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Abstract 

We examined the growth rate of the circumpolar Greenland Cockle (Serripes 

groenlandicus) over a period of 20 years (1983-2002) from Rijpfjord, a high-Arctic fjord 

in northeast Svalbard (80º 10´ N, 22° 15´ E ). This period encompassed different phases of 

large-scale climatic oscillations with accompanying variations in local physical variables 

(temperature, atmospheric pressure, precipitation, sea ice cover), allowing us to analyze the 

linkage between growth rate, climatic oscillations, and their local physical and biological 

manifestations. Standard Growth Index (SGI), an ontogenetically-adjusted measure of 

annual growth, ranged from a low of 0.27 in 2002 up to 2.46 in 1996.  Interannual 

variation in growth corresponded to the Arctic Climate Regime Index (ACRI), with high 

growth rates during the positive ACRI phase characterized by cyclonic ocean circulation 

and a warmer and wetter climate. Growth rates were influenced by local manifestations of 

the ACRI: positively correlated with precipitation and to a lesser extent negatively 

correlated with atmospheric pressure. A multiple regression model explains 65% of the 

variability in growth rate by the ACRI and precipitation at the nearest meteorological 

station. There were, however, complexities in the relationship between growth and 

physical variables, including an apparent 1-year lag between physical forcing changes and 

biological response. Also, when the last 4 years of poor growth are excluded, there is a 

very strong negative correlation with ice cover on a pan-arctic scale. Our results suggest 

that bivalves, as sentinels of climate change on multi-decadal scales, are sensitive to 

environmental variations associated with large-scale changes in climate, but that the effects 

will be determined by changes in environmental parameters regulating marine production 

and food availability on a local scale. 
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Introduction 

The Arctic climate has changed dramatically in the last several decades (Maxwell, 

1997; Overpeck et al., 1997, Johannessen et al., 2003, 2004; AICA 2004). The average 

annual air temperature has increased by 1º to 4º C in the last half century (AICA 2004), 

and this has been accompanied by changes in terrestrial and marine ecosystems (Oechel & 

Vorulitis, 1997; Serreze et al., 2000; Morison et al., 2000). Effects of persistent climate 

change on Arctic marine ecosystems are largely undetermined, but changes that occur in 

response to decadal-scale climate oscillations may provide insight into longer term effects 

of more persistent climate change.  

Several large-scale climate oscillations have been shown to influence marine systems 

(see Allan et al., 1996; Ottersen et al., 2001; Walther et al., 2002; Stenseth et al., 2003 for 

reviews). Linkages between the two climate oscillations with nodes centered in the Arctic, 

the Arctic Oscillation (AO) and the Arctic Climate Regime Index (ACRI), and the marine 

ecosystem, however, have not been demonstrated. Both indices reflect differences in wind-

driven motion in the central Arctic alternating between two phases, an anticyclonic 

circulation regime (ACCR) and a cyclonic circulation regime (CCR). The climate regimes 

manifest as physical variables in the Arctic; ACCR is characterized by a cold and dry high-

Arctic atmosphere and a colder and saltier polar ocean (low AO and negative ACRI), 

whereas the cyclonic regime is characterized by a warm and wet atmosphere and a warm 

and fresh polar ocean (high AO, positive ACRI). Climatic conditions associated with both 

the AO and ACRI may affect marine ecosystems as has been demonstrated for the North 

Atlantic Oscillation (Ottersen et al. 2001). 
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Seafloor communities may be the best location to examine the impact of Arctic 

climate oscillations, and by extension the potential effects of climate change on the Arctic 

ecosystem.  There is often a close relationship between water column and benthic 

processes (Grebmeier et al., 1988; Ambrose & Renaud, 1995; Piepenburg et al., 1997; 

Wollenburg & Kuhnt, 2000; Dunton et al. 2005), and therefore long lived, sessile benthic 

organisms, may be more appropriate monitors of climate change (e.g. Kröncke et al., 1998, 

2001; Dunton et al. 2005) than the more transient pelagic system. Additionally, benthic 

communities are key components in the carbon cycle on Arctic shelves (Grebmeier et al., 

1989, Stein & Macdonald, 2004; Grant et al., 2002; Clough et al., 2005) and food for 

higher trophic levels (e.g. bottom feeding fish, mammals, and birds (Dayton, 1990)). 

Consequently, changes to the benthos may have profound effects on carbon cycling, 

trophic structure, and food web dynamics on Arctic shelves.  

