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INTRODUCTION

Apart from its inherent scientific interest, under-

standing the distributional patterns of individual species,

communities and ecosystems is essential to robust

conservation management. Such information is required

not only for the identification of priority sites for protec-

tion (Ward et al. 1999), but also for monitoring the

impacts of human activities, particularly in systems

subject to recurrent harvesting of natural resources as in

the oceans (e.g. Colloca et al. 2003). Unfortunately,

comprehensive inventories of species distributions are

rarely available when conservation-management issues

require resolution over extensive geographic areas. This

is particularly so in the oceans where sampling at

depth over large areas is not only difficult and expensive,

but is often also constrained by lack of taxonomic

expertise (Solbrig 1991). Several approaches have been

developed to overcome this lack of comprehensive

data, including the analysis of existing data to identify

zones of high species richness (e.g. Ponder et al. 2001,

Shackell & Frank 2003) and the identification of species

whose status can be used as indicators of wider eco-

system health (e.g. Diaz et al. 2004). Alternatively,

abiotic data are used either to construct frameworks for

management (e.g. T. H. Snelder et al. 2006) or to predict

the distributions of biological properties from scattered

samples (e.g. Ferrier et al. 2002). 

© Inter-Research 2006 · www.int-res.com*Email: j.leathwick@niwa.co.nz

Variation in demersal fish species richness in the

oceans surrounding New Zealand: an analysis

using boosted regression trees

J. R. Leathwick1,*, J. Elith2, M. P. Francis3, T. Hastie4, P. Taylor1

1National Institute of Water and Atmospheric Research, PO Box 11115, Hamilton, New Zealand
2School of Botany, University of Melbourne, Parkville 3010, Victoria, Australia

3National Institute of Water and Atmospheric Research, Private Bag 14901, Wellington, New Zealand
4Sequoia Hall, Stanford University, Stanford, California 94305-4065, USA

ABSTRACT: We analysed relationships between demersal fish species richness, environment and

trawl characteristics using an extensive collection of trawl data from the oceans around New Zealand.

Analyses were carried out using both generalised additive models and boosted regression trees

(sometimes referred to as ‘stochastic gradient boosting’). Depth was the single most important envi-

ronmental predictor of variation in species richness, with highest richness occurring at depths of 900

to 1000 m, and with a broad plateau of moderately high richness between 400 and 1100 m. Richness

was higher both in waters with high surface concentrations of chlorophyll a and in zones of mixing of

water bodies of contrasting origins. Local variation in temperature was also important, with lower

richness occurring in waters that were cooler than expected given their depth. Variables describing

trawl length, trawl speed, and cod-end mesh size made a substantial contribution to analysis out-

comes, even though functions fitted for trawl distance and cod-end mesh size were constrained to

reflect the known performance of trawl gear. Species richness declined with increasing cod-end

mesh size and increasing trawl speed, but increased with increasing trawl distance, reaching a

plateau once trawl distances exceed about 3 nautical miles. Boosted regression trees provided a

powerful analysis tool, giving substantially superior predictive performance to generalized additive

models, despite the fitting of interaction terms in the latter.

KEY WORDS:  Demersal fish · Species richness · Boosted regression trees · Statistical model

Resale or republication not permitted without written consent of the publisher



Mar Ecol Prog Ser 321: 267–281, 2006

Geographic variation in species richness has long

been explored in both terrestrial (Rohde 1992, Huston

1994) and marine settings (Grassle & Maciolek 1992,

Rex et al. 1993, Roy et al. 1998, Gray 2001, 2002), and

it has become the subject of increased interest with

recognition of the global imperative for biodiversity

conservation. In marine studies, the search for evi-

dence of declining species richness with progression

from equatorial to polar environments, a change that

would parallel terrestrial patterns, has been a domi-

nant theme (Gray 2001). However, although evidence

of declining diversity with increasing latitude has been

found in several Northern Hemisphere studies, mostly

of benthic organisms (Stehli et al. 1967, Rex et al. 1993,

Roy et al. 1998), results from Southern Hemisphere

studies have been much less convincing (Clarke 1992,

Gray et al. 1997). There is also conflicting evidence

about relationships between species richness and

depth. Although Levington (1995) argues for a general

increase in species richness with depth, reaching a

maximum about the continental slope and declining

thereafter, results from quantitative studies of fish

species richness are generally inconsistent except for

their demonstration of declining richness in abyssal

waters (McClatchie et al. 1997). Similarly, after review-

ing evidence for trends of marine benthic diversity

along depth gradients, Gray (2001) concluded ‘there

is no clear trend in increasing species richness from

coasts to deep sea’. Here we present results of an ana-

lysis of relationships between fish species richness and

a comprehensive set of functionally based environ-

mental predictors, using an extensive set of trawl

data collected from the oceans surrounding New Zea-

land. Our aims were to model species richness with

a method capable of revealing important ecological

relationships, while also producing a map of predicted

species richness that could be used in conservation

planning. 

Boosted regression trees

The majority of our analyses in this study are carried

out using the relatively new statistical technique of

gradient-boosted regression trees (Friedman 2001),

sometimes referred to as stochastic gradient boosting.

Along with other model-averaging (ensemble) meth-

ods, this differs fundamentally from conventional

regression based techniques such as generalised

additive models (GAM – Hastie & Tibshirani 1990).

Whereas the latter seek to fit the single most parsimo-

nious model that best describes the relationship

between a response variable and some set of predic-

tors, ensemble methods fit a large number of relatively

simple models whose predictions are then combined to

give more robust estimates of the response. In boosted

regression trees (BRT) each of the individual models

consists of a simple classification or regression tree,

i.e. a rule-based classifier that partitions observations

into groups having similar values for the response

variable, based on a series of binary rules (splits)

constructed from the predictor variables (Hastie et al.

2001). The boosting algorithm uses an iterative method

for developing a final model in a forward stage-wise

fashion, progressively adding trees to the model, while

re-weighting the data to emphasize cases poorly pre-

dicted by the previous trees. A BRT model can there-

fore be seen as a regression model in which each of the

individual model terms is a simple regression tree

(Friedman et al. 2000). 

Advantages offered by a BRT model include its

ability to accommodate both different types of predic-

tor variables and missing values, its immunity to the

effects of extreme outliers and the inclusion of irrele-

vant predictors, and its facility for fitting interactions

between predictors (Friedman & Meulman 2003).

