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Genomic mapping of complex traits across species demands
integrating genetics and statistics. In particular, because it is
easily interpreted, the R 2 statistic is commonly used in
quantitative trait locus (QTL) mapping studies to measure the
proportion of phenotypic variation explained by molecular
markers. Mixed models with random polygenic effects have
been used in complex trait dissection in different species.
However, unlike fixed linear regression models, linear mixed
models have no well-established R 2 statistic for assessing
goodness-of-fit and prediction power. Our objectives were to
assess the performance of several R 2-like statistics for a linear
mixed model in association mapping and to identify any such
statistic that measures model-data agreement and provides an
intuitive indication of QTL effect. Our results showed that the

likelihood-ratio-based R 2 (RLR
2 ) satisfies several critical re-

quirements proposed for the R 2-like statistic. As RLR
2 reduces

to the regular R 2 for fixed models without random effects other
than residual, it provides a general measure for the effect of
QTL in mixed-model association mapping. Moreover, we found
that RLR

2 can help explain the overlap between overall
population structure modeled as fixed effects and relative
kinship modeled though random effects. As both approaches
are derived from molecular marker information and are not
mutually exclusive, comparing RLR

2 values from different
models provides a logical bridge between statistical analysis
and underlying genetics of complex traits.
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Researchers in many disciplines use linear regression
models widely. The R2 statistic, the coefficient of
determination, is one of the most frequently used
measures of prediction power and goodness-of-fit for
simple linear regression models (Draper and Smith, 1981;
Everitt, 2002). In the literature on genetics, researchers
often report R2 values of newly identified genetic loci in
addition to effect sizes and P-values (Lettre et al., 2008;
Weedon et al., 2008). For nonstandard linear regression
models, however, several competing R2-like statistics
have been proposed to measure prediction power and
goodness-of-fit (Buse, 1973; Magee, 1990; Xu, 2003;
Kramer, 2005) but have not been used in genetics.
Indeed, it is desirable to have a measure for general
linear mixed models analogous in some ways to the R2 of
the linear regression model, which has a ‘variation
explained’ interpretation.

Association mapping searches the association between
genetic markers and complex traits (for example disease
susceptibility) based on populations (Hirschhorn and
Daly, 2005). It complements linkage analysis in mapping
the genetic basis of complex traits. Mixed models have
long been used in genetic research (Henderson, 1984;

Lynch and Walsh, 1998), and the mixed-model associa-
tion mapping methods were developed to account for
complex population structure (Meuwissen et al., 2002;
Yu et al., 2006; Malosetti et al., 2007). Although statistics
like deviance and the Bayesian Information Criterion
(BIC) (Schwarz, 1978) can be used to select models
(Broman and Speed, 2002; Littell et al., 2006), many
researchers desire a R2-like statistic for mixed models
because it can indicate the prediction power of various
models containing different fixed and random effects
and their associated variance–covariance structure. After
identifying statistically significant genetic loci (Kennedy
et al., 1992), many geneticists would ask how much of the
phenotypic variation is explained by each quantitative
trait locus (QTL) for the interpretation or comparison
purpose. In other words, what is the relative degree of
improvement of the model fit to the data that results by
including this significant genetic effect. Moreover, R2-like
statistics complement statistical testing by providing
practitioners with a more intuitive measurement than the
P-value from other statistical tests (for example, like-
lihood-ratio (LR) test or F-test). Compared with statistics
like deviance and BIC, R2-like statistics offer an alter-
native, easier to grasp measurement for geneticists.
Several approaches can quantify the genetic relation-

ship of a complex population in the context of association
mapping using molecular marker information (Weir
et al., 2006). The first approach was developed to examine
population structure by estimating the probability of
subgroup membership (Pritchard et al., 2000; Falush
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et al., 2003). Recent research showed that principal
component analysis (PCA) can also capture population
differentiation (Price et al., 2006). A second approach
focuses on the pairwise genetic relationship by estimat-
ing relative kinship (Loiselle et al., 1995; Ritland, 1996;
Yu et al., 2006). As these two approaches are not
orthogonal and the same marker data can be used to
reflect population structure, principal components, and
relative kinship, dependency among these different
estimates is expected. Simultaneously fitting these
estimates in the model, however, does not necessarily
preclude the objective of controlling multiple levels of
genetic relatedness within the association panel. In
practice, the effects of controlling complex population
structure with different estimates (population structure,
principal components, and relative kinship) can vary by
populations, traits, or both (Yu et al., 2006, 2009; Zhao
et al., 2007; Zhu and Yu, 2009). A legitimate question,
then, is whether a statistic like R2 can be used to compare
the different levels of control for genetic relationships.

