Variation in KLK Genes, Prostate Specific Antigen, and Risk of Prostate Cancer

Jiyoung Ahn ${ }^{1}$, Sonja I. Berndt ${ }^{1}$, Sholom Wacholder ${ }^{1}$, Peter Kraft ${ }^{2}$, Adam S. Kibel ${ }^{3}$, Meredith Yeager ${ }^{1}$, Demetrius Albanes ${ }^{1}$, Edward Giovannucci ${ }^{4}$, Meir J. Stampfer ${ }^{4}$, Jarmo Virtamo ${ }^{5}$, Michael J. Thun ${ }^{6}$, Heather Spencer Feigelson ${ }^{6}$, Geraldine Cancel-Tassin ${ }^{7}$, Olivier Cussenot ${ }^{7}$, Gilles Thomas ${ }^{1}$, David J. Hunter ${ }^{1,2}$, Joseph F. Fraumeni Jr ${ }^{1}$, Robert Hoover ${ }^{1}$, Stephen J. Chanock ${ }^{1}$, and Richard B. Hayes ${ }^{1}$
${ }^{1}$ Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA ${ }^{2}$ Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA ${ }^{3}$ Division of Urologic Surgery, Washington University School of Medicine, St. Louis, MO ${ }^{4}$ Department of Nutrition, Harvard School of Public Health, Boston, MA, USA ${ }^{5}$ Department of Health Promotion and Chronic Disease Prevention, National Public Health Institute, Helsinki FIN-0030, Finland ${ }^{6}$ Department of Epidemiology and Surveillance Research, American Cancer Society, Atlanta, Georgia 30329, USA ${ }^{7}$ CeRePP Hopital Tenon, Assistance Publique-Hôpitaux de Paris, Paris 75020, France

Genome-wide association studies have identified SNPs associated with prostate cancer. Recently, SNPs in KLK3 were related to prostate cancer risk in a genome-wide association study (GWAS; 1,854 cases) ${ }^{1}$ and two candidate gene investigations (596 and 209 cases, respectively) ${ }^{2,3}$, raising the possibility that this gene and its encoded protein PSA (prostate specific antigen; kallikrein-related peptidase), which is widely-used as a biomarker for prostate cancer detection, are etiologically related to this disease.

Understanding the contribution of common genetic variation in $K L K 3$ to prostate cancer risk is daunting because SNPs in $K L K 3$ are determinants of serum PSA concentrations ${ }^{1,2,4}$, and thus, observed risk relationships could be due to differential identification of cases, in settings where PSA is used in screening or clinical diagnosis of this disease. Therefore, we evaluated the association of 24 tagSNPs in the $K L K$ region (including $K L K 3$ and nearby genes KLK1, KLK2, and KLK15, chromosome 19: 56022744-56073589) and prostate cancer risk in 1,172 prostate cancer cases and 1,157 PSA screened controls in men of European ancestry from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial ${ }^{5,6}$, in which serum PSA was used in screening for this disease. We also examined the prostate cancer risk relationship for 12 of these tagSNPs in the $K L K 3$ region (chromosome 19: 56031744-56063231) in four independent studies including 4,020 prostate cancer cases and 4,028 controls (American Cancer Society Cancer Prevention Study II, the Health Professionals Follow-up Study, the CeRePP French Prostate Case-Control Study, and the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study) ${ }^{6}$, as a component of the Cancer Genetic Markers of Susceptibility (CGEMS)-GWAS ${ }^{6}$ (http://cgems.cancer.gov; Supplementary Methods).

