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To further the development of intelligent music production tools towards generating mixes
that would realistically be created by a human mix-engineer, it is important to understand what
kind of mixes can be created, and are typically created, by human mix-engineers. This paper
presents an analysis of 1501 mixes, over 10 different songs, created by mix-engineers. The
primary dimensions of variation in the full dataset of mixes were “amplitude,” “brightness,”
“bass,” and “width” as determined by feature-extraction and subsequent principal component
analysis. The distribution of representative features approximated a normal distribution and
this is then used to obtain general trends and tolerance bounds for these features. The results
presented here are useful as parametric guidance for intelligent music production systems.

0 INTRODUCTION

There are a number of stages in the music production
process from the initial composition to the final distribu-
tion. Central to this process is the creation of the mix, when
the recorded audio is assembled into the arrangement and
sound for which the song will become recognized. While
the recording engineer may capture a great number of indi-
vidual and group performances, it is the mix engineer who
is tasked with the challenge of combining all of these el-
ements into one mix; a challenge that is often both highly
creative and highly technical. The task of creating a mix
from multitrack audio can be considered an optimization
problem, albeit one with a large amount of variables and
a target that is not well defined. Studies have investigated
mix-diversity by compiling best-practice behaviors for the
art of multitrack mixing, either by interviewing professional
mix engineers [1] or from the analysis of subjective ratings
and comments in reviews of mixes by students on mu-
sic technology related subjects [2, 3]. Consequently, many
of the “best-practice” techniques in mix-engineering are
anecdotal and limited in generality. Material available for
education in mix-engineering is typically based on the ex-
perience of a small number of professionals who have each
produced a large number of mixes over their careers [4–6].
Due to the proliferation of the digital audio workstation as a
low-cost audio production platform and the distribution of
software, audio and educational materials via the internet,
it is possible to reverse this paradigm, and study the actions
of a large number of engineers on a small number of mu-
sic productions. This allows both quantitative and qualita-
tive study of mixing practices—the dimensions of mixing,

and the variation along these dimensions, can be investi-
gated. For a human mix-engineer it is of course important
to treat each song individually and create the optimal mix,
even if based on general rules that have been learned by
the engineer. For the development of automated/intelligent
music production systems, the study of alternate mixes by
many mix-engineers may allow for an insight into human
decision-making in mixing that has not previously been
exploited.

The authors’ previous work [7] demonstrated that, with
some subjective rating, one can learn which features might
be correlated to the perception of quality. Here, the focus
lies in defining what trends might exist across mixes of a
song and in general for many songs. Perceptual rating is
implicit in the choices made by each mixer as they strive to
achieve the best mix from their own viewpoint. Arguably,
the fact that each song has an associated variance for each
feature is evidence that there is a subjective/perceptual as-
pect at play and that no “perfect” mix exists.

1 METHODOLOGY

The data used in this study was collected directly from
Cambridge Multitracks (http://www.cambridge-mt.com),
which hosts multitrack content along with a forum where
members can publicly post their mixes of that content.
The database categorizes multitrack content by genre
and of the ten most mixed sessions, eight belong to the
“Rock/Punk/Metal” category. The songs that have attracted
the most mixes (as of Nov. 2015) were specifically favored.
Due to the “Rock/Punk/Metal” category being preferred,
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this study focusses on these genres—often-mixed songs
from other categories are omitted in place of slightly less-
often mixed songs from within this category. This allows
the creation of a dataset that contains a consistent selection
of instruments and sounds, including, but not limited to,
drums, electric bass, guitars, and vocals.

1.1 Pre-Processing
The majority of the mixes were only available in MP3

format at bit-rates between 128 kbps and 320 kbps. All
downloaded files were converted to .wav format, at a sam-
pling rate of 44.1 kHz and a bit-depth of 16 bits. While
lossy encoding would have an effect on certain objective
measures of the signal, such as reducing the value of Spec-
tral Centroid and Rolloff features, this effect can be demon-
strated to be negligible. For a given song, each mix was
of a different length, due to varying amounts of silence at
the start and end of each file and also various acts of re-
arrangement such as the removal or duplication of certain
bars. This made it difficult to use the entire audio in the
analysis. To normalize the choice of audio segment, the au-
dio was cut to short segments containing the second chorus
of the song. Each of these segments was then time-aligned,
which was achieved by determining the peak in the cross-
correlation vector when comparing one mix to all others.
All of the mixes but one were zero-padded to align the files
accordingly. Each mix was then trimmed to a 30-second
length containing the chorus. This ensures that feature ex-
traction tasks can be performed fairly on all mixes. This
process was applied to each batch of mixes of each song. It
assumes that tempo does not vary across mixes of the same
song, which is demonstrated to be true in this dataset.