Much of the literature on using R2 for nonstandard
linear models comes from statistics and econometrics,
whereas such literature in the field of genetics is limited.
Accordingly, our objectives were to assess the perfor-
mance of several R2-like statistics for a linear mixed
model in association mapping and to identify a general
R2-like statistic that measures model-data agreement and
provides an intuitive indication of the QTL effect.
Although theoretical derivation or developing new
statistics are beyond the scope of this study, we introduce
four R2-like statistics for nonstandard linear models,
describe mixed-model association mapping, and test the
performance of these four R2-like statistics in the context
of association mapping with computer simulations. We
then apply these statistics to two empirical data sets.

Materials and methods

R2 for fixed linear models
For the linear model with only fixed effects

y ¼ Xbþ e ð1Þ
where y is an n� 1 vector, X is an n� k matrix, b is a k� 1
vector of unknown regression coefficients, and e is an
n� 1 vector consisting of i.i.d. normal variables with

mean 0 and variance s2. Then the usual R2 statistic is
defined as

R2¼ SSR

SSTO
¼ 1� SSE

SSTO

where SSR ¼ ðŷ� �yÞ0ðŷ� �yÞ; SSE ¼ ðy� ŷÞ0ðy� ŷÞ;
SSTO ¼ ðy� �yÞ0ðy� �yÞ; ðy� �yÞ0ðy� �yÞ ¼ ðŷ� �yÞ0ðŷ� �yÞþ
ðy� ŷÞ0ðy� ŷÞ; ŷ ¼ Xb̂; and �y ¼ 1

n

Pn

i¼1

yi . As 0pSSEp

SSTO, it follows that 0pR2p1.

R2 statistics for linear mixed models
The linear model with both fixed effects and random
effects is

y ¼ Xbþ Zuþ e ð2Þ
where y is an n� 1 observation vector, X is an n� k design
matrix linked to the fixed effect, b is a k� 1 vector of
unknown regression coefficients of fixed effects, Z is an
n� p design matrix linked to the random effects, u is a
p� 1 vector of random variables from a multivariate
normal distribution (MVN) with zero means and
variance–covariance matrix G (that is uBMVN (0, G)),
and e is an n� 1 vector of random errors with zero means
and variance–covariance matrix Is2 (that is eBMVN (0,
Is2)). Thus, y is MVN (Xb, V) and V¼ZGZ0 þ Is2. Several
statistics have been proposed for mixed models (Table 1),
and we describe them briefly in the following sections.

Two research groups (Cox and Snell, 1989; Magee,
1990) have independently proposed the likelihood-ratio-
based R2 (RLR

2 ), a R2-like statistic based on the LR:

R2
LR ¼ 1� expð� 2

n
ðlog LM � log L0ÞÞ

where logLM is the maximum log-likelihood of the model
of interest, logL0 is the maximum log-likelihood of the
intercept-only model, n is the number of observations,
and log L¼� 1

2 log Vj j�1
2 ðy� XbÞ0V�1ðy� XbÞ � n

2 logð2pÞ:
Please note that the calculation is based on maximum
likelihood (ML), not restricted ML (REML). The same
formula of RLR

2 was also suggested for the binary response
models earlier by Maddala (1983). The LR statistic can be
written as LR¼ 2log(LM/L0). The relationship between
RLR
2 and LR is RLR

2 ¼ 1�exp(�LR/n). The RLR
2 statistic is

appropriate when the concept of residual variance cannot

Table 1 Summary of different R2 statistics for the linear mixed model

R2 statistics Theoretical basis Formula References

RLR
2 Likelihood ratio 1� expð� 2

n ðLogLM � LogL0ÞÞ (Magee, 1990)

