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Abstract8

Analysis of reaction norms, the functions by which the phenotype produced by a given geno-9

type depends on the environment, is critical to studying many aspects of phenotypic evo-10

lution. Different techniques are available for quantifying different aspects of reaction norm11

variation. We examine what biological inferences can be drawn from some of the more readily-12

applicable analyses for studying reaction norms. We adopt a strongly biologically-motivated13

view, but draw on statistical theory to highlight strengths and drawbacks of different tech-14

niques. In particular, consideration of some formal statistical theory leads to revision of15

some recently, and forcefully, advocated opinions on reaction norm analysis. We clarify what16

simple analysis of the slope between mean phenotype in two environments can tell us about17

reaction norms, explore the conditions under which polynomial regression can provide ro-18

bust inferences about reaction norm shape, and explore how different existing approaches19

may be used to draw inferences about variation in reaction norm shape. We show how mixed20

model-based approaches can provide more robust inferences than more commonly-used multi-21

step statistical approaches, and derive new metrics of the relative importance of variation in22

reaction norm intercepts, slopes, and curvatures.23
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Introduction24

Characterising the functions describing the dependence upon the environment of phenotypes25

generated by specific genotypes is critical to understanding many aspects of evolution. These26

functions, termed reaction norms (Schmalhausen, 1949; Woltereck, 1909), are therefore the27

subject of a great deal of interest from evolutionary biologists (Gupta and Lewontin, 1982;28

Scheiner, 1993; West-Eberhard, 2003). For example, characterisations of reaction norms can29

be important for understanding how populations will respond to changing environments,30

and so the extent to which non-evolutionary plastic responses and adaptive evolutionary31

change can allow populations to persist (Chevin et al., 2010; Ghalambor et al., 2007). In32

microevolutionary studies, we may often be interested both in the mean reaction norm of33

populations, and also in variation in reaction norms within populations (Nussey et al., 2005).34

Assessment of variation in reaction norms can in principle inform us of how traits will evolve35

in response to selection across a range of environments (Kirkpatrick et al., 1990; Scheiner36

and Callahan, 1999).37

The true shapes of reaction norms are potentially complex, and any empirical analysis38

will require a model of reaction norms (DeWitt and Scheiner, 2004; Gavrilets and Scheiner,39

1993). Two general principles of models will hold true for the analysis of reaction norms.40

First, models of reaction norms will typically be simpler than the true (unknown) functions41

themselves. This simplification is not a weakness of model-based approaches, but in fact is42

key to generating tractable inferences. Second, simple models may also have properties that43

do not reflect, or only poorly reflect, some properties of true reaction norms. These two44

general principles will invariably apply both to model-based inferences of specific reaction45

norms (e.g., the average response of a genotype or population to an environmental variable),46

and to inferences about variation in reaction norms (e.g., inferences of the amount of variation47

in say, the steepness of reaction norms among different genotypes in a population).48

The primary goal of this paper is to examine how some of the most readily-applicable49

statistical models of reaction norms can be used to make robust inferences about properties50
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of reaction norms. As examples of such reaction norm properties, we consider inference both51

of properties of reaction norms of individual genotypes (or other genetic groupings such as52

populations; e.g., focusing on their slopes, or the locations of their maxima), and properties of53

families of reaction norms (e.g., variation in slopes, or variation in the locations of maxima).54

The primary focus is on biological inference, but we draw extensively on the statistical55

theory underlying different potential analytical approaches to studying reaction norms. In56

some cases, we expand basic theory about regression analysis to yield new insights about57

how specific, biologically-motivated, regression analyses may behave. We discuss biological58

inference of properties of reaction norms in general, but we also specifically focus on on some59

recent claims that have been made about the efficacy of different approaches.60

Polynomial regression, and especially quadratic regression, is potentially very useful for61

characterising reaction norms, and several authors have investigated theoretical and empir-62

ical properties of reaction norms using such functions as theoretical and statistical models63

(e.g., Delpuech et al. 1995; Gavrilets and Scheiner 1993). Two recent very firm claims about64

analysis of reaction norms with polynomial functions are: (1) that the slope of a line con-65

necting mean phenotype in two environments is generally misleading about the form of a66

reaction norm (Rocha and Klaczko, 2012); and (2) that quantities derivable from polynomial67

regressions, such as the slope at any point, or measures of overall curvature, provide robust68

inference of reaction norms (Rocha and Klaczko, 2014). We show analytically, and with69

numerical examples, that neither of these assertions is generally true. Nonetheless, we agree70

that polynomial regression, perhaps especially quadratic regression, may be very useful for71

biological studies of reaction norms. However, polynomial regression will be most useful if72

applied with a somewhat more nuanced understanding of its strengths and limitations.73

We also contrast two approaches to characterising variation in reaction norms. By “char-74

acterising variation”, we refer to situations where we are not necessarily interested in specific75

reaction norms, nor in comparisons of properties of two or few specific reaction norms, but76

rather where we seek to assess variation in populations for aspects of reaction norms. For77
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example, we may be interested in how much variation in average slope, relative to variation78

in mean values, occurs among the reaction norms of the genotypes segregating within some79

population, or among populations within a species. There are two basic approaches in use80

to quantifying such variation. In the first procedure, two steps are employed. First, data81

from each genetic group (individual, genotype, inbred line, etc.) are subjected to statistical82

analysis, for example, to regression analyses to determine slopes, as well as calculations of83

line-specific means across environments. In the second step of the first approach, summary84

statistics are calculated at the population level, providing, for example, measures of variance85

in the means and slopes estimated in the first step. In the second type of approach, mixed86

models, in particular, random regression mixed models, may be used to directly estimate87

variance in reaction norm parameters. We show analytically how the two-step approach in-88

troduces biases into most inferences about variation in reaction norms, and we illustrate the89

application of random regression mixed models, in detail, with an empirical example. We90

also derive new measures of variation in phenotype arising from different aspects of reaction91

norms, and show how these may be particularly useful for answering questions of current92

interest in reaction norm research.93

This paper is arrayed in several sections. In each, biologically-relevant results and the94

more intuitive pieces of statistical theory upon which they rest are presented, while more95

involved statistical theory is generally relegated to an extensive appendix. First, we consider96

methods for characterising aspects of individual reaction norms, including the slope between97

mean phenotype in two environments, and polynomial regression. We then turn our attention98

to inference of variation in reaction norms. We compare the two-step and mixed model-based99

approaches, present an empirical example, and derive new measures of variation in reaction100

norm shape. In the discussion, we recapitulate our major points and address various common101

threads.102
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Slopes between two points103

The simplest inference of a reaction norm slope is provided by taking the difference between104

mean phenotype in two environments, for some unit of biological organisation (clone, genetic105

line, population, species; see for e.g., Berg et al. 2010; Ellers and Driessen 2011; Fallis et al.106

