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Abstract

Molybdenum (Mo) is an essential micronutrient for plants, serving as a cofactor for enzymes involved in nitrate assimilation,
sulfite detoxification, abscisic acid biosynthesis, and purine degradation. Here we show that natural variation in shoot Mo
content across 92 Arabidopsis thaliana accessions is controlled by variation in a mitochondrially localized transporter
(Molybdenum Transporter 1 - MOT1) that belongs to the sulfate transporter superfamily. A deletion in the MOT1 promoter is
strongly associated with low shoot Mo, occurring in seven of the accessions with the lowest shoot content of Mo.
Consistent with the low Mo phenotype, MOT1 expression in low Mo accessions is reduced. Reciprocal grafting experiments
demonstrate that the roots of Ler-0 are responsible for the low Mo accumulation in shoot, and GUS localization
demonstrates that MOT1 is expressed strongly in the roots. MOT1 contains an N-terminal mitochondrial targeting sequence
and expression of MOT1 tagged with GFP in protoplasts and transgenic plants, establishing the mitochondrial localization of
this protein. Furthermore, expression of MOT1 specifically enhances Mo accumulation in yeast by 5-fold, consistent with
MOT1 functioning as a molybdate transporter. This work provides the first molecular insight into the processes that regulate
Mo accumulation in plants and shows that novel loci can be detected by association mapping.
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Introduction

Plants have developed complex biochemical and regulatory

pathways to acquire mineral nutrients from the soil environment

and distribute them to appropriate tissues. Natural populations of

Arabidopsis thaliana (Arabidopsis) provide an excellent system to

study how plants have adapted their mineral nutrient and trace

element uptake pathways to thrive under different environmental

conditions. Molybdenum (Mo) is an important micronutrient for

plants, being incorporated into molybdopterin, an essential

cofactor for enzymes involved in nitrate assimilation, sulfite

detoxification, abscisic acid biosynthesis and purine degradation

[1]. Molybdenum in either deficiency or excess has been

demonstrated to inhibit plant growth and agricultural productivity

[2]. The genes comprising the biochemical pathway that

synthesizes the molybdopterin cofactor have been identified in

plants, animals and microbes, but to date, a Mo transporter in

plants has not been found [2]. The first committed step in

molybdopterin biosynthesis occurs in the mitochondria [3],

confirming the predicted sub-cellular localization of the enzymes

[1]. The remaining 3 steps are thought to occur in the cytoplasm

[3]. While a substantial amount is known about the biochemistry,

enzymology and underlying genetics of molybdopterin biosynthe-

sis, very little is known about the mechanisms for Mo uptake,

distribution and accumulation in plants. In this study, natural

variation in whole plant Mo accumulation has been coupled with

genomics techniques and genetics to identify a mitochondrial Mo

transporter (MOT1) that regulates whole plant Mo content in

Arabidopsis. Alleles of this gene are demonstrated to be

responsible for low Mo accumulation across a diversity collection

of 92 Arabidopsis accessions. All soil grown plant ionomic data

from this study is freely available at www.purdue.edu/dp/

ionomics [4].

Results

Shoot tissue from a geographically diverse panel of 98

Arabidopsis accessions (93 from [5] plus Bu-15, Col-4, Kas-1,
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Ler-0, Ler-2) was screened in an effort to identify accessions which

have altered Mo content in shoot tissue (Figure 1A). Based on this

survey it was determined that the shoot content of Mo in

Arabidopsis is under genetic control (broad sense heritability

H2 = 0.48), with an approximately 20-fold difference between the

highest and lowest Mo levels observed (Figure 1A) across the

diverse set of Arabidopsis accession tested. Shoot Mo content was

found to be not normally distributed around the population

mean (p,0.001), with 12 accessions (Ler-0, Ler-1, Ler-2, Van-0,

Zdr-6, Kondara, KZ-9, Shadahara, Sorbo, Ll-0, Ts-5, Ws-0)

accumulating less than 0.7 mg g21 Mo, and 9 accessions (Ull2-5,

Bur-0,Cvi-0, Nfa-10, Tamm-2, Tamm-27, Fab-2, Var2-1, Spr1-6)

accumulating more than 3.1 mg g21 Mo (grey bars in Figure 1A).

We had previously identified Ler as a low Mo accumulating

accession of Arabidopsis [6] and all Ler lines tested (which are

likely genetically identical), were low in Mo. Shoot tissue of Ler-0

contains 70–80% less Mo compared to Col-0 (Figure 1B), and this

difference from Col-0 is observed for Ler-0 when plants were

grown with a broad range of Mo concentrations in the nutrient

solution (Figure 1C). We selected this accession for further study

due to the extensive genetic resources available for this accession,

including the availability of genome sequence data and recombi-

nant inbred lines (RIL), along with high density genotype data

[7,8].

The analysis of Mo in shoot and root tissue of hydroponically

grown Ler-0 and Col-0 plants confirmed the low shoot Mo content

of Ler-0 (Figure 2A). Furthermore, Ler-0 also has a reduced Mo

content in roots when compared to Col-0, suggesting that the low

shoot Mo content is not due to enhanced accumulation of Mo in

the roots, but rather to reduced Mo uptake by the roots. Grafting

experiments were performed to determine if low shoot Mo in Ler-

0 is determined by the root or shoot. Shoots and roots from 5-day

old seedlings of Ler-0 and Col-0 were reciprocally grafted, and

grafted plants grown for 4 weeks in soil with short days. Plants with

Ler-0 roots had significantly lower (p,0.01) shoot Mo contents

than plants with Col-0 roots, whether the shoots were Ler-0 or

Col-0. The genotype of the shoot stock had no significant effect

on Mo content of the shoot (Figure 3). From this it was concluded

that the low shoot Mo content of Ler-0 is driven solely by the

roots.

Mapping the Loci Responsible for the Low Mo Content of
the Landsberg Erecta Arabidopsis Accession

In a Ler-06Col-0 cross 51 of the 200 F2 progeny analyzed were

found to have low shoot Mo contents similar to the Ler-0 parent.

This ratio is consistent with the hypothesis that the low Mo

phenotype in Ler-0 is controlled by a single locus, or several closely

linked loci (p,0.00001 by Shapiro test for normality). Similar

segregation patterns were observed in an F2 population derived

from a Ler-0 cross to an ionomics mutant (14501) in the Col-0

background. To obtain a rough map position, a bulk segregant

analysis (BSA) experiment [9] was performed with microarray

detection of genetic markers [10,11], using (14501[Col-0]6Ler-0)

F2 plants. Plants with the lowest shoot Mo contents (n = 40) and

plants with Mo shoot contents similar to Col-0 (n = 40) were

pooled separately, and genomic DNA from each pool hybridized

to the Affymetrix Arabidopsis ATH1 DNA microarray. Using the

oligonucleotide probes on the DNA microarray which show

differential hybridization between Ler-0 and Col-0 as genetic

markers (Single Feature Polymorphisms or SFP), the locus

responsible for the low shoot Mo content in Ler-0 was mapped

to an area centered at 11 Mb on chromosome 2 (Figure 4A).