RW
2 Wald statistic

R2
w1 ¼ 1� ðy�y

_Þ0V�1ðy�y
_Þ

ðy���yÞ0V�1ðy���yÞ
(Buse, 1973)

R2
w2 ¼ 1� ðy�ŷÞ0V�1ðy�ŷÞ

ðy���yÞ0V�1ðy���yÞ
(Kramer, 2005)

rc Concordance correlation 1� ðy�ŷÞ0ðy�ŷÞ
ðy��yÞ0ðy��yÞþðŷ�~yÞ0ðŷ�~yÞþnð�y�~yÞ2

(Vonesh et al., 1996)

Prand Penalized quasi-likelihood function 1� ð1=2ŝÞðy�ŷÞ0ðy�ŷÞþð1=2Þû0Ĝ�1 û

ð1=2ŝÞðy��yÞ0ðy��yÞ
(Zheng, 2000)

y
_ ¼ Xb̂; ŷ ¼ Xb̂þ Zû; �y ¼ 1

n

Pn

i¼1

yi; ~y ¼ 1
n

Pn

i¼1

ŷ; ��y ¼ x0V�1y
x0V�1x ; V ¼ ZGZ0 þ Is2, and x0 ¼ (1,y,1).

LogLM denotes the logarithm of maximum likelihood of the model of interest and LogL0 for the intercept-only model.
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be easily defined andML is the criterion of fitting the model
of interest. It can be shown that when the model only has
fixed effects, RLR

2 is reduced to the traditional R2 statistic. For
discrete models like logistic regression, a scaling procedure
should be applied to ensure the resulting RLR

2 is bounded
between 0 and 1 (Nagelkerke, 1991).

The generalized least square R2 statistic, RW
2 is defined

as (Buse, 1973):

R2
W ¼ 1� ðy� y

_Þ0V�1ðy� y
_Þ

ðy� ��yÞ0V�1ðy� ��yÞ
where y

_ ¼ Xb̂ is the best predictor of y, and ��y is the
weighted mean: ��y ¼ ðx0V�1y=x0V�1xÞ with x0 ¼ (1,y,1).
This original definition is denoted as RW1

2 . It can be
shown that, with y

_ ¼ Xb̂ , there is a direct summation
relationship:

ðy� ��yÞ0V�1ðy� ��yÞ ¼ ðy� y
_Þ0V�1ðy� y

_Þ þ ðy_ � ��yÞ0V�1ðy_ � ��yÞ

Replacing y
_

with ŷ¼Xb̂þZû in RW
2 yields the

RW2
2 statistic, R2

W2 ¼ 1� ððy� ŷÞ0V�1ðy� ŷÞÞ=ððy� ��yÞ0V�1

ðy� ��yÞÞ (Kramer, 2005). There is no direct summation
relationship for components in RW2

2 . In addition, it is difficult
to interpret the numerator term where V�1, rather than
(Is2)�1, is used because the random term appears in both
(y�ŷ)¼ (y�(Xb̂þZû)) and V¼ZGZ0 þ Is2. Here y

_

is
marginal because the prediction only involves fixed effects,
but ŷ is conditional because the prediction is conditional on
random effects (Vonesh et al., 1996; Vonesh and Chinchilli,
1997; Littell et al., 2006). Note that when the model has only
fixed effects, both forms of RW

2 are reduced to the traditional
R2 statistic.

The rc statistic is a goodness-of-fit measure originally
derived for the generalized nonlinear mixed-effect
model, following the unweighted concordance correla-
tion coefficient (rc) (Vonesh et al., 1996):

rc ¼ 1� ðy� ŷÞ0ðy� ŷÞ
ðy� �yÞ0ðy� �yÞ þ ðŷ� ~yÞ0ðŷ� ~yÞ þ nð�y� ~yÞ2

where n is the number of observations, ȳ is the mean of y,
ŷ¼Xb̂þZû, and ỹ is the mean of ŷ. With ŷ¼Xb̂þZû,
both fixed and random effects are used to measure
goodness-of-fit and prediction power and rc is condi-
tional (Vonesh et al., 1996; Vonesh and Chinchilli, 1997).
The rc statistic can be interpreted as a measure of the
degree of agreement between the observed values and
the predicted values as rc measures agreement between
two random variables. The possible values of rc lie in the
range �1prcp1.