Fitting of interaction effects is controlled by varying

the size of the individual regression trees. Where the

individual tree terms consist of a single rule con-

structed using just 1 predictor variable, no interaction

effects are fitted, and the final model is likely to

approximate closely one fitted using any conventional

regression technique that allows the fitting of non-

linear responses, e.g. a GAM. However, where the

individual trees consist of 2 or more rules, the function

fitted for any one predictor may vary depending on the

value taken by another predictor, with the potential

complexity of these interaction effects increasing as

the size of the individual tree terms increases.

While these features of a BRT model make it a poten-

tially powerful tool for analysing complex ecological

datasets, it also poses a number of challenges for which

we demonstrate possible solutions. In particular, trees

can continue to be added to a BRT model until, eventu-

ally, all observations are perfectly explained, i.e. the

model becomes over-fitted to the training data. Given

that our objective is to produce a model having a high

level of generality (Hastie et al. 2001), some procedure

is required to identify an optimal number of trees that

maximises the ability of a model to make accurate pre-

dictions to new, independent sites while avoiding

excessive model complexity. Care is also required with

BRT models where the tree size is 2 or greater, be-

cause of their capacity to automatically fit interactions

between predictor variables. Given that such effects

are only fitted where required by the data, and given

the complexity of a BRT model, the contribution of

these interaction effects can be difficult to detect.

In addition, care is required when interpreting the

functions fitted for predictor variables, as their shapes
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can vary dramatically depending on the

values taken by other predictors. 

Given its relatively recent advent, there

are only a few published examples of the

use of boosting (Friedman & Meulman

2003, Kuhnert et al. 2003, Lawrence et al.

2004), particularly with ecological data

(Cappo et al. 2005, Kawakita et al. 2005,

Elith et al. 2006). Because of this we also

fit parallel GAM models, where feasible,

to allow evaluation of the comparative

performance of BRT. GAMs were chosen

for comparison because they are regularly

used in ecology (e.g. Guisan & Zimmer-

man 2000), due to their ability to fit non-

linear relationships between a response

variable and its predictors. This is gener-

ally advantageous when analysing the

complex relationships typically found in

ecological datasets (e.g. Olden & Jackson

2002). 

STUDY AREA AND METHODS

Study area. Although New Zealand has

a relatively small land area, with its off-

shore islands it extends across a wide

latitudinal range (~30 to 55° S, Fig. 1), and

the oceans that surround it encompass a

diverse range of environmental condi-

tions (e.g. Heath 1985, Bradford-Grieve et

al. 1991, in press). The dominant feature

of these waters is the Subtropical Front

(STF), which separates warm, saline and

nutrient-poor waters of subtropical origin

in the north, from colder, low-salinity but

nutrient-rich waters of subantarctic origin

to the south. The STF is deflected to the

south from its normal latitudes by the

New Zealand landmass, but returns to the north imme-

diately east of the South Island, and then to the east

along the Chatham Rise. Strong current flows occur

along this front, particularly along the Southland coast,

and form several relatively stable gyres mostly to the

east of New Zealand (Bradford-Grieve et al. in press).

The continental shelf surrounding New Zealand is

generally narrow, but extensive submarine plateaus

occur to the northwest and southeast. The most promi-

nent and economically important of these is the

Chatham Rise, which extends east from Banks Penin-

sula to the Chatham Islands and forms a bathymetric

anchor for the STF. Deeper abyssal waters occur close

to the south-western coast of the South Island along

the Puysegur Trench, and to the northeast of the North

Island along the Kermadec Trench. Descriptions of the

demersal fish assemblages in these waters are con-

tained in Bull et al. (2001), Kendrick & Francis (2002),

Beentjes et al. (2002) and Francis et al. (2002)

Data. Species richness data used in this analysis

were drawn from an extensive collection of research

bottom trawls carried out over the period from 1979 to

1997 (Francis et al. 2002) and sampling most of the

waters around New Zealand (Fig. 1). To minimise the

effect of variation among vessels and gear types in

species catchability, only data from 3 research vessels

were included (RVs ‘James Cook’, ‘Kaharoa’ and

‘Tangaroa’). A total of 16 946 records were used in the

analysis, after discarding a number of records either

that lacked associated attribute data or for which there
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Fig. 1. Broad features of the oceans surrounding New Zealand. Bathymetric

contours are shown only to a depth of 2000 m. The 500, 1000, 1500 and

2000 m isobaths are given. Locations of trawl sites are indicated by dots,

and the approximate position of the subtropical front (STF) is shown by

diagonal hatching
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was a substantial mismatch between the recorded

trawl depth and the average depth in that general lo-

cation, suggesting inaccurate geo-referencing. Abun-

dances (catch weights) were recorded in the database

for all demersal species occurring in at least of 1% of all

trawls, with a total of 126 species recorded overall, in-

cluding both commercial and non-commercial species.

Species richness was calculated for each trawl by tally-

ing the number of species recorded as present, which

we interpret as a measure of point or alpha-diversity as

defined by Whittaker (1972). 

Eight environmental predictors (Table 1) were

selected for their likely functional relevance to varia-

tion in the distributions of individual fish species, and

hence species richness. Selection of variables was

influenced in part by results from previous analyses of

fish species richness, including one New Zealand

study (McClatchie et al. 1997). The average depth of

each trawl (AvgDepth in Table 1) was included as

a surrogate for the environmental changes that occur

with increasing depth, i.e. increasing pressure, de-

creasing light and temperature, and variation in

salinity. The average depth across all trawls was

537 m, but the distribution of values was bimodal, with

many coastal trawls, a second peak of trawls at around

800 to 900 m, and very few trawls deeper than 1500 m. 

Estimates of the average temperature and salinity on

an annual basis were derived for each trawl location

from the CSIRO Atlas of Regional Seas (CARS – Ridge-

way et al. 2001). As this provides estimates for half-

degree grid cells at fixed depth intervals, we extracted

the relevant depth profile for each trawl site and used

a spline interpolation routine to estimate the tempera-

ture and salinity at the specific depth at which trawling

was carried out. To avoid problems in fitting the subse-

quent richness model arising from strong correlations

among depth, temperature and salinity, we applied

transformations to both temperature and salinity esti-

mates. First, we adjusted our temperature estimates

for depth by fitting a non-linear regression (Fig. 2a)

describing the average relationship between depth

and temperature. We then used the residuals from this

regression as a predictor (TempResid), these indicating

for any site the deviation from the average tempera-

ture expected at its depth. Positive values indicate

waters of subtropical origin and occur at depths down

to approximately 700 to 800 m to the west and north of

New Zealand, but in the east occur only as far south as

the northern flanks of the Chatham Rise (see Fig. 1).