 Bivalves comprise a significant proportion of the benthic biomass of Arctic shelves 

(Zenkevitch, 1963; McDonald et al., 1981; Feder et al., 1994; Gulliksen et al., 1985; 

Grebmeier et al., 1988; Dayton, 1990).  The shells of most bivalves exhibit periodic 

banding, or growth lines (Rhodes & Penella, 1970; Clark, 1974; Rhoads & Lutz, 1980), 

that have proved valuable in developing a history of environmental change in marine 

systems (Andrews, 1972; Hudson et al., 1976; Jones, 1981; Jones et al., 1989; Witbaard, 

1996; Witbaard et al., 1997, 1999; Tallqvist & Sundet, 2000; Schöne 2003; Müeller-Lupp 

& Bauch 2005). Temperature and food are the two main factors influencing bivalve growth 

(Buekema et al., 1985; Beukema & Cadée, 1991; Jones et al., 1989; Lewis & Cerrato, 

1997; Dekker & Beukema, 1999; Witbaard et al., 1997, 1999; Schöne et al., 2005), and 

both are likely to be influenced by climate change in Arctic marine systems (Carroll & 
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Carroll, 2003). Furthermore, many deep water and high latitude bivalves have life spans of 

decades (Tallqvist &  Sundet, 2000; Müeller-Lupp et al., 2003; Sejr & Christensen, 2006) 

to well over 100 years (Turekian et al., 1975; Thomson et al., 1980; Zolotarev, 1980, Peck 

& Bullough, 1993; Witbaard et al., 1999, Sejr et al., 2004). Bivalves can thus serve as 

bioproxies by providing uninterrupted records of environmental conditions over decades to 

centuries, which is critical in the Arctic given the paucity of long term data on community 

structure and dynamics. 

 We examined interannual variation in growth of the circumpolar Greenland Cockle 

(Serripes groenlandicus) from 1983-2002 in a high-Arctic fjord in northeast Svalbard 

(Norwegian Arctic) to explore the relationship between benthic communities and 

environmental variations associated with decadal climate oscillations in the Arctic. 

Variation in bivalve growth associated with changes in environmental conditions that 

occur over the course of a decadal-scale oscillation cycle provides insight into the response 

of a dominant member of the Arctic benthos to predicted long-term climate change. 

Materials and Methods 

Study Site  

Rijpfjord (80° 10´ N, 22° 15´ E) is located on the north-central shore of 

Nordaustlandet (Fig. 1), north and east of Spitsbergen in the Svalbard Archipelago.  

Rijpfjord is oriented south-north and opens to a broad shallow shelf of approximately 

200m depth extending to the shelf-break of the Polar Basin at roughly 81° N.  The bottom 

depth averages 200-250m, but an irregular sill crosses the width of the fjord midway 

through its length. Shallower depths are dominated by bedrock and stones covered with a 

thin layer of mud, while soft sediments predominate deeper sections. 



Ambrose et al., Bivalve growth and Arctic climate 
Page Page 6 of  of 39 

Rijpfjord is a true polar fjord. It is predominately ice-covered for at least 9 months 

a year (October-June), with breakup occurring between mid-July and mid-August. Even 

during the summer period, winds often force drifting pack ice into the fjord. The shallow 

outlet of the Rijpfjord shelf to the Polar Ocean results in little warm Atlantic subsurface 

water entering the fjord from the north (Sundfjord, unpub. data). The upper 10 m is a 

mixed layer with surface water of lower salinity and higher temperature associated with 

sea ice melt and in situ radiative warming; below which is a water mass with a temperature 

consistently < -1°C and a salinity > 33 ‰ (Fig. 2). 

Bivalve Collection 

Divers collected four Serripes groenlandicus individuals from 17 m depth on 28 

August 2003. Individuals were identified by their pale, white siphon, and were dug from 

the sediment where they were buried to a depth of 5 cm.  All animals were alive at the time 

of collection.  Soft tissues were immediately separated from the shells, and the shells air 

dried. 

Strontium/Calcium Ratios 

S. groenlandicus deposit distinctive lines during growth which appear as alternating 

thin dark and thicker light bands on the external shell surface. We used changes in the ratio 

of Strontium to Calcium in different areas of the shell to identify whether external lines 

were deposited annually. The Sr/Ca ratio in carbonate varies with the water temperature at 

the time of deposition (Zacherl et al., 2003; Bath et al., 2004), so systematic changes 

between presumptive growth lines, reflecting seasonal changes in water temperature, 

would suggest the lines are deposited annually. We measured Sr/Ca ratios along the 

growth axis within the prismatic layer of two S. groenlandicus shells (N1 and N3) using a 
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New Wave Research UP213 laser ablation system coupled to a Thermo Finnigan Element2 

single collector sector field ICP-MS.  The valves were mounted in resin and a 10mm cross 

section was cut along the axis of maximum growth using a low-speed saw equipped with a 

diamond blade.  The section was mounted on a petrographic slide with cyanoacrylic glue, 

polished using 30μm and 3 μm Al2O3 lapping film, and then decontaminated in a clean 

room.  Each valve was scrubbed with a nylon brush, triple rinsing with 2% HNO3, 

sonicated for 5 minutes in ultra pure H2O, triple-rinsed in water, and then dried for at least 

24 hrs under a laminar flow clean bench.  