The Prand statistic measures the proportional reduction
in the penalized quasi-likelihood function assuming
MVN random effects (Zheng, 2000):

Prand ¼ 1��PQLM
�PQL0

¼ 1� ð1=2ŝÞðy� ŷÞ0ðy� ŷÞ þ ð1=2Þû0Ĝ�1û

ð1=2ŝÞðy� �yÞ0ðy� �yÞ

where PQLM denotes a penalized quasi-likelihood
function for the model of interest, PQL0 denotes a
penalized quasi-likelihood function for the null model
where the model contains only the intercept, û is the
estimated best linear unbiased predictor of u,
ŷ¼Xb̂þZû is the estimated best linear unbiased

predictor of y, Ĝ is the ML estimate of G (the variance
covariance matrix of u), and ŝ is the ML estimate of s.
The range of the statistic Prand is 0–1 under these model
assumptions. The larger the Prand the better the predic-
tion and the smaller the random effect. The penalty for
random effects in Prand is analogous to Akaike’s
Information Criterion and Schwarz’s BIC. Note that
when the model has only fixed effects, Prand is reduced to
the traditional R2 statistic.

Models in association mapping
When both population structure (Q) and kinship (K) are
included, the mixed model for the QþK method is

y ¼ mþQvþ Zuþ e ð3Þ
where y is a vector of phenotype observation, m is a
vector of intercepts; v is a k� 1 vector of population
effects; u is a p� 1 vector of random polygene back-
ground effects; e is a vector of random experimental
errors; Q is an n� k matrix defining the subgroup
membership, generated from population structure ana-
lysis of marker data, and Z is an n� p incidence matrix
relating y to u. For Var(u)¼G¼ 2KVg, K is a p� p matrix
of kinship coefficients, and Vg (a scalar) is the unknown
genetic variance, E(e)¼ 0 and Var(e)¼ Is2.
Likewise, we can define the Q model without the Zu

term; the K model without the Qv term; the P model with
P (that is eigenvectors) from PCA replacing Q but no Zu
term; and the PþK model with P replacing Q (Table 2).
These models represent different combinations of meth-
ods that account for complex genetic relationships in the
association mapping population (Yu et al., 2006; Weber
et al., 2007; Zhao et al., 2007).

Computer simulation
To assess the performance of these R2 statistics in the
context of mixed-model association mapping, we gener-
ated genetic populations with both gross level popula-
tion structure and familial relationships within
subpopulations. This allowed us to investigate mixed
models with both fixed effects for population structure
and random effects for relative kinship. Detailed
simulation procedures have been described earlier (Zhu
and Yu, 2009). Briefly, the b distribution (Balding and
Nichols, 1995; Nicholson et al., 2002; Marchini et al., 2004)
was used to model the correlated allele frequencies. Once
allele frequencies of each locus for each subpopulation
were sampled under the b model, conditionally on
Hardy–Weinberg and linkage equilibrium, we mimicked

Table 2 Models used in the data analysis

Model Description Model form

Intercept Intercept only for comparison y¼m+e
P Regression model with fixed

principal component covariates
y¼m+Pv+e

K Mixed model with random kinship y¼m+Zu+e
P+K Mixed model fixed principal

component covariates and random
kinship

y¼m+Pv+Zu+e

Q Regression model with fixed
population structure covariates

y¼m+Qv+e

Q+K Mixed model fixed population
structure covariates and random
kinship

y¼m+Qv+Zu+e
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different populations consisting of subpopulations.
Specifically, we carried out simulations that mimicked
two types of population used in association studies (Yu
et al., 2006; Zhu and Yu, 2009): samples with both
population structure and familial relatedness (type IV)
and samples with severe population structure and
familial relationship (type V). As with earlier extensive
simulations (Zhu and Yu, 2009), the population size was
216, and three subpopulations were simulated for type
IV and V samples. For each sample type, a total of
500 independent data sets were generated for analysis
with three different models, and the various R2 statistics
were obtained. Samples in which the Hessian matrix
or the covariance matrix of the random effects (seven
for type IV and four for type V) were not positive
semidefinite were removed.

