the Heinz Nixdorf Recall

study genotyped using Illumina OmniExpress-12 v1.0. A total of
133 case samples were removed during quality control steps for
reasons including a failure to genotype, duplicates, closely related
individuals or non-CEU ancestry (CEU-Utah residents with
Northern and Western European ancestry; Figs 1 and 2).

The UK-GWAS has been previously reported7; briefly, 622
cHL cases were genotyped using Illumina 660w-Quad BeadChips.
Genotype frequencies were compared with publicly accessible
genotype data generated by the UK Wellcome Trust Case–
Control Consortium 2 study of 2,930 individuals from the 1958
British Birth Cohort (58C) and 2,737 individuals from the UK
Blood Service collections that had been genotyped using the
Illumina Human1.2M-Duo Custom_v1 Array. There was no
evidence of systematic bias between these two series, which were
combined to provide genotype data for 5,667 controls7. Quality
control steps for the UK GWAS have been previously reported7.

After filtering of genotype data from each GWAS on the basis
of pre-specified quality control measures, 296,129 autosomal
SNPs were common to both case–control series. Quantile–
quantile plots of the genome-wide Armitage trend test w2-values
showed that there was minimal inflation of the test statistics
rendering substantial cryptic population substructure or differ-
ential genotype calling between cases and controls unlikely in
either GWAS (genomic control inflation factor8, lgc¼ 1.03 and
1.09 in UK and German-GWAS, respectively; Fig. 3). In the
combined analysis under a fixed effects model, we identified 27
SNPs in 21 genomic regions not previously associated with cHL
risk, which showed good evidence for a relationship (that is,
Po5.0� 10� 5 fixed effects model inverse-variance weighted
meta-analysis test; Fig. 4, Supplementary Table S1).

Replication genotyping. To validate these findings, we genotyped
the SNP showing the best evidence of association in each of the 21
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Figure 1 | GWAS data quality control. Details are provided of the samples and SNPs used in UK-GWAS and quality control of German-GWAS. Quality

control of UK-GWAS reported in previously published work42.
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regions in the UK-replication 1 series. In the combined analysis,
rs3806624 and rs7745098 showed consistent evidence for an
association with HL risk applying a fixed effects model to
Armitage trend test statistics (combined P-valueo5.0� 10� 7;
Supplementary Table S2) and these SNPs were genotyped in the
UK-replication 2 series. In a combined analysis of all data sets,
the rs3806624 and rs7745098 associations were statistically
significant on a genome-wide basis (that is, Po5.0� 10� 8 fixed
effects model inverse-variance weighted meta-analysis test; Fig. 5;
Supplementary Table S3).

rs3806624 localizes to 3p24.1 (27,764,623 bp; combined
P¼ 1.14 � 10� 12 fixed effects model inverse-variance weighted
meta-analysis test, odds ratio (OR)¼ 1.26) 50 to the EOMES
(eomesodermin; MIM:604615) gene (Fig. 6) within a 110-kb
region of linkage disequilibrium (LD). rs7745098 localizes to
6q23.3 (135,415,004 bp; combined P¼ 3.42� 10� 9 fixed effects
model inverse-variance weighted meta-analysis test; OR¼ 1.21)
and maps intergenic to HBS1L (HBS1-like protein; MIM 612450)
and MYB (V-MYB avian myeloblastosis viral oncogene homo-
logue; MIM:189990) genes. To explore the 3p24.1 and 6q23.3
regions of association further, we imputed unobserved genotypes
in GWAS cases and controls using 1,000 genomes data. This
analysis did not reveal a significantly stronger association at
3p24.1 and 6q23.3 to that provided by rs3806624 and rs7745098,
respectively (Fig. 6).