2014; Liefting et al. 2009). Divided by the difference between the two environments, the107

difference in mean phenotype gives an estimate of the average slope of the reaction norm108

between those two points109

sab =
z̄b − z̄a
b− a

. (1)

This simple assessment of reaction norm slope has two important properties. First, it is an110

unbiased estimator of the average slope of a reaction norm between points a and b, weighting111

all values of the environment between a and b equally. The slope of an arbitrary reaction112

norm function E[z|x] = f(x), where E[z|x] is the expected phenotype, z, given the value of113

the environmental variable, x, at any given point, and f ′(x) is its derivative of the function114

f(x), at point x. An average over a continuous variable can be obtained by integrating the115

quantity to be averaged, i.e., f ′(x), over the range of the predictor variable (the environment,116

x between a and b), while weighting by the probability density of x (in this case a uniform117

density between a and b, which is 1
b−a), so118

E[f ′(x)] =

∫ b

a

f ′(x)
1

b− a
dx. (2)

Simplifying this expression using basic algebra and calculus rules gives119

E[f ′(x)] =

∫ b

a

f ′(x)
1

b− a
dx =

1

b− a

∫ b

a

f ′(x)dx =
1

b− a
[

∫
f ′(b)− f ′(a)] =

z̄b − z̄a
b− a

= sab.

(3)

Thus, regardless of the true form of the reaction norm function, i.e., of f(x), the very simple120

expression in equation 1 gives the average slope of the reaction norm, weighting all values121

between a an b equally. We will presently see that this ability to recover a major and122

biologically relevant aspect of a reaction norm is not necessarily a property of other analytical123
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approaches, including some that have recently been advocated in the literature.124

Second, the basic experimental design associated with the reaction norm analysis in equa-125

tion 1 can be shown to be optimal with respect to minimising statistical error in the inference126

of the average slope. If a researcher can rear a set number of individual organisms across127

a range of environments, it may be desirable for different purposes to raise them in two128

environments, i.e., at x = a and x = b, or to divide the total sample size among additional129

environments between a and b.130

It may initially seem that raising organisms across a number of different environments,131

calculating the slopes between adjacent environmental treatments, and averaging these slopes,132

would give a better calculation of average slope over some total range of x. This is not the133

case. The standard error of an estimated reaction norm slope between two points, sab is134

SE(sab) =

√
Σ(z̄a) + Σ(z̄b)

b− a
, (4)

where Σ(z̄) denotes the sampling variance of an environment-specific estimate of mean pheno-135

type, i.e., the squares of the standard errors of the estimated means. The sampling variance136

of the mean, under normality, is the variance divided by the sample size. The sampling vari-137

ance of sab will be minimised when the quantity Σ(z̄a) + Σ(z̄b) is minimised, and if variances138

are equal in environments a and b, this occurs if the total sample size is divided between the139

two environments. If variances are not equal in the two environments, a design that increases140

sample size in the environment with more variance will be optimal for minimising error in141

sab.142

If, alternatively, there were three environments, say x1, x2, and x3, the mean phenotype143

in environment x2 would appear in the calculation of sab for both the intervals between x1144

and x2, and between x2 and x3. This produces a negative sampling covariance between the145

two estimates of sab for adjacent ranges of x. Consequently, for the purposes of minimising146

statistical error a single measure of sab can give the most powerful possible estimate of the147

average slope of a reaction norm between points x = a and x = b. That this design is optimal148
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with respect to minimising the sampling variance of the average slope is demonstrated more149

rigorously in appendix section A.1.150

Polynomial regression analysis of reaction norms151

Polynomial regressions are proven statistical tools for characterising functions, and have152

been advocated for analysis of non-linear reaction norms (e.g., Gavrilets and Scheiner 1993;153

Rocha and Klaczko 2014). Polynomial regressions will typically be least-squares fits of an154

approximating function to a true reaction norm with an unknown true functional form. Given155

phenotypic values, z, and environmental values, x, for units of observation indexed i, first-156

(linear), second- (quadratic), and third-order (cubic) polynomial regressions take the form157

yi = a+ b1xi + ei,

158

yi = a+ b1xi + b2x
2
i + ei,

159

yi = a+ b1xi + b2x
2
i + b3x

3
i + ei.

In each fitted regression model, the intercept, a, and polynomial regression coefficients, i.e., b1,160

b2 and b3, will be those that minimise the variance of the residuals (e). Note that the values161

of the intercept and common coefficients (e.g., b1) may differ between models of different162

polynomial order, fitted to the same data.163

In application of polynomial regression, it is hoped that coefficients of the regression164

model, or predictions from the fitted model, will reflect biologically relevant aspects of re-165

action norms. While polynomial regression may often be pragmatic, the conditions under166

which coefficients of polynomial regression models will reflect specific, biologically relevant,167

quantities such as the average slope of curvature are limited. Where there is a very simple168

and general interpretation of sab as the average slope of a true arbitrary reaction norm be-169

tween the points x = a and x = b, the conditions under which a polynomial regression can170
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provide a similar inference are much more limited. If the environmental variable is normally171

distributed - both in the data analysed and in the relevant scenario in nature about which172

we want to draw inferences, then the linear term (b1) in a first-order quadratic regression173

model gives the average slope. This can be demonstrated from Stein’s lemma (Stein, 1973),174

where it has been shown that σ(xy) = σ2(x)E
[
δy
δx

]
if x is normally distributed, not otherwise.175

A regression coefficient is the covariance of the predictor and the response, divided by the176

variance of the predictor, so b1 = σ(xz)
σ2(x)

= E
[
δz
δx

]
. The linear term in higher-order polynomial177

regression models estimates the average slope as well, still requiring normality of the envi-178

ronmental variable, and also that the environmental variable has a mean of zero. Similarly,179

if the environmental covariate is normally-distributed and mean-centred, the quadratic term180

in a quadratic approximation to the reaction norm is equal to half of the average second181

derivative of the reaction norm function. These specific properties of quadratic regression182

analysis, when covariates are normal and mean-centred, underlie regression-based analysis of183

selection gradients, which are the average first and second (partial) derivatives of (relative184

fitness) functions as well (Geyer and Shaw, 2010; Lande and Arnold, 1983; Mitchell-Olds and185