1.2 Feature-Extraction
As many established audio signal features have been

designed for Music Information Retrieval (MIR) tasks such
as instrument recognition or genre classification, it is not
widely understood which features would be best suited to
categorizing mixes of a given song. Features relating to
the perception of polyphonic timbre were thought to be
important based on earlier work [8] and so the sub-band
spectral flux was determined [9]. The statistical moments of
the sample amplitude probability mass function (PMF) have
been shown to categorize different types of distortion in
mixing and mastering processes [10] and so these features
are also used. Spatial features were derived from the stereo
panning spectrogram (SPS) [11]. Table 1 contains a full
list of features. At this stage, features related to rhythm are
not included since the structure, form, and meter of varying
mixes should be identical. Further discussion of rhythm can
be found in Sec. 3.

1.3 Research Questions
Subjective appraisal of these mixes, in the conventional

sense of controlled listening tests, is not included in this
paper due to the overwhelming size of the dataset. How-
ever, as all mixes were created in real-world conditions, we
assume each engineer produced their mix to the best of their

Table 1. Audio signal features used in analysis. Features with
KMO <0.6, marked with an asterix, are not included in the PCA.

Feature Label Ref. KMO

Spectral Centroid SpecCent [12] 0.758
Spectral Spread SpecSpr [12] 0.797
Spectral Skew SpecSkew [12] 0.851
Spectral Flatness SpecFlat [12] 0.898
Spectral Kurtosis SpecKurt [12] 0.852
Spectral Entropy SpecEnt [12] 0.639
Crest Factor CF 0.967
LoudnessITU LoudITU [13] 0.834
Top1dB Top1dB [10] 0.900
Harsh Harsh [14] 0.633
LF Energy LF [14] 0.631
Rolloff85 RO85 [15] 0.819
Rolloff95 RO95 [15] 0.677
Gauss Gauss [14] 0.965
PMF Centroid PMFcent [10] 0.938
PMF Spread PMFspr [10] 0.890
PMF Skew [10] 0.534∗

PMF Flatness PMFflat [10] 0.962
PMF Kurtosis PMFkurt [10] 0.907
Width (all) W.all [11, 8] 0.966
Width (band) [11, 8] 0.591∗

Width (low) W.low [11, 8] 0.778
Width (mid) [11, 8] 0.540∗

Width (high) [11, 8] 0.567∗

Sides/Mid ratio 0.593∗

LR imbalance [16] 0.518∗

Spectral Flux sbflux1–10 [9] All >0.8

abilities and towards their desired target. In this sense, sub-
jective evaluation is implicit in the data itself. This dataset
of mixes can be used to address a variety of challenges, a
number of which are explored herein.

1. Which features vary most across mixes?
2. What are the dimensions of mix-engineering prac-

tice, across all songs and for a particular song?
3. How are the values of low-level features distributed

in the dataset? What are their typical means and
variance?

2 ANALYSIS OF MIX DATASET

Outlier detection was performed in the 36-dimensional
feature-space (see Table 1). The Z-score of each point was
determined by the Euclidean distance to the three nearest
neighbors. Thirty-five samples where Z > 2.5 were deemed
outliers, leaving 1466 audio samples remaining.

2.1 Principal Component Analysis
In order to reduce the dimensions of the feature-space,

Principal Component Analysis (PCA) was used. The appro-
priateness of PCA was tested as follows using R [17]. Using
Bartlett’s test of sphericity (using thepsych package [18]),
the null hypothesis that the correlation matrix of the data
is equivalent to an identity matrix was rejected (χ2(630,
N = 1466) = 97162.75, p < 0.001). This indicated that
factor analysis was a suitable analysis method. The Kaiser-
Meyer-Olkin measure of sampling adequacy (KMO) was
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Fig. 1. Scree plot for initial PCA.

Table 2. Eigenvalues of revised PCA.

