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Context: Variation in genes that cause maturity-onset diabetes of the young (MODY) has been
associated with diabetes incidence and glycemic traits.

Objectives: This study aimed to determine whether genetic variation in MODY genes leads to
differential responses to insulin-sensitizing interventions.

Design and Setting: This was a secondary analysis of a multicenter, randomized clinical trial, the
Diabetes Prevention Program (DPP), involving 27 US academic institutions. We genotyped 22
missense and 221 common variants in the MODY-causing genes in the participants in the DPP.

Participants and Interventions: The study included 2806 genotyped DPP participants randomized to
receive intensive lifestyle intervention (n = 935), metformin (n = 927), or placebo (n = 944).

Main Outcome Measures: Association of MODY genetic variants with diabetes incidence at a
median of 3 years and measures of 1-year b-cell function, insulinogenic index, and oral disposition
index. Analyses were stratified by treatment group for significant single-nucleotide polymor-
phism 3 treatment interaction (Pint , 0.05). Sequence kernel association tests examined the asso-
ciation between an aggregate of rare missense variants and insulinogenic traits.
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Abbreviations: CI, confidence interval; CMC, combined multivariate and collapsing; DIo,
oral disposition index; DPP, Diabetes Prevention Program; GRS, genotype risk score;
GWAS, genome-wide association study; InsIndex, insulinogenic index; MAF, minor allele
frequency; MODY, maturity-onset diabetes of the young; SKAT, sequence kernel
association test; SNP, single-nucleotide polymorphism.
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Results: After 1 year, the minor allele of rs3212185 (HNF4A) was associated with improved b-cell
function in the metformin and lifestyle groups but not the placebo group; the minor allele of
rs6719578 (NEUROD1) was associated with an increase in insulin secretion in the metformin group
but not in the placebo and lifestyle groups.

Conclusions: These results provide evidence that genetic variation among MODY genes may in-
fluence response to insulin-sensitizing interventions. (J Clin Endocrinol Metab 102: 2678–2689,
2017)

M aturity-onset diabetes of the young (MODY) is
characterized by a nonketotic form of diabetes

mellitus transmitted by an autosomal dominant mode
of inheritance that is usually diagnosed before the age
of 25 years. HNF4A (MODY1), HNF1A (MODY3),
PDX1 (MODY4), HNF1B (MODY5), and NEUROD1
(MODY6) encode transcription factors operational in the
pancreatic b-cell, whereas GCK (MODY2) encodes the
b-cell glycolytic enzyme glucokinase. Mutations in these
genes cause b-cell dysfunction, which leads to the devel-
opment of MODY (1). More recently, additional genes
have been identified as rarer causes of MODY 7 through
MODY13, includingKLF11 (2),CEL (3), PAX4 (4), INS
(5), BLK (6), ABCC8 (7), and KCNJ11 (8). In contrast to
MODY, type 2 diabetes is a polygenic disease and an
illness of insulin resistance and relative insulinopenia.

Large candidate gene studies have identified common
genetic variants in genes responsible for MODY 1 through
MODY 6 that are associated with type 2 diabetes and gly-
cemic traits (9–11). Bonnycastle et al. (9), in a cross-sectional
study, showed that genetic variation in GCK, NEUROD1,
HNF4A, HNF1A, and HNF1B was nominally associated
(P , 0.05) with diabetes risk after considering multiple
testing. Winckler et al. (10) did not replicate these findings in
their cross-sectional analyses but did show a consistent re-
lationship between an HNF1B variant and diabetes risk in
two independent cohorts. A prospective observational study
revealed an association between HNF1A and HNF4A
common genetic variation and diabetes incidence (11). A
cross-sectional study showed no association between groups
of 121 rare missense variants identified by sequencing seven
MODY genes and early-onset diabetes in a population
without particular risks for diabetes (12). A prior study found
no association between HNF4A and oral disposition index
(DIo) (11), and other studies have primarily examined how
GCK variants influence insulin secretion (13–16).

Genome-wide association studies (GWASs) have fur-
ther confirmed a relationship between MODY genes and
diabetes risk (17–20). Genetic variants in HNF4A (19,
20),HNF1A (17, 18, 21), andHNF1B (17, 22) have been
associated with diabetes risk in populations of European,
Hispanic, South Asian, or East Asian descent at genome-
wide statistical significance (P , 5 3 10–8). GWASs

have also detected associations of common variants
in GCK with fasting glucose (23–25) and hemoglobin
A1c (24, 26).