Subtype analysis. HL is biologically heterogeneous2, something
reflected in the histology of tumour subtypes. In addition, a
hallmark of cHL epidemiology is the bimodal age-specific
incidence, and it has been argued that the disease in young
adults and older adults are aetiologically different; in particular,
there is a lower prevalence of EBV in young cHL cases (that is,
o40 years), with B70% of mixed cellularity cHL being
EBV-positive compared with only B20% of nodular sclerosis
cHL. We assessed by case-only analysis the relationship between
cHL and sex, age, histology and EBV status and rs3806624,
rs7745098 genotype (Supplementary Table S4). Using case-only
logistic regression, a strong association was seen between rs3806624
and age at diagnosis of cHL with an increased prevalence of the G
risk allele in cases diagnosed before age 40 (P¼ 8.35� 10� 4 Wald

test on the coefficient). None of the other associations were statis-
tically significant.

Impact of SNPs on heritability of HL. There was no evidence of
significant interaction between either rs3806624 or rs7745098 and
the previously identified risk loci at 2p16.1 (rs1432295), 6p21.32
(rs6903608), 8q24.21 (rs2608053), 8q24.21 (rs2019960) and
10p14 (rs501764), an observation compatible with each locus
having an independent effect on HL risk. To quantify the impact
of the known loci on the heritability associated with common
variation at the non-HLA-linked loci (3p24.1, 6q23.3, 2p16.1,
8q24.21, 8q24.21 and 10p14), using data from UK-GWAS and
German-GWAS we computed the receiver operator characteristic
associated with rs3806624, rs7745098, rs1432295, rs2608053,
rs2019960 and rs501764 genotypes. The area under the curve
corresponding to these variants was 0.63 translating into them
collectively accounting for B7% of the familial risk.

Deciphering association signals. The functional basis of many
GWAS signals can be ascribed to sequence changes having an
impact on gene expression and sequence conservation in non-
coding regions has been shown to be a good predictor of cis-
regulatory sequences. Using publicly accessible expression quan-
titative trait loci (eQTL) data on lymphoblastoid cell lines (LCLs)
and T cells, we examined whether either rs3806624 or rs7745098
genotype is associated with differential expression. Although
the associations identified did not show consistent statistically
significant evidence of cis-acting regulatory effects in publicly
accessible eQTL data, this does not preclude the possibility
that the causal variants at these disease loci have subtle effects
on expression, as the dynamic range of transcripts is small.
Further, it is likely that only a cumulative long-term imbalance
in expression of target genes will influence cHL development,
and expression differences may be relevant only to a specific
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Figure 2 | Identification of samples of non-European origin for the

German GWAS. The first two principal components of the analysis are

plotted in each figure. (a) German controls (black crosses) and cases (grey

crosses) are shown together with the HapMap CEU (Utah residents with

Northern and Western European ancestry) individuals (red), CHB

(Han Chinese in Beijing)þ JPT (Japanese in Tokyo) individuals (purple) and

YRI (Yoruba in Ibadan) individuals (green). (b) The same plot is shown after

the removal of cases and controls of non-European origin. Respective

data on UK-GWAS provided in previously published work42.
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Figure 3 | Quantile–quantile (Q–Q) plots of v2-values for association.

(a) UK cases and UK controls (l¼ 1.03); (b) German cases and German

controls (l¼ 1.09).
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subpopulation of B cells, which may not be well modelled by
EBV-transformed lymphocytes.

To examine whether any directly typed or imputed SNPs lie
within or very close to a putative transcription factor-binding/
enhancer element, we conducted a bioinformatic search of each
region of association. rs3806624 maps within a predicted
promoter with histone marks of regulatory elements associated
with promoters shown in multiple cell types; rs7745098 is within
a highly evolutionary conserved region with predicted weak
enhancer activity (Fig. 6; Supplementary Table S5).

Discussion
We have identified common variants on chromosome 3p24.1 and
6q23.3 that influence the risk of cHL. Some (HLA; 8q24.21
rs2608053; 5q31 rs20541) but not all of the previously identified
risk loci for cHL have differential effects according to histology
and EBV status5,7. Our study findings suggest that 3p24.1 and
6q23.3 have generic effects on the development of cHL akin to
10p14 variation7.