Instrument set-up was similar to that outlined by Günther & Heinrich (1999) as 

modified by Thorrold et al. (2001).  Linear spatial resolution was 100 μm along the growth 

axis which corresponded to weekly resolution during early years of life, declining to 

monthly resolution as shell growth rates decreased at older ages.  Quantification of Sr/Ca 

ratios followed the approach outlined by Rosenthal et al. (1999) for precise element/Ca 

ratios using sector field ICP-MS.  Average external precision (RSD) of Sr/Ca ratios in the 

laboratory standard was 0.2%. 

Growth Rates 

The external growth lines on S. groenlandicus are annual growth checks (Kim et al. 

2003; this study - see Sr/Ca ratio results), and thus can be used to determine growth rates. 

Since we collected all clams live, each growth increment can be assigned to a specific 

calendar year. The distance between the ventral edges of successive growth lines along the 

line of maximum growth (shell height) was measured with a digital caliper to the nearest 

0.01 cm. We do not include growth beyond the last growth line in our analyses because we 

do not know what portion of the present year this growth represents.  
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Shell growth of S. groenlandicus was modeled by fitting the von Bertalanffy growth 

function to age and shell height data for each clam using Minitab (Ver. 14.10, 1993).  

Bivalve growth declines with age, so growth increments within an individual and among 

individuals of different ages must be standardized before growth among years can be 

compared. We use the methods of Jones et al. (1989), employing the first derivative of the 

von Bertalanffy function with respect to time, to derive an ontogenetically-adjusted 

measure of annual growth:  

kt
ekdtd t

−
∞= SH/SH    

 

where SHt = shell height at age t,  = modeled yearly change in shell height, t = 

age in years, = maximum, asymptotic shell height, k = growth constant. 

dtd t /SH 

∞SH

After determining the average yearly changes in shell height based on growth data 

from all clams, we calculated the expected yearly increase in shell height for each clam for 

each year. We then divided the measured or observed shell growth for each year by the 

expected growth for that year to generate a standardized growth index (SGI).  This 

removes the ontogenetic changes in growth and equalizes the variance for the entire series 

(Fritts, 1976). Once annual changes in shell growth were standardized, we calculated the 

mean SGI for each calendar year (because growth lines are deposited in winter, growth 

year is virtually synonymous with calendar year). The result is a record of year-by-year 

growth for the S. groenlandicus individual, with an SGI greater than one indicating a better 

than average year for growth, while a value less than one reflects a worse than average 

growth year.  
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Climatic and Meteorological Data 

We examined relationships between clam growth and climate indices with potential 

influence on the region: the Arctic Climate Regime Index (ACRI), North Atlantic 

Oscillation (NAO) and Arctic Oscillation (AO). The AO is the first principal component of 

the sea level pressure field at latitudes > 20º N (Thompson and Wallace 1998, Stenseth et 

al. 2003), while the ACRI measures variations in Arctic Ocean and ice circulation based on 

the sea level height anomaly at the North Pole (Proshutinsky & Johnson, 1997; Johnson et 

al., 1999; Proshutinsky, pers com. for updated index).  The sea surface height anomaly at 

the North Pole is indicative of the predominant high-Arctic wind pattern.  Data for the 

NAO, using the sea level pressure difference between Gibraltar and Southwest Iceland 

(Jones et al., 1997; Osborn et al., 1999), were obtained from 

(http://www.cru.uea.ac.uk/cru/data/nao.htm) and for the AO from 

(http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao_index.html).   

The Barents Sea temperature data (PINRO, Murmansk) is a time series of 

integrated ocean temperature from 0-200 m depth along the Kola transect, which runs from 

the Kola Peninsula northward to the ice edge along the 33° 30´ E meridian (Bochkov, 

1982; Tereshchenko, 1997). We have used yearly means of Barents Sea temperature in our 

analysis.   

Meteorological data were obtained from the four official weather stations around 

Svalbard (Longyearbyen, Ny Ålesund, Bear Island, and Hopen; Fig. 1) maintained by the 

Norwegian Meteorological Institute (http://eklima.met.no). Daily data of precipitation, 

pressure, and temperature were used to calculate seasonal and yearly averages. 
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Local ice conditions were estimated from imagery by the Nimbus-7 SMMR and 

DMSP SSM/I passive microwave satellite (Cavalieri et al. 1997). The spatial resolution of 

the satellite imagery is 25x25 km, and the cell used for the ice analysis is immediately 

northward of Rijpfjord proper. The temporal resolution is daily from 1988 to 2003 and 

every second day from 1978 to 1988. We calculated the ice free days per year as the 

number of days with ice cover <25% from 1 July to 30 October of a given year (the 

estimated period of active growth of S. groenlandicus). This measure relates closely 

(>90%) to ice free days in a calendar year and average yearly ice concentration.  Data on 

total Arctic-wide spatial extent (km2) of pack ice were obtained from the U.S. National 

Snow and Ice Data Center (http://www.nsidc.com/data/seaice_index/) (Fetterer& Knowles, 

2002).  