These data show that MODY genes may influence the
development of type 2 diabetes and modulate glycemic
traits. In our comprehensive analysis of candidate genes
in the Diabetes Prevention Program (DPP) (27), a clinical
trial that evaluated preventive strategies for type 2 di-
abetes, we found that rs11868513 (HNF1B) was asso-
ciated with diabetes incidence only in the placebo group,
with both metformin and lifestyle interventions showing
significant evidence as effect modifiers; and rs11086926
(HNF4A) was associated with diabetes incidence only
in the metformin group, with metformin but not the
lifestyle intervention showing significant evidence as an
effect modifier (27). Here we build upon these findings
by exploring the physiological underpinnings of this
association further and investigating how common and
rare missense genetic variation in MODY genes may in-
fluence insulin secretion in response to insulin-sensitizing
interventions.

Methods

TheDPP enrolled 3548USparticipants frommultiple ethnicities
with high-risk criteria for diabetes development: overweight,
elevated fasting glucose, and impaired glucose tolerance. Of
these participants with complete clinical data and consent for
genetic testing, 2806 were randomized to placebo (n = 944),
metformin 850mg twice daily (n = 927), or lifestyle intervention
(n = 935) with a goal weight loss of$7% and$150 minutes of
physical activity per week; a fourth troglitazone treatment arm
was terminated early due to concerns for drug-related hepa-
totoxicity (28). Participants in this arm (n = 585) were included
in genotyping and baseline association analyses, but not in-
cluded in longitudinal association testing due to early termi-
nation (28). Ethical approval was obtained by local human
research committees, and all participants signed informed
consent forms.

We used Sanger sequencing on an ABI 3730 DNA Analyzer
to sequence the exons and splice sites of the six MODY-causing
genes (HNF4A,GCK,HNF1A,PDX1,HNF1B, andNEUROD1)
in 190 DPP participants. Samples were chosen without regard
to subsequent diabetes incidence with relatively equal distri-
bution of males and females (44% male, 56% female) and
ethnicity. Sequencing coverage across the MODY 1 through
MODY 6 genes was completed in a three-step primer redesign
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process to maximize coverage of all MODY genes. Forty-three
amplicons were designed to sequence exons 1 through 10 and
the promoter region in HNF4A, exons 1 through 10 in GCK
and HNF1A, exons 1 and 2 in PDX1, 9 exons in HNF1B, and
exon 2 in NEUROD1 (exon 1 is untranslated). An overlap of
amplicons provided additional genotypes that had poly-
morphism concordance of 99.5% across all amplicons. The
average targeted coverage was 95%.

Twenty-two missense single-nucleotide polymorphisms
(SNPs) were identified by Sanger sequencing (three with minor
allele frequency [MAF] .5% and 19 with MAF ,5%) and
subsequently genotyped in all DPP participants. DNA was
whole-genome amplified with the REPLI-G (Qiagen) kit and
purified using Nucleofast (Machery-Nagel). Genotyping was
performed by allele-specific primer extension of multiplex
amplified products, with detection by matrix-assisted laser
desorption ionization–time-of-flight mass spectroscopy on an
iPLEX-GOLD Sequenom platform. The genotyping success rate
was 99%, and concordance rate between sequence data and
Sequenom genotyping was 99.5%. We used publicly available
assessment tools, PolyPhen-2 (http://genetics.bwh.harvard.edu/
pph2) and SIFT (http://sift.jcvi.org), to predict whether amino
acid changes could be detrimental to protein function (29–31).

We used Tagger (32) to select tagging SNPs that would
capture (r2 $ 0.8) all variations with MAF .1% in European
(CEU) and/or African (YRI) HapMap populations in MODY
genes. The 221 tag SNPs were genotyped on a custom-designed
oligonucleotide pool array with other diabetes-related candi-
date SNPs. Further details regarding genotyping are described in
Jablonski et al. (27).

Glucose (in milligrams per deciliter) and insulin (in units per
milliliter) were measured fasting and 30 minutes after a 75-g
glucose load at baseline and year 1 (33). We focused on the
following two quantitative traits as measurements for insulin
secretion: change in the insulinogenic index (InsIndex) and
DIo over the first year after randomization. Insulin secretion
indices were calculated as follows: InsIndex (U/mL)/(mg/dL) =
(30-minute insulin – fasting insulin)/(30-minute glucose – fasting
glucose) (34) and DIo (mg/dL)–1 = InsIndex 3 1/fasting insulin
(35). The DIo is a measure of insulin secretion adjusted for
insulin sensitivity. The logged value of InsIndex and DIo was
used in the analysis and results were back-transformed. The
year 1 change (Δ) in InsIndex and log DIo was calculated by
subtracting the baseline InsIndex or DIo from the year 1 value.
These insulinogenic quantitative measures are negatively as-
sociated with diabetes hazard rate in the DPP (35).

Diabetes incidence was determined by a diagnostic fasting or
2-hour glucose after a 75-g oral glucose tolerance test that was
confirmed by a second test (fasting plasma glucose$126 mg/dL
or 2-hour post–oral glucose tolerance test glucose level
$200 mg/dL) (36).