As rs3806624 localizes 50 to the EOMES gene and there are no
other known genes within this region of LD, there is a high
likelihood that the functional basis of the 3p24.1 association is
mediated through variation in this gene a priori. Although we
cannot exclude the possibility that rs3806624 is simply acting as a
marker for the 3p24.1 association, interrogation of the association
signal through imputation failed to recover a statistically stronger
association. Moreover, as rs3806624 maps within a p53 response
element affecting p53 binding, with the risk allele G displaying
weaker binding than the A allele9 it is likely that the SNP is causal.

EOMES is a member of the TBR1 subfamily of T-box genes
that have a critical role in embryogenesis and pluripotency.
Although EOMES seems important in extranodal natural killer/T-
cell lymphoma10, evidence for a role of EOMES in cHL aetiology
is currently lacking. A high proportion of the reactive infiltrate in

cHL tumours is however composed of Thelper2 (Th2)-like cells
with a Tregulatory phenotype and crosstalk between these cells and
the HRS cells seem essential for tumour growth11. Notably, a key
characteristic of HRS cells is the production of cytokines and
chemokines driven by GATA3 and T-bet expression and other
T-cell transcription factors12. EOMES is necessary for full effector
differentiation of CD8þ T cells complementing the actions of T-
bet and acting as a key regulatory gene in the development of cell-
mediated immunity13; CD8þ T cells deficient in Eomes and
T-bet fail to differentiate into functional killers required for viral
defence14. Differential expression of Eomes and T-bet seem to
facilitate the cooperative maintenance of the pool of antiviral
CD8þ T cells during chronic viral infection15, something highly
pertinent to cHL.

CD44-positive memory Th2 cells expressing interleukin-5 (Il5)
have lower levels of Eomes than Th2 cells lacking Il5 expression16.
We have previously shown that variation at GATA3 is a
determinant of cHL risk7. Downregulation of Eomes is required
for Il5 expression and Eomes suppresses Gata3 transcriptional
activity by inhibiting Gata3 binding to the Il5 promoter16. These
findings support a role for an extended pathway involving GATA3
and EOMES genes in the aetiology of cHL.

rs170934 that maps 314 kb telomeric to EOMES
(28,079,085 bp) has previously been shown to be a risk factor
for multiple sclerosis17. Intriguingly, familial clustering of HL and
multiple sclerosis is seen suggesting a common aetiological basis
to both diseases18. This coupled with the biology of EOMES
strengthens the link between autoimmunity and HL and raises
the possibility of a model by which T-cell activation has a role in
both diseases through aberrant antigenic response.

rs7745098 maps intergenic to HBS1L and MYB, a region of the
genome, which has previously been reported to have a substantial
role in haematopoiesis with polymorphisms influencing plate-
let19, white cell count20 and haemoglobin levels21. Although
evidence for a role for HBS1L in haematological malignancy is
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lacking, MYB, through its interaction with p300, controls the
proliferation and differentiation of haematopoietic stem and
progenitor cells.

Although we do not find evidence of cis-acting regulatory
effects in publicly accessible eQTL data from analysis of LCLs or
T cells, steady-state levels of RNA in lymphocytes at a single time
point and in cycling mature cells may not adequately capture the
impact of differential expression in tumorigenesis. In summary,
we have identified new risk loci at 3p24.1 and 6p22 for cHL,
which provide additional insight into the development of this
B-cell malignancy.

Methods
Ethics. Collection of samples and clinicopathological information from subjects
was undertaken with informed consent and relevant ethical review board approval
in accordance with the tenets of the Declaration of Helsinki (in the United
Kingdom, the Royal Marsden Hospital NHS Trust and Multicentre Research Ethics
Committee; in Germany, The Ethics committee of the University of Cologne).

