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ABSTRACT 

 

Coral recruitment in Southeast Florida is being outpaced by mortality, resulting in 

population declines in many species.  Identifying the coral species most likely to recruit 

and survive on Southeast Florida reefs and evaluating spatial variation in recruitment and 

survivorship is crucial for managing decreasing coral populations.  This study focuses on 

12 sites in Broward and Miami-Dade counties that have served as long-term stations for 

monitoring adult coral cover and demographics. At each site, thirty-two 225cm2 grooved 

terracotta settlement tiles were attached to the substrate in winter of 2015 and retrieved in 

winter of 2016 to evaluate scleractinian and octocoral recruitment rates.  Thirty-two 

corresponding 0.25 m2 quadrats were surveyed in situ for corals <4cm during fall of 2016 

to evaluate densities of juvenile scleractinians and octocorals.  The densities of recruits 

and juveniles were compared with adult densities to estimate recruitment success and 

relative juvenile survivorship.  Results suggest that taxa that are tolerant of marginal 

environmental conditions, such as Poritidae, Siderastreidae, and Octocorallia, exhibit 

signs of recruitment success and/or juvenile survivorship.  Scleractinian recruitment was 

not variable spatially, but juvenile densities varied on site-level spatial scales, suggesting 

that differential survivorship structures adult scleractinian communities.  This study will 

inform reef management and restoration efforts within Southeast Florida by identifying 

sites and species with potential to recover from disturbance through natural recruitment 

processes.  

 

 

 

 

 

 

 

Keywords: scleractinian, octocoral, recruitment, survival, resilience, settlement 
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INTRODUCTION 

Coral reefs perform vital ecosystem services.  Their structure supports the 

biodiversity that draws snorkelers and tourists and bolsters coastal economies (Moberg 

and Folke 1999) and millions of people rely on coral reef fisheries for food and 

livelihood  (White et al. 2000, Barnes-Mauthe et al. 2013, Gomes et al. 2014). The 

protection that coral reefs provide shorelines is critical for low-lying coastal communities 

facing rising sea levels and intense tropical storms (Elliff and Kikuchi 2017, Elliff and 

Silva 2017).  Between providing shelter for sandy beaches and a tourist attraction in their 

own right, the world's coral reefs are worth almost $36 billion to the tourism sector, with 

nearly one third of reefs worldwide contributing directly to the tourism economy of the 

adjacent country (Spalding et al. 2017). 

Worldwide, coral reefs are facing an array of global anthropogenic stressors. 

Global warming is causing sea surface temperatures to rise, and oceans absorb 

approximately 25% of global carbon dioxide emissions leading to a chemical reaction 

that acidifies seawater (Doney et al. 2009, Gattuso and Hansson 2011).  Higher 

temperatures cause corals to release their endosymbiotic dinoflagellates in mass 

bleaching events (Brown 1997, Hughes et al. 2003), while ocean acidification hinders the 

calcifying abilities of corals (Hoegh-Guldberg et al. 2007).  By 2008, the combined 

effects of these stressors and other localized impacts had led to a 19% decline in coral 

reefs (Wilkinson and Souter 2008), causing one third of reef-building corals to be 

classified as having an elevated extinction risk (Carpenter et al. 2008).    Even coral reefs 

with the highest level of protection are approaching ecological extinction (Pandolfi et al. 

2005).  Mass extinction of coral reef communities has been predicted to occur by 2050 

(Burke et al. 2011). 

The majority of reefs worldwide are affected by human exploitation (Halpern et 

al. 2008).  Some of these impacts cause direct physical damage to reef structures, such as 

destructive fishing, anchor damage, and ship groundings (Davis 1977, Smith 1988, Fiege 

et al. 1994, Glynn 1994, Edinger et al. 1998, White et al. 2000). Sedimentation from 

dredging projects and coastal construction is a widespread local stressor that can cause 

diminished productivity, reduced growth, and mortality in various scleractinian coral 
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species (Rogers 1990, Abelson et al. 1999, Bastidas et al. 1999, Erftemeijer et al. 2012, 

Restrepo et al. 2016, Stubler et al. 2016, Bessell-Browne et al. 2017).  Another common 

stressor is eutrophication of coral reef waters from terrestrial fertilizer runoff and sewage 

input, which increases turbidity and can lead to increased macroalgal cover (Bell 1992, 

Edinger et al. 1998, Fabricius 2005, Reopanichkul et al. 2009).  Macroalgae in turn 

inhibits coral recovery by causing polyp damage that reduces fecundity of some 

scleractinian species (Foster et al. 2008), inhibiting scleractinian recruitment (Birrell et al. 

2008), and outcompeting small corals for space and light (Box and Mumby 2007). As 

climate change increases the frequency of tropical cyclones (Knutson et al. 2010), coral 

reef damage from storms (Rogers et al. 1983, Mallela and Crabbe 2009, Lugo-Fernández 

and Gravois 2010) may increase as well.  Mass physical damage from storms can be 

costly for corals.  Even if a storm does not result in mortality, corals must divert energy 

to reattachment and regeneration, initiating a complex immune response to prevent 

colonization by pathogenic microbes (van de Water et al. 2015). 

Caribbean reefs are particularly vulnerable.  Species diversity in the Caribbean is 

historically lower than in the Pacific (Veron 1995).  For example, the scleractinian coral 

genus Acropora includes over 100 species in the Indo-Pacific (Wallace and Willis 1994), 

while the Caribbean has only 2 species and a hybrid (Van Oppen et al. 2000) and hosts 

only 62 scleractinian coral species total (Spalding et al. 2001).  Additionally, the 

Caribbean has experienced a more drastic decline in scleractinian coral, including crucial 

reef-building species.  Mean coral cover on Caribbean reefs has decreased from 50% in 

the 1970’s to 10% in 2002 (Gardner et al. 2003).  Compared with reefs worldwide, a 

larger proportion of Caribbean coral species are classified as having a high risk of 

extinction (Carpenter et al. 2008).  Overfishing, hurricane damage, coral disease, and 

mass mortality of grazers (e.g. Diadema antillarum) have been suggested to contribute to 

phase shifts on Caribbean reefs from scleractinian coral dominance to macroalgae 

dominance (Levitan 1988, Hughes 1994, Nugues and Szmant 2006). 

When a population's death rate exceeds its birth rate, the population will decline.  

For coral reefs to subsist or recover, corals must reproduce and recruit to reefs at a rate 

equal or greater than the rate at which colonies are dying.  Caribbean reefs experiencing 

increased mortality rates (due to disease, bleaching, etc.)  would require drastic increases 
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in recruitment and post-settlement survival for populations to persist and degradation to 

be reversed. However, Caribbean reefs are experiencing recruitment failure. Long-lived 

and slow-growing species (most Caribbean reef-builders) have lower levels of 

recruitment than small, short-lived, disturbance-resistant (“weedy”) species. and thus are 

expected to eventually collapse (Hughes and Tanner 2000).  Quantifying and 

understanding coral recruitment and post-settlement survival, particularly in areas where 

the coral decline has been more drastic, such as the high-latitude Southeast Florida reef 

tract, is critical for developing effective conservation strategies (Maynard et al. 2015). 

Reproduction and successful recruitment are essential for the Southeast Florida 

reef system to recover from frequent disturbances.  Corals can reproduce sexually and 

asexually.  Fragments of boulder-forming species are sometimes able to reattach, but 

these species often rely on sexual reproduction to propagate (Szmant 1986).  Branching 

corals reproduce sexually, but are also structurally adapted for asexual reproduction and 

tend to live in dynamic environments where branch breakage is probable, allowing these 

fast-growing species to dominate their reef zones when conditions are favorable 

(Highsmith 1982).  Like branching scleractinians, octocorals frequently propagate via 

fragmentation (Lasker 1984, Coffroth and Lasker 1998).  While reproduction by 

fragmentation contributes to increase coral cover, and builds reef framework and 

rugosity, the formation of new genotypes through sexual reproduction is essential to 

colonize distant disturbed areas or new habitat, and increase genetic diversity. A higher 

genetic diversity provides more opportunities for local adaptations to occur and could 

result in increasingly stress-resistant populations (Baums 2008). 

Scleractinian corals reproduce sexually by brooding or broadcast spawning. 

Broadcast spawning describes the release of positively buoyant gametes into the water 

column for external fertilization.  This mode of reproduction requires spawning 

synchrony (Szmant 1986).  The larvae of broadcast-spawners take two to ten days to 

become competent to settle and metamorphose, depending on species, with some species 

surviving in the water column over 200 days when denied access to appropriate substrate 

(Graham et al. 2008).  Most of the large-sized, framework-building scleractinian species 

in the Caribbean reproduce by broadcast spawning (Agaricia tenuifolia is an exception).  

Of the ESA-listed threatened Caribbean species, only one (Mycetophyllia ferox) 
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reproduces through brooding (Szmant 1986, Richmond and Hunter 1990).  Brooding 

corals release only sperm and rely on internal fertilization, with maternal polyps releasing 

competent or nearly-competent planulae (Duerden 1902).   Brooded larvae are more 

likely than broadcast-spawned larvae to recruit locally, though high rates of local 

retention have been observed through both reproductive mechanisms (Sammarco and 

Andrews 1988, Ayre and Hughes 2000, Miller and Ayre 2008, Underwood et al. 2009, 

Figueiredo et al. 2014).  The Caribbean has higher abundances of brooding corals than 

broadcast spawning corals, though the region's brooding species are typically limited to 

small adult sizes (Szmant 1986, Richmond and Hunter 1990).  Because coral larvae tend 

to develop faster and have higher mortality rates in higher temperatures, models predict 

that local retention of broadcast-spawned coral larvae will increase as the climate warms 

(Figueiredo et al. 2014).  Due to a combination of high proportion of brooding corals and 

warming seas, Caribbean reefs are likely to depend heavily on local stocks for population 

replenishment. 

The mechanism of reproduction employed by a coral has implications for the 

recruitment rates of its larvae.  In the Caribbean, broadcast-spawning corals such as 

Orbicella spp., Pseudodiploria spp., Diploria sp., and Acropora spp. historically have 

dominated the structural framework of reefs yet, for at least the past three decades, have 

exhibited low rates of recruitment compared with brooding corals such as Porites 

astreoides and Agaricia agaricites (Bak and Engel 1979, Rylaarsdam 1983, Rogers et al. 

1984, Smith 1992).  Observations of low recruitment but high adult cover of broadcast 

spawning species led to the hypothesis that these corals produce fewer juveniles that have 

higher long-term survivorship (Rogers et al. 1984, Smith 1992).   

Octocoral reproduction and larval ecology is poorly understood compared with 

scleractinian reproductive ecology. Some octocoral species reproduce in synchronized 

spawning events (Brazeau and Lasker 1989, Fitzsimmons-Sosa et al. 2004) while others 

are brooders (Brazeau and Lasker 1990). Octocorals are thought to respond to many of 

the same settlement cues as scleractinians (Lasker and Kim 1996), but octocoral 

settlement behavior and their broader recruitment patterns have rarely been described 

(Lasker 2013, Lasker and Porto-Hannes 2015).  The study of octocoral recruitment 
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patterns and population distributions has been limited, largely because of difficulty 

identifying recruits (Jamison and Lasker 2008).  

As with scleractinians, larvae of brooding octocorals are often retained locally.  

Pseudopterogorgia elisabethae and Briareum asbestinum are Caribbean surface brooding 

octocorals with negatively buoyant planulae that are retained on the colony surface until 

competency.  Planulae of B. asbestinum settle immediately and near the natal colony 

(Brazeau and Lasker 1990), while planulae of P. elisabethae are more likely to be 

transported tens of meters from the natal colony (Gutierrez‐Rodriguez and Lasker 2004).  

Broadcast-spawning octocorals are thought to have wider ranges of dispersal than 

brooding octocorals (Jamison and Lasker 2008) since their larvae take longer to settle.  

For example, most larvae of Caribbean broadcast-spawner Antillogorgia americana were 

shown to take over a month to settle in a laboratory setting, in some cases delaying 

settlement up to 58 days (Coelho and Lasker 2016).  Octocoral recruit populations tend to 

mirror adult populations in terms of species composition, while different species 

compositions are frequently reported between recruit and adult scleractinian populations 

(Yoshioka 1996). 

Once planktonic coral larvae are competent to settle, they attach themselves to 

suitable substrata, and metamorphose to adopt a sessile benthic lifestyle (Babcock and 

Heyward 1986, Ritson-Williams et al. 2009).  Selecting an appropriate place to settle can 

increase a coral's survival potential, whether by large-scale determinants (finding a 

healthy reef) or small-scale (finding a promising microhabitat) (Babcock and Mundy 

1996, Harrington et al. 2004).  Settlement and metamorphosis are mediated by external 

cues.  These cues can be physical (e.g., light, pressure, sediment, temperature) or 

chemical (e.g. exudates from other organisms) in origin (Gleason and Hofmann 2011). 

Several species of crustose coralline algae (CCA) act as settlement cues for coral 

larvae (Morse et al. 1988, Raimondi and Morse 2000, Doropoulos et al. 2012).  The CCA 

species facilitating settlement vary among coral species; not all CCA species provide a 

settlement cue for all scleractinian corals.  Certain species of CCA may actually inhibit 

scleractinian settlement (Ritson-Williams et al. 2014), and the CCA species that most 

effectively facilitate settlement may not be the most abundant on reefs (Harrington et al. 
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2004, Ritson-Williams et al. 2014, Ritson-Williams et al. 2016).  Furthermore, decreases 

in CCA cover have been reported along with decreased coral cover for some places in the 

Caribbean; in Bonaire and Curacao CCA cover decreased from 6.4 to 1% over a 40-year 

period (de Bakker et al. 2017). 

Bacterial biofilms have also been shown to facilitate settlement, both in 

conjunction with and in the absence of CCA.  Some CCA species may harbor specific 

bacterial communities required for settlement or metamorphosis by specific coral species 

(Negri et al. 2001, Sneed et al. 2015).   One study of multiple Caribbean species suggests 

that brooding coral species may be more likely than broadcast-spawning species to settle 

on surfaces that have biofilm but lack the specific CCA species that increase settlement 

rates (Ritson-Williams et al. 2016). 

Settlement location and success can be influenced by light intensity and 

wavelength and substrate complexity.  Experiments using unconditioned plastic items 

(e.g. cable ties) suggest that larvae of Porites astreoides and Acropora palmata 

preferentially settle on red surfaces, demonstrating their ability to seek out substrata 

reflecting light wavelengths of 550 nm or greater (Mason et al. 2011).  Porites astreoides 

planulae have also been shown to avoid areas exposed to elevated ultraviolet radiation 

(Gleason et al. 2005).  Planulae that may benefit from settling in a habitat comparable to 

their parental habitat can use light levels as an indicator of similar depth (Mundy and 

Babcock 1998).  A deep-water population of Pseudodiploria strigosa was shown to 

produce larvae that preferentially settle in light conditions that mirror deep habitats, even 

though P. strigosa is also common in shallow water (Strader et al. 2015).  Larvae of 

various species have also been shown to prefer substrata conditioned with biofilms from 

the same depth as the parental habitat (Baird et al. 2003).  Scleractinian corals have been 

shown to preferentially settle on irregular surfaces or in cryptic microhabitats (e.g. tile 

undersides) (Carleton and Sammarco 1987).  In coral culture, lab-reared larvae have been 

demonstrated to preferentially settle in grooves in the provided substrate, with species-

specific preferences in substrate angle (Petersen et al. 2005).  Providing refuges in 

upward-facing substrates in field experiments has been shown to increase the proportion 

of recruits settling in upward-facing habitats (Edmunds et al. 2014). 
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Patterns of settlement may be mediated by adult distributions, though evidence 

suggests that these effects are caused more by local retention than by adult-seeking 

behavior of planulae (Vermeij 2005).  In a survey of nine sites at Moorea, French 

Polynesia, the abundance of scleractinian juveniles was positively correlated with the 

abundance of adults, though the correlation was driven by only four of the six dominant, 

broadcast-spawning genera (Penin et al. 2007).  Recruits of the Caribbean brooding 

species Siderastrea radians were shown to settle near adult colonies on small spatial 

scales (2500cm2 quadrats) at low adult S. radians densities, up to 10% adult cover at 

which settlement rates were saturated.  The research was conducted on the wreck of the 

Benwood in the FL Keys, which is densely populated with S. radians adults and few 

other species (Vermeij 2005, Vermeij and Sandin 2008).   