Shaw, 1987).186

So, there is a condition, namely, normality of the environmental covariate x, under which187

coefficients of polynomial regressions have very general and biologically useful interpreta-188

tions. Under normality, the slope and curvature of a polynomial approximation to a reaction189

norm can reflect the average slope and curvature of the true reaction norm, regardless of the190

true form of the reaction norm. However, the condition of normality of the environmental191

variable (x) is patently not met in virtually all studies of reaction norms. Rather, by design,192

the distribution of the environmental variable(s) are non-normal, being composed of two or193

more discrete treatments. This distribution for x tends toward a uniform distribution as the194

number of treatments increases. If the distribution of the environmental variable is not nor-195

mal, then the parameters of a polynomial regression have no direct biological interpretation,196

and no single useful statistical interpretation, other than that they are the parameters that197

minimise the residual variance. However, parameters of a polynomial regression will provide198
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insight into aspects of true reaction norms, regardless of the distribution of x, providing they199

are a reasonably good approximation of the true reaction norm.200

There is a corollary of the principle that the parameters of a polynomial regression need201

only reflect aspects of a true reaction norm under specific assumptions about the distribu-202

tion of the covariate that may appear more biologically important. This is as follows: the203

parameters of a polynomial approximation to a reaction norm are not just functions of the204

true reaction norm; but, they are also determined by the distribution of the environmental205

variable in any given analysis. Figure 1 shows polynomial approximations to an arbitrary206

(non-polynomial) function, as well as the differences in polynomial approximations to a re-207

action norm that occur as a result of a near-uniform distribution (i.e., many closely-spaced208

environmental treatments; figure 1a), and a normal distribution (dashed lines in figure 1b),209

where both distributions have the same mean and variance. The differences in polynomial210

shape, arising due to only a change in the distribution of the covariate, are substantial. The211

quadratic approximation is much more steeply peaked when the distribution of x is uniform,212

rather than normal. The cubic approximation contains a minimum within the range of the213

covariate for the uniform distribution, but not for the normal distribution. While the near-214

uniform covariate distribution (many, closely-spaced environmental treatments) is advocated215

(Rocha and Klaczko, 2012) and used (e.g., Morin et al. 1999; Pétavy et al. 2001; Rocha et al.216

2009), in studies of reaction norms, it may often be that extreme environments are relatively217

rare in nature, and environmental variables may be more normally distributed. Regardless218

of specific distributions and their relevance in different situations, the fact that polynomial219

regressions do not reflect only the reaction norm being studied, but also essentially arbitrary220

features of a study design, should be strong reason for care in their interpretation. In ap-221

pendix section A.2, we demonstrate a simple example where the sab metric can be useful,222

and slopes of quadratic approximations of reaction norms may be less useful.223

There are likely many scenarios where polynomial regression will provide pragmatic and224

useful statistical models for studying reaction norms. While the reaction norm used for225
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illustration in figure 1 is very plausible – indeed, this sort of functional form appears in226

many discussions of thermal reaction norms (e.g., Kingsolver et al. 2004) – many studies227

will not have to contend with the same degree on non-linearity. As a polynomial regression228

more closely approximates the true function, predictions from the approximation will better229

reflect aspects of the biology of the reaction norm. The degree of model complexity, i.e.,230

the degree of a polynomial reaction norm, is difficult to determine. Previous discussions of231

polynomial reaction norms have suggested forward model selection. Such a procedure can be232

inconsistent, i.e., can fail to converge on the “true” model (in the hypothetical situation where233

the true model is included in the set of models that is considered), even when arbitrarily large234

amounts of data are available. We elaborate on this property of forward model selection of235

polynomial regression functions in appendix section A.3.236

Assessing variation in reaction norms237

Variation among reaction norms, for example genetic variation among species, families, clones238

or inbred lines, is often assessed by first calculating metrics such as sab, or by fitting poly-239

nomial regression functions, to each genetic unit (e.g., clone, genotype, sibship). In a second240

step, variances (or other measures of variation) in sab, or of regression parameters, are cal-241

culated. This basic procedure will exaggerate apparent levels of variation in any feature of242

reaction norms, a principle that can be demonstrated with some simple theory about the243

sampling variance of regression coefficients.244

The sampling variance of the mean (the intercept in a linear model with a symmetric,245

mean-centred covariate) is246

Σ[z̄] = Σ[µ] =
σ2
r

n
,

(the square-root of which is the familiar formula for the standard error of a mean), and the247

sampling variance of the slopes is248

Σ[b1] =
3σ2

r

nr2
.
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A derivation of this expression is given in the appendix, section A.4.249

What is the significance of these sampling error variances? In the common two-step pro-250

cedure, where parameters such as line-specific slopes are first calculated, and then variances251

(or other summary statistics) of those statistical estimates are subsequently calculated, sta-252

tistical noise in the first step gets interpreted as biological variation in the second step. The253

amount of statistical variation that may be interpreted as biological variation in the linear254

approximation term to a family of reaction norms is thus 3σ2
r

nr2
. Since the residual variance is255

always positive, the two-step assessment of variation in reaction norm parameters will always256

be upwardly biased. Because the number of environments will typically be modest (n is257

the number of points in the regression, and this is typically the number of environmental258

treatments), this effect can be large. This effect of statistical error in step 1 to contribute to259

the apparent variation in step 2 will occur in both inferences of average reaction norm slope260

in estimates of sab, and in regression-based approaches.261

The basic statistical theory that gives sampling errors of regression parameters can give262

the sampling variance of quadratic terms b2 in the notation introduced above. The sampling263

error of quadratic terms given a centred uniform covariate is264

Σ[b2] =
45σ2

r

4nr4
.

See the appendix section A.4 for a more detailed derivation. Comparison of the expressions265

for sampling variances of the mean, linear, and quadratic terms, i.e., of Σ[z̄], Σ[b1] and Σ[b2],266

reveals a further complication arising in the two-step procedure for inferring variation in267

reaction norm parameters. The relative contribution of statistical noise to apparent variation268

in means and linear and quadratic terms (and higher terms pertaining to other aspects of269

reaction norm curvature) varies depending on the arbitrary scaling of the covariate: the three270

expressions for sampling variance are different functions of the parameter r, the essentially271

arbitrary range of the environmental variable.272

The two important points, (1) that statistical noise will be interpreted as biological vari-273
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ation in two-step analytical procedures, and (2) that the extent to which statistical noise274

pollutes biological inferences depends on scaling, are not artefacts of the simplifying assump-275

tions made here. For example, it occurs if the covariate is not strictly uniform, but rather is276

composed of few or many distinct environmental treatments. The pattern will also hold for277

very different distributions of the covariate; analogous expressions for Σ[µ], Σ[b1], and Σ[b2],278

given a normal covariate, x, are given in appendix section A.5.279

A class of linear mixed models called random regression models exists specifically to sep-280

arate noise from real variation in families of regression coefficients. The simplest random281

regression mixed model is a linear random slopes model, which can be written as282

zij = a+ bxi + fj + gjxi + ei, (5)

where zij is the phenotypic observation of individual i from group (e.g., species, family, etc.)283

j, where a and b are fixed regression parameters for the intercept and slopes, respectively,284

where fj and gj are regression parameters (contrasts to a and b) for group j, xi is the285

environment to which individual i was exposed and ei is a residual for individual i. As286

before, the residuals are assumed to be drawn from a normal distribution ei ∼ N(0, σ2
r), and287

furthermore, the group-specific regression parameters are also treated as random variables,288

i.e., variables that belong to a bivariate normal distribution289 f
g


j

∼ N

0,

 σ2(f) σ(f, g)