We examined the 224 SNPs with MAF $1% in at least one
ethnic group for association with insulin secretion indices and
diabetes incidence. We assumed an additive genetic model. All
models were adjusted for self-reported ethnicity, age at ran-
domization, sex, and treatment group, with additional ad-
justment for the respective baseline trait for the association tests
examining D log InsIndex and D log DIo. To examine how the
SNP’s effect is influenced by treatment group, the analysis was
stratified by treatment group if the treatment group 3 SNP
interaction was significant (P , 0.05). We used an analysis of
covariance and proportional hazards model to examine the

association between the individual SNPs and insulinogenic
traits and diabetes incidence, respectively. For the SNPs that
were significantly associated with an insulinogenic trait, we
performed an additional analysis using the SNP as a class
variable (in two degrees-of-freedom tests), obtaining marginal
means of the calculated insulin secretion indices and comparing
differences between genotypic groups. Holm procedure was
used to adjust P values when testing for differences between
treatment groups when the interaction P value was significant
for the year 1 change traits.

We examined the association of 224 common SNPs in a
prior study (27) with diabetes incidence and reported that
rs11868513 (HNF1B) and rs11086926 (HNF4A) were asso-
ciated with diabetes incidence. To comprehensively examine the
association of MODY variants and diabetes and related traits,
in this report, we delved deeper into understanding these
associations with diabetes incidence, as this was not investi-
gated more closely in the prior study. In this study, we exam-
ined diabetes incidence by genotype per treatment group. We
compared diabetes incidence for each genotype between the
treatment groups using a x2 test and corrected for multiple
testing using stepdown Bonferroni correction.

Three methods were used to examine 19 rare missense SNPs
in aggregate with each outcome. First, a genotype risk score
(GRS) was calculated by assigning one point per minor allele.
In a second examination, we used the combined multivariate
and collapsing (CMC) method (37), which coded each partic-
ipant having at least one allele with anMAF,1% as “present”
or no minor alleles “absent.” A third technique used the se-
quence kernel association test (SKAT), which uses a multiple
regression model and allows the variants to have different di-
rections and magnitude of effects (38). SKAT was used only for
testing associations with the insulinogenic traits because we
were unable to incorporate the time variable into the analysis
to assess diabetes incidence.

Additionally, we tested a “damaging”missense variants risk
score for association with diabetes incidence composed of
p.Val33Ala (C,GCK), p.Pro197His (rs8192556, A,NEUROD1),
p.Leu176Ser (C, NEUROD1), p.His314Leu (T, NEUROD1),
and p.Ser547Phe (T, HNF1B), which were determined to be
probably damaging via bioinformatic analysis.

We chose to highlight SNPs that fulfilled a stringent study-
wide significance level of P = 3 3 10–4 as determined by
employing a Bonferroni correction for the estimated number
of independent tests after taking linkage disequilibrium into
account for 224 SNPs (39, 40) based on the HapMap sample’s
linkage disequilibrium structure in populations of Euro-
pean, African, and Asian ancestry (CEU, YRI, and CHP/JPT,
respectively).

We compiled a list of variants in MODY-related variants
from the literature that had been associated with diabetes in
prior studies and examined them for association in theDPPwith
diabetes incidence. Additionally, we reviewed the published
literature (88 publications) through December 2014 for prior
reports of associations with diabetes and related traits for the
missense variants identified in this study.

Results

Twenty-two missense variants were examined in this
study, of which eight are unique. Three of the missense
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SNPs were common (overall MAF .5%), whereas 19
had MAF ,5%. p.Val33Ala (GCK), p.Pro197His
(rs8192556, NEUROD1), p.Leu176Ser (NEUROD1),
p.His314Leu (NEUROD1), and p.Ser547Phe (HNF1B)
were determined to be damaging to protein function
consistently across two bioinformatics tools, PolyPhen-2
and SIFT (Table 1). The allele frequencies and number of
individuals carrying each genotype by ethnicity for the 22
missense SNPs are provided in Table 1 and Supplemental
Table 1. A literature review of the missense SNPs for
association with diabetes and related traits is in Sup-
plemental Table 2.

Individual variants and aggregate scores tested for
association with baseline insulin secretion traits are
shown in Table 2 and Supplemental Table 3.