Macroalgae and cyanobacteria can inhibit coral recruitment.  Several species of 

macroalgae and cyanobacteria were found to reduce Porites astreoides settlement, and 

two were found to decrease post-settlement survival.  In the same experiment, the 

cyanobacteria Lyngbya majuscula was found to decrease recruitment and survival of 

Briareum asbestinum, a common Caribbean octocoral (Kuffner et al. 2006).  Macroalgal 

turfs have also been found to reduce overall scleractinian recruitment in field experiments 

(Vermeij et al. 2009, Arnold et al. 2010, Webster et al. 2015, Doropoulos et al. 2016).  

Severe macroalgae blooms can lead to widespread recruitment failure (Doropoulos et al. 

2014).  As the pH of oceans decreases, calcifying benthic organisms such as CCA may be 

impeded, increasing the competitive advantages of macroalgae and leading to higher 

macroalgae cover which threatens coral recruitment (Crook et al. 2016). 

Octocorals and corals compete for space on the reefs. Adult octocorals employ 

chemical tactics to defend themselves from scleractinian corals using allelopathic agents 

to induce tissue necrosis in neighboring scleractinians and overgrowing scleractinian 

tissue.  Conversely, scleractinians cause tissue necrosis in octocorals, forcing the 

octocorals to secrete a protective layer of polysaccharides to defend themselves.  The 

degree of harm and susceptibility varies among species (Sammarco et al. 1985).  The 

effects of adult octocoral presence on scleractinian settlement or, conversely, adult 

scleractinian presence on octocoral settlement have rarely been studied.  However, 

species of adult Pacific soft corals have been shown to prevent some, but not all, 
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scleractinian genera from recruiting to substrate in their immediate proximity (Atrigenio 

and Alino 1996, Maida et al. 2001).  It is possible that a dense canopy of octocorals could 

impede scleractinian settlement. 

                Coral recruits are vulnerable to many stressors and post-settlement mortality is 

often high, although rates vary spatially and temporally (Table 1). Survivorship also 

varies between species with different reproductive strategies.  In the Caribbean, three 

broadcast spawning coral species were found to have lower survival rates than the two 

brooding species they were compared with.  The broadcast spawners’ eight-week survival 

ranged from 10% (Acropora cervicornis) to 23% (Pseudodiploria strigosa), with survival 

dropping to 0% (A. cervicornis and A. palmata) and 4% (P. strigosa) after 22 months.  In 

contrast, 36% of Favia fragum recruits and 6% of Agaricia agaricites recruits (both 

brooding corals) survived after 20 months (Ritson-Williams et al. 2016).   

For coral larvae, locating appropriate settlement substrate can play a pivotal role 

in determining post-settlement survival.  Some CCA species have effective defenses, 

such as epithallial cell sloughing and overgrowth, to prevent fouling by organisms 

including coral recruits (Keats et al. 1997).   Settling on a species of CCA that is less 

likely to use these mechanisms (e.g. Titanoderma prototypum, found in both the 

Caribbean and Pacific), can therefore enhance survival prospects for recruits (Harrington 

et al. 2004).  CCA species are strong competitors, and competition for space with CCA is 

an important mechanism determining juvenile coral assemblages and survival outcomes 

(Buenau et al. 2012).  Several species of CCA are capable of completely overgrowing 

scleractinian coral spat, directly causing coral mortality (Harrington et al. 2004).  Less is 

known about octocoral post-settlement survivorship rates and mediating factors.  

Plexaura kuna was found to have low post-settlement survival over the short term with 

only 40% of lab-settled recruits that were transplanted back to the reef surviving the first 

two weeks (Lasker et al. 1998).  In a study of Florida Keys patch reefs, which used fate-

tracking to evaluate survivorship of juveniles up to 4cm (height for octocorals, diameter 

for scleractinians), octocorals were found to have lower survivorship overall than 

scleractinians (Bartlett 2014). 
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Table 1:  Previous studies assessing recruit and juvenile coral survivorship.  Studies refer 

to total scleractinian survivorship unless otherwise noted. 

Study Location Mortality (~1 year unless 

noted) 

Bak and Engel 1979 

 

Curacao and Bonaire 30% (6 months) 

Rylaarsdam 1983 Jamaica 54%  

Smith 1992 

 

Bermuda 14.3% (Diploria spp.) 

31.5% (Porites astreoides) 

Lasker and Kim 1998 

(octocoral) 

San Blas Islands, Panama 60% (Plexaura kuna) after 2 

weeks 

Wilson and Harrison 

2005 

 

Solitary Islands, Australia 97.2-99.8% (3 broadcast 

spawning species) 

Penin et al. 2010b  Moorea, French Polynesia 39.4% (juveniles >1cm) 

Trapon et al. 2013  Moorea and Trunk Island, 

Australia 

52.9% 

Bartlett 2014 FL Keys 22% (scleractinian corals) 

36% (octocorals) 

(pooled 6 month periods) 

Humanes and Bastidas 

2015 

Los Roques Archipelago, 

Venezuela 

22-49% (after 4 months) 

 

Mortality rates decrease as coral recruits grow (Trapon et al. 2013).  Before 

reaching less vulnerable size classes,  recruits run a gauntlet of threats including 

predation, competition, and smothering by sediments (Bak and Engel 1979, Arnold et al. 

2010).  From the coral life-history perspective, predation is one of the earliest factors 

modulating survival outcomes.  Indiscriminately grazing invertebrates such as Diadema 

antillarum cause high mortality in the smallest recruit size classes (Sammarco 1980, 

Rylaarsdam 1983).  Larger grazers and corallivores, such as butterflyfishes and 
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parrotfishes, have also been observed to damage or kill juvenile corals (Penin et al. 2010, 

Penin et al. 2010b).  Corals that settle in microhabitat refuges, such as indentations in the 

substrate, have greater likelihood of survival. For example, after a 29-day experiment, 

juvenile Porites lobata individuals located in full crevices exhibited over 90% survival.  

In contrast, only 28% of juveniles attached to exposed surfaces survived (Gallagher and 

Doropoulos 2016). 

Though herbivorous grazers pose an incidental threat to juvenile corals, removing 

grazers leads to increases in macroalgae, a significant benthic competitor in degraded reef 

systems (Mumby et al. 2016).  Competition with macroalgae decreases survival of 

scleractinian corals in their first weeks and months post-settlement (Birrell et al. 2008, 

Arnold et al. 2010, Olsen et al. 2014, Webster et al. 2015).  By shading scleractinian 

juveniles or abrading them via direct contact, macroalgae can restrict growth and survival 

(Box and Mumby 2007).  Allelopathic chemicals found on the surfaces of macroalgae 

species are to impede or kill scleractinian corals (Rasher et al. 2011).   

Caribbean scleractinian taxa exhibit differential rates of recruitment and post-

settlement mortality, reflecting different life history strategies (Szmant 1986, Hughes and 

Tanner 2000).  Recruitment rates of broadcast-spawning Caribbean species have been 

lower than recruitment rates of brooding species for decades or longer, even in areas 

dominated by broadcast-spawning adults (Bak and Engel 1979, Rylaarsdam 1983, Rogers 

et al. 1984, Hughes and Jackson 1985, Tomascik 1991, Smith 1992, Arnold et al. 2010, 

Humanes and Bastidas 2015).  Brooding corals tend to exhibit high post-settlement 

mortality which is compensated by large numbers of recruits (Rylaarsdam 1983, Smith 

1992).  Broadcast-spawning, massive species such as Diploria spp. and Orbicella spp. are 

longer-lived and have comparatively low post-settlement mortality rates (Smith 1992).  

Therefore, scleractinian coral recruit community composition may differ from juvenile 

and adult community compositions once differential mortality acts to alter taxonomic 

ratios.  Quantifying recruit and juvenile abundances separately to the highest possible 

taxonomic resolution can clarify the shifts in community composition between life stages, 

providing insight into differential mortality rates and life history strategies. 
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 Two field research methods are commonly employed to quantify coral recruits 

and juveniles: settlement tiles and in situ surveys, with each method having advantages 

and disadvantages.  Settlement tiles (or “settlement plates”) allow researchers to remove 

previously placed tiles from the site to examine them closely under a microscope, 

decreasing the probability that small recruits will be overlooked (Table 2).  Juvenile 

octocorals can be removed from the tiles for identification on the molecular level 

(Jamison and Lasker 2008).  Settlement tiles are often bleached to remove tissue and 

reveal corallite structures of scleractinians that are evaluated for morphological 

characteristics (e.g. Harriott and Fisk 1987).  This process allows for more accurate 

identifications and for identification of juveniles to a higher taxonomic resolution.  

Bleaching also removes algae and other overgrowing organisms, so that even recruits that 

died shortly after they began producing skeletal material can be located and possibly 

identified.  When examining settlement tiles in the lab, high quality photographs of live 

and bleached coral recruits can be produced using microscopy, allowing for long-distance 

collaboration on recruit identification efforts.  Furthermore, when using settlement tiles to 

quantify recruitment, researchers can be sure that recruits found on the tiles were 

produced during the time the tile was deployed.  The drawback of using settlement tiles is 

that they are unable to mimic the natural substrate exactly, so information on recruitment 

gleaned from tiles may not accurately reflect the settlement and juvenile survival that is 

happening on natural reef substrate.  To more closely approximate natural substrate, tiles 

must be given sufficient time to condition and become colonized with biofilms and CCA 

(Crook et al. 2016). 
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Table 2:  Previous studies using settlement tiles to assess coral recruitment in the 

Caribbean and Atlantic.   

Settlement Tiles 

Study Location Tile Type 

Settlement Rate 

(Recruits per m2 

per month) 

Settlement 

Orientation 

Preference 

Rogers et al. 
1984 St. Croix 

Acropora 

palmata plates 1.27 89% underside 

Tomascik 
1991 Barbados Terracotta 17.75 100% underside 

Vermeij 
2006 Curacao 

Formica 
settlement 
"frames" 

0.1 (12m), 0.3 
(30m) in first year 

of deployment 

94% underside (when 
including 

azooxanthelate corals 
and Madracis, 0.05% 

underside when 
excluded) Frames at 12 

and 30m 

Rubin et al. 
2008 SE FL Terracotta 0.1 all tiles vertical 

Malella and 
Crabbe 2009 Tobago Ceramic 0-9 

preference for vertical 
tiles 

Arnold et al. 
2010 Bonaire Terracotta 8 

only surveyed 
underside: 83% within 

1.5cm of edge 

Arnold and 
Steneck 
2011 Belize Terracotta 20.25 

only quantified 
underside 

Green and 
Edmunds 
2011 St. John Terracotta 12.67 not available 

Edmunds et 
al. 2014 St. John 

Smooth 
terracotta 
(quantified 
underside), 
smooth acrylic 
plate (quantified 
top), acrylic 
plate with 
drilled refuges 
(quantified top)  

~5.3 (estimated 
from pooled data) 

94% underside, 6% 
upper refuges, 0% 

upper smooth surfaces 
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Humanes 
and Bastidas 
2015 Venezuela Terracotta 30-236 not available 

Fieseler, 
unpublished 
data Belize 

Terracotta, 
homogenous 
grooves top on 
top and bottom 

7.2 scler.,1.9 octo 
(May '15-Sept 

'16); 5.4 scler., 4.3 
octo (Nov '15-Jan 

'17) 

95% underside (May 
15-Sept 16); 43% 

underside (Nov 15-
Jan17; includes 3 sites 

at 30m depth) 

Fogarty and 
Piniak 
unpublished 
data 

Dry 
Tortugas 

Elevated 
terracotta arrays 
One side 
smooth, one side 
homogenous 
grooves; vertical 
and 
horizontal 
orientation 1.4 

61% grooved, 34% 
smooth surface, 4% 

sides,  
 58.1% horizontal tiles 

(42% upper, 58% 
lower) and 42% on 

vertical tiles 

 

Settlement tiles have been used to evaluate variation in recruitment patterns 

through time and space (Vermeij 2006, Green and Edmunds 2011), to measure settlement 

after disturbances (Tamelander 2002, Rubin et al. 2008, Salinas-de-Leon et al. 2013), and 

to compare rates of sexual and asexual recruitment (López-Pérez et al. 2007).  Settlement 

tiles are frequently attached to a structure that elevates them above the reef (Maida et al. 

1994, López-Pérez et al. 2007, Rubin et al. 2008).  These structures can be designed to 

reduce or eliminate the effects of predation by stacking tiles mounted on stainless steel 

bolts and separating them by spacers (Maida et al. 1994).  This method can have a 

drawback in that structures with vertical relief are more likely to topple over at some 

point during the study, especially in high energy areas, resulting in loss of data.  An 

alternative strategy is to attach the tiles directly to the substrate (Edmunds et al. 2014).  

Attaching the tiles parallel to the substrate has another advantage in that it more closely 

mimics the natural contours of the reef.  

 Unglazed terracotta is a common and well-established material used in settlement 

tile studies (Atrigenio and Alino 1996, Adjeroud et al. 2007, López-Pérez et al. 2007, 

Arnold and Steneck 2011, Green and Edmunds 2011, Salinas-de-Leon et al. 2013, Sawall 

et al. 2013, Edmunds et al. 2014, van Woesik et al. 2014, Humanes and Bastidas 2015).  

Other materials employed as settlement tiles include ceramic tiles, pieces of coral rubble, 
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formica plates, marine blocks, and limestone tiles (Harriott and Fisk 1987, Maida et al. 

1994, Vermeij 2006, Rubin et al. 2008, Burt et al. 2009, Salinas-de-León et al. 2011, 

Roeroe et al. 2013). Tile types are typically selected based on a combination of 

convenience, cost-effectiveness, and ease of comparison with other studies. 

In situ juvenile surveys allow researchers to estimate recruitment to natural, 

heterogeneous substrates (Table 3).  These are often performed using a series of 

haphazardly placed quadrats to designate survey areas (e.g. Bak and Engel 1979).  While 

settlement tiles are typically used to identify the species that recruit to an area in a given 

timeframe, juvenile surveys are used to answer to determine which species comprise the 

juvenile population, often defined as corals <4cm in diameter.  Juvenile surveys typically 

cover a larger spatial area than settlement tiles, and provide a snapshot of the juvenile 

population at a moment in time.  One caveat of in situ juvenile surveys is that estimating 

the ages of juveniles is virtually impossible, as individual corals often have different 

growth rates.  Corals frequently fuse, split, or experience partial mortality, so size is not 

always related to age (Hughes and Jackson 1980).  An assessment of a juvenile 

population (<4cm) could potentially include corals that are decades old.  Additionally, 

precision of identification is limited without the use of microscopy.  Surveyors can take 

quality photos to save and share, but cannot view or photograph the skeletal structure 

under the tissue.  Therefore, some key diagnostic characteristics are often obscured.   

Another caveat of in situ juvenile census studies is that it is time-consuming to 

accurately quantify the surface area studied.  A square meter quadrat placed over highly 

rugose substrate will include much more than a square meter of surveyed settlement 

substrate.  Also, while settlement tiles provide a “blank slate” for recruitment, usually 

with only early-successional colonizers present at the time of coral settlement, juvenile 

census quadrats may include areas of substrate that are unavailable to coral settlers.  

These can include adult coral colonies, sponges, or areas of loose sediment.  Studies 

using juvenile censuses have typically attempted to select areas for quadrat placement 

that have a significant proportion of available substrate, avoiding sand patches or large 

monospecific patches of adult coral (e.g. Bak and Engel 1979).   
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Table 3:  Previous studies that used in situ census techniques to assess recruit and 

juvenile coral densities in the Caribbean and Atlantic. 