Negative values indicate cool waters of subantarctic

origin and are widespread east of the southern South

Island and on the southern flanks of the Chatham Rise,

also to depths of around 800 m. Similarly, we fitted a

regression relating salinity to both depth (Fig. 2b) and

temperature, and we used the residuals from this (Sal-

Resid ) to describe variation in salinity, given the depth

and temperature at any site. Negative values indicate

lower salinity than expected given the depth and tem-

perature and occur mostly at inshore sites around the

western and southern South Island and the south-

eastern North Island, while positive values occur both

in shallow waters around the Chatham and sub-

antarctic islands, and in deep southern waters around

the margins of the Campbell Plateau. 

Because the distributions of many fish species are

likely to be influenced by overall ecosystem productiv-

ity (e.g. Bakun 1996), we overlaid the locations of trawl

sites onto satellite-image-derived layers describing

concentrations of chlorophyll (chl) a and sea-surface-

temperature gradients. Estimates of chl a concentra-

tion (Chla), which gives a broad indication of primary

productivity, were derived from remotely sensed data

from 6 visible wavebands, collected between Septem-

ber 1997 and July 2001 by the Sea-Viewing Wide-

Field-of-view Sensor (SeaWiFS) (Murphy et al. 2001).

Values in oceanic waters typically range between 0.1

and 0.8 ppm, while those in many coastal waters are

inflated by the confounding effects of suspended

sediments, mainly of terrestrial origin. The data layer
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Variable Derivation Mean (range)

AvgDepth Average depth as 537 m 
recorded during trawling (5–1700)

TempResid Residuals from a GLM 0.0°C 
relating temperature to (–5.3–3.9)
depth using natural splines

SalResid Residuals from a GLM 0.0 psu 
relating salinity to depth (–0.28–0.28)
and temperature using 
natural splines

Chla Satellite-image based estimate  0.579 ppm 
of chl a concentrations (0–4.87)

SstGrad Spatial gradient of mean 0.11ºC km–1

annual sea-surface temperature (0–0.52)

TidalCurr Maximum, depth-averaged 0.19 m s–1

tidal current velocity (0–1.6)

OrbVel Mean orbital velocity, 3.59 m s–1

derived from a wave (1–38.9)
climatology – log10- (after trans-
transformed after formation)
adding a value of 1

Slope Seabed slope derived 0.96°
from bathymetric layer (0–13.3)

Speed Average trawl speed 3.2 knots 
(0.2–5.7)

Dist Trawl distance 2.43 n miles 
(0.1–26.4)

CodEndSize Mesh size of the 75.0 mm 
trawl codend (38–140)

Table 1. Predictors used in the analyses. GLM: Generalised

Linear Model. n miles: nautical miles
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describing variation in sea-surface-temperature gradi-

ents (SstGrad) indicates locations in which frontal

mixing of different water bodies is occurring. It was

derived from estimates of the mean annual sea-surface

temperature as measured from imagery with a spatial

resolution of approximately 9 km, averaged over the

period from 1993 to 1997 (Uddstrom & Oien 1999).

These values were smoothed, and the magnitude of

the spatial gradient for each grid cell was calculated by

centred differencing. 

Two variables were included to assess the effects of

variation in more local scale mixing, predominantly in

coastal waters. The first of these (TidalCurr) describes

maximum depth-averaged flows from tidal currents

and was calculated from a tidal model for New

Zealand waters (Walters et al. 2001). The second (Orb-

Vel) estimates the average mixing at the sea floor as a

consequence of orbital wave action, and it was cal-

culated from a wave climatology derived from a 20 yr

hindcast (1979 to 1998) of swell-wave conditions in the

New Zealand region (Gorman et al. 2003). Bed orbital

velocities were assumed to be zero where the depth is

greater than 200 m. Finally, the sea-floor slope (Slope)

was calculated from a 1 km bathymetry layer using

standard GIS routines, and it was included to allow

testing of the suggestion by McClatchie et al. (1997)

that there is a positive association between slope and

fish diversity. Three variables were used to describe

the trawl characteristics. These were the average trawl

speed (Speed), the distance towed (Dist), and the cod-

end mesh size (CodendSize). 

Model fitting and evaluation. All GAM models were

fitted in S-Plus (v6.1, Insightful) assuming a Poisson

error distribution. All predictors were fitted using

smooth terms with 4 degrees of freedom, and each pre-

dictor was tested for possible simplification of the fitted

function or exclusion from the model. When an initial

model was fitted, the functions for Dist and Codend-

Size were both clearly inconsistent with our knowl-

edge of the behaviour of trawl gear, i.e. maximum spe-

cies richness was predicted to occur at intermediate

values for both variables. By contrast, we expect a

monotonic decrease in richness with progression to

coarse mesh sizes, as these allow smaller species

greater chance of escape, and a monotonic increase in

richness with increasing trawl distance, gradually

reaching a plateau at longer distances. Closer inspec-

tion of the raw data indicated that analysis outcomes

for these 2 predictors were being confounded by the

patchy spatial and environmental distribution of some

mesh sizes and distances. In particular, almost all

trawls using very fine mesh sizes were in shallow

northern waters, where species richness is generally

lower than at comparable depths further south; almost

no trawls were taken in these waters with coarse mesh

sizes. Similarly, the majority of longer trawls were

undertaken in deep environments, where both the

total catch and species richness is generally low. We

therefore refitted the model, specifying the terms for

these variables so that the function fitted for distance

was constrained to allow only a monotonic increase,

and that for cod-end mesh size was constrained to a

monotonic decrease. A second model was then fitted in

which interaction terms were added using a forwards-

step-wise procedure, with candidate terms consisting

of those pair-wise interactions that were frequently fit-

ted in a BRT model allowing for first-order interactions

(see below). 