[^0]None of the $24 K L K$-region tagSNPs showed strong evidence for association with prostate cancer in PLCO (Table 1: Cases vs Controls in PLCO) and none of the 12 KLK3-region SNPs was significant in the CGEMS combined analyses (Table 1: Cases vs Controls in CGEMS combined). No substantial differences in risk were noted by disease aggressiveness (Supplement Table 1). Two tagSNPs (rs1058205 and rs2735839), located in the 3^{\prime} untranslated region of KLK3, in high linkage disequilibrium (LD; r2=0.8; Figure 1), along with four variants $8-23 \mathrm{~kb}$ upstream of the gene (rs2659056, rs2569729, rs266849, and rs266870) and several variants about 7 kb downstream (rs1506684 and rs2569739, in high LD, $\mathrm{r}^{2}=1.0$), were associated with strong differentials in serum PSA concentrations (e.g., rs2735839, p trend=4.1×10-9; Table 1, Adjusted Mean PSA Level, and Figure 1-Panel A). However, when these SNPs were simultaneously included in the multivariate model, associations remained for rs2735839, but others were no longer significantly associated with PSA concentrations.

Eeles et al ${ }^{1}$ reported strong associations between three KLK3 SNPs (p-values for stage 1 were $1.2 \times 10^{-7}, 1.0 \times 10^{-16}$ and 2.4×10^{-20} for rs2659056, rs266849, and rs2735839) and prostate cancer, in a GWAS, where controls were selected by design for low PSA ($<0.5 \mathrm{ng}$ / ml) and no limitations were placed on case-group PSA values. The replications in non-PSA selected groups showed attenuated associations (p-values for stage 2 were $0.424,0.228$ and 0.0002 , respectively). Pal $\mathrm{et} \mathrm{al}^{2}$ also reported a strong association of prostate cancer with $K L K 3$ variants, where control subjects were also preferentially selected by PSA levels (<2.5 $\mathrm{ng} / \mathrm{ml})$. When we preferentially limited the men in the control group in the PLCO Trial GWAS to those with PSA $<0.5 \mathrm{ng} / \mathrm{ml}$, as an exercise, we show prostate cancer risk associations (Figure 1-Panel B [^] and Supplement Table 2) greater than 5-fold for some genotypes (rs1058205, $\mathrm{OR}=0.19,95 \% \mathrm{CI}=0.10-0.36, \mathrm{p}=0.000015$), whereas the same SNPs showed no clear association when the full control group was employed (Figure 1-Panel B [O] and Table 1). Furthermore, modest $K L K 3$ associations with prostate cancer risk observed in our full case-control series and in other studies where controls are not selected by design for PSA level ${ }^{3}$ may still be related to PSA-based case ascertainment, because PSA is widely used as a clinical aid in selecting men for biopsy for suspect prostate cancer. In PLCO, $K L K$ SNPs were also not associated with prostate cancer when only cases and controls with high PSA levels or only cases and controls with low PSA levels were compared (Supplement Table 3). Thus, the observed associations between the $K L K$ SNPs and prostate cancer risk in earlier studies ${ }^{4,5,3}$ and in our exercise in PLCO may be due to selection for PSA differentials and not causally related to underlying disease risk.

PSA is a serine protease, functioning in the liquefaction of seminal coagulum ${ }^{7}$; consistent with our data, Pal et al ${ }^{2}$ showed serum PSA associations with rs266849 and rs1058205, and Cramer et al ${ }^{4}$ showed that two SNPs in the 5^{\prime} region of $K L K 3$ are related to increased $K L K 3$ promoter activity and serum PSA level. In our study, the association with PSA was strongest with rs2735839, which is highly correlated with $\operatorname{rs} 1058205\left(\mathrm{r}^{2}=0.8\right)$; associations observed with the other SNPs in our study appeared to be largely driven by their linkage disequilibrium with rs2735839. Sliding window haplotype analysis (Supplement Figure 1) and close inspection of the most strongly associated haplotype window (Supplementary Table 4) suggested that additional unmeasured risk variant(s) may influence PSA concentrations.