In Situ Census Studies 

Study Location Size Limit 

Density of 

Juveniles (in 

m-2) 

Additional Objectives 

(if any) 

Dustan 1977 

Carysfort 
Reef, FL 
Keys 

Counted new 
recruits on 
cleared 
natural 
substrate 1.2-4.9 

Assessed recruitment in 

situ to cleared vs 
uncleared plots 

Bak and Engel 
1979 

Curacao <4cm 15 Determined variations in 
depth and habitat (3-
37m) Bonaire <4cm 18 

Rylaarsdam 
1983 Jamaica <5cm 76-274  

Rogers et al. 
1984 St. Croix <4cm 0-80 

Determined variations in 
settlement patterns 
across depths at either 
side of a submarine 
canyon 

Hughes and 
Jackson 1985 Jamaica 

Counted new 
recruits ~5-
10mm 1.2-4.2 

Studied population 
dynamics: recruitment, 
growth, population 
cover, size frequency, 
and mortality 

Chiappone and 
Sullivan 1996 FL Keys <4cm 1.18-3.74 

Quantified relationships 
between juveniles and 
adults across depths and 
habitats 

Carpenter and 
Edmunds 2006 
 
 
 
 
 
 
 

St. Croix <4cm 2-45 Assessed how Diadema 
presence affects 
recruitment 
 
 
 
 
 
 
 

Grenada  9-28 

Bonaire  7-11 

Barbados  8-34 

Belize  4-8 

Jamaica  5-27 
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Arnold et al. 
2010 Bonaire 

≤ 4cm 
 

17 (grazing 
territory), 25 
(ungrazed) 

Determined how 
damselfish grazing on 
turf algae affects 
recruitment and 
survivorship 

Stein 2012 SE FL <4cm 1.6-5.1 

Examined variations in 
juvenile density across 
habitat types and 
between bioregions 

Bartlett 2014 FL Keys ≤4cm 
11-14 scler., 

8-15 octo 

Examined post-
disturbance recruitment 
and survival at patch 
reefs 

Buglass et al. 
2015 Tobago 

≤5cm (lg 
taxa), ≤2cm 
(sm taxa) 5.4 

Determined resilience 
after mass bleaching 

 

Most studies have utilized either settlement tiles or in situ surveys to assess 

recruitment and juvenile survivorship, while few have used both (e.g. Rogers et al. 1984, 

Penin and Adjeroud 2013, Chong-Seng et al. 2014.  Employing both methods 

simultaneously can improve understanding of the relationships between the recruit and 

juvenile populations.  Tiles are used to determine which species are recruiting, and in situ 

censuses are used to determine which of those are present in the juvenile population.  

Evaluating relationships between recruit and juvenile densities across sites can provide 

information about which sites and species demonstrate higher potential for survival.  This 

information can then inform management efforts by pointing to sites and species with 

limited capacity to recover from disturbances.  

The subtropical reefs of Southeast Florida have been the focus of few studies 

compared with reefs in the Florida Keys and elsewhere in the Caribbean.  Coral recruit 

and juvenile populations have been assessed only recently (Rubin et al. 2008, Stein 2012) 

and not simultaneously.  The present study utilized both settlement tiles and in situ 

censuses to assess the taxa that are recruiting to the Southeast Florida reef tract, how 

recruitment varies across latitudes and depths within the region, and how the recruit 

population found on settlement tiles differs from the juvenile and adult populations.  
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Some agencies have established monitoring programs at permanent sites to 

document further changes to coral reef communities.  One such program was established 

by the Florida Fish and Wildlife Conservation Commission (FWC) in 1996 throughout 

the Florida Keys (Coral Reef Evaluation and Monitoring Project, “CREMP”) and 2003 in 

Southeastern Florida (Southeast Florida Coral Reef Evaluation and Monitoring Project, 

“SECREMP”).  CREMP and SECREMP monitoring sites support a variety of data 

collection methods, including demographic surveys, video transects, and benthic cover 

assessments of diverse taxa.  These datasets combine to form a useful assessment of the 

benthic ecosystem in the region as the environment changes through time.  However, 

coral recruitment is a missing piece in these datasets.  Documenting coral recruitment 

rates on long-term monitoring transects will provide for a more complete picture of 

population dynamics, decline, and potential for resilience.  The present study aims to 

provide an understanding of coral recruitment dynamics and subsequent juvenile survival 

at twelve SECREMP-monitored sites in Broward County and Miami-Dade County, FL.  

Simultaneously, collaborators will follow similar monitoring methods throughout the 

Florida Keys. The combination of these monitoring programs will culminate in a better 

understanding of coral recruitment processes along almost the entirety of the Florida reef 

tract. 

The Florida reef tract extends from Dry Tortugas National Park (24.6285˚N, 

82.8732˚W) to the St. Lucie inlet in Martin County (27.1489˚N, 80.1373˚W) (Banks et al. 

2007), making it among the longest barrier reefs in the world.  Florida reefs are more 

degraded and less protected by local and federal governments than nearby reefs in the 

Bahamas and Cuba (Pandolfi et al. 2005).  Seven scleractinian coral species native to 

Florida are listed as threatened by the Endangered Species Act:  Acropora cervicornis, 

Acropora palmata, Orbicella annularis, Orbicella faveolata, Orbicella franksi, 

Dendrogyra cylindrus, and Mycetophyllia ferox (NOAA  2014).  These species appear to 

be experiencing recruitment failure possibly in part because of the Allee effect, with low 

population densities making fertilization less likely (Stephens et al. 1999).   Even in the 

Florida Keys where coral population densities are slightly higher, threatened species may 

be failing to recruit.  Williams et al. (2008) monitored a 2,250 m2 area of the Florida 

Keys for three years and found only two sexually produced A. palmata recruits of 
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detectable size.  Florida's reefs have been impacted by mass bleaching events (Wagner et 

al. 2010, Gilliam 2014) and disease outbreaks throughout Southeastern Florida and the 

Keys (Richardson 1998, Porter et al. 2001, Williams and Miller 2005, Sutherland et al. 

2010, Gilliam 2014, Precht et al. 2016).  While scleractinian cover is declining, recent 

monitoring suggests an increase in octocoral cover in the Florida Keys (Ruzicka et al. 

2013).  Octocorals do not contribute to reef framework, but they add spatial heterogeneity 

to the reefs. 

The northern extension of the Florida reef tract is comprised of limestone ridges 

that are parallel to shore, forming three major reef terraces that are progressively deeper 

with distance from shore.  These terraces are separated by gradually sloped sand channels 

(Goldberg 1973, Banks et al. 2007).  Each terrace was constructed by Acropora palmata 

or Orbicella (formerly Montastraea) and Diploria species during the Holocene epoch, 

and drowned as they were unable to keep up with rising sea level (Lighty 1977).  These 

reefs are considered relict structure, as live coral cover is too low to promote active 

accretion (Moyer et al. 2003). 

Southeast Florida’s reefs are dominated by octocorals, macroalgae, and sponges.  

Scleractinian coral cover on Southeast Florida reefs has been reported to average only 

3%; a few shallow sites with “exceptionally high” cover exhibited cover up to 15% 

(Sathe et al. 2008).  However, more recent reports suggest declines in scleractinian cover 

over the past decade, with a decrease from 2.5% to 1.5% cover between 2015 and 2016 

(Fig 1, Gilliam et al. unpublished data).  The most recent declines can largely be 

attributed to disease (Precht et al. 2016).  Meanwhile, octocoral cover has fluctuated but 

changes remain statistically insignificant (Gilliam 2014).  Due to their dominance in the 

region and contribution to the spatial heterogeneity of the reef tract, combined with the 

lack of existing information about their population dynamics and recruitment patterns, 

octocorals are included in the present assessment of recruit and juvenile populations in 

Southeast Florida. 
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Southeastern Florida’s reefs are among the highest latitude (25.5°-27.25°) reefs in 

the Atlantic (Moyer et al. 2003).  Because the coral reefs adjacent to mainland Florida are 

among the most northerly reefs, they can be subject to extreme cold-water events 

resulting in high mortality (Walker et al. 1982).  Rates of scleractinian recruitment have 

been reported to decrease with increasing latitude (Hughes et al. 2002).  Low 

scleractinian recruitment and recruit survival rates have been reported on some high-

latitude reef systems, such as in Hong Kong (Chui and Ang 2010). However, while 

recruitment to the sub-tropical reef system off Lord Howe Island, Australia, was 

comparable to rates from the Great Barrier Reef, there was a different taxonomic 

distribution between the two areas (Harriott 1992).  Previous studies conducted in 

Southeast Florida suggest lower recruitment rates compared with tropical Caribbean reefs 

(Rubin et al. 2008, Stein 2012), while the high-latitude reefs of Bermuda have 

comparable recruitment rates to the Caribbean (Smith 1992). 

The coral reefs of Southeast Florida are located just offshore from the population 

centers of Ft. Lauderdale and Miami.  The effects of high latitude, such as cooler winter 

temperatures and increased turbidity, and proximity to population centers inflict 

0

2

4

6

8

10

12

14

2002 2004 2006 2008 2010 2012 2014 2016

P
e
r
c
e
n

t 
C

o
v

e
r

Year

Scleractinian Octocoral

Figure 1. Trends in octocoral and scleractinian cover reported by SECREMP since its initiation 
in 2003. Octocoral cover has fluctuated, showing the potential for fast recoveries (e.g. 2009-
2010), while scleractinian cover has declined more steadily.  The 2015-2016 decline from 2.5% 
to 1.5% scleractinian cover is circled. 
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additional stress upon this coral reef ecosystem (Sathe et al. 2008).  In 2015, the 

combined populations of Broward and Miami-Dade counties was 4.6 million (U.S. 

Census Bureau).  Population growth in the area was rapid through the 20th century, with 

increases averaging 90% for every decade from 1900 to 1980 (Smith 2005).  The urban 

development processes undertaken by humans in this region since the 1950's have largely 

lacked consideration for environmental sustainability, and thus contributed to coastal 

erosion and the degradation of the reef ecosystem (Finkl and Charlier 2003). 

Anthropogenic stressors to the Southeast Florida reef tract impact water quality, 

sedimentation levels, and the structural integrity of the reef.  Southeast Florida's major 

cities pump over 1.5 million cubic meters of treated sewage per day from six outfalls in 

Palm Beach, Broward, and Miami-Dade counties.  The effluent from these outfalls enters 

the ocean between 1500 and 5800 m offshore, on the third reef tract at approximately 30 

m depth (Koopman et al. 2006).  Nitrogen from these and other land-based sources of 

sewage have been implicated in contributing to harmful macroalgal blooms that have 

directly impacted reef corals (Lapointe et al. 2005).  The region's ocean-access inlets 

have been found to carry fecal contaminants to the reef on outgoing tides, deteriorating 

water quality of the coral reef habitat (Futch et al. 2011).  Southeast Florida hosts three 

major ports, which were found to impact a total of 312.5 ha of coral reef environment 

(Walker et al. 2012).  Since then, the Port of Miami has been expanded.  During 

expansion, over 1,100 ha of coral habitat were found to be covered by turbidity plumes 

observed using satellite images (Barnes et al. 2015).  Efforts to widen eroded beaches 

through nourishment projects are another source of increased sediment levels on 

Southeast Florida's reefs (Jordan et al. 2010). 

Physical damage to Southeast Florida's reef structures occurs in conjunction with 

both commercial and recreational boat use.  Damage from ship groundings and anchor 

drags is often not quantified, but an impact area of six hectares has been reported for 

known events directly related to port activity (Walker et al. 2012).  Broward County's 

Port Everglades anchorage, which is located between two reef terraces, was the epicenter 

of six anchor drag incidents and eleven ship groundings between 1993 and 2006, 

resulting in damage to over 4.4 ha of reef (Collier et al. 2008).  Scleractinian recruitment 

to a damaged site following a ship grounding in Broward County was found to be low, 
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suggesting limited potential for recovery from reef destruction in this region (Rubin et al. 

2008).  Hurricanes and tropical storms have also caused localized damage to Southeast 

Florida’s reefs.  Hurricane Andrew caused extensive breakage in Acropora populations in 

1992, and Tropical Storm Gordon subsequently transported rubble and sediment that 

smothered many Acropora fragments and other small corals (Litinan and Fong 1995). 

The study described herein assessed recruitment to the Southeast Florida reef tract 

during the reproductive season of 2015 and surveyed juvenile populations present in fall 

of 2016.  In late September of 2014, after an unusually warm summer and widespread 

coral bleaching, early signs of a disease outbreak were observed in the southern part of 

the region near Virginia Key (25.7466˚ N, -80.0999˚ W).  By the summer of 2015 the 

disease, classified as white-plague, had spread north throughout Broward County.  White-

plague impacted Meandrina meandrites, Dichocoenia stokesii, and Eusmilia fastigiata 

most heavily, resulting in an estimated mortality of 97% or greater throughout the region 

(Precht et al. 2016).  The disease also affected previously abundant (Sathe et al. 2008, 

Gilliam 2014) populations, including Pseudodiplora strigosa and Diploria 

labyrinthiformis (>75% mortality) and Montastraea cavernosa (38% mortality) (Precht et 

al. 2016).  By 2016, the disease was prevalent in the Upper Keys (Brinkhuis and Huebner 

2016).  This unprecedented disease outbreak likely reduced the reproductive output of 

corals in the region and may have played a role in shaping recruitment patterns in this 

study if source populations of coral larvae are local.  

To understand the resilience of this region and specific taxonomic groups, as well 

as to evaluate where the population bottleneck may exist, this study poses three research 

questions:  

1. What is the taxonomic distribution of scleractinian and octocoral recruit and 

juveniles?  Answering this question will help to determine which taxa are 

most successful in terms of recruitment and juvenile survivorship, suggesting 

their potential to be resilient to disturbances. 

2. Do recruit and juvenile abundances vary spatially?  Answering this question 

will help to determine whether certain habitats and sites may have more 

resilient coral communities than others. 
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3. How do adult, recruit, and juvenile density relate to one another in 

scleractinians and octocorals (and within the most common scleractinian 

families)?  Answering this question will help to determine whether these 

relationships elucidate differences in recruitment success and juvenile 

survivorship between scleractinians and octocorals, and between specific 

scleractinian taxa.  Rather than fate tracking individual coral recruits, 

examining juvenile densities relative to recruit densities can allow for 

inferences regarding post-settlement survivorship. 

This study is part of a larger collaborative effort that spans the entire Florida reef 

tract from Broward County to Key West.  While my thesis focuses on the recruit and 

juvenile populations of Southeast Florida, results produced in this study will be useful in 

the future to compare recruitment rates from 30 sites across the world’s third largest 

barrier reef. 

 

METHODS 

2.1 Study Sites 

Recruitment tiles were deployed at four sites in Broward County (“BC” sites) and 

eight in Miami-Dade County (“DC” sites) (Table 4).  These sites were selected due to the 

convenience of pre-existing transects installed for SECREMP.  Because SECREMP 

maintains a long-term monitoring dataset using these transects at each site, recruitment 

data could be directly compared to adult population data.  Sites were selected to represent 

the nearshore, inner, middle, and outer reef portions (Gilliam et al. 2014) and include 

three different depth ranges- six sites were within a 5-8m depth range, three were 15m 

deep, and three were 20m deep.  To compare between broad reef zones, sites were 

grouped into “inshore” and “offshore” categories.  “Inshore” sites were all located in 

nearshore and first reef habitats, and ranged from 5-10 m depth.  “Offshore” sites were 

located on the second and third reef terraces, at 15-20 m.  Inshore sites are nearer to 

anthropogenic sources of nutrient and sediment pollution, such as beaches, fertilizer 

runoff, and nutrient-enriched inlet waters.  Because they are shallower, they also are 

subject to more wave energy.  Offshore sites are further from land, but nearer to nutrient 
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input from sewage outfalls.  Each site consisted of four stations, and each station included 

two transects 20-22m in length.  Stations were oriented with both transects running north 

to south.  All sites except DC1, DC2, and DC3 were set up with stations positioned in a 

two by two matrix.  At DC1, DC2, and DC3, the stations were oriented in a row (Fig. 3). 

2.2 Hardware Installation 

Preliminary hardware installation procedures were conducted between October 

2014 and February 2015.  During this phase, each site was visited by a dive team.  Dive 

teams located the SECREMP posts and used 2m aluminum station poles designed to fit 

over posts to accurately place transect tapes over two transects (one east and one west) at 

each station.  Divers haphazardly placed four quadrats along the left side of the east 

transect and along the right side of the west transect at each station (Fig 3).  Quadrat 

locations were based on the feasibility of installing nails in at least two corners and 

availability of substrate (less than 50% live coral cover within the quadrat).  As near as 

possible to one of the outer corners of each quadrat, the divers installed receiving 

hardware (a drywall anchor and lag screw) for attaching tiles later.  Tile locations were 

selected based on feasibility of drilling (i.e., divers will avoid locations with soft sand or 

live cover as substrate) (Fig 4). 
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Table 4:  Sites listed with their depth, habitat, and 

location. 