To generate genotypes and phenotypes, a linkage map
of 2000 cM composed of 10 chromosome segments, each
200 cM in length, was considered. An additive genetic
model with no dominance or epistasis was used. Of the
2000 single nucleotide polymorphism (SNP) locations, 25
were chosen at random to be quantitative trait nucleotide
(QTN) locations. In all simulations, we set each QTN
genotypic value with genotype QQ as 0.5, genotype qq as
0, and the overall mean at 10. The overall genotypic
value of an individual was obtained as the sum of
genotypic values across all QTN plus the overall mean.
An individual phenotype was generated as the genotypic
value plus a random variable sampled from a standard
normal distribution. Heritability for each QTN varied
around 2%, depending on the allele frequency at each
specific QTN.

To verify the general agreement between the RLR
2 statistic

and the detection of true QTNs, we plotted the values of
RLR
2 for all SNPs with the PþK model from a random run

of type IV samples.

Empirical data analysis
Data from two association mapping populations were
used for empirical data analysis. Genotypes and three
phenotypes (that is flowering time, ear height, and ear
diameter) were chosen from 277 maize strains across 553
SNP as described earlier (Liu et al., 2003; Flint-Garcia
et al., 2005; Yu et al., 2006). The Q matrix was computed
by STRUCTURE (Pritchard et al., 2000; Falush et al., 2003)
and the K matrix by SPAGeDi (Hardy and Vekemans,

2002). The P matrix was computed from EIGENSTRAT
(Price et al., 2006), and three PCAs were used to be
consistent with the Q matrix for degree of freedom in the
model-fitting process. Arabidopsis genotypes and pheno-
types were obtained from a published data set with 5419
SNPs and two flowering time measurements (SDV and
JIC8W) (Zhao et al., 2007). These two traits passed our
trait screening process and yielded meaningful variance
component estimates for mixed-model analysis. The
Q matrix contains eight subgroups, and the P matrix
contains the first eight PCAs (Zhao et al., 2007). For RLR

2 ,
we modified the Venn diagrams to depict the over-
lapping but complementary nature of Q and K in
capturing genetic relationships. The modification was
to make the size of the circle proportional to the
RLR
2 value for easier interpretation of the diagram.

Results

All R2 statistics (Table 1) yielded values between zero
and one when different models were used to analyze
data from two association mapping sample types, except
the RW1

2 statistic (Table 3). Notably, the zero values for
RW1
2 under the K model were not unexpected because its

definition excludes random effects in calculating the
predicted value. However, including the random term in
prediction (RW2

2 ) yields values comparable to those of
other R2 statistics.

When only the fixed effect was involved (that is P
model), four R2 statistics (that is RLR

2 , RW1
2 , RW2

2 , and Prand)
yielded identical values (Table 3). This was expected
because theoretical derivation showed that all three
definitions reduce to the original R2 form for the fixed
linear model. Meanwhile, the rc statistic yielded different
values for the fixed-effect model P because its formula
does not reduce to R2 for the fixed linear model.

Comparing an R2 statistic among P, K, and PþK
models showed differences between having a variable
missing and having it added. Notably, RLR

2 for the model
with added variables (PþK model) was consistently
higher than for the model with fewer variables (P or K
model) without exception, but this was not the case for
other R2 statistics (Table 3). Moreover, the standard
deviation of RLR

2 was either equal to or smaller than that
of other R2 statistics. Also, the range of R2 statistics
was 0–1 except when the Hessian matrix or the

Table 3 Performance of R2 statistics from different models under two association sample types

Sample type R2 statistics P+K K P Count_1a Count_2b

IV RLR
2 0.617 (0.044) 0.578 (0.024) 0.488 (0.071) 0 0

RW1
2 0.211 (0.064) 0 0.488 (0.071) 0 468

RW2
2 0.524 (0.058) 0.509 (0.032) 0.488 (0.071) 19 9

rc 0.893 (0.083) 0.862 (0.085) 0.737 (0.091) 133 82
Prand 0.753 (0.072) 0.688 (0.079) 0.488 (0.071) 69 0