All BRT models were fitted in R (v2.0.1, www.R-

project.org; R Development Core Team 2004) using the

‘gbm’ library (Ridgeway 2004). Fitting a BRT model

requires specification of 2 main parameters. The learn-

ing rate controls the rate at which model complexity

is increased, with smaller values resulting in the fitting

of a larger number of trees, each of lower individual

influence and generally giving superior predictive

performance in the ensemble model (Friedman 2001).

The size (number of splits) of the individual trees is

controlled by a parameter termed the interaction depth

in the ‘gbm’ library. A value for this parameter of 1

indicates that each tree consists of a single node or

decision rule (a decision ‘stump’), a depth of 2 indicates

that 2 nodes are used in each tree, allowing for 2-way

interactions, and so on. As use of trees with 2 or more

nodes only results in the fitting of interaction effects if

required by the data, we view use of the term ‘inter-

action depth’ as potentially misleading, as even large

trees are capable of fitting simple additive effects. We

therefore prefer to describe this parameter as setting

the ‘tree size’ of the model. Other settings were left at

the defaults recommended in ‘gbm’.

Three BRT models were fitted using a learning rate

of 0.05 and with tree sizes of 1, 2 and 5 respectively. In

each of these models, the fitted function for Dist was

constrained to allow only a monotonic increase, and

that for CodendSize was constrained to a monotonic
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decrease, as for the GAM model. Ten-fold cross-vali-

dation was used to identify the optimal number of trees

to use for each model and to subsequently assess the

predictive performance of both GAM and BRT models

(Hastie et al. 2001). The importance of predictor

variables in BRT models was evaluated using a script

in ‘gbm’ that calculates the contribution to model fit

attributable to each predictor, averaged across all trees

(Friedman 2001, Friedman & Meulman 2003). Purpose-

written scripts were used to graph the fitted functions

from both the GAM and non-interaction BRT models,

with bootstrap re-sampling used to calculate con-

fidence intervals around these fitted functions. We

also wrote scripts to identify important interactions

between predictors in those BRT models fitted with a

depth of 2 and 5, and to calculate and graph values

predicted in relation to major variables, while other

variables were either held constant or varied in steps. 

Predictions in geographic space were made in R

using a set of spatial data describing the environmen-

tal attributes of cells on a 4 km grid across the waters

surrounding New Zealand. Cells with depths greater

than 1600 m were excluded, as were those with

latitudes greater than 54°S, for which satellite-image-

based data were not available. Predictions were

formed using a script available in ‘gbm’, with values

for predictors describing trawl characteristics set at

their respective means in the trawl database. To obtain

an estimate of the error associated with these predic-

tions, we took repeated bootstrap samples, to which

we fitted a BRT model and used this to make a separate

prediction for the spatial data. Once these had been

accumulated we identified the 5- and 95-percentile

values for each grid cell as an estimate of the confi-

dence intervals around our predictions. A detailed

description of all methods used in the fitting and

evaluation of BRT models is provided in Appendix 1.

RESULTS

Non-interaction models of species richness

Species richness averaged 12.7 across all trawls, and

it ranged from a minimum of 0 to maximum of 38. All

variables were retained as significant terms in the

GAM model relating species richness to environment

and trawl characteristics, and the non-interaction BRT

model also made use of all variables. Contributions of

predictors to model fit in the non-interaction BRT

model were greatest for trawl distance and depth,

followed by chl a concentration, temperature, and sea-

surface-temperature gradient (Table 2). Comparable

statistics were not available for the GAM model.

Comparison of the respective performance statistics for

these models indicated that the BRT model had

greater predictive power, explaining 6% more de-

viance than the GAM model when making predictions

for independent sites (Table 3a). 

Relationships fitted by the non-interaction GAM and

BRT models, both of which can be displayed as uni-

variate functions, were broadly similar (Figs. 3 & 4).

They indicated that greatest variation in species rich-

ness occurred with change in depth, trawl distance,

trawl speed and salinity. More muted variation oc-

curred in relation to temperature, salinity and chl a.
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Variable Tree size Average

1 2 5

Dist 32.6 24.8 24.6 27.3

AvgDepth 29.6 24.4 21.5 25.2

Chla 8.7 10.1 11.1 10.0

TempResid 5.0 10.4 12.6 9.3

SstGrad 7.8 6.9 5.7 6.8

CodendSize 5.9 6.2 6.3 6.1

Speed 3.7 5.8 6.2 5.2

SalResid 3.7 5.5 4.9 4.7

TidalCurr 1.4 2.2 2.8 2.1

Slope 0.7 2.3 2.6 1.9

OrbVel 0.9 1.3 1.7 1.3

Table 2. Contributions of predictor variables to boosted

regression tree (BRT) models relating demersal fish species

richness to environment and trawl characteristics, using

varying tree sizes. Variables are sorted in order of decreasing 

contribution, averaged across the 3 models

Method Comp- No. of Model Cross- D2

lexity trees residual validated  
deviance residual

deviance (SE)

(a) GAM 1 – 1.630 1.637 (0.074) 0.45

BRT 1 1312 1.524 1.558 (0.021) 0.48

(b) GAM 2 – 1.420 1.456 (0.063) 0.51

BRT 2 3476 1.142 1.281 (0.014) 0.57

(c) BRT 5 1252 1.000 1.195 (0.021) 0.60

Table 3. Predictive performance of GAM (generalised addi-

tive model) and BRT models relating demersal fish species

richness to environment and trawl characteristics. Table val-

ues indicate, for each model method: degree of complexity

(1 = no interaction, 2 = 10 pair-wise interactions for GAM

model, and a tree size of 2 for BRT model, and 5 = tree size

of 5 for BRT models only); the number of trees fitted (boosted

models); the mean residual deviance of the model; the mean

residual deviance and its SE, calculated using 10-fold cross-

validation repeated 5 times (Appendix 1); and the cross-

validated proportion of the total deviance explained (D2).

The mean deviance for a null model is 2.971
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Predicted species richness had an approximately bell-

shaped relationship with depth, with high values

occurring over a wide range of intermediate depths

(ca. 400 to 1100 m) that are of average temperature and

less saline than expected, given their depth. High

species richness was predicted for waters with chl a

concentrations of around 0.8, a value typical of oceanic

sites of high primary productivity, e.g. along the

Chatham Rise. A second peak of richness at sites with

chl a concentrations of 4 to 5 should be regarded with

caution, given the problems with suspended sediments

described earlier, a feature that is reflected in the wide

confidence limits. Higher richness was predicted for

waters with moderate spatial gradients in sea-surface

temperature, i.e. where mixing of different water

masses is occurring, mostly along the STF.