 

Site 
Depth 

(m) 
Habitat County 

BC1 8 Nearshore Broward 

BC2 15 

Middle 

Reef Broward 

BC3 20 Outer Reef Broward 

BC4 8 Inner Reef Broward 

DC1 8 Inner Reef Dade 

DC2 15 

Middle 

Reef Dade 

DC3 20 Outer Reef Dade 

DC4 15 Outer Reef Dade 

DC5 8 Inner Reef Dade 

DC6 5 Nearshore Dade 

DC7 20 

Middle 

Reef Dade 

DC8 5 Nearshore Dade 

 

 

Dive teams hammered nails securely into the substrate in at least two corners of 

each quadrat to mark its location.  Using a pneumatic drill attached to a SCUBA cylinder, 

divers drilled holes into the substrate where each tile would be placed.  A ribbed plastic 

drywall anchor (1/2” length) was inserted into the drilled hole.  A stainless steel bolt was 

screwed into the anchor using a wrench (Fig 4).   

 

Figure 2. SECREMP sites where 

settlement tiles were deployed and 

juvenile censuses conducted.  Blue 

circles represent nearshore reef, green 

are first reef, yellow are middle reef, 

and red are third reef. 
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Figure 3. Sites DC1, DC2, and DC3 have four stations oriented in a row as depicted above.  Sites DC4, DC5, DC6, DC7, DC8, 

BC1, BC2, BC3, and BC4 have four stations oriented in a two by two matrix.  Quadrat and tile depictions represent the 

random placement choices influenced by substrate and complexity variations at each site. 
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Tiles were deployed 

between February 

and April 2015.  I 

used unglazed 

terracotta tiles which 

were attached 

parallel to the 

substrate and 

anchored with a 

drywall anchor and screw to minimize risk of tile loss.  Tiles were grooved to provide 

refuge on exposed surfaces, maximizing recruitment 

Figure 4.  (A) Quadrat and tile placed along transect, nails installed.  (B) 

Screw installed and marked with flagging tape. 
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potential on all sides (Edmunds et al. 2014).  To ensure that the grooves were exposed on 

both sides, tiles were paired and positioned with grooved sides facing out.   

Dive teams brought 32 tile pairs to each site, and attached them to the substrate using the 

previously installed screws (Fig. 5).   

2.3 Juvenile Census 

In Fall 2016, dive teams returned to 

each of the 12 study sites to conduct 

juvenile censuses.  PVC quadrats were 

placed in the locations marked by the nails 

along either side of the transect of each 

station at each site.  Two photographs were 

taken of each quadrat during the census:  a 

photo of the quadrat with its associated tile, 

and a photo in which the quadrat fills the 

entire frame.  One diver surveyed each 

quadrat, spending as much time as necessary to scan all the area within the quadrat for 

juvenile corals.  Area under the PVC frame was included in the survey, as was any 

substrate overhanging the quadrat area.  Juveniles found on rubble were also included, 

but unattached fragments of octocorals found within the quadrat were not.  

 In this study, scleractinian corals less than 4cm in diameter and octocorals less 

than 4cm in height were considered juveniles (Bak and Engel 1979, Rogers et al. 1984).  

Corals that were less than 4cm but appeared to consist of living tissue remaining from a 

larger adult colony were recorded as isolates.  Juveniles were identified to the highest 

possible taxonomic resolution.  The majority of scleractinian corals were identified to 

species.  Most octocorals were identified to genus unless the juvenile was clearly a 

member of one of the SECREMP target species (Eunicea flexuosa, Eunicea calyculata, 

Antillogorgia americana, Gorgonia ventilina, and Pseudoplexaura porosa).  Juveniles 

were measured to the nearest millimeter using calipers or a ruler.  The diameter of 

scleractinian corals and the height of octocorals were recorded, and juveniles were 

evaluated for partial mortality and bleaching.   

Figure 5.  Tile attached to substrate with screw; 

shown approximately three months after 

deployment. 
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Juvenile identifications were confirmed whenever possible using photographs 

taken in the field.  Corals recorded as isolates in the juvenile census were excluded from 

data analysis.  Briareum asbestinum juveniles were excluded from the data due to 

difficulty in distinguishing the erect and encrusting forms at small sizes.  However, B. 

asbestinum could not be excluded from the recruit data because it cannot be reliably 

distinguished from other octocoral species as single-polyp recruits. 

2.4 Tile Retrieval and Wet Scans 

Tiles were retrieved between 11.5 and 13.5 months after deployment.  This range 

was due to weather and boat availability which limited the timing of fieldwork.  Before 

each tile was unscrewed from the substrate, a photograph was taken of the upper surface, 

and after removal a photograph was taken of the lower surface.  Tiles were kept separate 

from one another on egg crate trays equipped with bolts to hold tiles in place.  Once 

aboard the research vessel, tiles were held in coolers filled with seawater.   

Tiles were returned as quickly as possible to the laboratory and were kept in 

seawater throughout the wet scanning process.  Ten photographs were taken of each tile: 

one photo in which the upper surface of the tile fills the entire frame and one photo of 

each of the four quadrants of the upper surface of the tile.  These photos were repeated 

for the lower surface to capture the entire tile.  The upper and lower surfaces of each tile 

pair were examined under a dissecting microscope for spat of hard and soft corals.  Tile 

sides were examined for any corals visible to the naked eye, but could not be scanned 

using the microscopes due to the size of the tiles.  Octocoral recruits found during wet 

scans were removed from the tile and placed in a labeled vial of 96% molecular grade 

ethanol.  Identifications were recorded when possible; however very few octocoral 

recruits were large enough to identify visually.  Scleractinian corals found during the wet 

scans were photographed whenever initial identification was not possible, and their 

locations on the tile were recorded for later relocation.  Scleractinian recruits were 

defined as any individuals that had settled and metamorphosed on the tile such that a 

recognizable skeleton was formed, regardless of whether they were alive or dead at the 

time of tile retrieval.  Octocoral recruits were defined as any individuals attached to the 

tiles (excluding obviously encrusting octocorals) whether tissue was damaged or intact.  
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Only the live scans were used to locate octocorals, as the bleach eliminated all traces of 

octocoral tissue.  After the wet scanning process was complete, tiles were submerged in a 

10% bleach solution for approximately 48 hours, to remove all live tissue and reveal 

scleractinian skeletons.  

2.5 Dry Scans and Identification 

After tiles were bleached and dried, they were scanned a second time to locate 

any scleractinian recruit skeletons that were missed during the wet scans, and to verify 

identifications.  All skeletons were photographed and their locations were noted.  

Recruits were identified to the highest possible taxonomic resolution.  Diagnostic 

characteristics for scleractinian coral recruits included macromorphological features, such 

as calice diameter and number of septal cycles, and micromorphological features, such as 

septal morphology (Budd and Stolarski 2011). Here, the recruitment rate 

(recruits/m2/month) is reported, which allows for comparison with studies that used 

settlement tiles over different periods of time.   

2.6 Adult Monitoring (SECREMP) 

SECREMP adult demographic data was used to compare recruit and juvenile 

densities to adult densities at the same transects.  Adult data was collected by Gilliam et 

al. during the summer of 2015, overlapping with the timeframe that settlement tiles were 

deployed on those sites.  Adult demographic data consists of four 22m x 1m belt transects 

for each site (octocorals are only surveyed over the first 10m of transect).  All 

scleractinians 4cm in diameter or greater are recorded in SECREMP surveys.  Octocorals 

as small as 1cm in height are recorded in SECREMP surveys, so some overlap with the 

juvenile population occurs in these data.  However, the SECREMP protocol covers more 

area, and surveyors spend less time scanning for small octocorals.   

2.6 Statistical Methods 

2.6.1 Taxonomic Distribution of Recruits and Juveniles 

To assess whether scleractinians or octocorals were more prevalent as recruits and 

juveniles, t-tests, or if parametric assumptions were not met, Wilcoxon tests, were used.  
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Descriptive statistics were used to determine the most prevalent scleractinian and 

octocoral families in the recruit and juvenile studies.   

2.6.2 Spatial Parameter Modeling 

To assess the influence of spatial parameters on the number of recruits found on 

settlement tiles and then number of juveniles found in quadrats, generalized linear models 

were used.  The recruit data had four spatial variables: location on tile (top or bottom), 

site, region (Ft. Lauderdale, Hallandale, Miami, Biscayne), and inshore vs, offshore sites.  

The juvenile data had three spatial variables: site, region, and inshore vs. offshore sites.  

Initial assessments identified overdispersion in the data, meaning that variances exceeded 

those predicted by a theoretical model, precluding the use of a conventional Poisson 

regression.  Instead, a negative binomial regression model was used, which estimates an 

overdispersion parameter that accounts for excessive variability in the data. Similar to 

Poisson regression, the negative binomial model employs a log link function to model the 

mean of the response variable (here, coral counts) against a variable (here, location on 

tile, site, region, and zone). A candidate set of five single-parameter negative binomial 

regression models was selected (four for the juvenile data) to include separate models for 

location on tile, site, region, and zone, and an interaction term for region and zone. 

Akaike’s Information Criterion (AIC) (Akaike 1973, Hurvich and Tsai 1989) determined 

the ranking of support for each model. The precision (significance) of each parameter 

estimate was assessed by examining 95% confidence intervals.  Parameters with a 95% 

confidence interval that did not overlap zero were considered important predictors (i.e. 

statistically significant).  Models were fit in R v. 3.4.1 (R Core Team 2017). To assess 

whether tile microhabitats had different settlement densities, T-tests or Wilcoxon tests (if 

parametric assumptions were not met) were used.  To determine whether differences in 

recruit and juvenile densities existed between sites, one-way ANOVAs or, if parametric 

assumptions were not met, Kruskal-Wallis tests were used.  To assess whether inshore 

and offshore sites differed in recruit, juvenile, or adult densities, T-tests or, if parametric 

assumptions were not met, Wilcoxon tests, were used. If significant effects/differences 

were found, Tukey’s post-hoc tests, or, if parametric assumptions were not met, non-

parametric multiple comparisons post-hoc tests were performed using R packages 

“pgirmess” and “multCompView.”    
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2.6.3 Comparing Recruit, Juvenile, and Adult Densities   

Life history stage data had to be compared at the transect level because the 

SECREMP demographic methods do not include any smaller unit of replication.  Prior to 

conducting any statistical tests, the datasets were tested for the parametric assumptions of 

normality and homogeneity of variances.  Normality was determined using the Shapiro-

Wilk test and Bartlett’s test was used to test for homogeneity of variances.  To assess 

whether differences existed between adult, recruit, and juvenile densities, one-way 

ANOVAs, or, if parametric assumptions were not met, Kruskal-Wallis tests, were used.  

If significant effects/differences were found, Tukey’s post-hoc tests or non-parametric 

multiple comparisons post-hoc tests were performed using R packages “pgirmess” and 

“multCompView.”  To determine whether relationships existed between adult and recruit, 

recruit and juvenile, and juvenile and adult data, sites were used as replicates.  Pearson 

Correlation tests, or, if parametric assumptions were not met, Spearman Correlation tests, 

were used.  Data was transformed using log(x+1) transformations to meet parametric 

assumptions when necessary.   

 

RESULTS 

Scleractinians exhibited significantly higher recruitment rates than octocorals 

(W=318850, p<0.0001) The overall rate of scleractinian recruitment was 0.7 

recruits/m2/month and the rate of octocoral recruitment was 0.5 recruits/m2/month.  

Scanning the tiles after bleaching revealed a 276% increase in the total scleractinian coral 

count compared with live scans. In the in situ juvenile census, the mean density of 

scleractinian juveniles found in quadrats was 5.9/m2, while the mean density of octocoral 

juveniles was 7.5/m2.   

3.1 Taxonomic Distribution of Recruits and Juveniles 

A total of 764 tiles were recovered between March and May of 2016 (Appendix 1 

is a table of recruits found on tiles at each site). Most octocoral recruits had only 

developed a single polyp at the time of tile retrieval and very few were identifiable to 

family or genus.  Scleractinian recruits ranged in size from approximately 0.5-10mm in 
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diameter.  A total of 182 scleractinian recruits and 120 octocoral recruits were located.  

Total settlement area included both the upper and lower tile surfaces and was calculated 

based on tile length, width, and height, as a surface area of 285cm2.  Because two sites 

had smaller sample sizes than the rest (as a result of dislodged tiles), recruitment was 

standardized by converting the number of recruits to density (i.e. number of recruits.m-2.  

Among scleractinians, recruits from the Poritidae family comprised 46.7% of the 

recruit population found across all sites, followed by Siderastreidae at 23.1%.  While 

identifying recruits confidently to a higher taxonomic resolution than family was not 

possible in this study, based on the species composition of the adult and juvenile 

populations, and the morphology of larger and more well-developed recruits, I assume 

that the majority of the poritid recruits reported were Porites astreoides (based on 

prevalence in the adult community and the “mustard yellow” tissue color observed in 

most live recruits), the majority of the siderastreid recruits were Siderastrea siderea 

(based on prevalence in the adult community and calice shape of large recruits), and the 

majority of the agariciid recruits Undaria agaricites (based on prevalence in adult 

community, shape of corallite outer margins, and color of tissue on larger live recruits).  

The faviid recruits reported in this study appear to include Montastraea cavernosa 

recruits and members of the Diploria and/or Pseudodiploria genera, based on corallite 

size at the time of budding, septal dentition, and columella development. A single recruit 

that did not fall into one of these four families was identified to species as Madracis 

decactis.  Due to small size, structural damage, or ambiguous corallite morphology, 18% 

of scleractinian recruits could not be identified.  Resolution of octocoral identification 

was limited due to size and similarities between taxa; therefore, all octocorals were 

grouped together for this portion of the study.  

In the in situ censuses, a total of 561 scleractinian juveniles were observed in 

quadrats. Siderastreids were the dominant scleractinian, and 91% of siderastreid juveniles 

were identified to species as Siderastrea siderea.   The majority of poritid juveniles were 

identified as Porites astreoides.  All faviid corals reported were broadcast-spawning, 

boulder-forming species.  Montastraea cavernosa was the most dominant faviid, with 71 

juveniles reported.  Other faviids included Solenastrea bournoni (8 juveniles), 
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Diploria/Pseudodiploria (5 juveniles), and Orbicella (2 juveniles).  No Colpophyllia 

natans juveniles were reported in 2016.  “Other Scleractinians” included Stephanocoenia 

intersepta, Dichocoenia stokesii, Meandrina meandrites, Eusmilia fastigiata (one 

juvenile) and mussid juveniles (Appendix 2 is a table of juveniles identified to family at 

each site; Appendix 3 shows the number of juveniles of each species identified across all 

sites).  A total of 716 octocorals were observed in quadrats (Appendix 4).  Plexaurids 

were the dominant family among octocorals, with 89% of the Plexaurids identified to 

genus Eunicea. 

3.2 Spatial Parameter Modeling 

The most plausible single-parameter model of scleractinian recruitment was the 

microhabitat (location on tile) model, while best-approximating single-parameter model 

of octocoral recruitment was scaled to the site level.  Both were weighted as the only 

plausible models for the data out of the candidate models provided.  Juveniles exhibited 

most of their variation on the site scale.  The best-fitting single-parameter model of 

scleractinian juvenile distribution was based on site (weighted 100%).  The best fitting 

model of octocoral juvenile distribution was also based on site and was 166 times more 

plausible than the next-best fit (region) (Appendix 5, AIC scores and weights of model 

selection). 

3.2.1 Microhabitat spatial scale (orientation on tiles) 

 There was significantly higher density of settlement on the top tile of the tile pairs 

than the bottom in both scleractinians and octocorals (W=57332, p<0.0001 and 

W=69740, p=0.0257, respectively). This was evident in parameter estimates from the 

negative binomial regression model of settlement location (Table 5), followed by paired 

contrasts.  Eighty-four percent of scleractinian recruits were found on top tiles, and 78% 

of octocorals were on top tiles.  Of poritid recruits, 85% were found on top tiles, and 

100% of siderastreid recruits were on top tiles.  Only agariciid recruits had more 

representatives on bottom tiles than tops (83%), though the difference was not 

statistically significant (Wilcoxon, p=0.056) (Fig 6).   
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No data was collected for juvenile microhabitat distribution (i.e., exposed vs. 

cryptic).  Most quadrats had low substrate complexity and limited cryptic microhabitat 

space, so performing a similar comparison of juvenile distributions would have required 

normalizing for exposed and cryptic surface areas and was beyond the scope of this 

study. 