V RLR
2 0.705 (0.047) 0.598 (0.035) 0.680 (0.144) 0 0

RW1
2 0.333 (0.065) 0 0.680 (0.144) 0 452

RW2
2 0.594 (0.055) 0.504 (0.050) 0.680 (0.144) 0 411

rc 0.909 (0.082) 0.773 (0.077) 0.793 (0.169) 61 77
Prand 0.799 (0.156) 0.704 (0.089) 0.680 (0.144) 16 0

Numbers were calculated from 500 simulation runs.[2]tandard deviation is given in parenthesis.
aThe number of times when the R2 statistic for the K model is greater than for the P+K model.
bThe number of times when the R2 statistic for the P model is greater than for the P+K model.
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covariance matrix of the random effects was not positive
semidefinite, with the resulting negative value for
Prand removed in calculating the mean and standard
deviation.

After determining the suitable candidate R2 statistic for
model comparison in mixed-model association mapping,
we further demonstrated changes in RLR

2 as the QTNs
and other SNPs across the genome entered the mixed
model individually (Figure 1). To do this, we used a type
IV association mapping sample. As expected, RLR

2 values
with the SNP/QTN term were equal to or greater than
the baseline RLR

2 value from the model without the SNP/
QTN term. As the variation due to individual QTNs
varied depending on allele frequency, not all QTNs
yielded a high RLR

2 when their effects were included in

the model. On the other hand, some SNPs can show a
high RLR

2 even when they were not the causal loci,
revealing the challenges faced in association mapping.
For the maize data, only RLR

2 consistently yielded a
higher value for models with more variables (QþK or
PþK) than models with fewer variables (Q, K, or P)
across three traits (Table 4). Next, for models with only
fixed effects (that is Q or P), rc values were different from
the other four statistics, which agrees with the theoretical
expectation and the simulation results. Furthermore, for
Arabidopsis data, RLR

2 , rc, and Prand yielded a higher value
for models with more variables, but this was not the case
for RW1

2 or RW2
2 (Table 5).

In the modified Venn diagram, RLR
2 shows the overlap

between the two methods in accounting for genetic

0.250
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R
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R
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Figure 1 The RLR
2 values of the mixed model including each SNP across the genome. Triangles indicate the RLR

2 values and positions of the
QTNs simulated and the straight line under the curve is the baseline RLR

2 value of the mixed model without SNP. Note that the way the
computer simulation was carried out does not allow all QTNs to have a high RLR

2 value, mimicking the complex scenarios that are typical in
association mapping studies.

Table 4 Analysis results of different R2 statistics obtained by analyzing the maize traits with different models

R2 statistics Flowering time Ear height Ear diameter

Q Q+K K P+K P Q Q+K K P+K P Q Q+K K P+K P

RLR
2 0.341 0.411 0.342 0.397 0.295 0.158 0.249 0.208 0.246 0.144 0.025 0.133 0.132 0.139 0.040

RW1
2 0.341 0.118 0.000 0.090 0.295 0.158 0.054 0.000 0.050 0.144 0.025 0.001 0.000 0.008 0.040

RW2
2 0.341 0.723 0.791 0.743 0.295 0.158 0.721 0.774 0.724 0.144 0.025 0.847 0.849 0.843 0.040

rc 0.509 0.910 0.950 0.921 0.456 0.273 0.885 0.919 0.888 0.252 0.048 0.949 0.950 0.947 0.077
Prand 0.341 0.812 0.867 0.828 0.295 0.158 0.815 0.860 0.818 0.144 0.025 0.835 0.837 0.832 0.040

Table 5 Analysis results of different R2 statistics obtained by analyzing the Arabidopsis traits with different models