To further narrow down the map position of the locus

controlling low shoot Mo content in Ler-0, the Col-46Ler-0

RIL population [12] was used to identify seven recombinants in

the mapping region we had previously determined from the BSA.

DNA microarray-based genotyping of this Col-46Ler-0 RIL set

was used to further refine the break points between Col-4 and Ler-

0 genotypes [7,8]. The shoot Mo contents of these seven RILs

showed a clear segregation with the genetic markers for Col-4 and

Ler-0 within our mapping region, allowing us to classify these lines

as having either the Col-0 or the Ler-0 allele for the low Mo locus

(Figure 4B). The precise breakpoints identified by Singer et al. [8]

allowed the mapping interval to be narrowed to 346 kb on

chromosome 2 (10.771 to 11.056 Mb), an interval containing 81

genes. Candidate genes from this interval were selected based on

annotation and expression differences between Col-0 and Ler-0

(T. Singer & S. Briggs, personal communication). T-DNA

insertional alleles for these candidate genes were obtained, and

the plants scored for low shoot Mo content compared to wild type

Col-0. A null mutant (mot1-1) with an insertion disrupting the

coding region of the gene At2g25680 (Salk_118311, Figure 4D),

was observed to phenocopy the Ler-0 low shoot Mo content when

grown in either soil (Figure 1B), or shoots and roots when grown

hydroponically (Figure 2). Differences in the absolute concentra-

tions of Mo between Col-0 in Figure 2A and 2B are related to

differences in growth conditions between these two experiments.

The At2g25680 gene was originally predicted to be a putative

sulfate transporter, and named AtSULT5.2 [13]. We have renamed

this gene MOT1 (molybdenum transporter 1) based on its

phenotype of low shoot Mo content. Furthermore, we detected

no change in the shoot content of S in mot1-1 (Figure 5) or in the

content of Li, B, Na, Mg, P, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, As,

Se, and Cd, providing additional support for the reannotation of

AtSULT5.2 as MOT1. Quantitative real-time RT-PCR of the

MOT1 transcript in mot1-1 and Ler-0 revealed that both these low

shoot Mo lines had significantly reduced expression levels of

MOT1 in both root and shoot tissue, compared to Col-0 (Figure 6).

Van-0, a second low shoot Mo accession (Figure 1B) was also

confirmed by qRT-PCR to have low expression of MOT1

(Figure 6). Significantly, we observed no differences in shoot S

content between Col-0 and either Ler-0 or Van-0 (Figure 5).

To establish if MOT1 is the locus responsible for the low shoot

Mo content of Ler-0 and Van-0, we crossed mot1-1 and Col-0 to

both Ler-0 and Van-0 to test for complementation (Figure 7). F1

Author Summary

Plants must acquire all the mineral nutrients they require
for survival from the complex chemical and biological
environment of the soil. A better understanding of the way
plants do this would not only allow improvements in
sustainable agricultural productivity, but could also
improve human health through enhancement of the
nutritional quality of foods. One such essential mineral
nutrient required by plants is molybdenum (Mo), which is
needed as a cofactor in several critical biochemical
reactions, including the utilization of nitrogen from the
soil. By searching through numerous natural populations
of Arabidopsis thaliana (Arabidopsis), we were able to
identify a DNA deletion that drives the natural variation in
Mo accumulation observed in these populations. This
deletion reduces expression of a gene (MOT1) that the
authors establish to encode a mitochondrially localized
molybdenum transporter. Loss of expression of MOT1 in
the roots of Arabidopsis causes a significant reduction in
whole plant Mo accumulation, though the mechanism by
which this Mo transporter regulates whole plant Mo from
the mitochondria remains to be established.

Mitochondrial Mo Transporter in Arabidopsis
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plants from the Ler-06Col-0 and Van-06Col-0 crosses contained

significantly different levels of shoot Mo from either parent

(p,0.005 for all pairwise t-tests), suggesting that the Col-0 allele of

the low Mo locus could only partially complement the Ler-0 allele.

F1 plants from the Ler-06mot1-1 and Van-06mot1-1 crosses were

found to have significantly lower shoot Mo contents than similar

plants from the Ler-06Col-0 and Van-06Col-0 crosses

(p,0.0005). Such data establishes that mot1-1 is deficient in

complementing the low shoot Mo content of both Ler-0 and Van-

0. This is strong evidence confirming that the Ler-0 and Van-0

alleles are allelic with the recessive loss of function allele of MOT1.