σ(f, g) σ2(g)



such that

 σ2(f) σ(f, g)

σ(f, g) σ2(g)

 is a matrix containing the variances and covariances of slopes290

and intercepts. Solutions to the mixed model give estimates of terms including the variance291

in slopes (σ2(g)), that are not inflated by sampling error, as occurs in the two-step approach.292

While random regression analysis is currently in use (Dingemanse et al., 2010; Martin et al.,293

2011), we hope that it is useful to clarify that its use represents more than a mere modernisa-294
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tion of statistical approaches to studying reaction norms. Random regression can yield direct295

inferences of variation in reaction norm parameters (e.g., of slopes), that would otherwise be296

subjected to potentially biologically misleading statistical biases in two-step analyses.297

A random regression model can be used to assess variation in reaction norms for any298

analysis with multiple units of observation, and two or more (or a continuous range of)299

environmental treatments. When applied to a study with two treatments, the linear random300

regression mixed model specified by equation 5 yields unbiased estimates of the among-group301

variance in intercepts, average slopes (i.e., this amounts to an analysis of variation in sab),302

and their covariance.303

When applied to a study with a range of environmental conditions, or with random304

quadratic (or even higher order) terms, random regression mixed model analysis can be305

used to recover meaningful information about variation in reaction norm shape. However the306

caveats that apply to the interpretation of polynomial approximations to reaction norms in307

general will also apply to inferences about variation in polynomial coefficients obtained by308

random regression. With prudence, it is possible that random polynomial regression mixed309

model analysis could be much more extensively used in analysis of variation in reaction310

norms, and such analysis will certainly be preferable to two-step analytical approaches in311

most circumstances.312

Example application of a random regression mixed model313

We applied quadratic random regression mixed model analysis to the data on reaction norms314

reported in Rocha et al. (2009) and re-analysed in Rocha and Klaczko (2012) (data provided315

by F. B. Rocha and L. B. Klaczko). The data consist of 1122 Drosophila mediopunctata316

phenotyped for abdominal spot number and thorax length, raised in three simultaneous317

replicates (vials) in a thermal gradient spanning 14◦C to 24◦C in 1◦C intervals. For each318
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trait, the mixed model took the form319

zi,j = a+ b1ti + b2t
2
i + sexi + fj + g1,jti + g2,jt

2
i + replicatei + Ti + ei, (6)

where zi,j represents the phenotype (spots or thorax length) measured on individual i belong-320

ing to strain j. The fixed effects, a, b1, and b2 estimate the average reaction norm, conditional321

on a fixed effect of sex. The random polynomial coefficients fj, g1,j, and g2,j for each line322

and are assumed to be drawn from a multivariate normal distribution323 
f

g1

g2


j

∼ N (0,Σ) , Σ =


σ2(f) σ(f, g1) σ(f, g2)

σ(f, g1) σ2(g1) σ(g1, g2)

σ(f, g2) σ(g1, g2) σ2(g2)

 ,

with estimated covariance matrix Σ. Additionally, the replicate associated with individual i,324

and the temperature in which it was raised, coded as a multi-level factor ti and the residuals,325

ei, are all included as random effects with estimated variances. The temperature at which a326

given individual was raised, ti was mean-centred by subtracting 19◦C.327

The among-line covariance matrices of intercepts, slopes, and curvatures (table 1) are328

difficult to interpret directly. However, some features of the mixed model analysis are imme-329

diately apparent. First, we can see that, as predicted by the statistical theory given above,330

the variance of coefficients of reaction norms (table 1d) in the two-step procedure inflates331

the apparent amount of variation in reaction norm parameters. Another such comparison332

yielding similar inflation of apparent variation in reaction norm parameters is reported in333

Liefting et al. (2015). This effect is larger in cases when reaction norms are more similar, in334

this case, with a much more dramatic effect for thorax length reaction norms than for spot335

number. Furthermore, the correlations among reaction norm parameters are consistently336

smaller in inferences from the two-step procedure. This is because statistical noise inflates337

all of the estimates of variance in the polynomial coefficients, but not necessarily all of the338

covariances.339
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However, biological inference based on the estimated variances and covariances of polyno-340

mial reaction norm coefficients is difficult. This is because the relationship between reaction341

norm shape and slopes and intercepts depends on the scaling of the environmental covariate342

(temperature, in this case). A first step to interpreting the mixed model results might be to343

visualise the family of reaction norms implied by the fitted mixed model. Figure 2 shows the344

raw means for each line in each environment (a and b), quadratic regressions fitted for each345

line (c and d), and an example of 20 reaction norms simulated from the values of the fitted346

mixed models (e and f). The last depictions are essentially simulations from the inferred347

distribution of reaction norms, generated by drawing intercepts, linear and quadratic terms348

from a multivariate normal distribution with a mean defined by the fixed effects in the fitted349

model, and with (co)variances set to those estimated by the random effects (table 2).350

While these reaction norms were previously interpreted as showing ubiquitous effects of351

variation in reaction norm shape, this interpretation seems tenuous based on consideration of352

the visualisations of the families of reaction norms in figure 2. For spot number, all inferences,353

including those that inflate the amount of variation in reaction norm shape (parts a and c),354

indicate that the reaction norms are approximately linear and thus there is in fact only very355

modest variation in reaction norm shape. A mixed model analysis is particularly useful356

for separating shared features of reaction norms (characterised by fixed effects) from ways357

that they vary (characterised by random effects). Indeed, the previous interpretation that358

these reaction norms show that curvature is a common feature of reaction norms (Rocha359

and Klaczko, 2012) is true. However, for thorax length, a critical further finding is that360

the reaction norms of different lines have very similar curvatures; this allows more nuanced361

interpretation of when and how curvature is an important feature of reaction norms.362