PSA is an early marker predictive for the presence of prostate cancer and its use has contributed to the near doubling of diagnosed cases over the past two decades in countries where use is common ${ }^{8}$. While trials are underway to determine whether screening with PSA reduces prostate cancer mortality ${ }^{5,9}$, it is apparent that many men are diagnosed with clinically indolent cancer on the basis of PSA screening; the over-detection rate is estimated to range from 18 to $56 \%^{9,10}$. In addition, the majority of men with an elevated PSA have a
negative biopsy ${ }^{11}$. In our study, $K L K 3$ variant status was related to PSA test-positivity in control men (Supplementary Table 5). While we show that $K L K 3$ SNPs are not risk factors highly correlated with prostate cancer per se, a combination of $K L K 3$ SNP and serum PSA monitoring, possibly including a broader spectrum of protein and DNA tests ${ }^{12}$, is a potential tool for advancement in prostate cancer early detection.

In conclusion, SNPs in the $K L K 3$ region were not associated strongly with prostate cancer in large series of cases and controls, where controls are not selected by design for low PSA and even the modest $K L K 3$-prostate cancer risk associations observed in non-selected populations may be due to PSA-directed differential identification of prostate cancer cases with particular $K L K 3-P S A$ profiles.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The Prostate Lung Colorectal Ovarian Cancer Screening Trial (PLCO) is supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics and by contracts from the Division of Cancer Prevention, National Cancer Institute, US National Institutes of Health (NIH), Department of Health and Human Services (DHHS). The Health Professionals Follow-up Study (HPFS) study is supported by NIH grants CA55075 and U01CA098233. The American Cancer Society (ACS) study is supported by U01 CA098710. The Alpha Tocopherol Beta-Carotene Cancer Prevention study (ATBC) Study is supported by the Intramural Research Program of the National Cancer Institute, NIH, and by US Public Health Service contracts N01-CN-45165, N01-RC-45035, and N01-RC-37004 from the National Cancer Institute, NIH, DHHS. A.S.K is supported by RO1CA112028. Centre de Recherche pour les Pathologies Prostatiques (CeRePP) is grateful to J.P.B. and Generali for their charitable donations to this project. The genome wide scans have been supported by the National Cancer Institute, National Institutes of Health, under contract N01-CO-12400. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

References

1. Eeles RA, et al. Nat Genet. 2008; 40:316-21. [PubMed: 18264097]
2. Pal P, et al. Hum Genet. 2007; 122:251-259. [PubMed: 17593395]
3. Lai J, et al. Carcinogenesis. 2007; 28:1032-1039. [PubMed: 17151093]
4. Cramer SD, et al. J Natl Cancer Inst. 2003; 95:1044-1053. [PubMed: 12865450]
5. Prorok PC, et al. Control Clin Trials. 2000; 21:273S-309S. [PubMed: 11189684]
6. Thomas G, et al. 2008; 40:310-5.
7. Borgono CA, et al. Mol Cancer Res. 2004; 2:257-280. [PubMed: 15192120]
8. Woolf SH. N Engl J Med. 1995; 333:1401-1405. [PubMed: 7477122]
9. Draisma G, et al. J Natl Cancer Inst. 2003; 95:868-878. [PubMed: 12813170]
10. Etzioni R, et al. J Natl Cancer Inst. 2002; 94:981-990. [PubMed: 12096083]
11. Presti JC Jr, et al. J Urol. 2003; 169:125-129. [PubMed: 12478119]
12. Nam RK, et al. J Clin Oncol. 2003; 21:2312-2319. [PubMed: 12805332]

Figure 1. Associations of tagSNPs in the $K L K$ region with PSA concentrations and prostate cancer risk in the PLCO Trial
A) P values for association of $K L K 3$ with serum PSA concentrations in the control group (2df test).
B) P values for association of $K L K 3$ with prostate cancer risk (2df test); the blue triangles represent p values for the association when we restricted the control group to men with low PSA ($<0.5 \mathrm{ng} / \mathrm{ml}$). The red circles represent p values for the association when we did not restrict the control group to men with low PSA.