Statistical Analyses 

We calculated Pearson correlation coefficients in order to determine basic pair-wise 

relationships between SGI and the environmental and physical variables.  We compared 

annual means and also investigated the time-dependence between data in consecutive 

years, leading us to incorporate two data transformations: 2 year-running means were used 

to reduce the magnitude of interannual variability of both growth rate and environmental 

data, and a 1-year lag was used to account for the time for physical processes to be 

reflected in shell growth.  

We used a general linear model to investigate the data at an individual clam level, 

firstly to identify predictors of S. groenlandicus growth, and secondly to test whether there 

were significant differences between the clams, included in the model as a random effect.  

To further justify pooling the growth rates of the sample of clams, we computed the 

http://www.nsidc.com/data/seaice_index/
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Cronbach α measure of reliability (e.g., Bland & Altman, 1997), for the available growth 

data on a common set of years available for all clams (1992-2002) to examine the 

homogeneity of the four clam growth rates. Once we established that the clams were a 

homogenous sample, we combined the clam data into an annual mean value as a more 

reliable indicator of annual clam growth rate.  This mean was then used as a response 

variable in a multiple linear regression model, investigating relationships with all available 

annual predictor variables.  In all analyses, we checked for serial correlation in the 

residuals, which should be absent to satisfy the assumptions of the regression model. 

Statistical analyses were done using Statistica (ver. 6) or SPSS (ver. 11.5.1). 

Results 

The clams collected were 20, 19, 18, and 11 years old, representing 68 years of 

growth data. We assayed Sr/Ca ratios from 440 samples spanning 16 growth increments, 

and 350 samples spanning 12 increments, in the 20 year-old (N1) and 19 year-old (N3) 

shells, respectively.  The two Sr/Ca profiles were similar, with maximum values of 

between 3.5 and 4.5 mmol mol-1 in aragonite deposited during early life, and a minimum 

value of approximately 1.5 mmol mol-1 recorded as the individuals grew older (Fig. 3).  

There was clear periodicity in Sr/Ca ratios that corresponded to growth increments visible 

in the shells.  The amplitude of Sr/Ca variation within an increment ranged from 2-2.5 

mmol.mol-1 in wide increments during the first 2-3 years of life to 1-1.5 mmol mol-1 as 

growth lines narrowed with age.  Sharp declines in Sr/Ca ratios were invariably associated 

with the presence of a dark growth line, confirming the growth lines are winter growth 

checks.  
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The von Bertalanffy growth equation (  had an R)1(8.112SH )( 032.0 0tt
et

−−−= 2 of 

0.956 (P≈0), indicating that it was an excellent descriptor of these clams’ growth. This 

allowed us to correct for changes in growth with age and confidently generate the expected 

growth for each calendar year (Standardized Growth Index = SGI). 

SGI varied considerably over the 20 years of the data set (Fig. 4), with a range for 

individual clams between 0.27 in the poorest growth year (N1 in 2002) to 2.46 in the best 

growth year (N2 in 1996). The total population SGI ranged from 0.45 (2002) to 1.64 

(1995). The differences in SGI’s among years are clearly not random, but appear to follow 

a cyclic pattern with better growth in the mid-1990s bracketed by two poorer growth 

periods in the late-1980s and the early part of this century. Growth has declined steadily 

for the last 4 years of the series, with the worst growth in the last two years (2001, 2002).  

To justify combining the growth rates for the individual clams into an average 

Cronbach’s reliability coefficient was calculated for the years 1992 until 2002, for which 

we had data from all four clams. The value α=0.663 indicates a reasonably high level of 

reliability.  Unless mentioned otherwise, the following results are for the average annual 

SGI values. 

SGI is most highly correlated with precipitation on Hopen and the ACRI (Table 1). 

These positive correlations generally improve when running means are used instead of 

annual means for the environmental parameter and when the environmental data are lagged 

one year with respect to growth, growth corresponding better to the previous year’s 

environmental data than the current year’s. The ACRI was the only large-scale climate 

index related to clam growth (Fig. 5) and this correlation was very significant with a one-

year lag and using the running mean (r = 0.671, P<0.001). Atmospheric pressure at Hopen 
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and Longyearbyen are also significantly correlated, in these cases negatively, with the SGI 

when a one year lag and the running mean of the environmental data are applied.  Removal 

of the variability explained by the ACRI and a correlation analysis between the residuals 

and the SGI revealed significant negative correlations between the SGI and the Kola Sea 

temperature, precipitation at Ny Ålesund and air temperature in Longyearbyen.  