Species richness was predicted to show a

slight decline as tidal currents and orbital

velocities increase. While both models

showed similar predictions of declining

species richness with increasing trawl

speed, they differed subtly in the nature

of the constrained functions fitted for Dist

and CodendSize. 

Interaction models of species richness

Addition of simple interaction terms

improved both the deviance explained

and the predictive performance of the

GAM and BRT models by 13 and 19%,

respectively, compared to the non-inter-

action models (Table 3b), indicating the

importance of interactions between pre-

dictor variables in explaining variation in

species richness in this dataset. While

only second-order interactions could be

added to the GAM model, expansion of

the BRT model to allow a tree size of 5

brought about a further increase in per-

formance compared with the boosted

model using a tree size of 2 (Table 3c).

Given this superior performance, we

focus on results from the BRT interaction

model with a tree size of 5 for the remain-

der of this paper.

With progression to a tree size of 5, the

contributions of predictor variables al-

tered subtly (Table 2), with trawl distance

and depth declining in importance and

the contributions of several other variables

increasing, particularly those for chl a and

temperature. These latter changes pre-

sumably reflected the more frequent in-

clusion of these variables in the more complex individ-

ual regression trees fitted by this interaction model.

The strongest interaction effects involved the predic-

tors AvgDepth and TempResid, AvgDepth and Chla,

AvgDepth and SstGrad, and AvgDepth and Codend-

Size. Although relationships between species richness,

environment and trawl characteristics predicted by the

depth 5 BRT model were broadly similar to those pre-

dicted from the non-interaction models (e.g. Fig. 4),

they showed greater subtlety, which reflected the

inclusion of interaction effects. In general, richness

was predicted to increase with depth from about 15

species at 100 m to a maximum of about 22 at depths of

around 1000 m but declined steeply thereafter (Fig. 5).

However, the fitting of interaction effects resulted in
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the relationship between species richness and depth

varying with temperature – for deep trawls, richness

predicted for cold waters was approximately 20%

lower than for trawls from waters with average or

warm temperatures, but in shallow waters this trend

reverses, with richness predicted to be up to 50%

higher in cool (southern) waters than in warm

(northern) waters (Fig. 5a). Similarly, species richness

was predicted to be higher in waters of lower-than-

expected salinity (Fig. 5b), where it also showed a

more pronounced peak of maximum richness at depths

of around 800 m. Predicted species richness also

increased with increasing chl a concentrations (Fig. 5c),

although interaction effects resulted in this response

being muted in shallow waters. Finally, richness was

predicted to be higher in areas of mixing of different

water bodies, as indicated by high values for SstGrad

(Fig. 5d), but again this was pronounced

only in depths greater than 400 m. 

The constrained function fitted for trawl

distance by this model indicated a gradual

increase in richness up to a distance of

about 3 km, after which it effectively

reached a plateau (Fig. 6a). Similarly, rich-

ness was predicted to remain relatively

constant across a range of finer mesh

sizes, but was predicted to be lower with

mesh sizes of 100 mm of more (Fig. 6b).

Highest species richness was associated

with intermediate trawl speeds (Fig. 6c),

and the decline in richness with increasing

speed is greater in deeper than in shallow

water. 

Spatial predictions of species richness

Spatial predictions derived from the BRT

model with a tree size of 5 and using envi-

ronment and trawl characteristics as pre-

dictors, are shown in Fig. 7a, along with an

estimate of uncertainty (the width of the

5 to 95% confidence intervals estimated us-

ing bootstrap re-sampling, Fig. 7b). While

the predicted species richness ranged from

3.9 to 33 species per  trawl, estimated con-

fidence interval widths were 3 or less over

approximately 80% of the area for which

predictions are made, but reached moder-

ate levels of uncertainty (3 to 5) both in

shallow waters around the South Island

and southern North Island coast, and to-

wards the shelf slope in the north. Wide

confidence intervals occurred mostly in

offshore regions that are inadequately

sampled (cf. Figs. 1 & 7b), e.g. steep slopes around the

margins of the Campbell and Bounty plateaus, on the

Challenger Plateau, off the northeast North Island, and

along the Kermadec and Norfolk ridges. 

In geographic terms, highest species richness was

predicted to occur along the northern flanks of the

Chatham Rise and around the northern end of the

Solander Trough (Fig. 7a). These are locations that

combine depths of 800 to 1000 m with high primary

productivity associated with the mixing of subtropical

and subantarctic waters along the subtropical front.

High richness was also predicted for Tasman Bay, and

a narrow strip of water around the continental slope off

the coast of Westland, Otago, and from Kaikoura north

along the east coast of New Zealand to the Bay of

Plenty. Moderately high species richness was pre-

dicted for large areas with depths between 500 m and
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1000 m on the Chatham Rise and Challenger Plateau,

but richness was predicted to decrease with progres-

sion to greater depths, averaging a little over 6 species

per trawl at depths of 1500 m across a wide geographic

range. However, in the shallow waters of the continen-

tal shelf there was a little more variation, with lower

richness predicted for waters north of about 38° S than

for the continental-shelf waters around the east and

south of the South Island. Richness predicted for the

shallow waters around the subantarctic islands was

low, while the shallow waters around the Chatham

Islands were predicted to have similar richness to those

around central New Zealand. 

DISCUSSION

Links between species richness and environment

Our results indicate that there is a high level of pre-

dictability in the relationship between demersal fish

species richness and environment , with depth, factors

related to productivity, and temperature (both as tem-

perature anomalies and as SST gradient) identified as

the most important predictors. Depth is the strongest

predictor of species richness, with predicted richness

peaking at mid depths (800 to 1000 m) before tailing off

in abyssal waters, a pattern that is consistent both with

results from several site-specific studies elsewhere (e.g.