 

 

 
Scleractinian Location Model Octocoral Location Model 

Parameter Estimate SE 

Confidence 

Interval Estimate SE 

Confidence 

Interval 

Intercept -2.54 0.19 (-2.94)-(-2.19) -2.65 0.26 (-3.16)-(-2.15) 

Top 1.24 0.33 0.6-1.89 1.62 0.21 1.22-2.06 
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Figure 6.  Mean density of scleractinian and octocoral recruits on tops and bottoms of tiles.  Bars 

represent mean densities ± S.E. Asterisks represent significance (p<0.05).  N=382 

Table 5: Parameters estimates, standard errors (SE), and 95% confidence interval based on the negative 

binomial regression models relating coral recruit counts on settlement tiles to location on tiles.  This model 

was best-fitting of all candidate models for scleractinian recruits, but not for octocoral recruits. 
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3.2.2 Site-level spatial scale 

Recruits 

 Overall, scleractinian recruit abundance did not vary across sites, as supported by 

the parameter estimates from the model using site as a spatial variable, followed by 

paired contrasts (all p-values greater than 0.05) (Fig. 7). Scleractinian recruit density was 

lowest at DC3 and highest at DC6 and DC7.  Octocoral recruit densities ranged from 0-

10.2 recruits/m2, with one statistically significant exception.  The best-approximating 

model of spatial variation in octocoral recruitment was the model that used site as the 

variable.  Octocoral density differed at the site DC8 (negative binomial regression paired 

contrasts p<0.001) (Fig. 8), where a total of 78 octocoral recruits were found on 32 tile 

pairs, for a mean octocoral recruit density of 42.8/m2.  Octocoral recruits from DC8 

represent 65% of the total octocoral recruits found in this study. 
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Figure 7. Bars represent mean density ± S.E. of scleractinian recruits. Inshore and offshore sites are 
arranged by latitude from north to south. 
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Juveniles 

               Juvenile scleractinian abundance varied among sites according to a negative 

binomial regression model of juvenile counts (Fig. 9, Appendix 6 is a table of parameter 

estimates).  Mean scleractinian juvenile density ranged from 1.3/m2 (DC3) to 11.5/m2 

(BC4).  Octocoral abundance also varied across sites, with DC8 having significantly 

higher density than the rest (Fig. 10, Appendix 6).  Mean octocoral densities ranged from 

4.1/m2 (DC7) to 14.0/m2 (DC8).  No trend in density across the latitudinal gradient was 

apparent for scleractinians or for octocorals.  Sites located in the same regional clusters 

exhibited significantly different scleractinian densities despite their proximity, with BC4 

having significantly higher scleractinian juvenile density than BC1 in the Ft. Lauderdale 

region, and DC5 having significantly higher scleractinian juvenile density than DC8 in 

the Biscayne region.  A significantly higher octocoral density was observed at DC8 

compared with DC5, despite proximity.  The second-reef site DC2 had significantly 

higher scleractinian density than third-reef site DC3, even though they are both located in 

the Miami site cluster, 700m apart from one another. 
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Figure 8. Bars represent mean density ± S.E. of octocoral recruits.  Inshore sites are represented by 
lighter bars and offshore sites are represented by darker bars.  Inshore and offshore sites are arranged 
by latitude from north to south. 
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Figure 9. Bars represent mean density ± S.E. of scleractinian juveniles.  Inshore sites are represented 
by lighter bars and offshore sites are represented by darker bars.  Inshore and offshore sites are 
arranged by latitude from north to south.  Letters represent significant differences  
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Figure 10. Mean density ± S.E. of octocoral juveniles per site.  Inshore sites are represented by 
lighter bars and offshore sites are represented by darker bars.  Inshore and offshore sites are arranged 
by latitude from north to south. 
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3.2.3 Regional Scale 

No significant variation was 

observed in scleractinian recruit 

density across the four latitudinal 

regions (χ2=0.6243, df=3, p=0.8909).  

This was supported by paired 

contrasts performed based on the 

negative binomial regression model 

with region as the variable, as well as 

a non-parametric post-hoc test. 

Individual families did not vary in 

density among the four regions.  

Poritidae was the dominant family in 

each region followed by 

Siderastreidae (Fig 11).  Octocoral 

recruitment was variable between 

regions according to paired contrasts, with the Biscayne and Hallandale regions having 

significantly higher likelihood of octocoral recruitment (Appendix 7, table of paired 

contrast p-values).  This is probably due to the influence of the high octocoral recruitment 

at DC8 in the Biscayne region and the moderate recruitment at DC7 in the Hallandale 

region, with very low octocoral recruitment recorded at all other sites (Fig 10). The 

Hallandale and Biscayne are located north and south, respectively, of the Miami cluster.  

The sites DC7 and DC8 have little similarity in complexity or species composition.  

Scleractinian juvenile density did not significantly vary between the four latitudinal 

regions (χ2=4.7584, df=3, p=0.1904), supported by a lack of significant paired contrasts 

for the negative binomial regression with region as the independent variable.  Latitudinal 

patterns in the octocoral juvenile distribution were difficult to discern because of the lack 

of taxonomic resolution and high percentage of unidentified octocorals (Fig 12).   
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Octocoral juvenile densities were more variable among regions, with the Ft. 

Lauderdale and Biscayne regions (the northernmost and southernmost, respectively) 

having the highest octocoral densities (χ2=30.207, df=3, p<0.0001), supported by paired 

contrasts (Appendix 7).  Plexauridae was the dominant family of octocoral juveniles due 

to the prevalence of the genus Eunicea.  Octocorals too small to identify were common.  

Thirty-six percent of the octocoral juveniles recorded were 4mm in height or less, and of 

those 86% were recorded as “unknown octocoral.”  Other reasons for unidentified 

octocorals include ambiguous morphology and severe tissue damage. 
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Figure 12.  The taxonomic composition of the scleractinian and octocoral juvenile populations of 
each region (listed by latitude from north to south) is expressed as a percentage of the total. “Other 
scleractinians” were corals that did not fall into the families Siderastreidae, Poritidae, Faviidae, and 
Agaricidae, and “Unknown Scleractinians” were any scleractinians which the observer could not 
identify. 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ft.

Lauderdale

Hallandale Miami Biscayne

Octocoral Juveniles

Siderastreida

e Poritidae 

Faviidae 

Agariciidae 

Other Scleractinian 

Unknown Scleractinian 

Gorgonidae 

Unknown Octocoral 

Plexauridae 



40 
 

3.2.4 Inshore vs. Offshore Sites 

The SECREMP data for the twelve study sites (normal when log(x+1) 

transformed) suggest that the inshore study sites have significantly higher adult 

scleractinian densities than offshore sites (t=-7.0548, df=38.044, p<0.0001), and no 

significant difference was found between octocoral densities at offshore and inshore sites 

(t=0.25238, df=45.994, p=0.8019). In contrast, no significant difference was observed in 

scleractinian recruitment between offshore and inshore sites for scleractinians, and the 

abundance of octocoral recruits was significantly higher at inshore sites (Table 6, Fig 15).  

 

Scleractinian Recruit 

Ishore/Offshore Model 

Octocoral Recruit 

Inshore/Offshore Model 

Parameter Estimate SE 

Confidence 

Interval Estimate SE 

Confidence 

Interval 

Intercept -1.49 0.13 (-1.74)-(-1.24) -2.36 0.25 (-2.84)-(-1.87) 

Inshore 0.1 0.18 -0.25-0.45 0.84 0.32 0.21-1.47 

 

 Consistent with the adult demographic data reported by SECREMP, scleractinian 

juvenile density was significantly higher at inshore sites than offshore sites (W=14772, 

p=0.0004), while juvenile octocoral density did not significantly differ between offshore 

and inshore zones (W=18546, p=0.9147). The nonparametric analyses were mirrored by 

results of modeling efforts (Table 7).  These results suggest that the distribution of 

juveniles between inshore and offshore reefs may be more similar to the adult distribution 

than the recruit distribution.   

 

Table 6: Parameter estimates, standard errors (SE), and lower and upper 95% confidence limits based on the 

negative binomial regression models relating coral recruit counts on settlement tiles to zone (inshore/offshore) 

of tile deployment.  During model fitting, the offshore parameter was arbitrarily selected as the statistical 

baseline. 
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Scleractinian Juvenile 

Inshore/Offshore Model 

Octocoral Juvenile 

Inshore/Offshore Model 

Parameter Estimate SE 

Confidence 

Interval Estimate SE 

Confidence 

Interval 

Intercept 0.05 0.10 -0.14-0.23 0.63 0.08 0.48-0.78 

Inshore 0.58 0.13 0.33-0.83 -0.02 0.11 -0.23-0.20 

 

3.6 Comparing Recruit, Juvenile, and Adult Densities 

3.6.1 Relationships in Scleractinians and Octocorals 

Because transects serve as replicates in the adult data, tiles and quadrats from the 

recruit and juvenile studies were pooled into their respective transects for comparison.  

All data were converted to density (i.e. number of individuals.m-2).  Nonparametric 

analyses were used because the recruit data, with transects as replicates, were not 

normally distributed (W=0.87157, p<0.0001).  Scleractinian density was significantly 

higher in the recruit and juvenile populations than in the adult population, which had a 

mean density of 1.4 colonies/m2 (χ2=60.895, df=2, p<0.0001, Fig. 13).  Mean density of 

scleractinian recruits (8.2/m2) was not significantly different from the density of 

scleractinian juveniles (5.8/m2).  Octocoral density was significantly different across life 

history stages (χ2=49.365, df=2, p<0.0001, Fig. 13).  Density was highest in adult 

octocoral populations (11.3/m2), followed by juvenile populations (7.5/m2).  The lowest 

density was found in the recruit population, at 5.5 colonies/m2.  The mean ratio of 

scleractinian juveniles per scleractinian recruit was 3.1 juveniles.recruit-1, while the mean 

ratio of octocoral juveniles/octocoral recruit was 6.0 juveniles.recruit-1. 

 

 

Table 7: Parameter estimates, standard errors (SE), and lower and upper 95% confidence limits based on the 

negative binomial regression models relating coral juvenile counts in quadrats to zone (inshore/offshore) of 

quadrat location.  During model fitting, the offshore parameter was arbitrarily selected as the statistical 

baseline. 
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3.6.2 Relationships Within Common Scleractinian Families: Poritidae and Siderastreidae 

Poritidae was the most common family represented in the settlement tile study.  

When poritid densities are compared across life history stages, the adult, recruit, and 

juvenile populations are significantly different in density (χ2=15.839, df=2, p=0.0004, 

Fig. 14).  Significantly more recruits were observed than adults or juveniles (3.9 

recruits/m2 compared with 1.6 juveniles/m2 and 0.5 adults/m2). Siderastreid corals also 

varied in density across life history stages, though they follow a different pattern than 

poritids (χ2=18.754, df=2, p<0.0001, Fig. 14).  In this study, a significantly higher density 

of juvenile siderastreids was observed compared with adults and recruits (Fig 14).  While 

poritid adults are dominant at inshore sites and siderastreids dominant at offshore sites, at 

both inshore and offshore sites siderastreid corals increase in relative density as they 

progress from the recruit to the juvenile life stage.  The ratio of Siderastrea juveniles to 

Siderastrea recruits was higher than the ratio of Porites juveniles to Porites recruits at 

both inshore sites and at offshore sites (Fig 16).   

 

 

Octocorals Scleractinians 

Figure 13.  Box and whisker plots of adult, recruit, and juvenile mean transect densities of 

scleractinians and octocorals.  Letters designate significantly different (p<0.05) groups as reported by 

a non-parametric multiple comparisons post-hoc test. 
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3.6.3 Differences Between Inshore and Offshore Sites 

 Offshore and inshore sites lie at different depths and are subject to different suites 

of stressors.  To determine whether these areas exhibit different relative recruitment and 

juvenile survivorship trends, densities of adults, recruits, and juveniles were compared 

separately within offshore and inshore sites.  When tiles and quadrats were pooled into 

transects for comparison with adult data, the trends in relative density of corals at 

offshore and inshore sites across life stages were the same as when tiles and quadrats 

were treated as replicates.  Octocoral densities did not differ between offshore and 

inshore study sites at any life stage (recruits: W=72442, p=0.7200; juveniles: W=18546, 

p=0.9147; adults: t=0.2524, df=45.994, p=0.8019).  Meanwhile, scleractinian adults 

exhibited higher density at inshore sites than offshore (t=-7.0548, df=38.044, p<0.0001), 

Figure 14.  Box and whisker plots of adult, recruit, and juvenile mean transect densities of poritids and 

siderastreids in which center lines represent medians, box ends represent first and third quartiles, whiskers 

represent minimum and maximum values, and dots represent outliers in the data.  Letters designate 

significantly different (p<0.05) groups as reported by a non-parametric multiple comparisons post-hoc 

test. 

Poritids Siderastreids 
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recruit densities did not differ (W=72232,  p=0.7182), and juveniles had significantly 

higher densities at inshore sites (W=14772, p=0.0004) (Fig 15).  The mean ratio of 

recruits per adult on a transect (recruit density divided by adult density for each transect) 

is higher on average at offshore sites (t=4.3908, df=36.252, p<0.0001), while the number 

of juveniles per recruit at each transect did not differ between inshore and offshore sites 

(W=167, p=0.0545).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Box and whisker plot of scleractinian density between offshore and inshore sites across life 

stages.  Asterisks represent significance (p<0.05).  Transects were treated as replicates. 
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Figure 16.  Box and whisker plots showing the relative density of Poritidae and Siderastreidae as adults, 
recruits, and juveniles at inshore and offshore sites.  Center lines are median values, box ends are the first 
and third quartiles, and whiskers are minimum and maximum densities (by transect).  Asterisks indicate 
significance (p<0.05). 

 

Inshore Offshore 
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3.6.3 Correlations Between Adult, Recruit, and Juvenile Densities 

Scleractinian density were normally distributed when log(x+1) transformed. No 

significant relationship was found between scleractinian adults and scleractinian recruits 

at the site level (Pearson’s Correlation, p=0.2697).  Furthermore, juvenile scleractinian 

density were not significantly correlated with recruit density, even though the juveniles 

censused in 2016 were expected to reflect any relative increases in density resulting from 

recruits from the 2015-2016 reproductive season (while tiles were deployed) (Pearson’s 

Correlation, p=0.202).  However, significant relationships existed between scleractinian 

juvenile and adult data (Pearson’s Correlation, p<0.001, r=0.83, respectively) (Fig. 17).   

 

 

 

 

 

 

 

 

Significant relationships across all life stages at the family level only existed for 

poritids.  Recruit density was positively correlated with adult density (p=0.0018, ρ=0.80, 

Table 8), juvenile densities positively correlated with adult densities (p<0.0001, ρ =0.92), 

and recruit densities positively correlated with juvenile densities (p=0.0026, r=0.78). 
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Figure 17. Relationship between adult and juvenile scleractinian densities per site. 
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 Relationships Between Datasets on Site Level 

 
2015 Adult, 

Recruit 

Recruit,     

2016 Juvenile 

2016 Juvenile, 

2016 Adult 

Agariciidae 
p=0.1955 (S) p=0.0833 (S) p=0.1485 (S) 

Poritidae 
p=0.0018 (S) 

r=0.7993 

p=0.0005 (S)       

r=0.84 

p<0.0001 (S)               

r=0.92 

Faviidae 
p=0.6487 (S) p=0.3880 (S) p=0.4765 (S) 

Siderastreidae p=0.1869* (P) p=0.7413 (P) p=0.5232* (P) 

Other 
N/A N/A 

p=0.03613* (P)       

r=0.6075 

Total 

Scleractinian 

Corals p=0.2697 (P) p=0.2020 (P) 

p=0.0007474* 

(P) r=0.8339 

Octocorals p=0.6664 (S) p=0.4256 (S) p=0.1266 (P) 

 

  
2016 Juvenile, 

2016 Adult 

Stephanocoenia 

intersepta p=0.2546 (S) 

Mussidae p p=0.3435 (S) 

Table 8: Relationships between recruit, juvenile, and adult datasets are shown, 

with sites treated as replicates.  (S)=Spearman’s Rank Correlation, (P)=Pearson’s 
Product Moment Correlation, asterisk denotes log(x+1) transformed data.  