To determine the polymorphism in the MOT1Ler-0 allele causal

for low shoot Mo content, we sequenced MOT1, including 1 kb

upstream and 200 bp downstream of the coding sequence in both

Ler-0 and Van-0. We observed 18 polymorphisms in common

between Ler-0 and Van-0, as well as several polymorphisms

unique to each accession, when compared to the Col-0 reference

sequence. These include 15 single nucleotide polymorphisms

(SNPs) in the 1 kb upstream region, two SNPs that change two

amino acids (I68T and V30L) in the coding region, and a

53 base pair (bp) deletion 27 nucleotides upstream from the

translation start site (Text S1). The deletion includes the TATA

box (Figure 4C). The altered expression of MOT1 in both of the

low shoot Mo accessions, Ler-0 and Van-0, suggested that this 59

deletion may be the causal polymorphism driving low shoot Mo

content in these accessions. To obtain further evidence that this

deletion is the casual polymorphism driving low shoot Mo content,

we performed an association analysis by sequencing the MOT1 59

promoter region containing the 53 bp deletion in Ler-0 and Van-0

across 92 of the accessions originally screened for shoot Mo

content (Text S2). Combining this information with the Nordborg

[5] genotypes, we were able to scan for significant genetic

associations with low shoot Mo content. The 53 bp deletion

identified in Ler-0 and Van-0 was found in seven of the 92

accessions tested, and all accessions with the deletion had low

shoot Mo content compared to the overall distribution of shoot

Mo contents (Figures 4C and 1A). The distribution of p-values for

genome-wide associations with shoot Mo contents were skewed

towards significance, suggesting a relationship between Mo

content and the underlying population structure (Figure S1),

Figure 1. Genetic and physiological analysis of mo in arabidopsis. A: Shoot Mo content across 98 accessions. Histogram of shoot Mo content
in 98 Arabidopsis accessions which include 94 from Nordborg et al. (2005). Black bars indicate the distribution of lines having the mot1Ler-0 deletion.
Grey lines denote the low and high accessions, as detailed in the text. The black arrow denotes Col-0 Mo content. Shoot Mo concentrations are
normalized so that the average of the Col-0 and Cvi-0 means included in each growth tray are equivalent across all trays. Plants were grown in soil for
5 weeks. Data represents median values (average n = 11.6) for each accession. B: Mo accumulation of Col-0, Ler-0, Van-0, mot1-1, st5.1-1 and the mot1-
1st5.1-1 double mutant. Data is shown as a five number summary (the minimum, 1st quartile, median, 3rd quartile and maximum) for each line, and is
summarized from an average of 10 replicate plants for each line. Lower case letters denote groups that are not significantly different from each other
at P,0.01 with the Holm correction. Plants were grown in soil for 5 weeks. C: Shoot Mo accumulation in Arabidopsis in response to increasing levels
of Mo in the nutrient solution. Mo accumulation in Col-0 (Black) and Ler-0 (Red) after 5 weeks of growth in soil at varying concentrations of Mo in the
watering solution. Data is shown as a five number summary for each line, and is summarized from 6 replicate plants for each treatment.
doi:10.1371/journal.pgen.1000004.g001

Mitochondrial Mo Transporter in Arabidopsis
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making the evaluation of individual loci difficult. However, when

kinship and population structure were taken into account [14], the

presence of the 53 bp deletion was found to be highly significantly

associated with low shoot Mo content (p,0.0001) and accounted

for ,14% of the total variation in Mo accumulation. Once the

MOT1Ler loci is accounted for, there were several other markers

which showed significant associations with Mo accumulation, and

these may represent additional loci of interest (Text S3).

To establish that MOT1 has the capacity to transport Mo, the

Arabidopsis MOT1 cDNA was expressed in yeast. Yeast expressing

MOT1 were observed to specifically accumulate five time more

Mo than vector only controls (p,1E-14, Figure 8). Furthermore,

the accumulation of no other element, including Na, Mg, P, S, K,

Ca, Mn, Fe, Co, Ni, Cu, Zn, and Cd, was observed to be altered

more than 20% in two independent experiments. This evidence is

consistent with MOT1 being a specific molybdate transporter.

Localization of MOT1 Expression and Sub-Cellular
Localization of the MOT1 Protein

To determine the tissue localization of MOT1 expression, Col-0

was transformed with a 1.8 kb MOT1 promoter-GUS construct.

In all of the promoter-GUS lines examined, GUS staining was

observed in the roots, hypocotyls and leaves (Figure 9). In roots,

GUS staining was most pronounced just behind the growing root

tip in the primary root (Figure 9A, B), and the lateral roots (data

not shown). Cross sections show that the strong GUS staining

behind the root tip was restricted mainly to the protodermal cells

(Figure 9B2). At the beginning of the elongation zone, GUS

staining was mainly restricted to the epidermis and cortex

(Figure 9C2). Thereafter, GUS staining in the root also occurred

in the vascular tissue (Figure 9D). In the hypocotyls the GUS

staining was also mainly restricted to the vascular tissue (Figure 9E).

In fully expanded leaves GUS staining was found in the vascular

tissue. However, the main vein was less intensely stained than the

lateral veins (Figure 9F). During flowering GUS activity was also

visible in the vasculature of the stem leaves but not in the

vasculature of the stem, flowers or developing siliques including

seeds (data not shown).

The sub-cellular localization of the MOT1 protein was

determined by transiently expressing a MOT1 C-terminal GFP

translational fusion construct in shoot derived Col-0 protoplasts

(Figure 10A–10D), and by stable ectopic expression of a similar

Figure 2. Mo content in the roots and shoots of plants grown
hydroponically. Mo content in Col-0 and Ler-0 after 4 weeks growth
(A), and Col-0, mot1-1 and the mot1-1st5.1-1 double mutant after 3-
weeks growth (B). Presented data are the means of at least three
biological replicates, and error bars represent6SE.
doi:10.1371/journal.pgen.1000004.g002

Figure 3. Shoot mo accumulation in Ler-0 is driven by the
roots. Mo contents in Arabidopsis plants grafted at 5 days after
germination and transferred to soil for growth were determined in self
grafted plants of Col-0 (n = 32) and Ler-0 (n = 11), Col-0 shoot grafted
onto Ler-0 root (n = 22), and Ler-0 shoot grafted onto Col-0 root (n = 15).
Data is shown as a five number summary (the minimum, 1st quartile,
median, 3rd quartile and maximum) for each line with outliers denoted
by small circles.
doi:10.1371/journal.pgen.1000004.g003

Mitochondrial Mo Transporter in Arabidopsis
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construct in Col-0 (Figure 10E–10G). The GFP signal was

observed to co-localize with the mitochondrial marker F-

ATPase–RFP in shoot derived protoplasts transiently expressing

the construct, and with the Mitotracker Red dye in roots of the

stably transformed lines. The experimentally determined mito-

chondrial localization for MOT1 is in good agreement with

several sub-cellular prediction programs (summarized at the

SUBA database, [15]), which predict a mitochondrial targeting

sequence at the N-terminus of MOT1.

Phylogenetic analysis of the sulfate transporter family in

Arabidopsis and rice [13,16] reveal two Arabidopsis genes,

MOT1 and ST5.1, to have diverged significantly from the other

sulfate transporter family members, and each Arabidopsis gene has

a rice ortholog. Given the sequence similarity between ST5.1 and

MOT1, the shoot Mo content of a st5.1-1 T-DNA insertion line

(Salk_015044) was analyzed to determine if it also shows the low

Mo phenotype observed in mot1-1. We were unable to detect any

significant changes in the Mo content of shoot of st5.1-1 when

Figure 4. The locus determining low shoot Mo content in Ler-0 Maps to the MOT1 Gene. A: Bulk Segregant analysis of the low shoot Mo
content in an F2 population from a Col-06Ler-0 cross.Data are presented as a scaled pool hybridization difference (SPHD), representing the difference
between the hybridization of the two pools at the SFPs, scaled so that a pure Col-0 pool would be at 21 and a pure Ler-0 pool would be at 1. The
pools were prepared from F2 plants with a low Mo content (n = 40) and F2 plants with a high Mo content (n = 40). SFPs were scored after
hybridization of genomic DNA prepared from these pools to Affymetrix ATH1 DNA microarrays. Dotted lines denote likely location of the causal loci.
B: Shoot Mo content and genotype on chromosome II of selected Col-06Ler-0 RILs. The genotype of each of the 106 markers determined by Singer et
al. (2006) for chromosome II are shown; Col-0 alleles are denoted in black, Ler-0 in white. The average shoot Mo content (n = 12) for each line is
shown, and, those with Col-0 shoot levels of Mo are underlined. Blue lines indicate the narrowed mapping interval on chromosome II (10.771 to
11.056 Mb). C: Structure of the MOT1 gene. The DNA sequence of MOT1 showing location of the T-DNA insert in mot1-1, and the 50 base pair
deletion in the 59 UTR in the seven accessions with low shoot Mo content aligned with the Col-0 DNA sequence, with the TATA box underlined.
doi:10.1371/journal.pgen.1000004.g004
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grown in soil and the roots and shoot Mo accumulation of a mot1-

1/st5.1-1 double mutant was not significantly different from the

mot1-1 mutant alone. (Figures 1B and 2B). The Mo content of

yeast heterologously expressing the ST5.1 cDNA was found not to

be reproducibly significantly different from vector only controls in

two independent experiments (Figure 8). Thus, we can find no

evidence that ST5.1 is also a Mo transporter. A search of the

PiiMS database [4]; www.purdue.edu/ionomics) found four T-

DNA lines with insertions in sulfate transporters, representing the

ST1, ST2 and ST3 subfamilies (At3g15990, At4g02700,

At1g77990, At4g08620), none of which accumulated significantly

different levels of Mo than Col-0.