Colloca et al. 2003) and with the more general descrip-

tion of Levington (1995). However, at any given depth

there is a strong positive association between species

richness and primary productivity, with maximum

richness concentrated in the zone of high productivity

associated with the mixing of waters of subtropical and

subantarctic origins along the STF. Surface concentra-

tions of chl a had the second highest environmental

contribution to overall model outcomes (ignoring trawl

characteristics). These are closely linked to primary

productivity, and there are also strong functional links

between surface primary productivity and biological

activity at the sea floor through the episodic deposition

of particulate material. This is demonstrated in studies

both in the waters surrounding New Zealand, including

the Chatham Rise (e.g. Nodder et al. 2003), and in other

global locations (e.g. Honjo et al. 1995, Beet et al. 2001).

In addition, declines in the amount of particulate matter

reaching the sea floor in abyssal regions have been

suggested as a likely explanation of the declines in

species richness there (Gray 2002). 

Regional-scale variation in salinity played a more

muted role, as indicated by the smaller contributions of

the residuals that describe departures from the overall

average relationship with depth. Depth-independent

variation in temperature and salinity mostly occurs in

waters of shallow-to-moderate depth away from the

STF, and these variables provide broad discrimination

between waters of subtropical and subantarctic ori-

gins. Results indicate that richness is generally lower

in warmer and/or more-saline waters than in cooler

less-saline waters, provided that the latter occur in

reasonable proximity to zones of water mixing. Similar

differences in regional-scale richness were described

for meso-pelagic organisms in the waters north and

south of the STF by Robertson et al. (1978). 

A positive association is also indicated between

species richness and zones of mixing of water bodies of

contrasting origins, with the variable describing sea-

surface-temperature gradients making the fourth-high-

est contribution to model outcomes. In functional terms

we interpret this as reflecting the important role these

zones play in the concentration of nutrients, productiv-

ity and food resources (e.g. Bakun 1996). However, cur-

rents also play a role in the horizontal displacement of

organic particles during their vertical descent from the

surface to the sea floor, which may result in the deposi-

tion of food resources at locations away from sites of

high surface primary production (Nodder et al. 2003). 

Relationships between slope and species richness

suggested by McClatchie et al. (1997) are not sup-

ported by the results from our analysis. In fact, variables

describing slope, tidal currents and wave-induced

seabed stress had a low contribution overall, and our

models consistently predicted a decline in species rich-

ness at sites with steeper slopes. However, this latter re-

sult should be regarded with caution, as few samples

were available from areas with higher slopes, and vari-

ation in substrate has been shown to be an important

correlate of varying fish diversity in other studies (e.g.

Kendall et al. 2004). In addition, slope probably has

only limited ability to act as a surrogate for habitat vari-

ation, and while it is easily calculated, inclusion of a

variable explicitly describing variation in seabed con-

ditions would have been preferable had reliable data

been available across the entire study region.

Spatial variation in species richness

Our analyses revealed large-scale spatial variation

in demersal fish species richness in the New Zealand

region (Fig. 7). To the extent that comparisons are pos-

sible, the patterns we observed were consistent with

those from previous, smaller-scale studies in the same

region. This is perhaps not surprising given that the

earlier studies used some of the same research trawl

data that we used. McClatchie et al. (1997) analysed

shelf and slope richness from 80 to 898 m depth and

43 to 54° S (Chatham Rise to Campbell Plateau). They

found that species-richness ‘hotspots’ were concen-
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trated on the Chatham Rise (particularly the north

Chatham Rise) and ‘coldspots’ were concentrated on

the Campbell Plateau. They also noted that richness

increased with depth to reach a maximum at 500 to

1000 m. In a further study focusing solely on the

Chatham Rise, Bull et al. (2001) observed that mean

species richness peaked at 550 to 800 m on the north

Chatham Rise, and was lower on the south Chatham

Rise, and in depths between 200 and 550 m. Beentjes

et al. (2002) reported conflicting depth-related trends

in species richness between summer surveys (richness

increased with depth) and winter surveys (richness de-

creased with depth) of Canterbury Bight, but as their

study covered limited latitudinal and depth ranges (43

to 46° S and 10 to 400 m respectively), the observed

patterns may reflect small-scale seasonal migrations. 

In a larger-scale study covering latitudes 35 to 47° S,

Tracey et al. (2004) compared species richness be-

tween seamounts and adjacent areas of lower-relief

seabed. Seamounts showed increasing fish species

richness with increasing latitude, with the 3 highest

mean richness values being recorded for Chatham Rise

seamounts (2 sites) and Puysegur Bank (near Solander

Trough, see Fig. 1); both these areas were identified in

our study as having high species richness. Tracey et al.

(2004) also reported that richness was higher at the

adjacent sites than on the seamounts themselves, but

their analysis was confounded by other uncontrolled

variables, including depth and distance towed. 

Our results therefore agree well with those previ-

ously reported, but we extend the analysis of fish

species richness in the New Zealand region to span 25

degrees of latitude (29 to 54° S) with a high degree of

spatial resolution, taking into account a wide range of

environmental and operational variables. Neverthe-

less, our predictions of richness in some areas having

few or no trawl stations (notably the submarine ridges

north of 34° S and steep slopes around the margins

of the Campbell and Bounty plateaus) have wide

confidence intervals and require validation.

Use of environmental versus geographic predictors

Our focus on use of environmental predictors for this

study contrasts with practices adopted in a number of

other recent studies of demersal fish distribution, in

which geographic variables such as latitude and longi-

tude are used as predictors, often in combination with

environment. This was prompted by the understand-

ing of the relative utility of environmental and geo-

graphic predictors developed in terrestrial plant eco-

logy (e.g. Austin 2002), which demonstrates that the

contribution of geographic predictors, such as latitude

and elevation, is largely derived from their correlations

with more proximate physical drivers of biological

phenomena. However, we suggest that the utility of

latitude as a geographic proxy in marine studies is

likely to be low because of its generally lower levels of

correlation with environmental variation. While latitu-

dinal gradients in environment, and particularly irradi-

ance, clearly play a significant role at the ocean sur-

face, correlations between latitude and environment

generally decrease with progression to greater depths.

Here, spatial variation in environmental conditions is

frequently complicated by oceanographic processes

such as the long-distance movement of water bodies of

contrasting temperature and salinity, and the collision

of these water bodies produces marked environmental

discontinuities (e.g. Bradford-Grieve et al. in press).

As a consequence, latitudinal sorting becomes in-

creasingly blurred with progression to greater depths

because of the increasing degree of disconnection

with surface environmental conditions, and in abyssal

waters environmentally homogeneous conditions fre-

quently prevail across wide latitudinal ranges. 