Significant correlations include correlation coefficient (r) and are boxed.  The 

extension below shows the breakdown of the “Other” taxa where relationships 
were significant. 
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Dichocoenia 

stokesii 

p=0.01639 (S)       

r=-0.6733 

Eusmilia 

fastigiata p<0.0001 (S)       

Meandrina 

meandrites p=0.2457 (S) 

  

The “Other Scleractinians” group also exhibited significant correlations between 

juvenile and adult populations for both 2015 (p=0.0146, r=0.68) and 2016 (p=0.0361, 

r=0.61, log(x+1) transformed).  After separating the “Other” group into categories of 

higher taxonomic resolution, significant relationships were found for D. stokesii 

(p=0.0164, ρ=-0.6733) and E. fastigiata (p<0.0001, ρ=1).  However, the relationship for 

D. stokesii was negative.  Also, in 2016, E. fastigiata was only found at one site (DC2) in 

the juvenile and adult populations, after suffering high rates of mortality from disease. 

Because sample sizes for each of these taxa were low in the context of this study (N<15 

for each taxon in the juvenile population), it is difficult to draw conclusions from these 

relationships. 

Octocoral recruit data was non-normally distributed when sites were used as 

replicates (Shapiro-Wilk p<0.05), while juvenile and adult data were normal when 

log(x+1) transformed. The density of juvenile octocorals is not significantly correlated to 

the density of adult octocorals (Pearson’s, p=0.1266).  Octocoral recruit densities were 

also not significantly correlates with adult octocoral densities (Spearman’s, p=0.6664).   

However, a small but statistically significant negative correlation was observed between 

scleractinian adult density and octocoral recruit density (p=0.0353, ρ=-0.6, Fig. 18).  No 

relationship was observed between scleractinian recruit density and adult octocoral 

density (Pearson’s, p=0.9879). 
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Figure 18. Scatterplot depicting negative correlation between scleractinian 

adult density (x axis) and octocoral recruit density (y axis). 
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DISCUSSION 

        Two broad ecological patterns emerge after examining one year of coral recruitment 

and juvenile data in Southeast Florida.  First, taxa that are tolerant of marginal conditions 

exhibited evidence of successful recruitment, juvenile survivorship, or both.  Second, a 

spatial uniformity in recruitment throughout the region, coupled with a patchy 

distribution of juveniles, suggests that differential post-settlement survivorship is a major 

factor in structuring adult populations.  Unlike studies on other sites, this study found 

that, in Southeast Florida, 84% of scleractinian recruits settled on the exposed upper 

settlement tile surfaces.  This trend may be unique to high latitude reef systems, or even 

specifically to Southeast Florida, and challenges the existing tenet that cryptic 

recruitment is driven by sedimentation, predation, or filamentous algae (Birkeland et al. 

1981, Babcock and Mundy 1996, Doropoulos et al. 2016, Ricardo et al. 2017).  The 

results of this study provide insight into the recruitment dynamics in the region and the 

potential for juvenile survivorship and eventual coral reef recovery. 

The overall rate of scleractinian recruitment found in this study (0.7 

recruits/m2/month) is seven times higher than was reported in a 2008 settlement tile study 

in Southeast Florida (Table 2), which reported an overall recruitment rate of 0.1 

recruits/m2/month across five sites [two sites damaged by ship groundings and three 

control sites (Rubin et al. 2008)].  One possible explanation for this disparity is that 

Rubin et al. (2008) did not bleach their tiles but rather sampled frozen recruits for genetic 

analysis.  Scanning only once for live or frozen recruits increases the likelihood that 

sediment, algae, and other organisms obscure small recruits, resulting in a less reliable 

settlement scan.  Conducting a second scan after bleaching the tiles allows for recruits 

that were overgrown or smothered at the time of the live scan to be located, allowing for 

a more accurate assessment of total settlement.  In this study, a 276% increase in 

scleractinian recruits was discovered after tiles were bleached. 

A study conducted in Belize using similar methods found much higher scleractinian 

and octocoral recruitment (Fieseler and Harper, unpub. data) than reported in the present 

study of Southeast Florida.  From May 2015 to September of 2016, 3.8 

scleractinians/m2/month and 1 octocoral/m2/month recruited to tiles deployed at four sites 
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directly east of Carrie Bow Caye at depths of 5m, 10m, 20m, and 30m.  During a second 

tile deployment from November of 2015 to January of 2017, 1.2 scleractinians/m2/month 

and 0.9 octocorals/m2/month recruited to tiles deployed at two 30m sites at Carrie Bow 

Caye and four sites (5m, 10m, 15m, and 20m) at Ranguana Caye.  These recruitment 

rates are approximately two to four times those observed in the present Southeast Florida 

study (0.7 scleractinians/m2/month and 0.4 octocorals/m2/month).  The Belizean barrier 

reef is located further offshore than Southeast Florida’s barrier reef and receives less 

anthropogenic impact.  The Belize reef system is also located in the tropics, compared 

with Southeast Florida’s high latitude, subtropical reef system.  Its remote location and 

comparatively stable environment mean that the Belize barrier reef likely hosts healthier 

reefs with higher adult scleractinian cover and diversity than Southeast Florida.  For 

reference, mean coral cover at the Smithsonian Institute’s long-term monitoring stations 

at Carrie Bow Caye is 12.4% (Jones et al., unpub. data), while mean coral cover across at 

the twelve SECREMP sites used in this study is 1.9% (Gilliam et al., unpub. data).  Also, 

agariciid corals were the dominant recruits in Belize (49-53%).  Species within the family 

Agariciidae planulate multiple times per year (Van Moorsel 1983) and have been found 

to recruit at high densities (Arnold and Steneck 2011).  The higher prevalence of 

Agariciidae recruits in Belize and the wider Caribbean, but not in Southeast Florida, may 

explain part of the disparity in recruitment rates.  

One difference between this study and previous recruitment studies that used 

settlement tiles is that more octocorals and scleractinians settled on the upper, exposed 

surfaces of the tiles than on the cryptic undersides.  Typically, >90% of recruits are found 

on tile undersides in locations throughout the Caribbean, such as Barbados (Tomascik 

1991) and St. John (Edmunds et al. 2014), although using tiles with microhabitat refuges 

on upper surfaces has been shown to increase the proportion of settlement to the top 

surface (Edmunds et al. 2014).  Studies that include sites deeper than 10m tend to reveal a 

shift in settlement orientation from undersides to upper surfaces with increasing depth 

(Bak and Engel 1979, Birkeland et al. 1981, Rogers et al. 1984, Babcock and Mundy 

1996, Vermeij 2006).  For example, in a companion study on the Mesoamerican Barrier 

Reef in Belize, the same grooved terracotta tiles were used. One hundred percent of 
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recruits settled on tile undersides at 5m, 97% at 10m, 82% at 20m and only 51% at 30m 

(Fieseler and Harper, unpub. data).   

The shift in settlement orientation with increasing depth has been hypothesized to be 

caused by the light attenuation at depth limiting the growth of filamentous algae or by 

sediment scouring from shallow water surge (Birkeland et al. 1981, Babcock and Mundy 

1996).  However, even corals at the shallowest sites in Southeast Florida (<10m) settled 

predominately on exposed surfaces, and macroalgae cover on the Southeast Florida reef 

tract fluctuates but tends to be higher than scleractinian coral cover (Gilliam 2014).  

Additionally, most tiles in my study were coated with filamentous algae and sediment, 

regardless of deployment depth.  Corals are sensitive to light levels and can preferentially 

settle in areas with appropriate light intensity (Mundy and Babcock 1998).  Ultraviolet 

radiation (UVR, 280-400nm) influences the behavior and survival or coral larvae 

(Gleason and Hofmann 2011).  Intense UVR has been shown to be detrimental to coral 

larvae, and many species use mycosporine-like amino acids to protect against the harmful 

impacts of UVR (Wellington and Fitt 2003, Gleason et al. 2005).  The waters of 

Southeast Florida are likely more turbid than the waters of tropical Caribbean reefs due to 

a combination of natural and anthropogenic influences, such as dredging, beach 

renourishment, and nutrient runoff that enhances microalgal growth.  The diminished 

light intensity caused by the suspended sediments in the water may prompt coral larvae to 

behave more consistently with larvae settling on deep reefs elsewhere in the Caribbean.  

While in other locations exposed surfaces may receive too much UVR to be appealing to 

coral larvae, the UVR reaching upper surfaces of tiles in Southeast Florida may be 

appropriate for larval settlement.  Because exposed surfaces more often than cryptic 

surfaces are affected by sedimentation, predation, and algal growth, the trend of 

settlement to exposed surfaces in Southeast Florida may have implications for the post-

settlement survivorship outcomes of juvenile corals. 

Calculating overall density of juveniles in quadrats allows for comparison with other 

studies that used in situ census techniques (Table 3).  The mean density of scleractinian 

juveniles found in quadrats was 5.9/m2, while the mean density of octocoral juveniles 

was 7.5/m2.  The present study reports a higher density of scleractinian juveniles than a 

2012 study of the Southeast Florida reef tract (Stein 2012).  Densities in the 2012 study 
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ranged from 1.6-5.1 juveniles/m2, while the range among sites reported in the present 

study is 1.4-11.5 juveniles/m2.   Whether the difference between the two studies is the 

result of an increase in the juvenile population in the region or differences in sample site 

selection and survey intensity is unclear.  Compared to juvenile population on a 

Caribbean-wide scale, the Southeast Florida sites in the present study are scleractinian 

juvenile depauperate:  historical densities of 15 and 18 juveniles/m2 were reported in 

Curacao and Bonaire, respectively (Bak and Engel 1979) and 0 to 80 juveniles/m2 in St. 

Croix (Rogers et al. 1984).  More recently, 8 to 34 juveniles/m2 were reported in 

Barbados (Carpenter and Edmunds 2006), and 17 to 25 juveniles/m2 in Bonaire (Arnold 

et al. 2010) (Table 3).  This disparity could indicate low recruitment, low survivorship, or 

both, for Southeast Florida’s scleractinian populations.   

 The taxa that were found to exhibit the clearest evidence of recruitment success 

and post-settlement survivorship in Southeast Florida were Poritidae, Siderastreidae, and 

Octocorallia.  All three were common in both the recruit and juvenile study results.  

These taxa demonstrated the capacity to recruit at high densities, the potential for high 

survivorship (surmised by an increase in density from the recruit to the juvenile stages), 

or both.  All three have been reported to be tolerant of marginal conditions.  Siderastreids 

and tolerant of extreme temperatures (Kemp et al. 2016, Okazaki et al. 2017), 

siderastreids and poritids are tolerant of chronic sedimentation (Lirman et al. 2008), and 

octocorals are tolerant of the influences of chronic rainfall (Edmunds and Lasker 2016, 

Tsounis and Edmunds 2017).  

Poritids, which are brooding corals, were the most abundant recruits in Southeast 

Florida during the 2015-2016 recruitment season.  Settlement studies using tiles 

consistently show that recruit demographics are dominated by brooding corals throughout 

the Caribbean:  typically Poritidae (Green and Edmunds 2011) or Agariciidae (Rogers et 

al. 1984, Arnold and Steneck 2011).  Poritid corals accounted for almost half of the 

recruits recorded in this study.  Porites astreoides (the most abundant poritid in Southeast 

Florida) has the reproductive advantage of being able to planulate multiple times per year 

(Chornesky and Peters 1987).  Additionally, recent research found that 100% of Porites 

astreoides individuals sampled near the Ft. Lauderdale region study sites in 2015 

reproduced asexually through parthenogenesis (Vollmer and Fogarty, unpub. data).  
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Implications of parthenogenic reproduction on P. astreoides dispersal, post-settlement 

survival, and population fitness are still unclear.  However, it is possible that this 

alternative strategy is enhancing reproductive success, contributing to P. astreoides’ 

dominance in the recruit population. 

The second most common family of recruits reported in this study was Siderastreidae.  

Locally, the Siderastreidae family is comprised of the broadcast-spawning, boulder-

forming Siderastrea siderea, and the small brooder Siderastrea radians (Gilliam 2014).  

These two species have very similar corallite morphologies and are difficult to 

distinguish as recruits, yet occupy different ecological niches as adults.  SECREMP 

reports indicate higher densities of S. siderea adults at the study sites, but coral recruit 

distributions do not necessarily mirror adult distributions (Penin and Adjeroud 2013).  At 

this stage it is impossible to conclude which siderastreid species is more represented in 

the recruit population.   

Siderastrea siderea was the most common juvenile found in quadrats in this study.  

Siderastrea siderea has been shown to dominate at small size classes throughout the 

Florida Reef Tract (Stein 2012, Bartlett 2014).  However, S. siderea juveniles were rare 

(<5% of total population) in other in situ studies in the Netherlands Antilles (Bak and 

Engel 1979, Carpenter and Edmunds 2006), Belize (Carpenter and Edmunds 2006), and 

St. Croix (Rogers et al. 1984, Carpenter and Edmunds 2006).  The trend of S. siderea 

prevalence in Florida but not in the wider Caribbean may be explained by the wide 

thermal tolerance of this species that allows it to perform well in marginal habitats.  

Siderastrea siderea was found to be resistant to thermal stress when subjected to elevated 

temperatures (30.3˚C) (Okazaki et al. 2017) and was unaffected by a 2010 cold-water 

anomaly in the Florida Keys that dropped water temperatures to more than 11˚C below 

normal temperature minimums and caused high mortality among other common species, 

including Porites astreoides (Kemp et al. 2016).  Its tolerance of unstable environmental 

conditions likely provides S. siderea with a competitive advantage that may explain why 

it is a dominant juvenile in the marginal habitats of Southeast Florida and the Florida 

Keys, yet much less abundant in juvenile populations elsewhere in the Caribbean where it 

may be outcompeted.  The low light irradiance at depth caused by turbid water in 

Southeast Florida is probably not a driving factor in their distribution because S. siderea 
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is found across a wide depth range including shallow (<5m) water, suggesting light 

tolerance.  

Porites astreoides was the second most common species found in the juvenile 

population, followed by the broadcast-spawning (Birkeland 1996) faviid species 

Montastraea cavernosa.  Montastraea cavernosa is the dominant framework-building 

coral in the region (Moyer et al. 2003) and the highest contributor to total scleractinian 

cover (Sathe et al. 2008).  It has been previously hypothesized to have a low-recruitment, 

high-survival life history strategy (Bak and Engel 1979, Rylaarsdam 1983, Rogers et al. 

1984).  Bak and Engel found only five M. cavernosa juveniles in their 1979 study for a 

density of 0.07 juveniles/m2.  The present study found a density of 0.76/m2, despite the 

impact of the disease outbreak, which afflicted an estimated 38% of M. cavernosa adults 

on the first reef line in the Miami-Dade region in 2015 (Precht et al. 2016).  Additionally, 

several of the faviid corals that recruited to the tiles may be M. cavernosa.  Local M. 

cavernosa recruitment success and juvenile survivorship may be higher than elsewhere in 

the Caribbean due to reduced benthic competition in Southeast Florida.  Southeast 

Florida’s M. cavernosa recruits and juveniles could also be a sink population for larvae 

from the Florida Keys.  The abundance of M. cavernosa juveniles may be a sign of 

greater potential to recover from disturbances compared with other disease-susceptible 

species. 

Comparison of poritid and siderastreid densities across life stages suggests that these 

taxa, while both demonstrating signs of recruitment and survivorship success in Southeast 

Florida, may exhibit different life history strategies.  The Siderastreidae family was found 

at higher densities in the juvenile stage than in the adult or recruit stages, while the 

Poritidae family was found at higher densities in the recruit stage than the adult or 

juvenile stages (Fig. 15).  When an adult population has a higher density than the 

subsequent recruit population, it suggests reduced adult fecundity or fertilization success, 

high mortality in the earliest life history stages, or high dispersal out of the study area.  

When an adult population has a lower density than the subsequent recruit population, it 

suggests high adult fecundity and fertilization success, increased survival in the earliest 

life history stages or local retention, or an influx of larvae from another location.  

Therefore, Siderastreidae and Poritidae recruit populations, which are equal to or denser 
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than the respective adult populations, may be benefiting from high adult fecundity, 

advantages in early survivorship, high local retention, or high influx of larvae from 

upstream sources, such as the Florida Keys.  Poritids have been among the families 

thought to exhibit high recruitment and low survivorship (Smith 1992).  Siderastreids 

have demonstrated low recruit and juvenile populations relative to adult populations in 

other locations(Bak and Engel 1979, Rylaarsdam 1983, Rogers et al. 1984, Carpenter and 

Edmunds 2006), so their recruitment success in Florida may be unique to the region.   