1st 2nd 3rd 4th

Eigenvalue 14.00 5.45 2.34 1.42
% var 46.68 18.15 7.80 4.72
Cuml. % var 46.68 64.83 72.62 77.34

evaluated. KMO for the full set of variables was 0.845,
above the recommended value of 0.6 [19], suggesting that
factor analysis would be useful. KMO for each individ-
ual variable was determined and any individual variables
with a value less than 0.6 were excluded from analysis (see
Table 1). Consequently, PCA was conducted with the re-
maining 30 variables. Each variable was standardized prior
to PCA, i.e., mean μ = 0 and standard deviation σ = 1.
This initial PCA is unrotated and there was no limit on the
number of components. The plot of eigenvalues is shown
in Fig. 1.

Using the nFactors package [20] a variety of meth-
ods were employed in order to determine the number of
dimensions to keep in further analysis, shown in Fig. 1.
Kaiser’s rule [21] suggests retaining those dimensions with
eigenvalues greater than 1, which in this case was the
first five components. The acceleration factor (AF) [20]
determines the knee in the plot by examining the second
derivative—this method would retain only the first dimen-
sion but is known to underestimate [22]. The optimal co-
ordinates (OC) method [20] suggested that the first four
dimensions be kept. Parallel analysis (PA) [23] also sug-
gested that the first four dimensions were suitable to re-
tain. Based on agreement suggested by three of the four
methods, four dimensions were kept for the subsequent
analysis.

As before, 30 variables were used for a revised PCA,
now limited to four dimensions and rotated using the vari-
max method [24]. Rotation was applied so that the resultant
factors were easier to interpret, by ensuring variables had
high loading on one dimension and low loading on those re-
maining. The eigenvalues of this PCA are shown in Table 2,
four dimensions accounting for ≈77% of the variance. The
following is an interpretation of each of the first four dimen-

LoudITU

(a) Dimension 1 relates to mostly amplitude features and di-
mension 2 to mostly high-frequency spectral features.

(b) Dimension 3 relates mostly to either low or high-frequency
features and dimension 4 to spatial features. Loadings < 0.1
are removed for clarity.

Fig. 2. Results of PCA for 1466 audio samples. The variables
factor maps, shown in (a) and (b), indicate loadings of variables
on the varimax-rotated principal components.

sions, based on the loadings of the individual features, as
shown in Figs. 2a and 2b. This addresses research questions
1 and 2 from Sec. 1.3.

1. Many of the input variables associated with sig-
nal amplitude, dynamic range, and loudness are
strongly correlated with the first principal compo-
nent. Negative values indicate high amplitude mixes
(see Fig 2a).

2. The second dimension can be described by the many
strong correlations to spectral features with negative
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(b) There is great overlap in this space, yet the central value
of certain songs differ from others. Mixes of three specific
songs stand out in the upper-left, right and bottom of the plot. 

Fig. 3. Results of PCA for 1466 audio samples. The individual
factor maps, shown in (a) and (b), display the placement of each
audio sample in the space, grouped by song. The centroid of each
group is marked by thick markers and the ellipses represent regions
of 95% confidence in the population centroid of that group. From
this result it can be seen that, while clustering is evident, songs
are not easily categorized by the features used.

values denoting mixes that have a greater proportion
of energy in higher frequencies (see Fig 2a).

3. Features associated with low frequencies are more
strongly loaded onto dimension 3 in the negative
direction, while treble range features are loaded with
positive values (see Fig 2b).

4. Dimension 4 can be explained by the correlation of
the spatial features to this dimension. As the value
of this dimension decreases, the perceived width of
the stereo image increases (see Fig 2b).

Figs. 3a and 3b show the dataset of mixes placed in
the varimax-rotated PCA space. Each point represents a
mix of a song, where the song is coded by a unique color
and symbol combination. We can see significant overlap

between the range of mixes for all 10 songs. The estimated
centroid of each group, and the 95% confidence ellipse
of that centroid estimation, are also indicated in Figs. 3a
and 3b. There is an indication that some songs, and their
range of mixes, might form clusters for given dimensions,
suggesting that there are central tendencies in mixing when
these dimensions are considered (see Sec. 3).

2.2 Distribution of Audio Signal Features
The density of each extracted feature was estimated using

thedensity function inRwith a Gaussian smoothing ker-
nel. Fig. 4 shows the estimated density of four of the features
extracted, considered representative of the principal com-
ponents due to their high loadings. The plots indicate that
the distribution of features shows central tendency, while
some curves display additional modes. A Shapiro-Wilk test
of normality was carried out [25]. As this test is known to
be biased for large sample sizes, the test was carried out not
only on the raw data for each song but also the smoothed
distributions shown in Fig. 4. The majority of these distri-
butions tested were determined to be significantly different
from a normal distribution.