Two SNPs were found to have a significant SNP 3
treatment interaction and, after stratifying by treatment
group, reached the study-wide level of significance for
association with D log DIo in either the lifestyle or

metformin groups. SNP rs3212185 (HNF4A), whichwas
predominant in African-American participants (MAF
0.08), had an SNP 3 lifestyle vs placebo Pinteraction =
0.0002. TheC allele (minor) of rs3212185was associated
with an increase in log DIo in response to the lifestyle
intervention over 1 year that was absent in the placebo
group and attenuated in the metformin group. A con-
sistent relationship was noted for association with D log
InsIndex, though at a weaker level of statistical signifi-
cance (Table 3). Heterozygotes at rs3212185 had an
increase in mean DIo from baseline (0.0481, 95% con-
fidence interval [CI]: 0.031 to 0.065) to 1 year (0.117,
95% CI: 0.094 to 0.141) in the lifestyle group, compared
with heterozygotes in the placebo group and TT ho-
mozygotes in the placebo and lifestyle groups, where
DIo remained unchanged [Fig. 1(a)].

SNP rs6719578 (NEUROD1) had an SNP 3 met-
formin vs placebo Pinteraction = 0.002. The C allele (minor)
of rs6719578 was associated with a positive D log DIo

Table 1. Bioinformatic Assessment of 22 Missense Variants

Residue Change
and Codon Position

Chromosome,
Position (HG19) MAF

Allele Change
(Major to Minor) rs Number PolyPhen-2/SIFT

GCK
p.Ala11Thr 7, 44228522 0.0027 GCC-aCC rs116093166 Probably damaging/tolerated
p.Thr396Sera 7, 44185162 0.0006 ACC-AgC N/A Benign/damaging
p.Glu272Alaa 7, 44187297 0.0003 GAG-GcG N/A Possibly damaging/tolerated
p.Val33Alaa,b 7, 44193010 0.0002 GTG-GcG N/A Possibly damaging/damaging

HNF4A
p.Thr139Ile 20, 43042364 0.0239 ACT-AtT rs1800961 Benign/tolerated

NEUROD1
p.Thr45Alab 2, 182543455 0.3237 GCC-aCC rs1801262 Benign/tolerated
p.Pro197Hisb 2, 182542998 0.0185 CCT-CaT rs8192556 Possibly damaging/damaging
p.Val239Ileb 2, 182542873 0.0003 GTC-aTC rs145050582 Benign/tolerated
p.Leu176Sera,b 2, 182543061 0.0002 TTA-TcA N/A Possibly damaging/damaging
p.His314Leua,b 2, 182542647 0.0006 CAC-CtC N/A Possibly damaging/damaging

HNF1A
p.Ser487Asnb 12, 121435427 0.2993 AGC-AaC rs2464196 Benign/tolerated
p.Ala98Valb 12, 121416864 0.0239 GCC-GtC rs1800574 Benign/tolerated
p.Gly574Serb 12, 121437382 0.0081 GGC-aGC rs1169305 Benign/tolerated
p.Arg583Glnb 12, 121437410 0.0009 CGG-CaG rs137853242 Benign/tolerated
p.Pro894Serb 12, 121432124 0.0003 CCA-tCA rs151256267 Benign/tolerated
p.Ile27Leub 12, 121416650 0.2927 ATC-cTC rs1169288 Benign/tolerated
p.Gly554Arg 12, 121437322 0.0005 GGG-aGG N/A Probably damaging/tolerated

HNF1B
p.Gly370Serb 17, 36070609 0.0009 GGC-aGC rs113042313 Benign/tolerated
p.Asn228Lys 17, 33363607 0.0042 AAC-AAg N/A Benign/damaging
p.Ser547Phea,b 17, 36059095 0.0002 TCT-TtT N/A Probably damaging/damaging
p.Thr436Sera,b 17, 36064957 0.0002 ACA-tCA N/A Benign/tolerated
p.His332Glna 17, 36091635 0.0005 CAC-CAg N/A Probably damaging/tolerated

Major allele denoted by underline. We used the publicly available assessment tools PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2) and SIFT (http://
sift.jcvi.org) to predict if amino acid changes could be detrimental to protein function (29–31). PolyPhen-2 predictions were based on the HumDiv testing
model. This model was compiled from all damaging alleles with known effects on the molecular function causing humanMendelian diseases, present in
the UniProtKB database, together with differences between human proteins and their closely related mammalian homologs, assumed to be
nondamaging.

Abbreviation: N/A, not available.
a Indicates a unique variant.
bSNPs were consistent for both bioinformatics tools.
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among themetformin-treated participants during the first
year that was not seen in the placebo or lifestyle groups.
The C allele was similarly associated with D log InsIndex
among the metformin group at a lower level of statistical
significance (P = 0.02). Heterozygotes had an increase in
mean DIo from baseline (0.057, 95% CI: 0.041 to 0.072)
to 1 year (0.086, 95% CI: 0.07 to 0.10) in the metformin
group, whereas DIo in heterozygotes in the placebo group
and in GG homozygotes in the placebo and metformin
groups remained largely flat, if not trending downward
[Fig. 1(b)].