Because juvenile demographics are the result of several years of recruitment, higher 

observed density of juveniles than recruits may be caused by high recruitment and/or low 

post-settlement mortality during the previous year(s), or by frequent fragmentation or 

larger colonies. Lower observed density of juveniles than recruits may be caused by post-

settlement mortality and/or low recruitment year(s).  The present study does not fate track 

juveniles and only includes one year of recruitment data, so it is impossible to disentangle 

the effects of post-settlement survivorship from the effects of prior recruitment success. 

However, preliminary recruit data from a second recruitment year is consistent with the 

first years’ data.  Differences in juvenile density compared to recruit density are probably 

at least in part the result of differential survival outcomes (e.g. (Smith 1992, Ritson-

Williams et al. 2016)).  Based on this supposition, I hypothesize that siderastreid and 

faviid recruits, which increase in density from the recruit to the juvenile life stages, have 

higher survival rates than poritid recruits, which decrease.  Southeast Florida’s current 

population of siderastreid corals appears to be exhibiting both high settlement success 

and high post-settlement survivorship relative to other taxa.   

 The difference in relative densities at offshore and inshore sites of the two 

dominant families in the region, Poritidae and Siderastreidae, may be evidence of higher 

post-settlement survivorship of siderastreids in both habitats (Fig. 16).  As adults, 

Poritidae dominates at inshore sites and Siderastreidae dominates at offshore sites.  As 

recruits, poritids are found at significantly higher densities than siderastreids at inshore 

sites, while their densities at offshore sites are the same.  This evidence suggests the ratio 

of recruits per adult is greater in poritids than siderastreids in both inshore and offshore 

habitats.  As juveniles, siderastreids dominate the offshore sites, and are comparable to 

poritids at inshore sites, suggesting that siderastreids may have greater survivorship to the 
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juvenile stage in both inshore and offshore habitats.  Siderastreids have been documented 

to be more resistant to temperature fluctuations than poritids (Kemp et al. 2016, Okazaki 

et al. 2017) which could enhance their early survival.  However, this conclusion 

contradicts results from a study which fate-tracked juvenile corals on Florida Keys patch 

reefs and found higher survivorship of Porites astreoides than Siderastrea siderea 

(Bartlett 2014).  There are many environmental differences between the reefs of 

Southeast Florida and the patch reefs of the Florida Keys that could lead to different 

survivorship trends.  Florida Keys patch reefs have higher adult coral density than the 

Southeast Florida study sites (1-16 corals/m2 at patch reefs vs. 0.5-3 corals/m2 at study 

sites in Southeast FL) (Gilliam et al. unpub. data, Ruzicka et al. unpub. data).  

Competitive dynamics and resource availability may differ between these two regions, 

and the benthic habitat in Southeast Florida may be more conducive to siderastreid 

survival.  It is also possible that high siderastreid recruitment in past years is responsible 

for its high relative juvenile densities.  Greater understanding of the interannual variation 

in recruitment and survivorship is needed to draw a conclusion. 

 An alternative explanation for the higher numbers of siderastreid juveniles per 

recruit compared with poritids is that the timing of tile deployment could have inflated 

poritid recruit densities.   Porites astreoides, which comprises >75% of the juvenile 

Poritidae population reported in this study, reproduces in April, May, and June 

(Chornesky and Peters 1987, McGuire 1998).  Since the tiles were deployed between 

March and early May of 2015 and retrieved between February and March of 2016, poritid 

planulae were exposed to tiles that had been conditioned for approximately two to ten 

weeks.  At that point, tiles were in an early-successional state, and likely had limited 

colonization by sponges, ascidians, and encrusting gorgonians.  The sediment layer on 

top of the tile was probably inshore, since there was little time for it to accumulate.  By 

the time Siderastrea siderea, which comprises >90% of the juveniles observed in this 

study, spawned in the fall (St.Gelais et al. 2016), the tiles had been conditioned for seven 

to nine months.  Some of the upper tile surfaces (where all siderastreids settled) had been 

colonized by poritids, erect and encrusting octocorals, macroalgal turfs, and occasional 

sponges and ascidians.  Tiles likely had accumulated most of the thick sediment layer that 

was apparent when they were retrieved and scanned.  Arnold and Steneck (2011) 
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proposed a “recruitment window” for corals that lasts from about 9 to 14 months after a 

surface is opened for recolonization post-disturbance or after a bare tile is deployed.  The 

S. siderea settlement period falls within that timeframe, so if the timing of the 

“recruitment window” holds true in southeast Florida, the timing of tile deployment 

should have allowed optimal S. siderea settlement.  However, their research was 

conducted in Belize, where less sediment may accumulate on tile surfaces.  Thick 

sediment layers that accumulate within a matter of months may alter the timing of the 

“recruitment window” for the corals of Southeast Florida.  Future investigation of 

recruitment patterns could include deploying a subset of tiles in early July, only three 

months before S. siderea spawning occurs, to determine whether the relative settlement 

success for siderastreids compared with poritids is enhanced.   

In Southeast Florida, octocorals exhibited evidence of possible advantages over 

scleractinians in terms of post-settlement survivorship.  When all study sites and families 

were pooled, no significant difference was observed between scleractinian recruit and 

juvenile densities.  Because the juvenile populations include many cohorts of recruits, 

this result implies that post-settlement mortality is occurring.  Adult scleractinian density 

was lower than recruit and juvenile densities, suggesting high mortality rates in the 

recruit and juvenile life stages for taxa that recruited to tiles.  Meanwhile, octocoral 

density was greatest in adults followed by juveniles and recruits (Fig. 13).  While this 

trend seems to suggest higher post-settlement survival in octocorals than scleractinians, 

early post-settlement survival success in Caribbean octocorals has been observed to be 

poor (Lasker et al. 1998), even when compared with scleractinian survival (Bartlett 

2014). Another explanation for the relative abundance of juvenile octocorals compared 

with recruits, even when post-settlement survival rates are hypothesized/assumed to be 

low, is that vegetative propagation could cause an inflated “juvenile” population that may 

be partially comprised of small clonal fragments from nearby adults.  In a study of clonal 

reproductive strategies in Caribbean octocoral, Plexaura kuna, as few as three genotypes 

were identified on a reef, with clones greatly comprising most of the local abundance 

(Coffroth and Lasker 1998).  However, while some octocoral species have morphologies 

that facilitate fragmentation, others seem less apt to fragment (Lasker 1984), and more 

research is needed to determine the extent to which vegetative reproduction contributes to 
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Southeast Florida’s octocoral population.  The higher juvenile octocoral densities relative 

to recruit densities could also be the product of interannual variation in recruitment 

leading to high juvenile abundance in the juvenile census.  Lastly, there is an overlap in 

sampling size classes between octocorals on settlement tiles, in quadrats (many small 

octocorals are recorded that could be from the same recruit cohort as found on tiles), and 

in adult surveys (no size minimum).  The juvenile data could include octocorals that 

should have been classified as recruits, and the adult data could include may include 

some individuals that should be classified as juveniles.  Future analyses should be 

conducted with size class under consideration. 

While octocoral juvenile densities were greater than octocoral recruit densities 

overall and at most individual sites, the site DC8 was an exception that demonstrates the 

capacity of octocorals to recruit at high densities.  DC8 had a significantly higher 

abundance of octocoral recruits than other sites, with a mean density of 42.8 octocoral 

recruits/m2, accounting for 65% of the octocoral recruits in the entire study.  The nearest 

inshore site to DC8 geographically (DC5, 3.8km away) had a single octocoral recruit (0.5 

octocoral recruits/m2).  Despite their proximity, these sites have different adult species 

assemblages and structural complexity, resulting in two distinctly different habitats 

(Gilliam 2014).   

The site DC8 had the highest juvenile and adult octocoral density of all study 

sites, and the abundance of octocoral recruits was higher than at other sites, even relative 

to the adult and juvenile octocoral abundances.  One potential explanation for the high 

numbers of octocorals found on these tiles is that DC8 has several large sand patches, and 

was also impacted by the dredging of Port Miami, which increased sediment loads on the 

benthos (Barnes et al. 2015).  Since tiles provided hard substrate in an area where stable 

substrate may be scarce, octocoral larvae may have preferentially settled on tiles, 

resulting in an inflated density of recruits.  It is not well understood if octocoral larvae 

prefer to settle on tiles versus the natural benthos. An alternative hypothesis is that while 

a large influx of octocoral larvae is occurring throughout the site, juvenile densities are 

lower than recruit densities because of high post-sediment mortality on the natural 

substrate.  Many of the octocorals recruiting to the benthos could be smothered by 
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sediment before reaching the juvenile stage.  The elevated tile substrate may enhance 

post-settlement survival of octocorals when sedimentation is high.   

 The high abundance of adult and juvenile octocorals relative to recruits may be 

evidence of a successful life history strategy that results in high proportions of successful 

propagation.  This apparent success under the current environmental conditions in 

Southeast Florida could support the conclusions of recent research that suggests a phase 

shift is occurring from scleractinian dominance to octocoral dominance in the Caribbean 

(Ruzicka et al. 2013, Edmunds and Lasker 2016, Tsounis and Edmunds 2017).  The 

statistically significant negative relationship between adult scleractinian density and 

octocoral recruitment could be considered evidence for this shift (Fig. 18).   Perhaps 

octocoral recruits are opportunistically settling in scleractinian-depauperate areas because 

they have the capacity to thrive in these marginal conditions.  As environmental 

conditions deteriorate with anthropogenic climate change and increased local impacts, 

octocoral communities have been predicted to become more prevalent as they are more 

resilient to chronic stressors than scleractinian communities (Tsounis and Edmunds 

2017).  

Less tolerant, ESA-listed threatened species were rare in both components of this 

study.  The absence of as recruits and juveniles of threatened corals Acropora, Orbicella, 

or Dendrogyra genera suggests that genetic diversity will tend to decrease and recovery 

is unlikely without input of larvae from a source outside the region.  As of 2016, 

Dendrogyra cylindrus was rapidly approaching local extinction in Southeast Florida 

(Kabay 2016), and there were no living adult Orbicella colonies within any of the 22m2 

belt transects surveyed by SECREMP at any of the 12 study sites (Gilliam et al., unpub. 

data).  While some Orbicella colonies remain living in Southeast Florida, Allee effects 

resulting from low densities make successful fertilization unlikely within local Orbicella 

populations and nearly impossible for Dendrogrya.  Nineteen Acropora cervicoris 

colonies were recorded at the study sties in 2016 SECREMP surveys (Gilliam et al., 

unpub. data).  Even though Broward County has one of the most genetically diverse A. 

cervicornis populations in Florida (Drury et al. 2017), based on the results of this study 

they do not appear to be yielding sexually produced recruits.  The absence of Orbicella 

and Acropora recruits in this study also suggests that Southeast Florida’s threatened 
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populations are unlikely to be re-seeded by larvae from the Florida Keys or elsewhere in 

the Caribbean, though more understanding of interannual variation in recruitment rates is 

necessary to make this conclusion. 

 The recruitment failure of these threatened species may not be a new 

phenomenon.  In a 1979 study that censused juvenile corals (<40mm diameter) over 75m2 

of reef across different habitats in Curacao and Bonaire, a total of one M. ferox, two 

Acropora spp. and four Orbicella spp. juveniles were identified, with no D. cylindrus 

representatives (Bak and Engel).  Other studies conducted in the Caribbean before the 

acceleration of coral decline also recorded low recruit and juvenile densities of these 

species relative to their adult populations.  It was hypothesized that Orbicella spp. have 

low recruitment but high survival rates relative to other species, and that Acropora spp. 

rely more on fragmentation than sexual reproduction to propagate (Rylaarsdam 1983, 

Rogers et al. 1984).  While there is precedent for low recruitment of these species, their 

apparent recruitment failure in Southeast Florida is evidence of their limited potential to 

recover from mass mortality events such as the 2014-2015 disease outbreak (Precht et al. 

2016). 

Diploria and Pseudodiploria species and Colpophyllia natans are not ESA-listed, 

but may struggle to recover after Florida’s disease outbreak or other local disturbances.  

In the disease outbreak evaluation, 83% of Diploria labyrinthiformis and 84% of 

Pseudodiploria strigosa adult colonies were afflicted or killed (Precht et al. 2016).  

Colpophyllia natans affliction was reported at 93%.  Diploria spp. are among the corals 

that have exhibited low recruitment and high survival in past studies (Smith 1992).  We 

identified only five Diploria/Pseudodiploria individuals in the juvenile census (a density 

comparable to that reported in Bak and Engel 1979), and only one C. natans juvenile.  

These populations may struggle to recover through natural recruitment processes in 

Southeast Florida, compared with taxa such as Poritidae, Siderastreidae, and Octocorallia, 

which have been shown to be tolerant of marginal conditions and exhibited evidence of 

successful recruitment and survivorship within the region.   

 The second major conclusion of this study is that in Southeast Florida, recruits are 

dispersed evenly over the spatial parameters evaluated, but survivorship through the 
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juvenile stage is a critical factor in structuring the spatial structure of adult coral 

communities.  Scleractinian recruit densities were not significantly different among study 

sites, nor did they differ between inshore and offshore sites.  Octocoral recruit densities, 

however, were variable on the site-level scale.  Overall scleractinian and octocoral recruit 

densities also did not differ between the four regional clusters.  Meanwhile, scleractinian 

and octocoral juvenile densities were highly variable among sites, which may be 

explained by localized distributions of factors affecting survivorship, including 

macroalgae and sedimentation.  Sites located within 0.7 km of one another and at 

approximately the same depth (DC3 and DC2) were found to exhibit stark differences in 

scleractinian juvenile density (1.2 juveniles/m2 and 6.8 juveniles/m2, respectively).  

Meanwhile, sites located distances greater than 50 km from one another, such as BC4 and 

DC5, had no significant difference in recruit density.  Octocorals also exhibited variation 

in juvenile density between nearby sites.  Greater variation in coral assemblages on small 

spatial scales than on regional spatial scales has been previously reported in Florida and 

elsewhere in the Caribbean (Aronson 2001). 

While scleractinian recruit densities did not differ between inshore and offshore 

habitats, inshore sites had significantly greater scleractinian juvenile densities than 

offshore sites (Fig 16), suggesting that post-settlement mortality of scleractinian recruits 

may be higher at the offshore study sites than at the inshore study sites.  One reason that 

survivorship may be higher at inshore sites may be that more light could allow for more 

energy production by corals’ symbiotic algae, leading to higher growth rates and less 

time spent in the most vulnerable size classes.  Other reasons may include lower grazing 

pressure or lower cover of cyanobacteria or macroalgae at inshore sites.  Cyanobacteria 

and macroalgae cover were higher at inshore sites in 2016, but higher at offshore sites in 

2015 (Gilliam et al., unpub. data).  SECREMP samples for cyanobacteria and macroalgae 

cover once per year, but algal cover likely fluctuates throughout the year.  Therefore, 

while these two benthic competitors contribute to coral recruit mortality, quantifying their 

role in the mortality observed in this study is not possible.  Finally, sediment is unlikely 

to explain disparity in survivorship between inshore and offshore sites because the 

inshore sites on the nearshore hard bottom and first reef line are believed to be more 

heavily impacted by sedimentation stress due to their proximity to shore.  Higher juvenile 
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densities at inshore sites may also be the product of a recruitment event or series of 

events occurring in nearshore hardbottom and first-reef habitats within the last few years 

that was not reflected in recruit cohort that settled on tiles.   

The lack of variability in scleractinian recruit densities, coupled with high 

variability in scleractinian juvenile densities, suggests that differential survival outcomes 

occur on local (site level) scales.  A few possible ecological factors may contribute to the 

observation of high variation in juvenile density on local, but not regional, spatial scales.  

Macroalgae and cyanobacteria blooms can harm juvenile corals, decreasing post-

settlement survival (Box and Mumby 2007).  These blooms tend to be ephemeral, 

localized, and do not follow a noticeable pattern or latitudinal gradient (Gilliam 2014), so 

the variable juvenile densities observed may reflect differential survival outcomes caused 

by harmful local algae blooms.  Another possible explanation might be that different 

species of crustose coralline algae can impact survival outcomes positively or negatively 

(Harrington et al. 2004, Buenau et al. 2012), and therefore juvenile coral distributions 

could be related to the distributions of CCA species.  More characterization of CCA 

species distributions in Southeast Florida would be necessary to determine if CCA could 

be modulating survival outcomes in the region.  Localized sedimentation stress and 

differences in grazing pressure could also contribute to local-scaled post-settlement 

mortality.  