Considering all explanatory variables and their lags as well as their running means 

as possible predictors, the best subset of predictor variables for the SGI which we 

identified are the ACRI averaged over the two years prior to SGI measurement (running 

mean with a 1 year lag) and the running mean (present and previous year) of precipitation 

at Ny Ålesund. The model is: 

Average SGI = 1.715 + 0.319 × ACRI – 0.00183 × Ny Ålesund Precipitation 

                                                      (2yr mean,                         (2yr mean)                 
                                                         1yr lag) 

          (P<0.00001)                        (P<0.007) 
 

This model explains nearly 65% of the variability in the mean SGI (R2 = 0.649). Although 

the individual variables are serially correlated, the residuals in the model are not 

autocorrelated (Durbin-Watson test statistic = 1.67), thus satisfying the assumption of the 

regression model.  Fig. 6 shows the observed mean SGI plotted against the value predicted 

by our model, where the 45 degree line indicates perfect prediction. This shows that the 

model-generated SGI’s closely track the measured values. The only significant residual is 

for the year 1991, which is over-predicted because of a 1-year drop in average SGI in an 

otherwise multi-year uptrend in SGI (Fig. 5). In other words, the serial autocorrelation 

breaks down in 1991. 
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Discussion 

Growth of S. groenlandicus from northeast Svalbard is clearly related to the Arctic 

Climate Regime Index, a large scale arctic climate oscillation dependent on high-Arctic 

atmospheric circulation patterns (Proshutinsky & Johnson, 1997; Johnson et al., 1999; 

Polyakov et al., 1999), through local environmental conditions. Fortunately, the S. 

groenlandicus growth we examined spanned large changes in the ACRI (from positive to 

negative phase and vice versa), offering us the opportunity to examine the response of this 

important member of the benthic community to large changes in climate. The response of 

S. groenlandicus to the ACRI and local conditions, however, was complex, including an 

apparent 1-year lag between physical forcing changes and biological response. 

The use of bivalves as bioproxies for climate changes hinges on the ability to 

recognize annual markers in their shell. While it is generally assumed that lines visible on 

the external shell or internally in cross section are deposited annually, particularly at high 

latitudes, this assumption is not always tested (Andrews, 1972; Tallqvist & Sundet, 2000). 

When the periodicity of increments has been examined using changes in oxygen and 

carbon isotopes between presumptive annual lines (Witbaard et al., 1994; Heilmayer et al., 

2003; Khim et al., 2003), or more rarely in polar environments, mark and recapture studies 

(Sejr et al., 2002), they have proved to be annual and are associated with a winter cessation 

of growth.  In S. groenlandicus from the Chukchi Sea, δ18O values vary systematically 

between growth lines with the highest values, reflecting the coldest temperatures, 

coincident with the dark lines on the shell, strongly suggesting the lines are deposited 

annually during winter (Khim et al., 2003).   
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We found that Sr/Ca profiles also varied systematically between individual growth 

lines, with minimum values always associated with dark growth bands. Recent culturing 

studies have found that the Sr/Ca ratio is positively correlated with temperature in low-Sr 

aragonite from mollusk shells and fish otoliths (Zacherl et al., 2003; Bath et al., 2004), 

meaning that growth lines in S. groenlandicus from Rijpfjord are likely deposited during 

the winter. The within-year amplitudes of Sr/Ca variations we found are on the order of 

50-100%, and are of a similar magnitude to those reported by Stecher et al. (1996) for the 

bivalve Mercenaria mercenaria.  Thus, the results are clearly consistent with an annual 

deposition rate of growth lines in S. groenlandicus shells and justify use of external lines 

on the shells as annual markers.   

Considerable effort has recently been directed towards understanding the 

relationships between climate variation and ecosystem structure and function. Climate 

oscillations and the associated changes in physical parameters such as temperature, water 

circulation, and ice cover have been shown to measurably influence marine ecosystems in 

the North Pacific, North Atlantic, and Southern Ocean by regulating the abundances of 

organisms at the base and upper levels of food webs (Fomentin & Planque, 1996; Stabeno 

& Overland, 2001; Hunt & Stabeno, 2002). S. groenlandicus growth is not strongly related 

to the North Atlantic Oscillation (NAO), the Arctic Oscillation (AO), which is itself related 

to the NAO (Deser, 2000; Hurrell et al., 2003), or the Barents Sea temperature (until after 

the effects of the ACRI are removed) (Table 1), which is influenced by incursions of the 

North Atlantic Current into the Barents Sea (Loeng, 1991), and only correlated with one of 

the environmental variables from locations outside the polar front (e.g. all locations except 

Hopen), atmospheric pressure at Longyearbyen. This pattern of relationships indicates that 
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we are measuring the response of the marine ecosystem to an exclusively Arctic 

phenomenon, rather than a temperate interaction with Arctic climate. Once the variability 

in the SGI attributed to the ACRI is removed, either in the multiple regression model or in 

the correlation analysis, precipitation at Ny Ålesund is related to the SGI. 