Discussion

Molybdenum is one of the 14 essential minerals required by

plants. Despite its importance as a cofactor in processes ranging

from nitrogen metabolism to hormone biosynthesis, we still know

relatively little about the regulation, uptake and transport of this

transition metal. Using an ionomics approach to identify genes

that affect the elemental composition of plants, we identified

MOT1 as the causal gene driving reduced shoot Mo in various

accessions of Arabidopsis. We have combined several lines of

evidence to support this conclusion. First, a 54 bp deletion in the

promoter of MOT1 was found to be strongly associated

(p,0.0001) with low shoot Mo content across 92 Arabidopsis

accessions. Given the strong association between the presence of

this deletion and low shoot Mo content, and the rate of linkage

disequilibrium decay in Arabidopsis [17], if this deletion is not the

causal polymorphism, it is within 20 kb of the causal polymor-

phism. Second, deficiency complementation with a T-DNA allele

(SALK_118311) indicates that the MOT1 allele found in Ler-0 and

Van-0, accessions with a low content of shoot Mo, is responsible

for this reduced Mo content. Third, MOT1 shows reduced

expression in both Ler-0 and Van-0 compared to Col-0, and the

mot1-1 null allele in the Col-0 background phenocopies the low

shoot Mo observed in both Ler-0 and Van-0.

Given the fact that MOT1 belongs to the sulfate transporter

superfamily, and can transport Mo when expressed in yeast, it is

easy to imagine how reduced expression of a Mo transporter could

lead to low shoot Mo content, either via reduction in uptake from

the soil and/or translocation to the shoot. In Col-0, the functional

MOT1 allele is strongly expressed in the root differentiation zone

and in mature vasculature tissue of both the roots and the shoots,

suggesting a defect in either or both roles could be the possible

explanation for the observed phenotype. Our grafting experiments

clearly show that the Mo defect is associated with the roots.

Surprisingly, the MOT1 protein is not localized to the plasma

Figure 5. Sulfur accumulation in shoots of Col-0, Ler-0, Van-0,
mot1-1, st5.1-1 and the mot1-1st5.1-1 double mutant plants. Data
is shown as a five number summary (the minimum, 1st quartile, median,
3rd quartile and maximum) for each line, and is summarized from an
average of 10 replicate plants for each line. No significant differences
were observed. Plants were grown in soil for 5 weeks. The data is from
the same plants as in Figure 1B.
doi:10.1371/journal.pgen.1000004.g005

Figure 6. Expression of MOT1 in Col-0, Ler-0, Van-0 and mot1-1.
Steady state MOT1 expression level was compared in shoots (A) and
roots (B) of Col-0, Ler-0, Van-0, and mot1-1 using quantitative real time
PCR (qRT-PCR). RNA was isolated from shoot and root of plants grown
in soil for 5 weeks under short day conditions For normalization across
samples expression of the Actin 1 gene was used and the relative
expression of MOT1 calculated using the 2(2DCT) method. Presented
data are the means of at least three biological replicates, (2̂(DCT)) each
analyzed 4 times by qRT-PCR. Error bars represent6SD.
doi:10.1371/journal.pgen.1000004.g006

Mitochondrial Mo Transporter in Arabidopsis
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membrane of roots cells where it could function in uptake into

cells, but rather MOT1 is localized to the mitochondria. Based on

these observations, and the grafting data, it is hypothesized that

MOT1 regulates whole plant Mo accumulation at the level of the

mitochondria in the root. Interestingly, the first committed step in

molybdopterin biosynthesis has recently been shown to occur in

the mitochondria, and this is consistent with the mitochondria

acting as a control point in regulating whole plant Mo content [3].

Given that characterized members of the sulfate transporter

superfamily are SO4
22/H+ co-transporters, we speculate that

MOT1 is transporting MoO4
22 from the acidic mitochondrial

intermembrane space to either the cytoplasm or the matrix.

While we have localized MOT1 to the mitochondria, the

question of how Mo enters the root cells remains. Based on its

homology, ST5.1-1 is a candidate for this role, however a ST5.1

C-terminal GFP fusion was found to localize to the vacuole

(Buchner and Hawkesford, unpublished). Additionally, the st5.1-1

T-DNA insertional mutant does not have altered shoot Mo

content, and heterologous expression of ST5.1 cDNA in yeast has

no effect on Mo accumulation. ST5.1 also appears not to interact

with MOT1 since the double mutant st5.1mot1-1 showed the same

reduction in Mo content as mot1-1.

Alternatively, the putative plasma membrane molybdate

transporter could be from a family unrelated to the SUL gene

family, as multiple gene families have been shown to transport

Zn2+ and Ca2+, for example [18,19]. Finally, it remains possible

that MoO4
22 is transported across the plasma membrane through

a promiscuous transporter(s) with broad ion specificity as shown

for E. coli [20]. Both sulfate and phosphate starvation have been

shown to increase Mo accumulation, which suggests that Mo may

be transported across the plasma membrane by sulfate and

phosphate transporters [21,22].

Sequencing results show that the MOT1Ler-0 allele has a

frequency of approximately 7% (7/92) in the natural diversity

collection of Arabidopsis obtained from populations collected from

a broad geographical region. This frequency is higher than we

would expect if the lowered Mo content strongly reduced fitness.

For example, the overall reduction in Mo content might cause a

reduction in molybdopterin, negatively impacting the activity of

MoCo containing enzymes like nitrate reductase. However, we

found no significant reduction in growth, N accumulation or

nitrate reductase activity in mot1-1 lines when grown with nitrate

as the sole N source (data not shown). This suggests that MoCo

levels are not limiting in mot1-1. Alternatively, loss of MOT1

function might increase the fitness of Arabidopsis by some as yet

unknown process, and the association of Mo with population

structure is consistent with Mo accumulation having a selective

effect. However, an analysis of haplotype sharing [23] around this

gene gave no indication of recent selection on the MOT1Ler-0 allele

(C. Toomajian, unpublished). Finally, it has been noted that large

effect QTLs’ might generally be too rare to be detected by

association mapping [5,17,24]. The MOT1Ler-0 allele provides a

clear counter-example, demonstrating that, given the dense

marker maps that are now obtainable, association mapping will

at least sometimes be a useful tool for finding such loci.