We argue therefore that analytical approaches based

on functionally relevant environmental factors are

crucial in developing a better understanding of geo-

graphic variation in species richness, particularly in

the Southern Hemisphere, where oceanic circulation is

less impeded by extensive landmasses and marked

environmental discontinuities are common. However,

we also acknowledge that evolutionary influences on

variation in species richness are more likely to operate

primarily in geographic rather than in environmental

space, and these may be important, particularly in

analyses conducted over wider geographic ranges

than that for this analysis. The detection of such effects

is likely to require the development of analyses that

allow for a careful partitioning of the relative roles of

both environment and geography. 

Variation with trawl characteristics

Various approaches have been adopted in other stud-

ies to accommodate the effects of differences in the

fishing characteristics between vessels, including seg-

regation of data by vessel (e.g. McClatchie et al. 1997),

use of fishing power coefficients and/or categorical de-

scriptors of gear type (e.g. Muetter & Norcross 2002),

and use of generalised linear mixed models (GLMM)

to adjust for the effects of between-vessel differences

(e.g. Cooper et al. 2004). Our approach was relatively

simplistic compared to these latter two, and ideally we

would have calculated the area swept for each trawl,

but this was not feasible given the amount of missing

data for key trawl parameters. Even though this was not

possible, our use of predictors describing trawl dis-
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tance, cod-end mesh size and trawl speed contributed

substantially to the analysis outcome, with the first of

these variables explaining nearly 25% of the variation

in the most successful model of species richness.

Our initial analyses, which gave results for cod-end

mesh size and trawl distance that were clearly incon-

sistent with the behaviour of trawl sampling, highlight

the care required in analysing large datasets assem-

bled from disparate sources. Inspection of the geo-

graphic distribution of trawls using various mesh sizes

and distances indicated that these discrepancies are

much more likely to have resulted from the very

uneven distribution of variation in these predictors

with respect to both environment and geography.

While regularizing the models to allow only the fitting

of monotonic functions reduced the total amount of

deviance explained (data not presented), we argue

that it allowed a more accurate description of the rela-

tionship between richness and environment.

Including a variable describing the year in which

trawling occurred would have also been desirable,

particularly given the potential to use such an analysis

to assess both the long-term impacts of sustained

harvesting and the impacts of environmental variation

associated with factors such as the El Niño–Southern

Oscillation, which has a substantial effect on some

aspects of the oceans around New Zealand (e.g.

Livingston 2000). However, this was frustrated by 2

factors. First, there is marked variation in the spatial

sampling by trawls in different years; systematic cover-

age is never achieved in any particular year, and

several regions have been intensively sampled in only

1 or a few years. Second, an exploratory model fitted

using year as a predictor indicated a slight but grad-

ual increase in richness with time, a result that we

attribute not only to the greater frequency of trawls in

deeper waters in later years, but also to an increase in

taxonomic knowledge of demersal fish and a greater

interest in non-commercial species. Such an effect was

also noted by Shackell & Frank (2003) in their analysis

using a trawl database in which sampling extended

over a lengthy period. While this result does not pre-

clude future use of trawl data to monitor changes in

fish species richness, it highlights the need for consis-

tency of data collection in any ongoing trawl surveys

likely to be used for long-term monitoring.

Analytical considerations

Results from our analysis provide a clear demonstra-

tion of the ability of BRT to outperform substantially

conventional regression models such as GAMs. The

progressive improvement in the relative performance

of BRT as the size of the individual trees is increased

indicates that several factors contribute to this

improvement. First, the performance gains in BRT

models fitted with a tree size of 1 (= no interaction

effects) suggests that this method has greater flexibil-

ity in describing data complexities than in a GAM. This

probably reflects the effectiveness of the strategy used

in boosting, i.e. fitting successive models that are pro-

gressively adapted to explain cases poorly predicted

by the preceding models, compared with the approach

used in a GAM of fitting a single most parsimonious

model. As a caution though, we note that the discrep-

ancies between these 2 models may also reflect the

greater ease with which a monotone function could

be specified in the BRT model, as standard GAM

and boosted models fitted without such restrictions

matched each other in predictive performance much

more closely. Second, the greater performance gains in

the BRT model fitted with a tree size of 2 compared

with the interaction GAM model suggest that boosting

offers flexibility in interaction fitting that is far more

practical than the fitting of interactions in a GAM. A

wide range of interactions were automatically identi-

fied and fitted, whereas the manual fitting of inter-

actions in the comparable GAM model was both

tedious and computationally constrained. Finally, the

BRT model using a tree size of 5 delivered further im-

provements in predictive performance, fitting a wide

array of interactions in a manner not achievable with a

GAM or similar model. Results from this model sug-

gested a continued rise in ecological interpretability,

particularly with respect to the relationship between

species richness and depth, which varied depending

on values taken by other variables. 

CONCLUSION

Our analysis indicates that, while there are strong

associations between species richness and depth, high

species richness is also associated with areas of high

primary productivity, as indicated both by surface chl a

concentrations and zones of mixing of water bodies of

contrasting origin associated with the Subtropical

Front. Use of results such as these as a baseline for

longer-term monitoring of the status of New Zealand’s

oceanic resources is feasible, but it would probably

require consideration of the effects of inter-annual

variation in environment, as well as long-term means.

Boosted regression trees appear to offer considerable

performance gains over conventional regression tech-

niques, and a large part of this gain is attributable to

their capability for fitting interactions among predictor

variables. However, because of their tendency to over-

fit, care should be exercised both in fitting such models

and in reporting on their success. 
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Appendix 1. Robust fitting and evaluation of BRT models

This appendix describes methods developed to allow the ro-

bust fitting of BRT models, reflecting both the challenges posed

by their propensity to over-fit and the potential gains they offer

given their automatic fitting of interactions between predictor

variables. Several of these techniques reflect our belief that

evaluation of model performance using the data used to fit the

model is misleading. Even though many models can be made to

perform well on their training data, the danger is that they over-

fit to specific features of that data that lack applicability in a

wider sample, degrading model performance when predicting

to new sites. We prefer to assess model performance using in-

dependent sites, and this can be achieved using a number of

strategies. Partitioning the data into separate modelling and

evaluation subsets is one alternative, although it involves a loss

of information, particularly with smaller datasets. While we

used this for initial testing, for most of our model fitting and

evaluation we used k-fold cross-validation (e.g. Hastie et al.