All the individual variants and aggregate scores tested
for association with D log InsIndex and D log DIo are
shown in Supplemental Tables 4 and 5.

None of the common missense variants nor the GRS
and CMC scores of the 19 rare missense variants were
associated with change in the insulinogenic traits over the
first year. The SKAT analysis revealed a nominally sig-
nificant association between the aggregate of the 19
uncommonmissense variants and change in InsIndex (P =
0.03) but no change in DIo (P = 0.6) (Supplemental
Table 6).

Table 2. MODY SNPs Associated With Log Baseline InsIndex at P < 3 3 10–4 and Their Association With Log
Baseline DIo and Insulin Sensitivity (Log 1/FI)

Gene SNP
Alleles

(Effect/Other)

Log Baseline InsIndex Log Baseline DIo Log Baseline 1/FI Diabetes Incidence

b (SE) P Value
Genotype

(n)

Adjusted
Means
(95% CI) b (SE) P Value b (SE)

P
Value

HR
(95% CI) P Value

NEUROD1 rs11884960 A/G (MAF = 2.2%) 0.084
(0.023)

3 3 10–4 GG (3291) 1.200
(1.149–1.252)

0.065
(0.034)

0.06 –0.065
(0.044)

0.14 0.71
(0.48–1.07)

0.10

AG (135) 1.502
(1.332–1.681)

AA (9) 1.501
(0.940–2.177)

PDX1 rs4769581 T/C (MAF = 39%) 0.027
(0.007)

2 3 10–4 CC (1267) 1.149
(1.086–1.213)

0.026
(0.0105)

0.01 –0.005
(0.0134)

0.71 1.0
(0.88–1.13)

1.0

TC (1666) 1.223
(1.164–1.283)

TT (506) 1.317
(1.230–1.407)

HNF1B rs3110638 A/G (MAF = 0.83%) 0.145
(0.038)

1 3 10–4 GG (3376) 1.933
(0.342–4.689)

0.182
(0.0557)

0.001 0.034
(0.0716)

0.64 0.86
(0.45–1.6)

0.64

AG (55) 1.691
(1.426–1.977)

AA (1) 1.207
(1.156–1.259)

The underlined alleles designate the minor allele. The adjusted means are back-transformed for InsIndex. Supplemental Table 3 shows the association of
all the SNPs examined and baseline insulinogenic traits.

Abbreviations: FI, fasting insulin; HR, hazard ratio; b (SE), b estimate (standard error) of the association of each minor allele with the respective trait.

Table 3. Genetic Variation inHNF4A andNEUROD1 Influences the Improvement in Insulin Secretion in One of
the Treatment Groups

Gene SNP Trait

Alleles
SNP 3 Treatment

Interaction Placebo Metformin Lifestyle

(Effect/Other) P Value b (SE) P Value b (SE) P Value b (SE) P value

HNF4A
Significant

interaction for
SNP 3 lifestyle
(vs placebo)

rs3212185 D log
InsIndex

C/T (MAF = 1.7%) 0.01 –0.005
(0.200)

0.98 0.493 (0.167) 0.003 0.396 (0.173) 0.02

D log DIo 0.0002 –0.001
(0.008)

0.88 0.017 (0.007) 0.03 0.043 (0.011) 2 3 10–4

NEUROD1
Significant

interaction for
SNP 3 metformin
(vs placebo)

rs6719578 D log
InsIndex

C/G (MAF = 1.2%) 0.03 0.028
(0.233)

0.90 0.525 (0.229) 0.02 –0.092 (0.210) 0.66

Dlog DIo 0.002 –0.003
(0.010)

0.79 0.042 (0.010) 1 3 10–4 0.005 (0.014) 0.72

The underlined allele is the minor allele.

Abbreviation: b (SE), b estimate (standard error) of the association of each minor allele with the respective trait.
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We have shown previously that SNPs rs11086926
(HNF4A) and rs11868513 (HNF1B) were associated
with diabetes incidence in one of the treatment groups
(27), with significant genotype 3 treatment interactions.
To investigate this further, we examined diabetes in-
cidence by genotype within each treatment group (Fig. 2).
GG homozygotes at rs11086926 in the lifestyle group
were less likely to develop diabetes compared with per-
sons with the same genotype in the placebo (P = 0.02) and
metformin (P = 0.02) groups, with no difference between
the metformin and placebo groups [Fig. 2(a)]. AA ho-
mozygotes at rs11868513 had the highest diabetes in-
cidence in the placebo group but a dramatic response to
metformin (P = 0.008) and lifestyle (P = 0.002) therapy.
AG heterozygotes had lower diabetes incidence rates than
AA homozygotes, but their rates were also lowered both
by lifestyle (P , 0.001) and metformin (P = 0.002).
Diabetes incidence rates were lowered in GG homozy-
gotes by the lifestyle intervention (P , 0.001) but not
significantly by metformin (P = 0.2) compared with
placebo [Fig. 2(b)].