Discovery subjects. The German-GWAS comprised 1,001 cHL cases (597 men;
mean age at diagnosis¼ 34.8 years, s.d.¼ 12.3) ascertained by the German
Hodgkin Study Group during 1998–2007. Cases were genotyped using Illumina
Human OmniExpress-12 v1.0 arrays according to the manufacturer’s protocols
(Illumina, San Diego, USA). For controls, we used genotype data on 1,226
individuals enrolled into the Heinz Nixdorf Recall study genotyped using Illumina
OmniExpress-12 v1.0.

The UK-GWAS has been previously reported7; briefly, 622 cHL cases (63 men,
mean age at diagnosis¼ 24.4 years, s.d.¼ 9.6) were genotyped using Illumina
660w-Quad BeadChips. Genotype frequencies were compared with publicly
accessible genotype data generated by the UK Wellcome Trust Case–Control
Consortium 2 (ref. 22) study of 2,930 individuals from the 1958 British Birth
Cohort (58C)23 and 2,737 individuals from the UK Blood Service collections that
had been genotyped using the Illumina Human1.2M-Duo Custom_v1 Array. There
was no evidence of systematic genotyping bias between these two series, which
were combined to provide genotype data for 5,667 controls7.

Quality control of GWAS data sets. DNA samples with GenCall scores o0.25 at
any locus were considered ‘no calls’. A SNP was deemed to have failed if o95% of
DNA samples generated a genotype at the locus. A sample was deemed to have
failed if o95% of SNPs were successfully genotyped. The same quality control
metrics on the German-GWAS data were applied as in the UK-GWAS7. We
computed identity-by-state (IBS) probabilities for all pairs (cases and controls) to
search for duplicates and closely related individuals amongst samples (defined as
IBSZ0.80, thereby excluding first-degree relatives). For all identical pairs the
sample having the highest call rate was retained. To identify individuals who might
have non-Western European ancestry, we merged our case and control data with
phase II HapMap samples (60 Western European (CEU), 60 Nigerian (YRI), 90
Japanese (JPT) and 90 Han Chinese (CHB)). For each pair of individuals, we
calculated genome-wide IBS distances on markers shared between HapMap and
our SNP panel, and used these as dissimilarity measures on which to perform
principal component analysis.

We filtered out SNPs having a minor allele frequency o1% and a call rate
o95% in cases or controls. We also excluded SNPs showing departure from
Hardy–Weinberg equilibrium at Po1� 10� 7 (w2-test with 1 degree of freedom or
Fisher’s exact test if a cell count was o5). After stringent quality control
filtering (Fig. 1), we analysed 296,129 autosomal SNPs, common to all cases and
controls, in 1,465 cHL cases and 6,417 controls. Cluster plots were manually
inspected for all SNPs considered for replication.

Replication series and genotyping. UK-replication 1 comprised 1,071 UK
patients diagnosed with cHL of either mixed cellularity HL (269 men; mean age at
diagnosis 46.9 years, range 15–86) or nodular sclerosis HL (306 men; mean age at
diagnosis 31.4 years, range 15–49). The patients were ascertained through the
National Study of Hodgkin’s Lymphoma Genetics (http://www.pu-
blic.ukcrn.org.uk), an ongoing study of HL established in 2008. Controls were
healthy individuals recruited through the National Study of Colorectal Cancer
Genetics (n¼ 1,186,367 men; mean age 58.6)24 and the Royal Marsden Hospital
Trust/Institute of Cancer Research Family History and DNA Registry (n¼ 102,17
men; mean age 59.3) with no personal history of malignancy. Both cases and
controls were UK residents and had self-reported European ancestry.