For thorax length, variation in the reaction norms is even more modest. The crossing of363

reaction norms has been suggested as a measure of variation in slope, and multiple crossing of364

reaction norms as a measure of variation in curvature (Rocha and Klaczko, 2012). However, if365

reaction norms vary very little in any way, then a great deal of crossing occurs! Consider figure366
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2b; if all of the reaction norms were nearly identical, then statistical noise in estimating the367

mean phenotype for each strain in each environment would cause half of the line segments in368

a plot such as this to cross. Clearly, line-crossing is difficult to apply as a measure of reaction369

norm complexity.370

Variance in phenotype arising from variation in reaction norm parameters371

How can we make inferences about the relative importances of variation in the mean values372

of reaction norms, and of slopes and quadratic terms, if the variances of intercepts, slopes,373

and quadratic terms depend on the arbitrary scaling and distribution of the environmental374

covariate (and additionally on the covariance of intercepts and quadratic terms)? Given any375

distribution of the environmental covariate, it is possible to derive the amount of variation376

among genetic units (e.g., lines), integrated over the distribution of the covariate, that arises377

from differences in the mean, slope and quadratic curvature of reaction norms. Detailed378

derivations are given in the appendix (section A.6 for a uniform covariate and A.7 for a379

normal covariate), and the formulae for these measures of variation in different aspects of380

reaction norm shape are given in table 2.381

Figure 3 shows the amount of variation in expected line- and temperature-specific pheno-382

typic values for both traits in the Drosophila example that are attributable to variation in the383

means, slopes, and curvatures of the families of reaction norms, as assessed by the quadratic384

random regression mixed model analysis (equation 6), and by the two-step analytical pro-385

cedure. This quantification of different components of variation in reaction norms confirms386

that differences in reaction norm shape are indeed modest, and also further demonstrates387

the danger of inflating inferences in the two-step analytical procedure (figure 3a,b). The388

majority of variation among lines arises from differences in mean values of reaction norms.389

Calculations of variation attributable to intercepts, linear, and quadratic terms, separately390

made based on uniform and normal distributions, are quite similar in this example (compare391

figures 3a,b with 3c,d). This should generally be the case when families of quadratic functions392
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capture variation in reaction norms well, as seems to be the case for these data.393

(Co)variances of arbitrary reaction norm properties394

Intercepts, linear, and quadratic terms, and the variance in expected values with which they395

are associated, do not directly represent all features of reaction norms in which we may be396

interested. For example, we may be interested in phenotypic values at specific environmen-397

tal values, mean phenotypic values integrated over different distributions of environmental398

values, locations of maxima or minima (environments that produce minimum or maximum399

phenotypes), and phenotypic values at maxima or minima (minimum or maximum phenotypic400

values). Quadratic regressions contain information about such reaction norm properties, pre-401

viously sometimes termed “characteristic values” (Delpuech et al., 1995; Gibert et al., 1998),402

and families of regression coefficients, as estimable by random regression analysis, contain403

information about means and variances of such reaction norm properties. Operationally,404

calculations of variance in arbitrary reaction norm properties seems easiest in the two-step405

analytical procedure. In mixed model analyses, one must call on somewhat more statisti-406

cal sophistication to derive (co)variances of reaction norm properties from estimated means,407

variances, and covariances of quadratic reaction norm parameters. However, an approach408

to develop formulae for such quantities seems clear. Given a function for calculating some409

quantity (e.g., the location of an optimum) from a fitted reaction norm function, the vari-410

ance of that quantity can be approximated by taking the expectation of a Taylor series. It411

is reasonable to feel that this is easier said than done. It may therefore be useful to provide412

expressions involving some quantities that might be most useful.413

Table 3 gives expressions for quantities that may be calculated from quadratic reaction414

norm approximations: the environment of the maximum or minimum value, the maximum or415

minimum value, and the mean (remembering that the intercept is not the mean of a quadratic416

function, even if the covariate is mean centred) for different distributions of the environmental417

covariate. Table 3 also gives expressions for the expectations and variances of each of these418
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quantities, given means and variances and covariances of quadratic regression coefficients, as419

are obtained from random regression mixed model analysis. Similar approaches to those that420

yielded these expressions (given in appendix section A.8), can be used to give variances and421

covariances of multiple derived reaction norm properties.422

We can briefly explore the application methods to infer distributions of arbitrary reaction423

norm properties using the data on the reaction norms of thorax length as a function of424

temperature (table 1, figure 2). While mean values for spot number may be biologically425

informative, means and variances of locations and values of optima for spot number will426

not. This is because the distribution of reaction norms contains very many nearly linear427

functions (figure 2), and optima of the quadratic approximations of such functions are far428

from the relevant range of temperature. However, the distribution of reaction norms for429

thorax length appears to have a reasonably well-defined maximum, and knowing how this430

maximum’s value and location varies among reaction norms may be of biological interest.431

The mean and variance of locations of maxima for thorax length, as given by the expressions432

in table 3 are 15.7 and 1.11, respectively. Means and variances of the phenotypic values at433

the maxima are 1.56 and 2.93−4, respectively.434

The approach to obtaining expressions for (approximating) the distributions of arbitrary435

reaction norm properties, as given in table 3 and appendix section A.8, could be extended in436

order to obtain other metrics of potential interest, for example, the covariance of locations437

and values of optima; however, the expressions will become increasingly unwieldy. The main438

value of the expressions given in table 3 is that they demonstrate that the random regres-439

sion approach provides the information necessary to infer arbitrary properties of families of440

reaction norms, given the assumption that a family of quadratic functions gives a reasonable441

approximating model. A more pragmatic option is available. Monte-Carlo (MC) simulation442

can provide very precise approximations to quantities such as means and variances of arbi-443

trary quantities. In the present setting, the technique would require simulation of a large444

number (say a million) random normal vectors with means and covariances equal to those445
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estimated by the fixed and random parts of a quadratic random regression mixed model.446

Then for each simulated vector, one or more quantities of interest can be calculated. The447

means, variances, and covariances of these simulated reaction norm properties will approach448

the values defined by the fitted random regression mixed model, as the number of simulations449

becomes large. On modern personal computers, this kind of procedure takes seconds. By450

this procedure (with one million MC simulations) the mean of the environments of maximum451

values, and the mean of the maxima, are 15.6 and 1.56. The variance of environments of452

maximum values is 1.29, the variance of maximum values is 3.18−4, and the covariance of the453

two quantities is -1.01−2 (the associated correlation is -0.497). The first four of these statistics454

agree very closely with the four values given above based on approximations given in table 3,455

indicating that the approximations may generally be robust. Further, it may be of particular456

interest in a biological example such as this, that those lines with the highest optima have457

their optima at the lowest temperatures. MC simulation approaches can be applied as well458

to obtaining standard errors of statistics of the distributions of arbitrary quantities.459

Another property of sets of reaction norms that may be of biological interest is the460

environment-specific variance of traits, and covariance among genetic units across environ-461

ments. Any parameters describing the variances and covariance of reaction norm parameters462

(e.g., intercepts, slopes, etc.) defines a specific pattern of within- and across-environmental463

(co)variance in phenotype. We have focused so far on a reaction norm, or “function-valued464

trait” approach to phenotypic plasticity, but this perspective is entirely complimentary to465

thinking about environment-specific covariances, which is sometimes called the “character466

state” approach (van Tienderen and Koelewijn, 1994). For example, in Box 1 figure B1a,467

a we could make a character state description of the reaction norms by saying that there is468

little variance in the trait associated with genotypes at x = 4, but appreciable variance for469

higher an lower values of the environmental variable; furthermore, we could state that, at470

the genetic level, trait values when x < 4 are negatively correlated with trait values when471

x > 4. A character state representation can sometimes be a very useful way of describing the472

properties of a family of covarying reaction norm parameters. Box 2 provides a description473