						$\begin{aligned} & \widehat{o} \\ & \underset{\sim}{1} \\ & \stackrel{\rightharpoonup}{e} \\ & \stackrel{\sim}{c} \\ & \underset{i}{2} \end{aligned}$			$\begin{aligned} & \underset{A}{A} \\ & \underset{A}{A} \\ & \underset{\theta}{e} \\ & \stackrel{n}{i} \end{aligned}$							$\begin{array}{\|c} \substack{9 \\ 1 \\ 1 \\ n \\ e \\ e \\ n \\ 0 \\ 0} \\ \hline \end{array}$				z					库
																	$\left.\begin{gathered} \underset{F}{f} \\ \dot{H} \\ \underset{\sim}{\dot{e}} \\ \underset{O}{B} \end{gathered} \right\rvert\,$								
											$\left\|\begin{array}{c} \underset{i}{c} \\ \underset{1}{c} \\ \infty \\ \underset{\sim}{e} \\ \underset{-}{d} \end{array}\right\|$						$\begin{array}{\|c} \underset{n}{\hat{n}} \\ \frac{1}{\infty} \\ \stackrel{\infty}{\infty} \\ \stackrel{n}{i} \end{array}$				$\begin{array}{\|c} \underset{\sim}{\underset{1}{c}} \\ \underset{\sim}{\infty} \\ \underset{\sim}{e} \\ \underset{\sim}{c} \\ \hline \end{array}$				$\stackrel{\otimes}{n}$
	送気	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\infty}$	$\underset{O}{\mathrm{O}}$	$\begin{aligned} & \circ \\ & \hline 8.8 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	G	$\left\|\begin{array}{c} \infty \\ \infty \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{0} \\ \hline \end{gathered}\right.$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	$\begin{array}{\|c} \substack{0 \\ 0} \end{array}$	$\left\|\begin{array}{l} \grave{\circ} \\ \vdots \\ 0 \end{array}\right\|$	$\underset{O}{0}$	$\stackrel{\imath}{\circ}$	$\left\lvert\, \begin{aligned} & \text { ざ } \\ & \hline 0 \end{aligned}\right.$		$\stackrel{\substack{0 \\ 0 \\ \hline}}{ }$		$\overline{\mathrm{m}}$	$\stackrel{\cong}{0}$	$\left\|\begin{array}{c} \mathrm{O} \\ 0 \end{array}\right\|$	O	to	$\bar{\square}$	$\frac{9}{3}$
																				艺					
									$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{0} \\ 0 \end{array}\right\|$	$\begin{array}{\|c\|} \hat{m} \\ \hat{0} \end{array}$	$\left\|\begin{array}{c} \dot{\theta} \\ \dot{0} \end{array}\right\|$	$\stackrel{m}{0}$	$\stackrel{\stackrel{\rightharpoonup}{0}}{\substack{0}}$	$\stackrel{\curvearrowleft}{\stackrel{n}{0}}$	$\underset{\substack{\aleph}}{\substack{n}}$	$\underset{0}{0}$		$\underset{O}{\hat{O}}$	$\underset{\substack{\mathrm{N}}}{ }$	$\stackrel{ \pm}{0}$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right\|$				
																				艺					
										$\begin{array}{\|c} n \\ \substack{i \\ i \\ 0 \\ \infty \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline} \end{array}$															
		$\left\lvert\, \begin{gathered} \tilde{\infty} \\ \stackrel{2}{2} \end{gathered}\right.$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right\|$	$\left.\begin{array}{\|l\|} 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	to	$\stackrel{\infty}{\circ}$	$\hat{0}$	$\left\|\begin{array}{l} \circ \\ 0 \\ 0 \end{array}\right\|$	$\stackrel{n}{0}$	$\stackrel{\substack{0 \\ 0 \\ 0}}{ }$	$\|\overrightarrow{0}\|$	$\stackrel{\circ}{2}$	$\stackrel{r}{n}$	$\frac{9}{0}$	$\left.