The polar-scale effect of climate on S. groenlandicus growth, however, is not 

immediate or direct because variation in S. groenlandicus growth is best explained by the 

climate index one year earlier than the current years’ growth (Table 1, regression model). 

Lagged response to climate oscillations are common in marine systems and can typically 

span many trophic levels (Post 2004) from benthic infauna (Tunberg & Nelson, 1998), 

including the bivalve Arctica islandica (Witbaard et al., 2003), to zooplankton (Pershing et 

al., 2004), fish (Ottersen et al., 2004) and birds (Thomson & Ollason, 2001). In the case of 

S. groenlandicus, the lag is probably because the local manifestations of the climate 

oscillation (i.e. precipitation) take a period of time to develop. Furthermore, there is likely 

an additional time lag associated with the biophysical coupling via physical constraints on 

food production, biological processes of consumption and assimilation as tissue and shell 

growth, and storage of energy as tissue from previous years.   

Surprisingly, given the importance of ice in mediating environmental conditions in 

the Arctic, no measure of ice condition (summer ice free days, total arctic ice pack extent) 

was related to S. groenlandicus growth (Table 1). When the last 4 years of poor growth are 

removed from the analysis, however, there is a very strong, significant negative 

relationship between SGI and Arctic-wide extent of the pack ice (Fig. 7). It is remarkable 

that such a large scale measure of ice conditions as the extent of total pack ice across the 

Arctic explains over 50% of the interannual variability in the growth of S. groenlandicus. 
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This relationship disappears when the last 4 years are included in the analysis, suggesting a 

decoupling of the previously strong relationship between growth and ice conditions in the 

last 4 years.  

The growth of S. groenlandicus is linked to the ACRI though the impact of the 

climate oscillation on the local physical conditions of precipitation and ice cover (Fig. 8). 

The integration of water column processes by long-lived Arctic benthos means that the 

effect of climate on S. groenlandicus growth may be direct or indirect, and the specific 

mechanisms of coupling between physical conditions and bivalve growth in Rijpfjord (Fig. 

8) are not well understood. Variation in bivalve growth is typically best explained by 

variation in temperature and food (Buekema et al., 1985; Beukema & Cadée, 1991; Jones 

et al., 1989, Lewis & Cerrato, 1997; Dekker & Beukema, 1999; Witbaard et al., 1997, 

1999). Some of the best documented effects of climate oscillations on individuals, 

populations and benthic community structure are mediated through temperature (Kröncke 

et al., 1998; Ottersen et al., 2001; Hagberg et al. 2004). In late August when the clams in 

Rijpfjord were collected, the thermocline roughly coincided with collection depth (Fig. 2), 

indicting that the clams lived deep enough to experience relatively small differences in 

temperature over the year, meaning the temperature effects on growth will be limited and 

likely minor compared to other factors controlling food availability. 

The growth of many polar benthic organisms appears to be food limited 

(Brockington & Clarke, 2001) and differences in growth among sites have been related to 

differences in food supply (Brey et al., 1995; Norkko et al., 2005). If the S. groenlandicus 

population in Rijpfjord is also food- rather than temperature-limited, processes regulating 

the quantity and quality of food reaching the bottom of the fjord will have a strong effect 
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on S. groenlandicus growth. In the absence of a strong temperature signal, variation in 

food quantity, and possibly quality, is the most probable explanation for interannual 

differences in S. groenlandicus growth in Rijpfjord. This is the same conclusion reached 

by Witbaard et al. (2003) for interannual variations in growth of Arctica islandica in the 

North Sea, and Sejr et al. (2004) for Hiatella arctica in east Greenland.   