Neither the missense variant GRS nor CMC burden
scores were associated with diabetes incidence. Associ-
ation results for diabetes incidence in the DPP for variants
in MODY genes previously associated with type 2 di-
abetes are shown in Table 4.

Discussion

We have examined genetic variation among six canonical
MODY genes for association with insulinogenic traits

and diabetes incidence in response to diabetes preventive
interventions. Our key findings show that genetic vari-
ation within HNF4A, HNF1B, and NEUROD1 is as-
sociated with a differential response to lifestyle and/or
metformin interventions in insulinogenic traits and di-
abetes development. Our study supports prior findings
demonstrating that variation in genes where pathogenic
mutations are known to cause MODY contribute to the
risk of diabetes and variation in insulinogenic traits
(9–11, 17–20, 22). We furthermore demonstrated how
the influence of variation in MODY genes is modified by
insulin-sensitizing interventions.

Among common variants in MODY genes previously
associated with type 2 diabetes from candidate gene
studies and GWASs (listed in Table 4), we replicated
rs757210 in HNF1B for association with diabetes in-
cidence (10). We reported an association between
rs11868513 in HNF1B and diabetes incidence among
the placebo group participants, but rs11868513 and
rs757210 are not in linkage disequilibrium (r2 , 0.009)
and appear to be exerting independent effects on diabetes
incidence.

In a comprehensive literature review of the missense
variants identified among the DPP participants (sum-
marized in Supplemental Table 2), we illustrate how these
variants have been associated with diabetes and related
traits in prior literature. Three low-frequency variants
[p.Thr45Ala (NEUROD1), p.Ser487Asn (HNF1A), and
p.Ile27Leu (HNF1A)] have been studied most compre-
hensively previously. p.Thr45Ala (rs1801262) has been

Figure 1. SNPs in HNF4A and NEUROD1 were associated with a significant SNP 3 treatment interaction and insulin secretion as measured by
DIo. This figure displays the adjusted means at baseline and year 1 of these SNPs comparing the two groups that demonstrated the interaction.
The minor homozygotes are not shown because, due to low frequency, they were not present in all of the treatment groups. (a) rs3212185 3
lifestyle (vs placebo) interaction, P value = 0.0002. TC heterozygotes (gray circle and dotted line) at SNP rs3212185 showed improved DIo after
1 year of lifestyle intervention, whereas the TT (gray circle and solid line) homozygotes had no response to lifestyle intervention. The TT and TC
genotypes in the placebo group (black square) did not change in DIo. (b) rs6719578 3 metformin (vs placebo) interaction, P value = 0.002. GC
heterozygotes (gray triangle and dotted line) at SNP rs6719578 had improved DIo after 1 year of metformin intervention, whereas the GG (gray
triangle and solid line) homozygotes did not respond to metformin intervention. Participants with the GG and GC (black square) genotypes in the
placebo group did not change DIo.
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associated with b-cell dysfunction in both type 1 and
type 2 diabetes (41, 42) and a faster deterioration in
b-cell function (43) in Asians. The DPP may be un-
derpowered to detect this association in participants
with Asian ancestry. We confirmed findings for asso-
ciation of Ser487Asn (rs2464196) with baseline DIo
(P = 0.02) (11, 44), although this finding was not
seen in other reports where a variety of tools were
used to measure b-cell function (45–47). Last, we
confirmed prior findings of the association of Ile27Leu
(rs1169288) with b-cell function (InsIndex, P = 0.006)
(11, 44, 48).

In contrast to prior case-control, cross-sectional, or
observational prospective studies, the DPP random-
ized design allowed us to characterize how these ge-
netic variants might influence response to diabetes
preventive interventions. Because DPP participants
were phenotyped at regular intervals for glycemia-
related traits during the study intervention, we were
able to assess b-cell function during the first year in
response to treatment. This is of particular relevance to
MODY genes, as the primary defect in the monogenic
disease is impaired insulin secretion (1). Two SNPs
(rs3212185 [HNF4A] and rs671978 [NEUROD1])
showed significant interactions with the lifestyle or
metformin interventions, respectively, and reached
study-wide statistical significance for association with
change in insulin secretion after stratification in one of
the treatment groups. At both SNPs, heterozygote

minor allele carriers showed an improvement in insulin
secretion as measured by DIo during the first year
compared with the major allele homozygotes, an effect
that was not seen in the placebo arm.