Analysis of reaction norms 21

of how to represent covariances of reaction norm parameters as environment-specific means474

and covariances.475

The quantities discussed in this and the previous section for summarising reaction norms476

apply directly to families of quadratic regressions (and associated formulae in tables 2 and477

3), especially as can be estimated with random regression approaches in linear mixed models.478

The reasoning behind these could in principle be extended to other types of functions, for479

example, to higher-order polynomials. In analyses of non-normal traits, e.g., with random480

regression in generalised mixed models, quantities described here would apply on the under-481

lying latent scale (e.g., on the log scale in a Poisson model), which in many cases could be482

very useful and biologically interpretable.483

Discussion and Conclusions484

We are neither advocating for, nor against, characterising reaction norm slope as the slope485

of a line between two points, i.e., of sab, on the reaction norm. We seek primarily to clarify486

that this very simple statistic has a very specific interpretation (i.e., the average slope of the487

reaction norm between points a and b) that holds regardless of the true shape of the reaction488

norm. Few other statistics one might use to characterise reaction norms have interpretations489

that holds so generally. This does not mean that sab could not potentially be misleading. For490

example, if a reaction norm contains a minimum or a maximum between the points x = a491

and x = b, then it is difficult to see what biological use inferences of sab may be, without fur-492

ther detailed analyses of reaction norm shape. Thus, there are situations where sab contains493

exactly the information that is needed, even if a reaction norm is highly non-linear, and there494

are times when information is needed that sab cannot provide. Understood correctly, there is495

neither a “pessimistic” nor an “optimistic” view (Rocha and Klaczko, 2012) to be had about496

sab; rather it is fit for some purposes and irrelevant to others. Additionally, it is of note that497

the distribution of slopes and intercepts of straight-line reaction norms between two environ-498

ments has direct relationships to cross-environment phenotypic and genetic correlations (Via499
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and Lande, 1985), another simple and robust relationship that does not necessarily hold for500

more complex statistical models of reaction norms.501

Similarly, while we have attempted to be very careful about the narrowness of the con-502

ditions under which coefficients of polynomial regressions can be interpreted as reflecting503

specific properties of true reaction norms, we are neither advocating for, nor against, poly-504

nomial regression. In particular, we note that polynomial approximating functions depend505

on the distribution of the covariate (i.e., the environmental variable), and cannot therefore506

necessarily be interpreted solely as properties of reaction norms. More importantly, we have507

noted that the slope of an approximation to a reaction norm at any specific point (i.e., Rocha508

and Klaczko 2012’s “local plasticity”) is not necessarily a good representation of the slope509

of the true reaction norm at that point. If a polynomial regression is sufficiently flexible510

relative to the presumed complexity of a true reaction norm, then this technique is likely to511

be valuable, even if it does not generally yield estimates of quantities that have such a simple512

and general interpretation as estimates of sab. We suspect that quadratic regression could513

prove to be a very pragmatic model of many non-linear reaction norms.514

Despite the previous claim that the Drosophila data in figure 2 support a contention that515

reaction norms vary extensively in their curvature, it is fairly easy to see that this is not516

the case. Taking into consideration that finite sample size for each line in each assayed517

temperature causes statistical noise in each point in figure 2a,b, it is clear that there is very518

little variation in reaction norm shape among lines. For abdominal spot number, the raw519

data consist primarily of parallel lines. For thorax length, dispassionate visual inspection and520

quantitative analysis shows that most of the variation is explained by the overall reaction521

norm, and by variation within temperatures, not differences in reaction norms among lines.522

Note that quantitative approaches (table 1, figure 5) support these contentions based on523

the raw data. Since two-step analytical procedures have been widely used in the primary524

literature, and even meta-analysis (Murren et al., 2014), it is not currently possible to judge525

how flexible polynomial regressions might generally have to be to capture the most important526



Analysis of reaction norms 23

features of (variation in) reaction norms. However, the analyses here are heartening and it527

seems plausible, that with due consideration to the features of any particular study system,528

that quadratic regressions, as advocated by (Rocha and Klaczko, 2014), could indeed provide529

pragmatic models of reaction norms in many cases.530

However, we caution strongly against some of Rocha and Klazcko’s (2014) specific sugges-531

tions for interpreting quadratic regressions. In particular, Rocha and Klazcko suggest that532

the derivative of a quadratic, or other polynomial function at any specific point, which they533

call “local reaction norm plasticity” could be a generally useful measure of reaction norm534

shape at a particular point. However, this derivative need not necessarily closely reflect the535

slope of a true reaction norm at that point, and it need not even be the correct sign (see also536

appendix section 2, figures A.1 and A.2). Rocha and Klaczko (2014) also suggest that the537

quadratic term can be used as a measure of “reaction norm shape”, justified by the fact that538

twice the value of the quadratic term is the second derivative of the quadratic function at539

all points, and is therefore the average derivative of the quadratic function. This use seems540

reasonable, but its application should be approached with awareness that the average deriva-541

tive or second derivative of the quadratic approximation to any function is only equal to the542

average derivative or second derivative under two conditions. First, this equality holds if the543

true function is indeed quadratic. Second, this equality holds if the environmental covariate544

is normal. Virtually no studies of reaction norms have a normal covariate. In fact, investi-545

gators typically strive for covariate distributions that approach uniformity. So justification546

for using curvature of a quadratic approximation as a measure of the curvature of a reaction547

norm rests on a requirement that a quadratic function is a good approximation of the true548

reaction norm. It seems that this requirement should frequently be closely enough met in549

empirical systems for quadratic regression to provide useful measures of average reaction550

norm curvature.551

We do advocate more strongly for analyses that do not apply statistical procedures to552

the outcomes of previous statistical procedures. Doing statistics on statistics will often lead553
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to misleading results, and is generally avoidable. Although some authors have begun to554

use mixed model analysis (e.g., Dingemanse et al. 2010; Martin et al. 2011), multi-step ap-555

proaches are still common empirical practice. Furthermore, while the applicability of random556

regression has been clearly demonstrated (Martin et al., 2011), we hope it is useful to clarify557

that it doesn’t merely represent a modernisation of statistical approaches to studying reaction558

norms. Rather, it allows pitfalls of two-step procedures to be avoided. When population-level559

variation is inferred from the distribution of summary statistics of units of organisation that560

have been analysed within that population, the apparent variation at the population-level561

will invariably be upwardly biased by statistical noise (see also Morrissey 2016). Given the562

existence of random regression mixed models in widely-used software packages (e.g., lme4,563