While this paper was in review, Tomatsu et al. [25] also

reported that MOT1 is the locus responsible for low Mo in Ler.

However, they did not confirm this directly by complementation.

Here we conclude that MOT1 is the locus responsible for low Mo

in Ler-0 and Van-0 based on genetic complementation, and

further show that a deletion in the 59 UTR of MOT1 is strongly

associated with low Mo in 92 different Arabidopsis accessions. The

sequence for the MOT1Ler locus reported by Tomatsu et al. [25],

derived from the Cereon resequencing project [7], differs from the

results presented here by two additional amino acid altering SNPs.

Figure 7. Complementation Studies Indicate MOT1 Natural
Variant Is Responsible for Reduced Shoot Mo Content in Ler-0
and Van-0. Shoot Mo content of Col-0, Ler-0, Van-0, mot1-1, and F1
plants from crosses between Col-06Ler-0, Col-06Van-0, Ler-06mot1-1,
Van-06mot1-1and Col-06mot1-1 in 5-week old soil grown plants are
shown. Data is represented as a five number summary (the minimum,
1st quartile, median, 3rd quartile and maximum) for each line, and is
summarized from an average of 21 replicate plants for each line. Lower
case letters denote groups that are not significantly different from each
other at P,0.01 with the Holm correction.
doi:10.1371/journal.pgen.1000004.g007

Figure 8. Cell Associated Mo in Yeast Expressing Arabidopsis
MOT1. Cell associated Mo in yeast transformed with either p416 vector
only or vector containing cDNAs encoding ST5.1 and MOT1 after
growth for 24 hours. Data is represented as a five number summary
(the minimum, 1st quartile, median, 3rd quartile and maximum) for each
line, and is summarized from n = 32 replicate yeast cultures for each
genotype.
doi:10.1371/journal.pgen.1000004.g008
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The MOT1Ler sequence presented here is based on resequencing

after PCR amplification, and is consistent with that published by

Clark et al. [26]. Furthermore, here we conclude that MOT1 is

localized to the mitochondria. This is in contrast to Tomatsu et al.

[25], who suggest that MOT1 is localized to the plasma

membrane and the secretory and/or endocytic pathways. We

attribute these inconsistencies to differences in constructs and

localization systems used in the two studies. To determine the

localization of MOT1 Tomatsu et al. [25] reported that they

prepared a construct in which GFP was fused to the N-terminus of

MOT1, blocking the predicted mitochondrial localization signal,

and likely mislocalizing the GFP::MOT1 fusion protein in the

tobacco BY-2 cells used for transient expression. Results reported

here were obtained using a C-terminally fused MOT1::GFP

construct that was expressed both transiently and stably in

Arabidopsis and that clearly localized to the mitochondria.

In summary, natural variation has been used here to identify a

mitochondrially localized Mo transporter that controls both root

and shoot Mo content in Arabidopsis. This discovery demonstrates

that natural accessions of Arabidopsis are a rich source of

interesting alleles, useful for the functional characterization of

genes of unknown function. Furthermore, the identification of

MOT1 as a regulator of total plant Mo accumulation provides

molecular insight into plant Mo homoeostasis.

Note added in proof: While this paper was in review, Tejada-

Jimenez et al. [27] published the identification and characteriza-

tion of the MOT1 ortholog in Chlamydomonas reinhardtii.

Materials and Methods

Plant Materials
All accessions were obtained from the ABRC or Lehle seeds.

The insertion of the T-DNA into the MOT1 coding region in mot1-

1 and into the ST5.1 coding region in st5.1-1 were verified by

sequencing, and the mutant was confirmed to be null for MOT1

expression by RT-PCR (Figure S2). All T-DNA lines analyzed

were homozygous for the T-DNA insertion.

General Plant Growth Conditions
Plants used for elemental profiling by ICP-MS analysis were

grown in a controlled environment, 8 h light:16 h dark

(90 mmol?m22?s21 light intensity) and 19 to 22uC [6]. Briefly,

seeds were sown onto moist soil (Sunshine Mix LB2; Carl Brehob

& Son, Indianapolis, Indiana, United States) with various elements

added at subtoxic concentrations [As, Cd, Co, Li, Ni, Pb, and Se

[6]] and stratified at 4uC for 3 d. Plants were bottom-watered

twice per week with 0.256 Hoagland solution in which iron was

replaced with 10 mM Fe-HBED [N,N9-di(2-hydroxybenzyl)ethy-

lenediamine-N,N9-diacetic acid monohydrochloride hydrate;

Strem Chemicals, Inc., http://www.strem.com). For elemental

analysis after 5-weeks, plants were nondestructively sampled by

removing one or two leaves. The plant material was rinsed with

18 MV water and placed into Pyrex digestion tubes. To alter the

concentration of Mo in the watering solution, 0.256 Hoagland

solution was made without any MoO4
22 which was then

Figure 9. Tissue Localization of Expression of MOT1 Using GUS Activity Visualized by Histochemical Staining. Pictures represent
histochemical analysis of GUS activity in Arabidopsis plants stably transformed with a MOT1-promoter-GUS construct. A: Primary root shown from
root tip to the beginning of the lateral root development. Boxes denote close-ups shown in B,C and D; B: Root tip and cross section shown in insert
panel B2. C: Root elongation zone with a cross section shown in insert panel C2; D: Root shown from between the elongation zone and the start of
the lateral root production zone; E: Hypocotyl; F: Fully expanded leaves. Pd – protoderm; co – cortex; vb vascular bundle; ep – epidermis.
doi:10.1371/journal.pgen.1000004.g009
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added back in varying concentrations from a solution of dissolved

MoO3.