Precipitation is the only environmental variable that enters the multiple linear 

regression model as a negative relationship between SGI and precipitation at Ny Ålesund, 

and precipitation at Hopen is positively correlated with growth in current and previous 

years (Table 1) (precipitation at Ny Ålesund and Hopen are negatively correlated, though 

not significantly, hence their opposite relationships with the SGI).  The effect of 

precipitation on S. groenlandicus growth could be due to direct or indirect effects and we 

have little data from Rijpfjord to help us interpret these relationships. The land around 

Rijpfjord is heavily glaciated and the un-glaciated areas are sparsely vegetated with 

nutrient poor soil, so spring runoff is unlikely to be laden with nutrients necessary to 

stimulate a phytoplankton bloom. Precipitation might also stabilize the water column, 

which has been shown to initiate a spring bloom in the Bering Sea (Stabeno & Overland, 

2001) and west Greenland (Nielsen & Hansen, 1995), but is not necessary for a spring 

bloom to develop in the Rijpfjord system (Hegseth et al., 1995). Precipitation  could affect 

the salinity of surface water and the abundance of herbivorous zooplankton, which are 

capable in Arctic fjords of consuming over 80% of annual primary production (Nielsen & 

Hansen, 1995) and indirectly influencing bivalve growth (Witbaard et al., 2003); a top-

down rather than a bottom-up effect. It is also possible that precipitation is a reflection of 

storms, which may cause resuspension of settled phytodetritus, and in shallow enough 
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water, benthic microalgae, both of which could be consumed by S. groenlandicus, a 

positive relationship, or excessive wind might suspend bottom sediment clogging the gills 

of S. groenlandicus and resulting in lowered growth, a negative relationship.  Without 

more information on environmental conditions in Rijpfjord and how they affect primary 

productivity and delivery of food to the benthos, we can do no more than speculate on the 

relationships between growth of S. groenlandicus and precipitation.  

Perhaps the most intriguing aspect of the relationships between S. groenlandicus 

growth and environmental conditions is the decoupling which occurred during the last 4 

years between ice cover and growth. Annual phytoplankton production in the Arctic is 

directly proportional to the length of open water (Rysgaard et al., 1999) and benthic 

biomass on Arctic shelves is, inversely related to ice cover (Ambrose & Renaud, 1995). In 

Rijpfjord, however, 3 weeks after the break-up of ice in 2003 during the period when the 

“spring” bloom would be expected, there was a very shallow mixed-layer depth (Fig. 2) 

and little suspended chlorophyll biomass in the water column (maximum 1 μg L-1, E.N. 

Hegseth, unpub. data). Locally produced phytoplankton alone would appear to be 

insufficient to sustain the rich benthic communities observed in Rijpfjord, with infaunal 

benthic biomass of 130 g WW m-2 (M.L. Carroll, unpub. data) at 200 m depth adjacent to 

the bivalve collection site.  Thus, we assume a significant amount of food must reach the 

bottom of Rijpfjord from non-local sources, with ice algae from ice flows episodically 

driven into the fjord by wind and advected phytoplankton being the most likely 

explanation (Carroll et al. in prep.). To the extent that the benthos in Rijpfjord is dependent 

on the advection of ice and associated ice algae for food, the recent reduction in summer 

ice north of Svalbard (Serreze et al., 2003; 
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http://nsidc.org/news/press/20050928_trendscontinue.html) or any change in wind or 

current patterns resulting in less ice entering the fjord would cause a reduction in this food 

source. Ice algae is a potentially important food source for the Arctic benthos (Ambrose et 

al., 2001 and references therein) including S. groenlandicus (McMahon et al., 2006).  

There may well be a balance between enough ice for ice algae-laden flows to be advected 

into Rijpfjord and too much ice reducing phytoplankton production in surrounding waters 

(the source for any advected phytoplankton) and limiting the movement of ice flows. There 

are as yet insufficient data to determine if there has been a fundamental shift in the 

biophysical coupling in Rijpfjord, but it is possible that the quality or quantity of food 

reaching the benthos has recently changed. This change could be a reflection of long term 

climate change in the Arctic that is now exerting an overriding effect on the benthos 

compared to local climatic conditions.  

Bivalves have been used to reconstruct environmental conditions in ancient and 

modern environments for many decades. The long life of polar bivalves and the tight 

coupling between pelagic and benthic processes make them ideal candidates for 

monitoring climate change and for predicting the impact of global warming on Arctic 

marine ecosystems. Our results confirm the importance of S. groenlandicus as a biological 

proxy of climatic forcing on the marine ecosystem and are the first evidence of an Arctic-

centered climate oscillation influencing marine benthic processes. Our results, however, do 

not reveal the proximate causes of variability in bivalve growth. To fully understand the 

response of S. groenlandicus and other bottom dwelling organisms to climate fluctuations, 

we need to better understand variation in the quality and quantity of food reaching the sea 

floor. 
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Table 1: Pearson Correlations relating S. groenlandicus SGI to various environmental 
variables, 1983 - 2002. The first sets of two columns of coefficients are from annual data 
(temperature and pressure data used are annual means, precipitation is annual total sum) 
and 2-year running means of the annual data. The second set is from the environmental 
data being set back (lagged) by 1 year with respect to the growth data. The third set 
contains the correlations (1 year lag only) after the effects of the Arctic Climate Regime 
Index (2 year running mean, 1 year lag) have been removed. Significant correlations are 
shown in bold. The levels of the significant correlations are: * P<0.05, ** P<0.01, *** 
P<0.001.   
 