2001) or bootstrap re-sampling (e.g. Efron & Tibshirani 1993).

These alternative approaches allow the use of all available in-

formation, while using subsets of the data to estimate model

performance when predicting to independent sites.

Choice of learning rate

To establish a suitable value for the learning rate used in

fitting BRT models, we carried out an initial evaluation of the

relationship between learning rate and model predictive per-

formance with a script that used standard options in the ‘gbm’

library functions. We achieved this by fitting a series of models

to randomly selected subsets of 70% of the available data, with

trees successively added until no further improvement in pre-

diction could be detected when predicting to the 30% of the

data that were withheld. Models were fitted with learning rates

of 0.5, 0.1, 0.05, 0.01 and 0.005, with the number of trees fitted

increasing steadily as the learning rate was decreased. Results

indicated a progressive improvement in prediction perfor-

mance as the learning rate decreased from 0.5 to 0.05, with the

latter value typically resulting in 800 to 1000 trees being fitted.

Use of learning rates smaller than 0.05 not only brought about

minimal improvement in predictive performance, but also

increased substantially the computational requirements.

Setting model complexity

Because of the risks of over-fitting when using BRT, we

explored a number of options for identifying the optimal

number of trees to include in a model, including options

provided as part of the ‘gbm’ library. The method we identi-

fied as the most consistent and computationally efficient was

based on a k-fold cross-validation procedure described by

Hastie et al. (2001, Chap. 7), which we implemented using

a purpose written script.

In this procedure, the data available for model fitting were

first divided into 10 mutually exclusive subsets, selected

using a randomisation procedure. Ten models were then fit-

ted simultaneously, each using a different subset of the total
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data (= training data) containing 90% of the total data set,

and formed by omitting 1 of the 10 subsets. A step-wise pro-

cedure was then used to gradually increase the complexity

of all 10 models, typically by adding groups of 100 trees. At

each step, predictions were formed from each model for the

10% subset of data omitted from its training data (= evalua-

tion data), and the residual deviance was calculated to com-

pare the goodness of fit between the model predictions and

the species richness as recorded in the evaluation data. 

Results typically indicated an initial decline in prediction

error (residual deviance) as more trees were added, but with

most models a point was eventually reached where, even

though the training error continued to decline, the prediction

error would begin to rise as the model became excessively

adapted to the training data, i.e. over-fitting occurred. At this

point the mean prediction errors and their standard errors (es-

timated from the 10 subsets) were plotted as a function of the

number of trees fitted (Fig. A1), and this graph was used to de-

termine the lowest number of trees giving a prediction error

equal to or less than 1 SE above the best model (see Hastie et al.

2001). This number of trees was then used in a model fitted to

the entire dataset with the required learning rate and tree size. 

Assessing model performance

The performance of both GAM and BRT models was evalu-

ated using k-fold cross-validation to estimate their predictive

ability with new data. Using a procedure similar to that used to

estimate the optimal tree size for the BRT models, we wrote a

script in which the input data were divided into 10 mutually

exclusive subsets that were omitted in turn. At each iteration,

a model was fitted to the retained data, predictions were made

for the omitted data, and the residual deviance was calculated

as a measure of the correspondence between measured and

predicted richness. The mean and standard error were then

calculated for each of these 10 estimates of predictive perfor-

mance. Because results from k-fold cross-validation can vary

depending on the random selection of points for the folds, this

procedure was repeated 5 times for each model, and overall

means were calculated for the mean prediction error and its

standard error.

Display of fitted functions

Relationships between species richness and environment

fitted by the both the GAM and BRT models were displayed

by plotting the fitted relationship for each individual predic-

tor. Values for plotting were calculated by setting values for

all but 1 predictor to their mean. Predictions were then

formed for points along the range of the remaining variable

using a purpose written script. As a BRT model provides no

estimate of the confidence intervals around these fitted

functions, we estimated these by taking 1000 bootstrap sam-

ples of the input data, i.e. a sample of equivalent size to the

trawl dataset, but selected randomly with replacement A

GAM or BRT model was fitted to each sample, and predic-

tions were formed for each predictor and accumulated. Five

and 95 percentile values were calculated for points along the

range of each function from the accumulated values. The

complexity of interactions fitted by the BRT models with tree

size greater than 1 made display of their fitted relationships

more challenging, as these can vary depending on the val-

ues assigned to other predictors. We therefore wrote our

own scripts in R to calculate and graph values predicted in

relation to major variables, while other variables were either

held constant or varied in steps.

Detection and interpretation of interactions

For BRT models with tree size greater than 1, we assessed

the magnitude of interaction effects using a purpose-written

script that examined the relationship between the model

predictions and all possible pair-wise combinations of

predictors. This was achieved by selecting each possible

pair-wise combination of predictors in turn. For each pair of

predictors, 2 variables (x1, x2) were created that consisted of

values at constant intervals along the ranges of the 2 pre-

dictors, and predictions on the linear predictor scale (y ’)

were calculated from the BRT model for all possible combi-

nations of these. In making these predictions, values for the

remaining predictors were set at their mean for the dataset.

We then used a linear model to relate these predicted values

to the values of the 2 marginal variables, i.e. y ’ ~ x1 + x2, with

the 2 predictor variables fitted as factors. Where the pre-

dicted values are formed by a purely additive combination

of the 2 predictors, this regression object will have zero

residual variance. However, as stronger interaction effects

for the 2 predictors are fitted in the BRT model, so the

variance in y ’ left unexplained by the test linear model

increases. Thus the amount of residual variance in the test

linear model can be used as a direct indication of the

strength of the interaction effect fitted by the BRT model for

that pair of predictors.
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Fig. A1. Relationship between model complexity and pre-

dictive error for a boosted regression tree model relating

species richness to environment and trawl characteristics

calculated using a 10-fold cross-validation procedure. Cir-

cles indicate the mean predictive error averaged across

10 iterations for each level of model complexity, with

standard errors indicated by vertical lines. Dashed hori-

zontal line indicates the minimum mean predictive error

plus 1 SE, and the vertical dashed line indicates the model

complexity with predictive error equal to the minimum

predictive error plus 1 SE
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