Bates et al. 2014; MCMCglmm, Hadfield 2010; ASReml, Gilmour et al. 2002) their use in564

studies of reaction norms should probably be extended. However, just as the biological utility565

of polynomial approximations to reaction norm functions depends on the closeness to which566

they approximate true reaction norm functions, inferences from random regression mixed567

models will also depend on the adequacy of a family of polynomial functions to describe568

variation in reaction norms.569

Additional benefits of mixed model-based analyses that we realised in our example anal-570

ysis also contribute to the utility of these methods. For example, we were able to account571

for covariates (by fitting a fixed effect for sex), and possible sources of variation and non-572

independence among observations (by treating variation among replicate vials as random573

effects). Furthermore, mixed-model analyses can very naturally account for unequal num-574

bers of observations in different environmental treatments, while such accounting is more575

difficult in the two-step procedure (weighting by precision would be necessary, and it is not576

clear if such an effort has ever been made in reaction norm studies). These seem like valuable577

aspects of the analysis for ensuring the most complete and rigorous use of the available data,578

and are relatively easily implemented in the mixed model framework. Furthermore, when579

a low-order polynomial function does not fit a reaction norm well, mixed model analysis580

may provide simple and powerful solutions. For example, the average reaction norm may be581
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handled with the fixed effects part of a model, using a high-order polynomial or some other582

flexible regression function such as a spline regression (Wood, 2006), while a relatively low-583

order model, such as a quadratic random regression, may still be pragmatic for describing584

variation in reaction norms around the average function.585

Linear mixed models, in particular the random regression mixed models considered here,586

are among the simplest of types of hierarchical model that may be useful to analysis of587

reaction norm shapes. Non-linear mixed models, and hierarchical models in general, could588

potentially be used to provide direct inference of variation in parameters such as the locations589

of maxima, and for coefficients of reaction norm models that are not based on polynomials.590

Flexible models that can provide such inferences are becoming increasingly easy to implement,591

for example with software such as jags (Plummer, 2010) and Stan (Stan Development Team,592

2014). With this range of options for model-based inference of variation in reaction norms, it593

should be increasingly possible to design powerful studies of interesting aspects of phenotypic594

plasticity.595
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Table 1: Random regression mixed model-based inference of variation in reaction norms for spot number
and thorax length in Drosophila mediopunctata, (a) fixed effect estimates, (b) standard deviations of random
intercepts, linear, and quadratic terms, and their correlations, and (c) standard deviations of additional
random effects. For comparison, standard deviations and correlations of intercepts, linear, and quadratic
terms from a traditional multi-step procedure are given in part (d).

number of spots thorax length
(a) fixed effects
a 1.8 1.54
b1 -0.162 -1.21−2

b2 -4−4 -1.9−3

sex 0.243 -0.156
(b) random quadratic regression coefficients (as SDs and correlations)

f g1 g2 f g1 g2
f 0.618 1.54−2

g1 -0.263 0.0485 0.117 2.3−3

g2 -0.979 0.454 1.35−2 -0.243 -0.992 2−4

(c) additional random variance components (as SDs)
replicate 0.158 0.0212
temperature 0.0382 6.6−3

residual 0.477 0.0571
(d) SDs and correlations of polynomial coefficients from the two-step procedure

f g1 g2 f g1 g2
f 0.642 0.0299
g1 -0.0802 0.0447 -0.159 7−3

g2 -0.933 0.286 1.69−2 -0.671 -1.25−2 1.2−3

Table 2: Expressions for variance in environment-specific expected values of phenotype attributable sepa-
rately to variation in reaction norm means, slopes, and curvatures (quadratic terms), for uniform and normal
environmental covariates. All expressions assume that covariates are mean-centred. For the uniform distri-
bution, r represents the range, i.e., where the centred uniform covariate has a range from −r to +r. For the
normal covariate, the environmental variable’s distribution is characterised by the standard deviation, σ.

uniform normal

mean (Σµ) 1
9

(
6r2σ(f, g2) + 9σ2(f) + r4σ2(g2)

)
σ2(f) + 2σ(f, g2)σ2(x) + σ2(g2)σ4(x)

slopes (Σg1) 1
3r

2σ2(g1) σ2(g1)σ2(x)
curvatures (Σg2) 4

45r
4σ2(g2) 2σ4(x)σ2(g2)
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Figure 1: Polynomial approximations to a non-linear reaction norm. The black curve represents an hypo-
thetical true reaction norm of the form E(z) = 1 + e0.75x−0.15x

2−0.04|x|3 , which has the basic shape often
expected for a thermal performance reaction norm. The solid lines show the predictions of polynomial ap-
proximations of the reaction norm of first- (red), second- (blue) and third-order (orange). Panel (a) shows
the polynomial approximations assuming that nine environment-specific population mean phenotypes are
known with essentially no error (e.g., as though there were very high sample sizes). Panel (b) repeats the
true (black line) and approximated (solid coloured lines) reaction norms from (a), and in addition shows three
more approximations of the reaction norm, in dashed lines. These are the polynomial approximations to the
reaction norm that would be obtained, given the same true reaction norm, but if the environmental covariate
was normally-distributed with mean zero, and with the same variance as among the nine treatments in part
(a).



Analysis of reaction norms 33

14 16 18 20 22 24

0

1

2

3

4

5
  (a)

spot number

14 16 18 20 22 24

1.3

1.4

1.5

1.6

1.7   (b)

thorax length

14 16 18 20 22 24

0

1

2

3

4

5
  (c)

14 16 18 20 22 24

1.3

1.4

1.5

1.6

1.7   (d)

14 16 18 20 22 24

0

1

2

3

4

5
  (e)

14 16 18 20 22 24

1.3

1.4

1.5

1.6

1.7   (f)

temperature

ex
pe

ct
ed

 p
he

no
ty

pi
c 

va
lu

e

Figure 2: Representations of variation in reaction norm shape for abdominal spot number (left column) and
thorax length (right column) among eight strains of Drosophila mediopunctata (raw data from Rocha et al.
2009). (a) and (b) show strain- and temperature-specific means, (c) and (d) show quadratic approximations
to the strain-specific mean temperatures. (e) and (f) show families of 20 simulated reaction norms from
quadratic random regression mixed models fitted to the individual-based (rather than line mean) data.
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Figure 3: Proportions of variation around the average thermal reaction norms of abdominal spot number
and thorax length in strains of Drosophila mediopunctata (raw data from Rocha et al. 2009), attributable to
variation in overall means, slopes, and intercepts. (a) and (b) are calculated for a uniform covariate from 14
to 24 degrees (i.e., r = 5). (c) and (d) are calculated for a normal covariate centred on 19 degrees, and with
a standard deviation of r/2, such that approximately 95 percent of the values of the environmental covariate
would fall in the range investigated (i.e., between 14 and 24). Black bars show variances attributable to the
polynomial components derived from a mixed model analysis (as depicted in figure 4e,f), and grey bars show
those from the two-step analytical procedure.
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Box 1: Mean centring of covariates705