\begin{aligned} & \mathrm{t} \\ & 0 \end{aligned} \right\rvert\,$	$\overline{\mathrm{N}}$	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{2} \end{aligned}\right.$	$\overline{\mathrm{N}}$	$\stackrel{\rightharpoonup}{0}$	$\begin{array}{\|c} 2 \\ 0 \end{array}$	$\begin{gathered} n \\ \tilde{n} \\ 0 \end{gathered}$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right\|$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\text { P}}{0}$	$\stackrel{\circ}{\circ}$
		$\left\|\begin{array}{l} n \\ \frac{n}{2} \\ \frac{x}{2} \\ \frac{x}{a} \end{array}\right\|$	$\begin{aligned} & n \\ & \frac{n}{2} \\ & \frac{y}{2} \\ & \frac{\vec{y}}{2} \\ & y \end{aligned}$	$\begin{aligned} & n \\ & \frac{n}{y} \\ & y \\ & z \\ & y \\ & y \end{aligned}$	$\begin{aligned} & n \\ & \frac{n}{y} \\ & \frac{y}{v} \\ & y \\ & y \end{aligned}$	$\begin{aligned} & n \\ & \frac{n}{2} \\ & \frac{x}{a} \\ & \frac{y}{a} \end{aligned}$	$\begin{aligned} & n \\ & z \\ & z \\ & z \\ & z \end{aligned}$				$\left\|\begin{array}{l} n \\ \frac{n}{2} \\ \frac{2}{2} \\ \frac{2}{d} \end{array}\right\|$	$\left\|\begin{array}{c} n \\ \frac{n}{2} \\ \frac{n}{n} \\ \frac{n}{2} \end{array}\right\|$		$\begin{aligned} & \frac{\tilde{y}}{2} \\ & \frac{2}{2} \\ & \frac{2}{z} \end{aligned}$	$\begin{aligned} & \tilde{y} \\ & \frac{y}{z} \\ & \underset{y}{2} \\ & \underset{y}{2} \end{aligned}$		$\left\|\begin{array}{c} \frac{\tilde{v}}{v} \\ \underset{y}{v} \\ \frac{\tilde{y}}{2} \end{array}\right\|$	$\begin{aligned} & \underset{y}{y} \\ & y \\ & y \\ & \underset{y}{z} \end{aligned}$	$\begin{aligned} & \underset{y}{y} \\ & \underset{y}{z} \\ & \underset{y}{z} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{y}{z} \\ & \frac{2}{2} \\ & \frac{2}{z} \end{aligned}$	$\left.\begin{aligned} & \frac{\tilde{y}}{2} \\ & \frac{2}{2} \\ & \frac{2}{z} \end{aligned} \right\rvert\,$	$\begin{gathered} \underset{y}{v} \\ \underset{y}{v} \\ \underset{\sim}{v} \\ \underset{y}{2} \end{gathered}$	$\frac{\tilde{y}}{2}$	$\underset{y}{z}$	\％
乐总実哥		$\left\|\begin{array}{c} \underset{\sim}{e} \\ \underset{\sim}{6} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{e} \\ \underset{\sim}{e} \end{array}\right\|$	$\begin{array}{\|c} \underset{\mathrm{E}}{\mathrm{E}} \\ \stackrel{\rightharpoonup}{\mathrm{E}} \end{array}$	$\begin{aligned} & 6 \\ & \substack{6 \\ e \\ 0} \end{aligned}$	$\begin{aligned} & \stackrel{6}{0} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\underset{4}{\stackrel{\rightharpoonup}{e}}}{\substack{2}}$	$\left\|\begin{array}{c} \hat{0} \\ \stackrel{n}{6} \\ \stackrel{n}{2} \end{array}\right\|$	$\left\|\begin{array}{c} \widehat{ल} \\ e \\ e \\ \hline \end{array}\right\|$	$\left.