Correlations with Average SGI Correlations with 
Residuals 

 

Present Year 1 year lag  1 year lag 

Environmental Variable Annual Running  

Mean 

Annual Running 

Mean 

Annual Running 

Mean 

Kola Transect Sea 
Temperature 

-0.032  0.008  0.045  0.033 -0.345 -0.462* 

Summer Ice Free Days 
in Rijpfjord 

 0.166  0.107  0.005 -0.050 -0.132 -0.145 

Pack Ice extent March -0.315 -0.232 -0.319 -0.137 -0.416 -0.422 

Ny Ålesund Air 
Temperature 

-0.020 -0.141 -0.204 -0.263 -0.409 -0.318 

Ny Ålesund Pressure -0.169 -0.349 -0.381 -0.428  0.044  0.202 

Ny Ålesund Precipitation -0.212 -0.257 -0.158  0.134 -0.509* -0.250 

Longyearbyen Air 
Temperature 

-0.002 -0.112 -0.181 -0.112 -0.434* -0.341 

Longyearbyen Pressure -0.198 -0.383 -0.408 -0.455*  0.023  0.177 

Longyearbyen 
Precipitation 

 0.047  0.181  0.199  0.389 -0.095  0.047 

Hopen Air Temperature -0.015 -0.114 -0.175 -0.199 -0.427 -0.362 

Hopen Pressure -0.216 -0.417 -0.432 -0.451* -0.055  0.150 

Hopen Precipitation  0.476*  0.592** 0.592**  0.515* 0.341 0.244 

Bear Island Air 
Temperature 

-0.124 -0.167 -0.152 -0.196 -0.386 -0.354 

Bear Island Pressure -0.221 -0.374 -0.366 -0.364 -0.038 -0.175 

Bear Island Precipitation  0.323  0.408  0.319  0.213  0.255  0.037 

NAO Index (Annual)  0.025  0.106  0.140  0.209 -0.162 -0.148 

NAO Index (Winter)  0.178  0.297  0.241  0.219 -0.081 -0.229 

AO Index (Annual) -0.021  0.129  0.233  0.332 -0.175 -0.219 

AO Index (Winter)  0.242  0.358  0.322  0.368 -0.124 -0.223 

Arctic Climate Regime 
Index 

 0.297  0.522*  0.492*  0.671*** -0.018   0.000 
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Figure Legends 

Fig. 1. Map of the study region showing the Spitsbergen Archipelago, general current 

patterns, the locations of the meteorological stations (BI = Bear Island, HO = Hopen, LB = 

Longyearbyen, NÅ = Ny Ålesund), and the collection site of Serripes groenlandicus 

(Rijpfjord = RF). The polar front is the average location of maximum ice cover in late 

winter. 

Fig. 2. Temperature and salinity profile from Inner Rijpfjord, near the location of bivalve 

collection on, 28 August 2003.  

Fig. 3. Ratio of strontium to calcium in two S. groenlandicus shells (N1 and N3) from 

Rijpfjord. Samples were taken along each clam’s height and are numbered from the umbo 

to the ventral margin. Triangles correspond to the location of dark growth lines visible on a 

shell’s exterior.  

Fig. 4. Standard Growth Index (±1 standard error of the mean) of the Serripes 

groenlandicus from Rijpfjord, Svalbard (Norway) collected live on 28 August 2003. 

Growth increments were calculated using external measurements and the von Bertalanffy 

equation to remove ontogenetic changes in growth. A standard growth index greater than 

1.0 indicates greater than average growth while one less than 1.0 poorer than average. 

Growth was measured along the line indicated on the shell. The dark bands representing 

winter cessation of growth are visible on the shell.  

Fig. 5. Temporal patterns of the Arctic Climate Regime Index, ACRI (gray bars), lagged 

one year, and S. groenlandicus SGI (line). The ACRI data are 2-year running means of raw 

data, while the SGI data are untransformed.  
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Fig. 6. Scatterplot of observed vs. modeled SGI from 1983-2002 with the growth years 

shown as data points. Line represents a perfect prediction by the model of actual growth 

rates of the S. groenlandicus population.  

Fig. 7. Relationship between total Arctic-wide winter (March) sea ice extent (2 year 

running mean) and S. groenlandicus SGI from 1983 to 1998. (Ice data courtesy of National 

Snow and Ice Data Center, Boulder Colorado USA). 

Fig. 8. Schematic representation of the Arctic Climate Cascade, where bivalve growth, and 

by inference, other ecosystem processes are linked to climatic forcing factors through 

variation in physical variables. 
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