UK-replication 2 comprised 953 cHL cases (defined according to ICD10 C81.0-
3; 290 men, mean age of diagnosis (AOD)¼ 38 years, s.d.¼ 16 years) ascertained
from the Scotland and Newcastle Epidemiological Study of Hodgkin Disease
(SNEHD), the Young Adult Hodgkin Case–Control Study (YHCCS) and the
Epidemiology and Cancer Statistics Group Lymphoma Case–Control Study
(ELCCS; http://www.elccs.info). Full details of the SNEHD, YHCCS and ELCCS

studies were provided previously. Briefly, SNEHD involved ascertainment of
incident cases from Scotland and Northern England during 1993–1997. YHCCS
was based on newly diagnosed cases aged 16–24 years from Northern England
during 1991–1995. ELCCS comprised cases residing in the north of England aged
16–69 years, with newly diagnosed, non-human immunodeficiency virus-related
HL, during 1998–2003. UK population controls were obtained from SNEHD,
YHCCS and ELCCS (n¼ 565, 326 men, mean age 41 years, s.d.¼ 17 years). The
EBV status of cHL tumours was determined by immunohistochemical staining for
EBV latent membrane antigen-1 and/or EBV EBV-encoded RNA in situ
hybridization using sections of paraffin-embedded material.

Genotyping was performed using competitive allele-specific PCR KASP
chemistry (LGC, Hertfordshire, UK). Primers used are listed in Supplementary
Table S6. To ensure quality of genotyping in all assays, at least two negative
controls and 6–7% duplicates (showing a concordance 499.9%) were genotyped.
Call rates were 495% per 384-well plate for each SNP; cluster plots were visually
examined by two researchers.

Statistical and bioinformatic analysis. Main analyses were undertaken using R
(v2.10.1; http://www.r-project.org), Stata v.10 (State College, Texas, USA) and
PLINK (v1.07)25 software. The association between each SNP and risk was assessed
by the Cochran–Armitage trend test. The adequacy of the case–control matching
and possibility of differential genotyping of cases and controls were formally
evaluated using quantile–quantile plots of test statistics. The inflation factor l was
based on the 90% least significant SNPs8. ORs and associated 95% confidence
intervals were calculated by unconditional logistic regression. Meta-analysis was
conducted using standard methods under a fixed effects model26–27. Cochran’s Q
statistic to test for heterogeneity and the I2 statistic to quantify the proportion of
the total variation because of heterogeneity were calculated28. I2-valuesZ75% are
considered characteristic of large heterogeneity28. Associations by age, sex,
histology and EBV status were examined by case-only analyses.

Assuming a sibling relative risk of 3.93 (ref. 29) and a prevalence of 2.8� 10� 5

(Surveillance Epidemiology and End Results data), we made use of receiver
operator characteristic curve analysis30 to estimate the proportion of the genetic
variance on the liability scale attributable to variation at rs3806624, rs7745098,
rs1432295, rs6903608, rs2608053, rs2019960 and rs501764.

Prediction of untyped SNPs was carried out using IMPUTEv2 (ref. 31) based on
the 1,000 genomes phase 1 integrated variant set (b37) from March 2012. Imputed
data were analysed using SNPTEST v2 to account for uncertainties in SNP
prediction32. LD metrics were calculated in PLINK (ref. 25) using 1,000 genomes
data and plotted using SNAP33. LD blocks were defined on the basis of HapMap
recombination rate (cM/Mb) as defined using the Oxford recombination
hotspots34 and on the basis of distribution of confidence intervals defined by
Gabriel et al.35

To explore the epigenetic profile of association signals, we made use of
chromatin state segmentation in LCL data generated by the ENCODE Project36.
The states were inferred from ENCODE Histone Modification data (H4K20me1,
H3K9ac, H3K4me3, H3K4me2, H3K4me1, H3K36me3, H3K27me3, H3K27ac and
CTCF) binarized using a multivariate Hidden Markov Model. We made use of
RegulomeDB37 and HaploReg38 to examine whether any of the SNPs or their
proxies (that is, r240.8 in 1,000 genomes CEU reference panel) annotate putative
transcription factor-binding/enhancer elements.

Relationship between SNP genotype and mRNA expression. To examine for a
relationship between SNP genotype and expression, we made use of publicly
available expression data generated on LCLs and T cells from HapMap3, Geneva
and the MuTHER pilot data using Sentrix Human-6 Expression BeadChips (Illu-
mina)39–41.
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