A Gaussian Mixture Model (GMM) was used to de-
termine how well the distribution over all mixes could be
characterized by a sum of normal distributions. This was im-
plemented using the mixtools package [26]. The model
parameters are shown in Table 3 and Fig. 5, where λn is
the mixing proportion (thus summing to 1), μn is the mean,
and σn is the standard deviation of each of the n Gaussian
functions in the model. The coefficient of determination,
R2, is shown in Table 3, indicating the proportion of the es-
timated density that can be explained by the model where n
= 2. As this value is close to 1 in all cases it can be said that
the sum of just two Gaussian functions well-approximates
the estimated densities.

3 DISCUSSION

Hitherto, there have not been any studies looking at fea-
ture variance over such a large number of alternative mixes
of the same song. In this study, the features extracted were
amplitude-based, spectrum-based or spatial features. Over
all 10 songs considered, the dimensions of variation re-
vealed by the PCA were described as “amplitude,” “bright-
ness,” “bass,” and “width” in order of variance explained.
Equivalent descriptions of the four dimensions were found
in an earlier study that used a subset of the dataset [7]—
the dimensions of “brightness,” “bass,” and “width” were
found to be related to the perception of mix quality. Ad-
ditionally, the description of the first two principal com-
ponents is equivalent to those found in a related study on
popular music, using a similar set of features [8]. This
shows that all songs, within their range of mixes, varied
in terms of their perceived loudness and dynamics. Fig. 3a
shows certain songs with distinct dynamic range values
when compared to other songs—the lowest values of di-
mension 1 (loud, low dynamic range) apply to songs in
hard rock or metal styles, whereas the soft rock styles at-
tain higher values along this dimension.
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(a) The distributions of spectral centroid shows distinct variation
from song to song.

(b) Many mixes were subject to mastering-style processing, result-
ing in high values of perceived loudness.

(c) Notable inter-song differences in LF energy

(d) Most mixes occupy a narrow range of width values. Here the
feature used is the value of width over all frequencies. Note that a
value of 0 represents a mono mix.
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Fig. 4. Kernel Density Estimation (KDE) for four of the signal
features, shown for all 1501 mixes and also for all mixes of each
song. The distributions are typically multi-modal but dominated
by one mode.

As the data points in Fig. 3a are spread out over the space,
and not definitively grouped by song, it is observed that any
one song can be mixed with the overall loudness/dynamics
or brightness of any other song. Despite this, trends are
apparent. The song “Revelations” had the highest average
value of dim.2, meaning the least amount of brightness.
This may be due to the fact that the multitrack content was
recorded in 1975, sourced from an analogue tape. While
little is known about the precise recording conditions, it is
likely the reduced high-frequency content in mixes of this
song was due to the limitations of the recording technology
used at the time or the use of era-specific mixing techniques
by the mix engineers. The song with the lowest values of
dim.2 (the brightest mixes) is “I’m Alright,” which features
acoustic guitars and shakers, instruments with emphasis on
high frequencies. Dim.3 is difficult to interpret as it rep-
resents emphasis on bass or treble frequencies depending
on the value, and there is little inter-song difference. Mixes
of the song “Promises and Lies” tended to have a higher
concentration of spectral energy between 2 kHz and 5 kHz
than other songs, or a lack of spectral energy below 80 Hz.
There is little observed difference in the group centroids
along dim.4, which represents stereo width, particularly at
low frequencies, as expected.

Feature distributions in Fig. 4 suggest multi-modal be-
havior, often dominated by one specific mode, which is
dependent on the song. This distribution holds well for
the songs considered, providing evidence for central ten-
dency or even “optimal” values. In Fig. 4a, typical values
of Spectral Centroid differ from song to song, suggesting
each song has a range of possible values that can be tol-
erated, based on the arrangement, instrument timbre, key,
etc. The distribution of Loudness values in Fig. 4b is quite
similar from song to song. This is a possible side effect of
the fact that many mixes were subjected to mastering-style
processing, particularly heavy dynamic range processing.
Fig. 4c indicates that the proportion of spectral energy be-
low 80 Hz is reasonably consistent from song to song, with
some variation. This is possibly dependent on the key of the
song, the precise arrangement and the relationship between
bass guitar and kick drum performances. Width distribu-
tions shown in Fig. 4d are similar for each song, occupying
a narrow range of values. We find songs being mixed with a
very wide range of panning conditions, from mono to wide
stereo. However, central tendencies can be observed with
clear distributions around them. This result indicates that
panning conventions are applied similarly in all songs, re-
stricted by the medium of two-channel stereo reproduction,
and that a central tendency is observed.