Hydroponic Growth of Arabidopsis
At Purdue University seeds of Col-0 and Ler-0 were germinated

in the dark at 4uC for 2 days on 0.56Murashige and Skoog media

with 0.56 MS Vitamins (Caisson Laboratories, Inc.), 3 mg/L

Benomyl [methyl 1-(butylcarbamoyl)-2-benzimidazolecarbamate;

Sigma, http://www.sigmaaldrich.com), and 10 mM Fe-HBED

solidified with 1.5% agar in 1.5 ml eppendorf microcentrifuge

tubes before being transferred into growth conditions described

above. For the first 5 days after germinationthe tubes containing

the seedlings were kept covered to maintain high humidity. The

bottom of each tube was then removed and the tube inserted into

foam floats placed in tubs containing ,4 L of 0.256 Hoaglands

solution with 10 mM Fe-HBED. The solution was changed weekly

until harvest at 4 weeks from planting. Leaves were harvested as

described above. The roots were rinsed twice in distilled water and

a third time in double distilled water before being put in Pyrex

digestion tubes. At Rothamsted seeds of Col-0, mot1-1 and

st5.1mot1-1 were germinated on 0.5% agarose in 0.5 ml tubes

(with excised lower portion) in racks placed on boxes (with

transparent lids) filled with 700 ml nutrient solution: 1.0 mM

KNO3, 0.5 mM Ca(NO3)2, 1.0 mM KH2PO4, 1.0 mM MgSO4,

100 mM FeEDTA, 30 mM H3BO3, 5 mM MnCl2, 1 mM ZnCl,

1 mM CuCl and 0.1 mM Na2MoO4. To synchronize germination,

the boxes were incubated at 4uC over night and then transferred to

a controlled growth room under light/dark cycle 16/8h at 20uC.

The nutrition solution was exchanged 2 times per week. After 3

weeks, shoot and root materials were harvested. Roots were

washed twice by dipping in deionised water and dried on paper

towels before freezing in liquid nitrogen.

Tissue Elemental Analysis
At Purdue University tissue samples were dried at 92uC for 20 h

in Pyrex tubes (166100 mm) to yield approximately 2–4 mg of

tissue for elemental analysis. After cooling, seven of approximately

100 samples from each sample set were weighed. All samples were

digested with 0.7 ml of concentrated nitric acid (OmniTrace;

VWR Scientific Products; http://www.vwr.com), and diluted to

6.0 ml with 18 MV water. Elemental analysis was performed with

an ICP-MS (Elan DRCe; PerkinElmer, http://www.perkinelmer.

com) for Li, B, Na, Mg, P, S,K, Ca, Mn, Fe, Co, Ni, Cu, Zn, As,

Se, Mo, and Cd. All samples were normalized to calculated

weights, as determined with an iterative algorithm using the best-

measured elements, the weights of the seven weighed samples, and

the solution concentrations, implemented in the PiiMS database

[4]. Alternatively, for the data shown in Figure 2B, samples were

analyzed at Rothamsted. Frozen plant material was homogenized

with a mortar and pestle in liquid nitrogen. After transfer into 2 ml

tubes, the plant material was freeze-dried. Samples were acid

digested (83% HNO3 & 13% (70%) HClO4) and analyzed by ICP-

MS (Agilent ICP-MS 7500ce, Agilent Technologies, Santa Clara,

CA, US) [28].

Heritability and Association Analysis
Broad sense heritability was calculated using a general ANOVA

to account for line and growth tray variation. A linear mixed

model adjusting population structure confounding effects as in

[14,29] was used to test the marker-trait associations. A brief

summary of the model is given below,

y~XazQbzIuze; 29½ �

where y is the vector of phenotype, a is the vector of fixed allele

effects, b is the vector of subpopulation effects, u is the vector of

random effects reflecting the genome-wide relatedness, and X, Q,

Z are known incidence matrices relating the observations to fixed

and random effects, respectively.

The variance of phenotype was modeled as

Var yð Þ~2K�s2
gzIs2

e ;

Thus, the phenotypic variance can be partitioned into two parts:

s2
g, the genetic variance attributable to genome-wide effects, and

s2
e, the residual variance.

Figure 10. Subcellular localization of MOT1. MOT1::GFP was
transiently expressed in Arabidopsis leaf protoplasts co transformed
with F1-ATPase::RFP: (A) DIC (B) GFP filter (C) RFP filter and (D) merged
image. Roots of Arabidopsis stably transformed with MOT1::GFP and
stained with Mitotracker Red: (E) Red Filter (F) GFP Filter (G) Merged.
doi:10.1371/journal.pgen.1000004.g010

Mitochondrial Mo Transporter in Arabidopsis

PLoS Genetics | www.plosgenetics.org 9 2008 | Volume 4 | Issue 2 | e1000004



The Q and K* matrix was the same as in [14], with Q being the

population assignments by Structure [30] and K* being the

kinship coefficient matrix, estimated as the proportion of shared

haplotypes between individual pairs.

DNA Microarray-Based BSA
DNA microarray-based BSA was realized as previously

described [11,31]. Briefly, SFPs were identified between Col-0

and Ler-0 by hybridizing labeled genomics DNA from each one of

the accessions to Affymetrix ATH1 microarrays and comparing

them to Col-0 hybridizations downloaded from http://www.

naturalvariation.org/xam. Two genomic DNA pools from an F2

population of a cross between Ler-0 and the 14501 mutant in the

Col-0 background were created and hybridized to separate DNA

microarrays. Each one of the pools contained plants with either

shoot Mo contents similar to Col-0 (‘‘control’’ pool) or low shoot

Mo contents similar to Ler (‘‘Low Mo’’ pool). At loci unlinked to

the low Mo phenotype, the pools should have equivalent amounts

of each genotype, and the hybridization signal at each SFP should

be intermediate between the two parent accessions, for an average

difference between the two DNA microarrays of zero. At linked

loci, the difference between the two DNA pools should be

approximately two-thirds the difference between the parent

accessions. By smoothing the signal across multiple SFPs, noise

is reduced and the peak of the differences in hybridization signal

will correspond to the chromosomal region of the loci controlling

the low Mo trait. Raw hybridization data (.CEL files) for each

probe on the ATH1 DNA microarrays used in these experiments

have been submitted to the Gene Expression Omnibus (http://

www.ncbi.nlm.nih.gov/geo) for public distribution (Reference

#GSE10039).

Grafting of Arabidopsis
Seedlings to be grafted as previously described by [10]. Plants

were harvested for analysis of shoot Mo content 4 weeks after

transfer to soil. Postharvest analysis of graft unions was performed

under the stereoscope to identify any adventitious root formation

from grafted individuals. Individuals with adventitious roots

emerging at or above the graft union or without a clear graft

union were eliminated from subsequent analyses.

Quantitative Real-Time PCR
Plants were first analyzed by ICP-MS and further used to

determine MOT1 transcript levels as described previously by Rus

et al., [10]. For MOT1 (At2g25680) transcript quantification the

following primers were used: forward primer 59-GGT GGG TGT

GTG GCA CTG T-39 and reverse primer 59-AGC ACA CCA

ACC GGA AAC TT-39. Four reactions were done per biological

sample and three independent replicate samples per genotype

were used. to evaluate the transcript abundance of MOT1. Data

was analyzed using the SDS software (Applied Biosystems version

1.0), following the method of [32]. Ct values were determined

based on efficiency of amplification. The mean Ct values were

normalized against the corresponding ACTIN 1 gene (At2g37620)

and Ct values calculated as (Ct AtMOT1- Ct Actin1). The expression of

MOT1 was calculated as the 22DCt method. The final standard

error was estimated by evaluating the 22DCt term using 22DCt plus

standard deviation and 22DCt minus the standard deviation [32].