Healthier reefs with higher densities of adults are typically expected to have higher 

rates of recruitment (Reyes and Yap 2001), however this was not observed.  This can be 

due to high local retention of larvae (Sammarco and Andrews 1988, Ayre and Hughes 

2000, Miller and Ayre 2008, Underwood et al. 2009) or conspecific cues signaling 

quality settlement substrate (Da-Anoy et al. 2017).  However, when all scleractinian taxa 

were pooled, there was no relationship between adult and recruit density at the site level. 

Poritidae was the only family that exhibited a positive relationship between adult density 

and recruit density (Spearman’s, p=0.0018).  This relationship probably exists because 

Caribbean poritids are brooding corals (Szmant 1986) and brooded larvae are competent 

upon release and thus tend to have high local retention (Sammarco and Andrews 1988, 

Ayre and Hughes 2000, Holstein et al. 2014).  Agariciids are also brooders (van Moorsel 
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1983) and thus should exhibit high local retention, but the number of agariciid recruits 

reported in this study was too small to evaluate statistically (N=12).   

The absence of a relationship between overall adult densities and recruit densities 

could mean that most coral larvae are dispersing further than the site-level scale.  

However, with total scleractinian adult densities ranging from 0.3 to 4 adults/m2, many 

species at the study sites could be failing to reproduce altogether because of the Allee 

effect (Knowlton 2001).  Fecundity of adult scleractinians can be affected by stress 

(Paxton et al. 2016) and may be low in the region due to temperature or sedimentation 

stress, disease, or other factors.  Recruits were not counted in this study until they 

developed a recognizable skeleton.  Therefore, it is also possible that many more corals 

attached to the substrate but suffered mortality within the first hours or days post-

settlement.  This early-stage mortality is difficult to quantify and may not occur 

proportionately across sites.   

 If post-settlement survival is high, greater juvenile densities should be expected in 

2016 at the sites where high recruit densities settled during the 2015-2016 recruitment 

season.  Overall scleractinian and octocoral recruit density were not significantly 

correlated with juvenile density recorded the subsequent year Poritidae was the only 

taxon which recruit and juvenile densities were positively correlated.  The correlation 

within the Poritidae family is likely a result of the high local retention of Porites species, 

which seems to have led to uneven spatial distributions across the reef tract and 

dominance at inshore sites (Gilliam 2014).  Higher survival of poritid corals is an 

unlikely explanation because their recruit densities were significantly higher than juvenile 

densities, suggesting high post-settlement mortality (Fig. 14).  The absence of correlation 

between recruit and juvenile densities of other taxa suggest that most scleractinian and 

octocoral families are subject to high post-settlement mortality.   

 Across the three life history stages examined, the only positive correlation found 

for scleractinian densities was between juvenile and adult densities, implying that sites 

with high scleractinian juvenile densities also have high scleractinian adult densities.  

Sites with conditions conducive to maintaining healthy adult scleractinian communities 

likely also have conditions conducive to juvenile survivorship.  However, this conclusion 
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is not supported by individual coral families.  The only groups within the scleractinian 

taxon for which significant relationships existed were Poritidae and the “Other 

Scleractinian” category (Table 8).   Poritid adult density also correlated with poritid 

recruit density.  Porites astreoides populations have been found to be highly fragmented 

on small spatial scales (Holstein et al. 2014), and the site-level correlations reported in 

this study are evidence that self-seeding of Porites populations is common.  The 

fragmented distributions of abundant Porites astreoides corals in Southeast Florida is the 

driving factor in shaping the strong relationship between juvenile and adult scleractinian 

corals. 

CONCLUSIONS 

The relationships between the densities of recruit, juvenile, and adult corals 

observed in this study provide some insight into where population bottlenecks impeding 

reef recovery may be occurring.  Minimal variation was observed in scleractinian recruit 

density across sites and depths, while juvenile densities varied even on small, site-level 

spatial scales.  In scleractinian corals, the highest density is observed among recruits, 

with a drop-off in density approaching the juvenile stage.  Recruit density does not 

correlate with adult density at the site level, but juvenile density does.  These results 

suggest that differential post-settlement survival likely plays a greater role than 

recruitment in structuring adult scleractinian communities.  Therefore, early post-

settlement survival, rather than recruitment, is more likely to dictate the relative resilience 

potential of reef sites across the Southeast Florida reef tract.  This conclusion is 

consistent with results found in French Polynesia (Penin and Adjeroud 2013) and the 

Seychelles (Chong-Seng et al. 2014).  The former study found that juvenile, but not 

recruit, assemblages correlated closely with adult assemblages, and the latter found very 

little spatial variation in recruitment, with much more “patchy” distributions of juvenile 

corals.   

 This study used recruit and juvenile distributions to examine the potential for 

resilience of different reef sites and common species in Southeast Florida.  The region is 

unique in the microhabitat distribution of coral recruits on artificial settlement tiles, with 

most recruits settling on exposed surfaces.  While this may be due to reduced light from 
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high turbidity, further research is needed to evaluate the role of light in determining coral 

settlement location.  Optimal light levels for growth and survival may differ for coral 

recruits and adults, and are not necessarily the same for all species.  Implications of high 

rates of settlement on exposed surfaces should also be thoroughly explored, as this trend 

could result in elevated recruit mortality (Doropoulos et al. 2016).    

Southeast Florida is also unique in its juvenile species assemblage when 

compared with other regions of the Caribbean, with siderastreids dominating the juvenile 

population and exhibiting evidence of relatively high survival rates.  The prevalence of 

siderastreids on Southeast Florida’s reefs could be promising for the future; modeling 

efforts predicted that Siderastrea siderea-dominated reefs may remain stable even in 

temperature and pCO2 conditions predicted for 2100 (Okazaki et al. 2017).  Octocorals 

also appear to be employing successful propagation and survival strategies, with densities 

increasing from younger to older life history stages.  Already considered tolerant of 

marginal conditions, octocorals may increase in abundance relative to scleractinians due 

to their apparent capacity to recover from disturbances and their potential to recruit at 

extremely high densities (e.g., DC8). 

 The phase shift from scleractinian to octocoral dominance has been described in 

the Caribbean (Ruzicka et al. 2013, Tsounis and Edmunds 2017), yet understanding of 

octocoral reproduction, dispersal, settlement, and survival is still limited.  Research is 

needed to determine the timing of spawning for many species.  Investigating the ability of 

octocoral larvae to selectively settle on suitable substrate and the ability of adults to 

propagate clonally would help to explain their spatial distributions.  Additionally, 

research on the potential competitive interactions between octocorals and scleractinians 

during different life stages will be important if a phase shift progresses. 

This study provides evidence that low recruit survivorship is a bottleneck that 

structures adult coral populations.  To increase management efficacy, more data is needed 

to determine the primary causes of post-settlement mortality within the Southeast Florida 

region.  The current monitoring data are sampled for on a yearly basis, but the 

environmental factors that kill coral recruits are likely to occur on finer temporal scales.  

Monthly sampling of a subset of quadrats would be useful for understanding the 
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fluctuations in macroalgae, cyanobacteria, and sediment cover.  Further research should 

also include an assessment of herbivory and corallivory in the region, to determine how 

grazing rates differ between Southeast Florida’s reef habitats.  In addition to supporting 

insight into what factors kill coral recruits, these studies could help to elucidate the 

reasons for apparently different rates of post-settlement survival between study sites of 

similar habitat qualities.  Managers can employ this knowledge to limit the causes of 

recruit mortality to increase juvenile survivorship.  For example, managing for reduced 

macroalgae cover and reduced sedimentation may improve early coral survivorship 

outcomes.  Future management efforts in Southeast Florida should focus on investigating 

methods to enhance post-settlement survival, loosening the population bottlenecks that 

are limiting recovery.   
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APPENDICES 

Appendix 1:  The number of recruits on settlement tiles by family.  N=total number of tile pairs scanned per site.  

Site N Poritidae Siderastreidae Faviidae Agariciidae 
Other 

Scleractinian 

Unknown 

Scleractinian 

Total 

Scleractinian 

Total 

Octocoral 

BC1 32 6 4 2 1 0 6 19 3 

BC2 32 7 8 2 0 0 4 21 5 

BC3 32 7 1 1 0 1 2 12 8 

BC4 32 17 0 0 0 0 0 17 0 

DC6 32 16 5 0 0 0 1 22 1 

DC7 30* 2 7 0 1 0 1 11 18 

DC1 32 8 1 0 0 0 1 10 1 

DC2 32 5 6 2 2 0 7 22 1 

DC3 32 2 2 0 0 0 5 9 3 

DC4 30 6 0 0 2 0 3 11 1 

DC5 32 9 1 0 6 0 1 17 1 

DC8 32 0 7 2 0 0 2 11 78 

Totals 85 42 9 12 1 33 182 120 

*30 tiles were scanned for scleractinians and 26 were scanned for octocorals 
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Appendix 2:  Scleractinian juveniles from census, totaled by family level. 

Site Poritidae Siderastreidae Faviidae Agariciidae 
Other 

Stony 

Unknown 

Stony 

Total 

Stony 

BC1 2 23 7 0 1 4 37 

BC2 2 7 9 0 4 0 22 

BC3 1 8 7 0 12 4 32 

BC4 63 12 12 1 4 0 92 

DC6 23 43 0 0 0 0 66 

DC7 2 18 11 0 15 1 46 

DC1 17 34 9 2 3 0 64 

DC2 1 29 10 2 17 3 61 

DC3 0 6 2 0 2 1 11 

DC4 7 4 11 1 5 1 29 

DC5 30 28 9 14 9 0 85 

DC8 1 12 0 0 1 2 16 

Totals 149 224 86 20 74 16 561 
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2016 Scleractinian Juveniles 
 

2016 Octocoral Juveniles 

Siderastrea siderea 203 
 

Pseudoplexaura sp. 21 

Siderastrea radians 21 
 

Eunicea sp. 306 

Porites astreoides 122 
 

Plexaurella sp. 5 

Porites porites 27 
 

Plexaura sp. 1 

Montastraea cavernosa 71 
 

Muriceopsis sp. 0 

Pseudodiploria/Diplora sp. 5 
 

Muricea sp. 11 

Colpophyllia natans 1 
 

Antillogorgia americana 42 

Solenastrea bournoni 8 
 

Gorgonia ventalina 18 

Orbicella sp. 2 
 

Antillogorgia sp. 36 

Stephanocoenia intersepta 40 
 

Pterogorgia sp. 0 

Dichocoenia stokesii 8 
 

Unknown Octocoral 276 

Meandrina meandrites 6 
   

Eusmilia fastigiata  1 
   

Mussidae family 9 
   

Agariciidae family  20 
   

Unknown Stony Coral 16 
   

Appendix 3. Juvenile abundances 

identified to highest taxonomic 

resolution.  Discrepancies between the 

following and the family-level counts in 

Table 8 are explained by corals that were 

only identified to genus or another 

subgroup (when the majority within that 

genus were identified to species) and 

thus were moved to the “Unknown” 
category.  “Antillogorgia sp.” may 
include Antillogorgia americana 

juveniles that were not identified to 

species during the survey. 
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Appendix 4:  Octocoral juveniles totaled by family level. 

Site Plexauridae Gorgonidae 
Unknown 

Octocorals 

Total 

Octocorals 

BC1 50 0 12 62 

BC2 22 8 44 74 

BC3 49 1 28 78 

BC4 31 18 26 75 

DC1 19 5 13 37 

DC2 21 14 24 59 

DC3 14 5 18 37 

DC4 37 15 27 79 

DC5 13 10 12 35 

DC6 17 3 15 35 

DC7 25 1 7 33 

DC8 46 26 40 112 

Totals 344 106 266 716 
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Appendix 5: Model parameters (Model), number of parameter (K), log likelihood (logLik), AICc, ΔAICc, and weights for the 

candidate set of negative binomial regression models relating coral counts to the spatial parameters. All models included an intercept.  

 Model K LogLik AICc ΔAICc w 

Scleractinian 

Recruits 

Location on Tile 3 -426.42 858.9 0 1 

Intercept-only 2 -460.49 925 66.12 0 

Zone (Inshore vs. 

Offshore) 3 -494 926.7 67.83 0 

Region 5 -459.57 929.2 70.33 0 

Zone*Region 9 -456.69 933.6 74.75 0 

Site 13 -454.36 935.2 76.34 0 

Octocoral Recruits 

Site 13 -230.29 487.1 0 1 

Zone*Region 9 -254.91 528.1 40.99 0 

Region 5 -274.55 559.2 72.11 0 

Location 3 -288.83 583.7 96.62 0 

Zone 3 -292.52 591.1 104 0 

Intercept-only 2 -295.81 595.6 108.56 0 

Scleractinian 

Juveniles 

Site 13 -593.81 -593.81 0 1 

Zone 3 -628.88 -628.88 49.22 0 

Zone*Region 9 -635.84 -625.84 55.56 0 

Intercept-only 2 -639.01 -639.01 67.45 0 
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Region 5 -638.06 -638.06 71.68 0 

Octocoral Juveniles 

Site 13 -677.61 1382.2 0 0.994 

Region 5 -691.13 1392.4 10.23 0.006 

Zone*Region 9 -690.25 1399 16.79 0 

Intercept-only 2 -206.31 1416.7 34.46 0 

Zone 3 -706.3 1418.7 36.47 0 
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Appendix 6: Parameter estimates, standard errors (SE), and lower and upper 95% confidence limits based on the negative binomial 

regression models relating coral juvenile counts by site.  This model was best-approximating for both scleractinians or octocorals.  

 
Scleractinian Site Model Octocoral Site Model 

Parameter Estimate SE 

Confidence 

Interval Estimate SE 

Confidence 

Interval 

Intercept 0.11 0.21 -0.3-0.51 0.63 0.17 0.29-0.96 

BC2 -0.49 0.32 -1.13-0.14 0.21 0.24 -0.25-0.67 

BC3 -0.11 0.3 -0.71-0.47 0.26 0.23 -0.2-0.72 

BC4 0.94 0.26 0.43-1.47 0.22 0.24 -0.24-0.68 

DC1 0.58 0.27 0.05-1.12 -0.49 0.26 -1.01-0.03 

DC2 0.53 0.27 0-1.07 -0.02 0.24 -0.5-0.46 

DC3 -1.18 0.39 (-1.98)-(-0.45) -0.49 0.26 -1.01-0.03 

DC4 -0.21 0.31 -0.82-0.38 0.27 0.23 -0.18-0.73 

DC5 0.86 0.27 0.35-1.39 -0.54 0.27 (-1.07)-(-0.02) 

DC6 0.61 0.27 0.08-1.15 -0.54 0.27 (-1.07)-(-0.02) 

DC7 0.25 0.28 -0.31-0.81 -0.6 0.27 (-1.13)-(-0.08) 

DC8 -0.81 0.35 (-1.51)-(-0.14) 0.62 0.23 0.18-1.07 
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Appendix 7: Differences for each paired contrast of octocoral recruit and juvenile counts by region, standard errors (SE), lower and 

upper 95% confidence limits, and p-values (z-statistic = Difference/ SE) associated with each paired contrast.  FTL=Ft. Lauderdale, 

HAL=Hallandale, MIA=Miami, BIS=Biscayne. 

                               Octocoral Recruits                               Octocoral Juveniles 

                       Diff              SE          zstat           p-value                        Diff            SE          zstat             

pvalue 

FTL - BIS       -1.908      0.380      -5.015            0.000 FTL - BIS       -0.050     0.131     -0.379            0.981 

HAL - BIS      -1.027      0.407      -2.525            0.054 HAL - BIS      -0.796     0.180     -4.420            0.000 

MIA - BIS      -2.783      0.540      -5.150            0.000 MIA - BIS      -0.530     0.150     -3.530            0.002 

HAL - FTL       0.881      0.453       1.945             0.204 HAL - FTL      -0.746     0.173     -4.302            0.000 

MIA - FTL     -0.875      0.576      -1.520             0.418 MIA - FTL      -0.481     0.142     -3.379            0.004 

MIA - HAL    -1.756      0.594      -2.958             0.016 MIA - HAL      0.265     0.188      1.409             0.489 
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