SNP rs3212185 (HNF4A) and rs671978 (NEUROD1)
are in genes that are crucial to b-cell function. HNF4A
and NEUROD1 are transcription factors that are in-
volved in endocrine pancreatic development and regu-
late insulin gene transcription (1). Insulin sensitivity is
known to modulate insulin secretion. In the DPP, the
lifestyle intervention improved insulin sensitivity and
enhanced b-cell function (35). The metformin inter-
vention had a similar attenuated result. We have shown
that genetic variation in HNF4A and NEUROD1 mod-
ifies the response to interventions designed to improve
insulin resistance [metformin and lifestyle (diet, exercise,
and weight loss)]. Themajor homozygotes at rs3212185
and rs671978 appear resistant to improvement in b-cell
function by lifestyle and metformin therapy, respec-
tively, whereas minor allele carriers have enhanced
b-cell function (1). These findings underscore that in-
terventions that improve insulin resistance may con-
tribute to improvement in b-cell function among certain
genotype carriers in genes known to impair insulin se-
cretion. It is notable that rs3212185 is associated with
glycemic traits among predominantly African ancestry
carriers, where HNF4A variation has not been studied
in detail despite the higher type 2 diabetes risk in this
population (49).

Figure 2. Diabetes diagnoses per 100 patient-years for (a) rs11086926 and (b) rs11868513 for each genotype group within each treatment arm.
(a) The GG homozygotes of rs11086926 had a differential response to lifestyle and metformin (rs11086926 3 metformin vs placebo, Pinteraction =
0.002). The GG carriers in the lifestyle group had a significantly lower diabetes incidence than did carriers of the same genotype in the placebo
(P = 0.007) and metformin (P = 0.006) groups. These GG homozygotes had no response to metformin therapy compared with placebo (P = 0.8).
(b) There was a significant treatment 3 genotype interaction for rs1186513. rs11868513 3 metformin vs placeb, Pinteraction = 0.0007, and
rs11868513 3 lifestyle vs placebo Pinteraction = 0.03. The AA genotype of rs11868513, despite having a higher diabetes risk in the placebo group,
had a dramatic response to metformin (P = 0.008) and lifestyle (P = 0.001) therapy. The AG genotype also demonstrated a decrease to both
lifestyle (P , 0.001) and metformin (P = 0.002) therapy compared with placebo. The GG genotype carriers showed a decrease in diabetes
incidence to lifestyle intervention (P , 0.001) and no response to metformin (P = 0.2) compared with placebo.
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SNP rs11086926 showed a significant interaction with
metformin on diabetes incidence (27). Specifically, minor
allele homozygotes at rs11086926 appear to be resistant
to metformin therapy but were responsive to lifestyle in-
tervention. Perhaps the minor allele carriers are resistant
to metformin’s action in decreasing insulin resistance at
the liver, whereHNF4A is also highly expressed (49). This
variant has been shown to be nominally associated with
type 2 diabetes in GWASs of Hispanic ancestry (50).

SNP rs11868513 showed a significant interactionwith
metformin and lifestyle interventions (27). The metfor-
min and lifestyle interventions ablated the increased di-
abetes risk seen among the A allele carriers in the placebo
group. Furthermore, AA carriers had a substantial de-
crease in diabetes incidence with metformin therapy and
lifestyle intervention. These results illustrate that met-
formin and lifestyle interventions reduce the risk of di-
abetes of AA carriers to the levels of GG and AG carriers.

We used three methods to investigate the contribution
of an aggregate of 19 rare missense variants on diabetes
incidence and insulinogenic traits. Similar to the study by
Flannick et al. (12) in an unselected population, MODY
missense variants did not appear to influence diabetes

incidence in our high-risk population. Using SKAT, a
method that does not assume that rare variants influence
the phenotype in the same direction, we found a nomi-
nally significant association between the aggregate of
19 missense variant’s baseline InsIndex and DIo and the
D InsIndex over the first year. Because SKAT provides
a P value but no effect estimate, we would need to test
each variant individually to determine which SNP(s) may
be driving the association and the direction of effect.Weare
not powered to test these rare variants individually in the
DPP but, using publically available databases for type 2
diabetes, we noted that p.Val33Ala (GCK), p.Thr139Ile
(HNF4A), p.Ala98Val (HNF1A), andp.Ile27Leu (HNF1A)
have been associated with type 2 diabetes at nominal to
locus-wide levels of significance (50), which supports the
suggested association with the aggregate of missense var-
iants and insulinogenic traits. Nonetheless, large cohorts
genotyped for the missense variants examined here will
have the power to further explore the individual contri-
bution of rare missense variants in the MODY genes on
diabetes incidence and insulinogenic traits.