R2 statistics SDV JIC8W

Q Q+K K P+K P Q Q+K K P+K P

RLR
2 0.369 0.404 0.172 0.474 0.473 0.528 0.538 0.085 0.565 0.564

RW1
2 0.369 0.281 0.000 0.423 0.473 0.528 0.495 0.000 0.531 0.564

RW2
2 0.369 0.315 �0.289a 0.516 0.473 0.528 0.610 0.175 0.627 0.564

rc 0.539 0.738 0.580 0.706 0.643 0.691 0.803 0.448 0.786 0.721
Prand 0.369 0.615 0.471 0.562 0.473 0.528 0.680 0.360 0.655 0.564

aAs a result of ðy� ŷÞ0V�1ðy� ŷÞ4ðy� ��yÞ0V�1ðy� ��yÞ.
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relationships: population structure (Q) captures general
grouping patterns and relative kinship (K) is a polygene
background control (Figure 2). The relative importance
of Q and K in model fitting varied for different
quantitative traits, which was expected given the theory
(Tables 4 and 5). The complementary nature of P and K
can also be seen in the modified Venn diagram.
Obviously, the relative contribution of Q, P, and K to
the mixed-model analysis varied across different data
sets or different traits. For example, both Q and P made a
small contribution in the analysis of maize ear diameter,
but including K only improved the model fit by a
negligible amount, as shown by a small increase in RLR

2 .

Discussion

Various R2-like statistics for mixed models revealed the
mixed perspectives on how the goodness-of-fit of the
mixed models should be measured. For instance, the
RLR
2 statistic, based on the LR test (Magee, 1990),

considers the change of likelihood between models with
different fixed and random effects simultaneously.
However, the RW

2 statistic, based on the Wald statistic
(Buse, 1973), measures the agreement between observa-
tions and the generalized least square predictors without
considering random effects. The modified form, RW2

2 ,
which considers both random and fixed effects, would be
a better choice than RW1

2 for analyzing genetic relation-
ships but needs further study. Next, the rc statistic, based
on the concordance correlation (Vonesh et al., 1996),
indicates agreement between observations and the
unweighted predicted values with both fixed and
random effects, whereas the Prand statistic, based on the
penalized quasi-likelihood function (Zheng, 2000), mea-
sures the proportional reduction in penalized quasi-
likelihood function. When only fixed effects are included
in the model, three R2 statistics, but not rc, reduce to the
simple form for fixed linear models. By definition, all R2

statistics other than RW1
2 would be suitable for genomic

mapping with different fixed and random terms control-
ling genetic relationships. The zero value of RW1

2 for the K
model prevents its use in mixed-model association
analysis. In comparing RLR

2 and RW2
2 for mixed-model

analysis of a randomized complete block design and a
design with spatially autocorrelated residuals (Kramer,

2005), the R2 values of these two statistics increased
when random effects were added to the model or when
the correlated error structure was considered.

As the direct summation of sum of square of model
and sum of square of residual to equal sum of square of
the corrected total does not necessarily exist in general-
ized linear mixed models, the term ‘Pseudo-R2’ was
suggested to differentiate the above proposed statistics
from the classical R2 (Schabenberger and Pierce, 2002).
We, however, adopted the general definition of the R2

statistic (Buse, 1973; Magee, 1990; Nagelkerke, 1991),
rather than the specific definition for a fixed linear
model, in the text. Here, we stress that the ‘proportion of
variation explained’ in linear mixed models should not
be interpreted to mean that there is always an exact
summation. In this study, we focused on comparing four
different R2 statistics for their potential in mixed-
model association mapping. All these statistics contain
similar components, involving differences between the
observed values and the predicted values (either directly
in RW

2 , rc and Prand or indirectly in RLR
2 ). In particular, the

RLR
2 statistic has several appealing properties (Nagelk-

erke, 1991). First, it reduces to the classical R2 for fixed
models and is asymptotically independent of the sample
size. Second, it is dimensionless and permits an inter-
pretation based on proportion of variation explained.
Furthermore, using RLR

2 , to compare models with the
same random components (that is K with QþK or PþK)
can be interpreted as comparing the fit of various nested
models. On the other hand, comparing models with
different fixed and random components provides a
measure of model-data agreement under the ML frame-
work, which satisfies a criterion proposed earlier: R2

values for different models fitting the same data should
be directly comparable (Kvalseth, 1985).