Cloning and Sequencing of MOT1 Genomic DNA
Genomic DNA was isolated from 10-day-old Arabidopsis Col-0

seedlings using a DNeasy plant mini kit (Qiagen, Valencia, CA).

MOT1 clones containing approximately 1 kb upstream to the

ORF, and approximately 0.250 kb downstream to the ORF were

sequenced. The following primers were used to amplify different

PCR products spanning the selected genomic region . Forward

primers were: FP1 59-CGA GCA AAC TAG AAA AGA GAT

CG-39, FP2 59-CAG GTG TTA GCT GTT TAA CTG-39, FP3-

59-GCG ATT TCG TCT ACC GC-39 and FP4 59-GGT TTG

GAG CAA TGC C-39. The corresponding reverse primers were:

RP1 59-CAA AAA CCA AAG CGT TGA CA-39, RP2 59-GGA

CAC CGT AAA CTG C-39 and RP3 59-GGG AAG ATG TAG

GTG G-39. Conditions used in all PCR reactions were: initial

denaturation 94uC followed by 30 cycles of 94u C 30 sec, 50u C

40 sec, 72u C 1 min 30 sec and final extension at 72u C for

10 min. All PCR products were cloned using TOPO XL PCR

cloning kit (Invitrogen Corporation, Carlsbad, CA), and se-

quenced using Big dye terminator v 3.0 method (Applied

Biosystems Foster city, CA) with T7 and universal M13

primers.

Cloning of MOT1 cDNA
The MOT1 cDNA was isolated by RT-PCR. Oligonucleotide

primers MOT1-59 (59-ATG GAG TCT CAG TCT CAG AGA

GGT CAA-39) and MOT1-39 (59-TCA AGC ATG TTC ACC

GGA TTG CGG GGG-39) were designed to amplify the coding

sequence. Total RNA was extracted from roots of 4-week-old

Arabidopsis plants grown on solidified one-half Murashige and

Skoog + B5 vitamin medium using RNeasy Plant Mini Kit

(Qiagen, Hilden, Germany). Reverse transcription was carried out

at 50uC in 20 ul solution containing 1 ug total RNA, 0.5 ug oligo

(dT) primer, 10 nmol dNTPs and 200 units Superscript II reverse

transcriptase (Gibco BRL, Rockville, MD, USA). PCR was carried

out on the first-strand cDNA using Ex Taq DNA polymerase

(Takara) following the manufacturer’s protocols. After a standard

PCR of 30 cycles, aliquots were run on an agarose gel. The

fragment of putative size was cloned into a pGEM-T Easy vector

(Promega) and identified by DNA sequencing. For yeast

expression studies, the MOT1 cDNA insert from pGEM-T Easy

vector (Promega) was amplified using PCR with the primers (59-

CGG ACT AGT CCA TGG AGT CTC AGT CTC AGA GAG

GT-39) and (59-TCC GGA TCC TCA AGC GTA ATC AGG

AAC ATC GTA AGG GTA AGC ATG TTC ACC GGA TTG

CGG GGG-39), with an HA tag encoded by the reverse promoter.

The fragments were cloned into p416 GPD (-uracil (ura)) (ATCC

nos. 87360). Two separate MOT1::GFP fusion protein constructs

were cloned, one at Purdue (v1) and one at Rothamsted (v2). To

construct the MOT1::GFP(v1) fusion protein, MOT1 was

amplified from cDNA using PCR with 59-TGC TCT AGA

GCA TGG AGT CTC AGT CTC AGA GAG GT-39 (MOT1, 59

primer) and 59-TCC GGA TCC TTC CTC CTC CAG CAT

GTT CAC CGG ATT GCG GGG G-39 (MOT1, 59 primer)

primers. The PCR product was confirmed by sequencing and

cloned into the XbaI and BamHI sites of the 326-SGFP plasmid

(kindly provide by Inhwan Hwang, POSTECH, Korea) to created

chimeric GFP fusion constructs under the control of the 35S

promoter.

MOT1-Promoter-GUS and 35S-Promoter- MOT1::GFP (v2)
Fusion Constructs

The use of the two specific oligonucleotide primers 59-GGA

TCC GCA GTC GAG CTT ACC AAT TCT C-39 and 59-GGA

TCC GAA ACA GAG CAA TAA GCG TAT CTC-39 allowed

isolation of a 1778 bp MOT1-promoter DNA fragment (21801 to

221 from the translation start site) from Arabidopsis Col-0

genomic DNA by PCR. After subcloning in pGEM-Teasy

(Promega) and sequencing, the BamHI restriction sites in the
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primer sequences were used for further cloning of the promoter

DNA fragment into the BamHI site of the pBI101 vector

(Clontech, Mountain View, USA) harboring the promoterless b-

glucuronidase gene. For preparation of the MOT1::GFP(v2)

construct the full ORF without the stop codon (TGA) was

amplified from total cDNA by using the two specific oligonucle-

otide primers 59-GGA TCC AAT GGA GTC TCA GTC TCA

GAG AG-39 and 59-GGA TCC AGC ATG TTC ACC GGA

TTG CGG GG-39. The Bam HI restriction site replacing the stop

codon allowed the cloning of the coding DNA in frame to the GFP

gene in the binary vector pBIN19 [33], which contained the

cauliflower mosaic virus 35S-promoter-MCS-GFP cassette. The

binary plasmids were transformed into Agrobacterium tumefaciens

GV3101 (pM P90) [34] by the freeze/thaw method. Arabidopsis

Col-0 plants were transformed using the floral dip method (Clough

and Bent, 1998). Transgenic plants were selected on solidified K
MS media [35] containing 50 mg/l kanamycin sulphate. Kana-

mycin-resistant homozygous T3 progenies derived from 5

independent transgenic lines were used for analysis.

Cloning ST5.1 cDNA
Total RNA and first strand cDNA was isolated from Col-0

seedlings as described for qRT-PCR. The first strand cDNA was

used as a template to synthesize ST 5.1 cDNA using the following

primers: SpeI-FP 59-CGA CTA GTA TGG CGG TCG CAA

TAT CTG GGA GT-39 BamHI-HA-39RP 59-CGG GAT CCT

TAA GCG TAA TCC GGA ACA TCA TAC GGG TAG TTT

GCG AGT ATC GGG TT39. The reverse primer contained the

HA tag. PCR conditions are as follows: initial denaturation 94uC
followed by 30 cycles of 94u C 30 sec, 50u C 40 sec, 72u C 1 min

20 sec and final extension at 72u C for 10 min. PCR products

were cloned and sequenced as before. Plasmid DNA containing

ST5.1 HA were digested with SpeI and BamHI and the cDNA

fragment cloned into p416 GPD (Glycerol 3-phosphate dehydro-

genase promoter) using the same restriction enzymes. The ligated

products were chemically transformed into E. coli DH5a and the

positive clones were identified using a vector primer (FP-59-AAT

GGA GTG ATG CAA CCT-39) and the reverse primer BamHI-

HA-39RP HA.