In linear regression analyses of reaction norms, one may be interested in how much mean706

values vary, and how much slopes vary (and perhaps how means and slopes covary). The707

intercept only represents the mean if the environmental covariate is mean-centred. Figure708

B1.1 illustrates why this is so: if functions are sloped, then intercepts can be very different709

from mean values. If two regression functions have different slopes, then differences in their710

intercepts may be very different from differences in their mean values, if the covariate is711

not mean-centred (figure B1.1a). Intercepts do represent the means for a centred covariate,712

regardless of how slopes differ among genetic units (figure B1.1a). Furthermore, mean-713

centring can alleviate artifactual correlations among parameters. While there is no correlation714

of means and slopes in the reaction norms depicted in figure B1.1 parts a and b – in fact715

there is no variation in means – slopes and intercepts are highly correlated in part a, but the716

true biological pattern of no covariance is reflected under mean-centring, as depicted in b.717

Similarly to how intercepts cannot be interpreted as mean values of a regression function718

when a covariate is not centred, linear terms may be unrelated to average slopes of quadratic719

regression functions, unless the covariate is mean-centred (and symmetric). Linear terms in720

quadratic regression models are the slope of the function at the point where the covariate721

is zero. Consider figure B1.1c: the two depicted lines have identical average slopes over the722

range of the environment from three to five, and identical slopes at x = 4. However, if723

three to five environmental units is the range over which data have been collected, these two724

regressions will have opposite linear terms in a regression analysis where the covariate is not725

centred. Figure B1.1d depicts regression analyses of the same data, but with a mean-centred726

covariate, where it is evident that the linear terms will have the same value, reflecting the727

fact that the two approximating functions have the same slope at the mean value of the728

covariate.729
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Figure B1.1: Illustrations of conditions under which mean-centring of an environmental covariate can, and
cannot, render regression intercepts interpretable as mean values. See text in Box 1 for details.

In quadratic regression analyses of reaction norms, intercepts do not reflect mean values,730

even under mean-centring, unless there is no curvature. If curvature varies among genetic731

units, then then differences in intercepts may need not represent differences mean values.732

Figure B1.1e,f illustrate two alternatives: in part e, intercepts vary between two reaction733

norms, but mean values do not. In part f, intercepts are identical but mean values differ.734

This does not mean that quadratic regression analysis of reaction norms cannot provide735

inference of variation in mean values, only that these values must be derived (see table 3).736
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Box 2: Character-state and reaction norm approaches: the maths737

Any family of reaction norms, summarised by their mean intercept and slope, and the vari-738

ances and covariances of slopes and intercepts, corresponds to a specific set of environment-739

specific means and variances of phenotype, and across-environment covariances of phenotype.740

Expressing a family of reaction norms (or of function-valued phenotypes generally, e.g., de-741

velopmental trajectories) in terms of environment-specific (or, for e.g., age-specific in the case742

of development) means and (co)variances is referred to as a character-state representation.743

Any complete description of the covariances of parameters of a family of polynomial reaction744

norms can be translated into what it implies about a character-state representation. The745

maths involved may initially seem nebulous, but are in fact reasonably straight-forward.746

The algebraic operation necessary to convert a characterisation of reaction norms to a747

character state representation is the expression for the variance of a random variable when748

subjected to a linear transformation. If x is related to y according to y = bx, then the variance749

of x is related to the variance of y according to σ2(y) = b2σ2(x). If x and y are vectors, then750

a linear transformation might be written y = Bx, where B is a matrix containing coefficients751

by which elements of x are related to elements of y. If instances of x have (co)variances Σx,752

then the (co)variances of ys are given by Σy = BΣxB
T , where BT is the transpose of B753

(i.e., a matrix where rows and columns are exchanged).754

To use the algebra of variances under linear transformation to convert covariances of755

polynomial coefficients of reaction norms into their character-state representation, we must756

compose matrices B that reflect the environments in which we want to express the variances,757

and among which we might want to know covariances. An example might be most useful at758

this point. The estimated covariances of intercepts, slopes, and quadratic terms of reaction759
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norms of spot number to temperature are760

Σx =


0.381 -7.89−3 -8.18−3

-7.89−3 2.35−3 2.97−4

-8.18−3 2.97−4 1.83−4

 .

The quantities by which reaction norm parameters must be multiplied to give expected761

phenotype in any given environment are polynomial values corresponding to that environ-762

ment’s numerical value. In the analyses of Drosophila reaction norms, the temperature data763

were centred to a mean of 19◦C. So, the values of the polynomial function for, say, 16, 19 and764

22◦C (the middle value and nearly the extremes of the temperature range, see figure 2), the765

polynomials would be [(16− 19)0 (16− 19)1 (16− 19)2], [(19− 19)0 (19− 19)1 (19− 19)2]766

and [(22− 19)0 (22− 19)1 (22− 19)2]. The variances and covariances of the reaction norm767

functions across the temperatures 16, 19 and 22◦C would then be given by768 
1 −3 9

1 0 0

1 3 9




0.381 -7.89−3 -8.18−3

-7.89−3 2.35−3 2.97−4

-8.18−3 2.97−4 1.83−4




1 1 1

−3 0 3

9 0 9

 =


0.301 0.331 0.228

0.331 0.381 0.284

0.228 0.284 0.239

 .

This covariance matrix represents the covariances at the genetic level, in this case among-769

strains, at which reaction norms are inferred. The high correlations among environments770

(covariances are positive and similar in magnitude to variances) reflect the character-state of771

representation of the fact that there is modest variation in slopes and curvatures of reaction772

norms.773

In general, a reaction norm approach will use fewer parameters than a character state774

approach. In the Drosophila example, a description of the strain-level covariance matrix of775

temperature specific phenotype would require estimation of a matrix with 66 parameters.776

In this specific example with eight strains, these parameters could not be simultaneously777

estimated. In fact, any pairwise covariance estimate should be regarded as tenuous given778
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this level of replication across strains. In contrast, the quadratic reaction norm approach779

estimates six parameters at the level of strain. One should still keep in mind that its inferences780

are based the only eight strains, but all the information available is simultaneously used to781

estimate a model with a more sensible number of parameters. In cases where there is sufficient782

replication to support both character state and reaction norm approaches, their comparison783

should be useful. For example, such comparisons could identify ranges of the environmental784

covariate where a low-dimensional random regression model fits adequately or otherwise.785

For smaller studies, visual comparison of random regression fits to raw data is probably best786

(figure 2).787

788

789