\begin{array}{\|c} \frac{0}{2} \\ \underset{\sim}{e} \\ \hline \end{array} \right\rvert\,$	$\left\|\begin{array}{c} \widehat{\ominus} \\ \stackrel{\Theta}{e} \\ 0 \end{array}\right\|$		$\begin{aligned} & \stackrel{\overparen{m}}{\dot{e}} \\ & \stackrel{4}{4} \end{aligned}$	$\left\|\begin{array}{c} \hat{\varrho} \\ \vdots \\ \vdots \\ \mathrm{E} \end{array}\right\|$	$\begin{gathered} \hat{G} \\ \stackrel{G}{e} \\ \stackrel{\rightharpoonup}{e} \end{gathered}$	$\stackrel{\varnothing}{\infty}$	$\begin{gathered} \underset{E}{E} \\ \underset{B}{e} \end{gathered}$	$\begin{aligned} & \frac{n}{e} \\ & \frac{e}{6} \end{aligned}$	$\stackrel{\substack{\overparen{G} \\ \underset{~}{\ominus} \\ \hline}}{ }$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & \vdots \\ & \hline \end{aligned}$	$\begin{gathered} o \\ \substack{e \\ e \\ -\\ \hline} \end{gathered}$		$\begin{aligned} & \sqrt[\pi]{\tilde{N}} \\ & \stackrel{y}{6} \end{aligned}$		¢
O			$\begin{array}{\|c} \text { a } \\ \text { d } \\ \text { d } \\ \text { in } \end{array}$		$\begin{array}{\|l} \hline \text { n } \\ \text { 合 } \\ \text { in } \end{array}$	$\begin{aligned} & \text { oి } \\ & \text { od } \\ & \text { dib } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \stackrel{n}{n} \\ & \text { on } \\ & \text { oib } \end{aligned}$	$\begin{array}{\|c} \substack{0 \\ \text { a } \\ \text { d } \\ \text { in } \\ \hline} \end{array}$	$\begin{array}{\|c} \underset{\sim}{N} \\ \underset{y}{2} \\ \stackrel{0}{0} \end{array}$	$\begin{aligned} & \text { on } \\ & \stackrel{0}{0} \\ & \stackrel{0}{6} \\ & i \end{aligned}$	$\begin{array}{\|c} \substack{0 \\ 0 \\ 0 \\ \text { O } \\ \text { in } \\ \hline} \end{array}$					$\begin{array}{\|l} \hline 0 \\ \text { N } \\ \text { N } \\ \text { in } \end{array}$	$\left.\begin{array}{\|c} 2 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	$\begin{array}{\|l\|l} \hline \text { n } \\ \text { 佥 } \\ \text { in } \end{array}$	$\begin{array}{\|l} \hline \text { t } \\ \stackrel{y}{n} \\ \hat{i} \\ 0 \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ \stackrel{\infty}{\widehat{o}} \\ \stackrel{0}{n} \end{array}$		$\begin{array}{\|l\|l} \hline \text { y } \\ \text { y } \\ \text { ob } \\ \text { in } \end{array}$	$\begin{aligned} & \text { n } \\ & \text { 會 } \\ & \text { n } \end{aligned}$	会	骨
$\begin{aligned} & = \\ & \hat{Z} \\ & \hat{Z} \end{aligned}$		$\left.\begin{array}{\|c} \underset{\sim}{\tilde{n}} \\ \tilde{\sim} \\ \underset{\sim}{n} \end{array} \right\rvert\,$	$\left\lvert\, \begin{aligned} & \pm \\ & \underset{0}{U} \\ & \underset{\substack{0}}{ } \end{aligned}\right.$		$\begin{array}{\|l\|l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$		$\begin{aligned} & \vec{\delta} \\ & 0.0 \\ & 0.0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} \overline{0} \\ \stackrel{0}{0} \\ \underset{\sim}{y} \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline 1 \end{array}\right\|$			$\left\|\right\|$			$\begin{aligned} & \circ \\ & \stackrel{\circ}{f} \\ & \frac{0}{6} \\ & \frac{1}{4} \end{aligned}$			$\begin{aligned} & \underset{\infty}{\infty} \\ & \underset{\sim}{\kappa} \\ & \underset{\sim}{n} \end{aligned}$							

Ahn et al.

[^0]: Correspondence to: Richard B. Hayes, DDS, PhD, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Blvd., Bethesda, MD 20892; Hayesr@mail.nih.gov.