Some limitations of our study should be emphasized.
First, as our sequencing efforts started prior to the

Table 4. Replication of Previously Reported Type 2 Diabetes–Associated MODY Genetic Variants for
Association With Diabetes Incidence in the DPP

SNP Effect/Other Gene ORa (95% CI)
Proxy

(Effect/Other)b r2 (CEU)
Diabetes HR
(95% CI) P Value

rs2244164 (9) C/T GCK 0.81 (0.72–0.92) rs2080033 (C/T) 1 1.05 (0.93–1.18) 0.42
rs1169288 (11) T/G HNF1A 1.20 (1.10–1.3)a 0.99 (0.87–1.12) 0.89
rs2701175 (9) C/A HNF1A 1.34 (1.06–1.68) rs1169288 (G/T) 0.6 1.01 (0.89–1.15) 0.89
rs2071190 (9) A/T HNF1A 2.08 (1.30–3.31) 1.10 (0.96–1.27) 0.15
rs7305618a (18) C/T HNF1A 1.14 (1.09–1.20) 0.98 (0.86–1.12) 0.80
rs7957197a (17) T/A HNF1A 1.07 (1.05–1.10) rs7305618 (G/A) 0.57 0.98 (0.86–1.12) 0.80
rs11263755 (10) A/G HNF1B 1.13 (1.04–1.23) 0.92 (0.79–1.05) 0.22
rs2285741 (10) A/G HNF1B 0.94 (0.88–1.00) 0.89 (0.79–1.01) 0.06
rs2689 (10) A/T HNF1B 1.09 (1.02–1.17) 1.08 (0.96–1.22) 0.19
rs3110641 (10) C/T HNF1B 1.10 (1.04–1.17) 0.96 (0.85–1.1) 0.57
rs3094513 (10) T/C HNF1B 1.08 (1.01–1.16) rs3110640 (C/T) 0.93 1.09 (0.97–1.23) 0.14
rs757210 (10) A/G HNF1B 1.12 (1.07–1.18) 1.13 (1.01–1.27) 0.04
rs12450628 (9) T/C HNF1B 1.63 (1.20–2.23) rs2411153 (C/G) 0.68 0.89 (0.80–1.00) 0.06
rs1008284 (9) A/G HNF1B 0.53 (0.37–0.75) 1.07 (0.94–1.22) 0.32
rs4430796a (17) G/A HNF1B 1.14 (1.08–1.20) 1.08 (0.96–1.21) 0.17
rs4810424 (11) C /G HNF4A 1.30 (1.00–1.60)c rs1884614 (A/G) 0.95 1.04 (0.90–1.20) 0.58
rs3212198 (11) C/T HNF4A 1.10 (1.00–1.20)c 0.96 (0.86–1.08) 0.54
rs6103716 (9) C/A HNF4A 1.26 (1.11–1.44) 1.07 (0.95–1.21) 0.25
rs6017317a (20) G/T HNF4A 1.09 (1.07–1.12) rs1884614 (A/G) 0.7 1.04 (0.90–1.20) 0.58
rs4812829a (19) A/G HNF4A 1.09 (1.06–1.12) rs1884614 (A/G) 1 1.04 (0.90–1.20) 0.58
rs3916026 (9) C/G NEUROD1 0.73 (0.61–0.87) 1.00 (0.88–1.12) 0.94
rs2297316d (9) A/G PDX1 0.77 (0.64–0.92) — —

The article origin for each SNP is in parentheses to the right of the SNP.

Abbreviations: HR, hazard ratio; OR, odds ratio.
aSNPs found to be associated with type 2 diabetes in GWASs.
bProxy alleles are consistent with the major or minor effect allele in the original study.
cThe effect represents a hazard ratio.
drs2297316 did not have an adequate proxy (r2 . 0.5) genotyped in the DPP.
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introduction of next-generation sequencing techniques,
we only sequenced six MODY genes in 190 participants
and so did not comprehensively catalog all rare variation
in our sample of 3442 individuals. Second, because
sample sizes in clinical trials are finite, power to detect
associations with rare variants is limited. Third, we have
not examined newly discovered MODY genes. Fourth,
we have not been able to replicate our results, as suitable
venues to do so are not available for this unique clinical
trial; thus, though we have tried to be circumspect in the
selection of statistical thresholds, the findings reported
here should be considered hypothesis generating. Some of
these limitations will be overcomewith the deployment of
an exome array in the DPP, which will allow for a more
thorough evaluation of low-frequency variants across all
MODY genes.

In summary, select MODY gene variants annotated
to HNF4A, HNF1B, and NEUROD1 are associated
with response to insulin-sensitizing interventions on
either diabetes incidence and/or insulinogenic traits.
These results provide evidence that genetic variation
among MODY genes influences response to insulin-
sensitizing interventions. These data underscore the
need for further genotype-directed studies to determine
whether carriers of the aforementioned gene variants
respond differently to insulin-sensitizing and, moreover,
insulin secretagogue therapy.
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