Histochemical Staining of MOT1 Promoter-GUS Plants
Transgenic Arabidopsis Col-0 plants were germinated and

grown vertically on 0.56MS agar plates containing 1% sucrose.

Plants were transferred to 5 cm Petri dishes containing 2–4 ml

staining solution, containing 0.05% 5-bromo 4 chloro 3 indolyl b-

D glucuronic acid in 0.1 M sodium phosphate, 10 mM EDTA,

0.5 mM potassium ferricyanide, 0.5 mM potassium ferrocyanide,

0.3% triton X-100 and 10% methanol (pH 7.5). Vacuum

infiltration for 1 min was performed twice and the staining

reaction allowed to proceed in the dark at 37uC until the blue

indigo color appeared. After straining plant samples were rinsed

twice in 70% ethanol for 30 min then in 100% ethanol until

chlorophyll was removed. After staining and destaining samples

were analysed by optical microscopy.

Subcellular Localization of MOT1 in Arabidopsis
The MOT1::GFP(v1) construct and a mitochondria marker,

F1-ATPase-c-RFP [36], were co-transformed into purified Arabi-

dopsis leaf protoplasts using polyethyleneglycol method [37]. The

protoplasts were incubated for 20 hours at 22uC, and examined

under an epi-fluorescence microscope, Nikon Eclipse 80i (Nikon

USA, Melville, NY). Images of the mitochondria marker and the

green fluorescence of MOT1::GFP were sequentially taken within

1 second in the same cell, because plant mitochondria actively

moves along F-actins [38]. The filter sets used were 31303 for RFP

and 31001 for GFP from Chroma Technol Corp (Rockingham,

VT).

The plants containing stably transformed 35S-Promoter-

MOT1::GFP (v2) fusion constructs described above were grown

vertically on B5 plates under continuous light for two weeks. The

seedlings were harvested, and incubated with 0.2 mM Mito-

Tracker Red CM-H2X ROS (Invitrogen, Carlsbad, CA) for

10 min at room temperature, and examined using a confocal

microscope, Nikon Eclipse 80i (Nikon USA, Melville, NY) using

green HeNe laser line (543 nm) for the GFP and red HeNe laser

line (633 nm) for MitoTracker.

Functional Characterization of MOT1 in Yeast
The MOT1-HA and ST5.1-HA containing plasmids were

transferred into the Saccharomyces cerevisiae yeast wild-type strain

BY4742 (MATa his3 leu2 lys2 ura3) by the lithium acetate method

[39]. The transformants were selected on SD minimal media

containing 20 g l21 glucose or glactose and required amino acids.

Yeast transformants were first pre-grown at 30uC and 320 rpm in

four different culture tubes per construct for one day in SD URA-

minimal media. Each independent culture was used to inoculate 8

wells of a 2 mL square deep well 96-well plate (600 mL per well

defined minimal growth medium inoculated with 20 mL of yeast

culture). The plate was covered with a breathable seal and

incubated at 30uC with shaking at 400 rpm for 24 hr. An

AcroPrepH 96 PVDF (Polyvinylidene fluoride) filter membrane

(0.45 mm, 350 mL) micro well plate (Pall Life Sciences) was wetted

by partially filling with methanol and filtered using a vacuum

block. Wells were then filled with deionized water and similarly

filtered. Yeast culture samples, grown in the 2 ml deep well 96-well

plates, were transferred to the 96-well filter plates (200 mL/well)

and the yeast growth media removed by filtration. The same

amount of culture samples was concurrently transferred into Clear

ViewH micro plate (Whatman) for optical density measurement

with a Dynex Opsys MR plate reader. Yeast cells on the

membrane were washed four times, respectively, with 1 mM

EDTA, pH 8, and deionized water. 96-well filter plates were dried

at 88uC for 2 h. Concentrated nitric acid (100 mL/well) was

added, the plate covered with polypropylene lid, and placed in a

preheated heating block set at 88uC for 35 min to digest the yeast

cells. The digested samples were diluted with a gallium internal

standard (5 ppb final concentration) and filtered into a 2-mL

square deep well 96-well plate containing Triton X-100 (0.025%,

300 mL). The final dilution volume was 1.6 mL, giving an acid and

Triton X-100 concentration of about 6.5% and 0.005%,

respectively. The filtered culture medium, as well as the original

medium, was diluted 50 times but otherwise the matrix prepared

in the same manner as the samples. The samples and the media

were analyzed on a Perkin Elmer Elan DRC-e ICP-MS coupled

with Elemental Scientific SC-2 autosampler and Apex Q nebulizer

sample introduction system, and the following analytes quantified:

Na, Mg, P, S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Mo and Cd.

Solution concentrations for all yeast sampleswere normalized to

the measured optical densities of the corresponding yeast culture.

The amount of yeast was converted from OD to number of cells

using the conversion factor of 1ml of 1 OD culture containing

36107 cells.

Accession Numbers
The Arabidopsis Biological resource Center (ABRC) accessions

used in this paper were CS22660, CS20, CS1965, CS1968,

CS1971, CS1986,CS1925, CS1939,CS1975.
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Supporting Information

Figure S1 The Cumulative Distribution of p-Values in Genome-

Wide Scans for Shoot Mo Accumulation. The cumulative

distribution function of (cdf) of p-values for Mo accumulation

across the genome with (mixed model) and without (naı̈ve)

correcting for population structure.

Found at: doi:10.1371/journal.pgen.1000004.s001 (0.07 MB TIF)

Figure S2 RT-PCR Amplification of the Full Length MOT1

cDNA in mot1-1 and Full Length ST5.1 cDNA in st5.1-1. Forward

and reverse 20 bp primer were used that contained the ATG start

codon and the TGA-stop codon.

Found at: doi:10.1371/journal.pgen.1000004.s002 (0.04 MB TIF)

Text S1 Alignment of MOT1 from Col-0, Ler-0 and Van-0,

including sequence 1kb upstream and 250bp downstream of the

open reading frame.

Found at: doi:10.1371/journal.pgen.1000004.s003 (0.05 MB

DOC)

Text S2 Arabidopsis accessions used in the association mapping

study.

Found at: doi:10.1371/journal.pgen.1000004.s004 (0.03 MB

DOC)

Text S3 Significant genotype vs shoot Mo associations.

Found at: doi:10.1371/journal.pgen.1000004.s005 (0.02 MB

DOC)
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