3.1 Implications for Intelligent Music Production
By examining a large dataset of mixes, from hundreds

of individual mix-engineers of varying skill levels, the re-
sults here indicate the dimensions over which mixes vary
and the amounts by which they vary in these dimen-
sions. This could help to inform targets and bounds for
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Fig. 5. GMM parameters from Table 3. The dashed curve represents the estimated density and the solid curves represent the GMM.
While Loudness shows a bi-modal distribution, Spectral Centroid, LF Energy, and Width are well characterized by a single Gaussian
function.

Table 3. GMM parameters for distributions of all 1501 mixes. R2

is the coefficient of determination describing the fit of (g1 + g2)
to the KDE curve.

Feature λ1 λ2 μ1 μ2 σ1 σ2 R2

SpecCent 0.945 0.055 3532 4880 659 794 0.998
LoudITU 0.526 0.474 –12.910 –8.511 3.672 1.801 0.993
LF 0.877 0.123 0.042 0.071 0.015 0.026 0.989
Width 0.118 0.882 0.223 0.281 0.073 0.037 0.995

intelligent mixing tools. For example, Fig. 5 and Table 3
suggest that values of Spectral Centroid are normally dis-
tributed with a mean of ≈ 3.5 kHz and standard deviation
of ≈ 660 Hz. Consequently, and also shown by Fig. 4a, few
rock mixes would have a Spectral Centroid value below
2 kHz, although there may exist specific, context-dependent
productions where this is possible, such as when analogue
recording media are utilized. The results in Table 3 could
inform a system that monitors the mix, in an automatic
or human-operated system, and offers advice when the
values of certain features deviate strongly from expected
values.

3.2 Implications for Music Information Retrieval
In a number of tasks in Music Information Retrieval

(MIR), feature-extraction is used as a means of characteriz-
ing audio data, so that each data point, representing a song
or instrument, can be described in a meaningful way. For
example, when attempting to train a classifier to perform
genre prediction, each song is labelled as belonging to a
specific genre and features are extracted from each song.
The assumption is that the features can be used to represent
useful attributes of that song, and thus, its genre. How-
ever, perhaps the features only represent attributes of the
recording of the song and not the song itself.

In this study, where there are hundreds of alternate mixes
of a given song, we can see that these features do not clearly
distinguish between songs. What are the implications then
for tasks such as genre prediction? If a classifier was de-
veloped with α songs in genre A and β songs in genre B,
how would the performance of the classifier change if al-
ternate mixes were substituted for all α + β songs, or for all

possible permutations of classifier that could be made from
hundreds of alternative mixes?

Of course, this problem is simplified should estimated
tempo be included, as the tempo of a song does not typi-
cally change with mix. However, the perception of a song’s
rhythm can change when instruments are presented at dif-
ferent volumes. Consequently, a detailed study on rhythm
in multitrack mixes would be useful in furthering our per-
ception of why certain music mixes are created.

4 CONCLUSIONS

A dataset was prepared containing 1501 audio files repre-
senting the mixes of 10 songs. The number of mixes of each
song ranged from 97 to 373. A variety of objective signal
features were extracted and principal component analysis
was performed, revealing four dimensions of mix-variation
for this collection of songs, which can be described as “am-
plitude,” “brightness,” “bass,” and “width.” Feature distri-
bution suggests multi-modal behavior dominated by one
specific mode. This distribution appears to be robust to the
choice of song, with variation in modal parameters. This
has provided insight into the creative decision making pro-
cesses of mix engineers.

Suggested further work is to obtain subjective quality
ratings from a subsection of this dataset in order to exam-
ine the relationship between audio signal features and the
perception of audio quality and mix-preference. Also, as
the study presented here only considered features relating
to amplitude, spectrum, and stereo panning, an in-depth
study using rhythmic and metrical features is planned. It is
anticipated that this dataset can be used to test the robust-
ness of algorithms used in MIR, for tasks such as tempo
estimation, genre prediction, and music structure analysis.

We are conscious that furthering the understanding of
these concepts will be necessary for the design of future
intelligent/automated music production systems. However,
this incipient study shows that measures of central tendency
and distribution are useful targets for such systems. Under
higher level human supervision, this concept could be used
to achieve sonic qualities that approximate current accepted
practices, or as a creative contrast, to challenge current
trends and exploit results that may lie at the boundaries of
the feature spaces studied.
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