Ultimately, because it is easily computed and its
monotonic nondecreasing property, RLR

2 is our choice to
measure the goodness-of-fit of the model to the data.
Expanding the mixed model to include other genetic and
nongenetic factors should not complicate the calculation
and interpretation of RLR

2 because it is directly computed
from the maximum log-likelihood of the full model and
the reduced model. In simulation studies, an R2 measure
computed as the squared correlation between simulated
and model predicted genetic values may be used (Piepho
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Figure 2 Modified Venn diagrams for RLR
2 values from different models obtained for (a) maize and (b) Arabidopsis traits. The number in each

circle is the RLR
2 value of either the Q or K model, the RLR

2 value of the QþK model is given under the jointed circles, and the number in the
jointed area indicates the overlap between two complementary methods (i.e., Q and K) in controlling genetic relationship.
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and Möhring, 2007). Other R2 statistics based on the ratio
of variance component for residuals between two models
have also been proposed (Xu, 2003). A recent study,
however, found that these latter statistics performed
poorly because the R2 values varied so little that
identifying the most parsimonious model was difficult
(Oreliena and Edwards, 2008). Extending RLR

2 to the REML
approach needs further study because comparing models
with different fixed or random terms is only valid under
the ML framework (Littell et al., 2006). The relationship
between model fit and model selection, particularly in
genomic mapping, is beyond the scope of this study
(Broman and Speed, 2002; Sillanpaa and Corander, 2002;
Yi et al., 2005). We have no intention of using RLR

2 to
conduct model selection because the monotonic nonde-
creasing property of RLR

2 does not indicate a better model
as additional fixed or random effects are added. Instead,
we stress that the RLR

2 statistic provides an additional
measurement for results interpretation.

For mixed models with random components (K, PþK,
or QþK), variance component estimation was con-
ducted independently before the solutions for mixed
models were used to compute different R2 statistics. On
the basis of the definition of RLR

2 , the convergence process
of ML of a model containing additional effects other than
intercept and residual can also be viewed as a process to
maximize RLR

2 but not the other R2 statistics. Clearly, RLR
2

can quantify the goodness-of-fit of different models
regardless of the statistical properties of the models
(Cameron and Windmeijer, 1996). In an earlier study, we
showed that the likelihood-based model-fitting approach
can quantify the robustness of genetic relationships
derived from molecular marker data (Yu et al., 2009).
Essentially, kinship construction with subsets of the
whole marker panel and subsequent model testing with
multiple phenotypic traits can be viewed as a process to
test the model-data fit of different variance–covariance
matrices. With an adequate number of molecular
markers, an accurate genetic relationship among indivi-
duals (that is variance covariance matrices) can be
obtained, and the change in the value of RLR

2 becomes
minimal.

Comparing the values of RLR
2 for Q, K, and QþK, as

shown with modified Venn diagrams, can help us
understand the genetics behind two overlapping meth-
ods in accounting for genetic relationships. With com-
plex genetic relationships among individuals in many
association mapping panels (Meuwissen et al., 2002; Yu
et al., 2006; Zhao et al., 2007; Zhu and Yu, 2009), various
competing but mostly complementary methods to
capture these relationships were developed. Thus, the
contribution to the model-data agreement from either Q
and P (population structure and PCA) or K (kinship) can
be determined from the RLR

2 when each is fitted alone.
Next, the overall contribution and overlap can be shown
by comparing the RLR

2 values of QþK (or PþK) with the
values from models with individual components (that is
Q, P, or K). Finally, although it is not a statistic with a
significance test, RLR

2 does provide an indication of a
variable’s importance in model fitting, for example, SNP,
Q, P, or K (Kvalseth, 1985). With an established base
model (Yu et al., 2006), the changes in RLR

2 values resulted
from adding individual molecular marker provide
information on the relative importance of different
markers in further explaining the total variation.

In summary, we demonstrated through simulated
association mapping samples and empirical data ana-
lyses that the LR-based R2 statistic has several desirable
properties useful in mixed-model association mapping.
Applying genomic technologies in complex trait dissec-
tion has generated vast amounts of data, the analysis of
which requires a joint effort in genetics and statistics.
There are many challenges in this multidisciplinary
research (Hirschhorn and Daly, 2005; Weir et al., 2006;
McCarthy et al., 2008; Zhu et al., 2008), but such research
also provides great opportunities for further collabora-
tion among researchers from different disciplines with
different specialties.
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