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 66 

Abstract 67 

 68 

Metformin is the first-line antidiabetic drug with over 100 million users worldwide, yet its 69 

mechanism of action remains unclear
1
. Here the Metformin Genetics (MetGen) Consortium 70 

reports a three-stage genome wide association study (GWAS), consisting of 13,123 participants of 71 

different ancestries. The C-allele of rs8192675 in the intron of SLC2A2, which encodes the 72 

facilitated glucose transporter GLUT2, was associated with a 0.17% (p=6.6x10
-14

) greater 73 

metformin induced HbA1c reduction in 10,577 participants of European ancestry. rs8192675 is the 74 

top cis-eQTL for SLC2A2 in 1,226 human liver samples, suggesting a key role for hepatic GLUT2 in 75 

regulation of metformin action. In obese individuals C-allele homozygotes at rs8192675 had a 0.33% 76 

(3.6mmol/mol) greater absolute HbA1c reduction than T-allele homozygotes.This is about half the 77 

effect seen with the addition of a DPP-4 inhibitor, and equates to a dose difference of 550mg of 78 

metformin, suggesting rs8192675 as a potential biomarker for stratified medicine. 79 
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Main text 80 

Metformin was commercialized before the modern era of target-based drug discovery. It typically 81 

reduces HbA1c by 1~1.5% (11~16mmol/mol) and has an excellent safety record, but considerable 82 

variation exists in how well patients respond to metformin2,3. We have recently established that 83 

genetic factors influence glycaemic response to metformin, with many common variants across the 84 

genome together explaining a significant proportion of the variation, ranging from 21% to 34%, 85 

depending on how glycaemic response was measured4. Hypothesis-driven studies of 86 

pharmacokinetic variants have shown no consistent results5-10. The only GWAS published to date 87 

revealed an association with rs11212617 near the ATM locus, which has been further replicated11,12. 88 

Here we extended the previous GWAS by an additional 345 samples to a screening set of 1,373 89 

participants. As in our previous report12, rs11212617 remained the top signal with no other genome-90 

wide significant hit (Supplementary Figure 1). A systematic three-stage replication was undertaken, 91 

with the work flow shown in Supplementary Figure 2. Only rs8192675 in the intron of SLC2A2 was 92 

replicated through the first two stages with a combined p=1x10-7 derived from 3,456 participants 93 

(Supplementary Data and Supplementary Table 1). 94 

The final replication of rs8192675 was performed as a meta-analysis by the MetGen Consortium. 95 

Measures of glycaemic response to metformin were aligned across the cohorts as the absolute 96 

HbA1c reduction (expressed as reduction in %HbA1c). Within each cohort, associations with 97 

rs8192675 were tested with two multiple linear models with or without the adjustment of baseline 98 

HbA1c, in addition to other available clinical covariates (Supplementary Table 2). In the meta-99 

analysis of 10,557 participants of European ancestry (Figure 1), each copy of the C-allele was 100 

associated with a greater HbA1c reduction of 0.07% (p=2x10-8, phet=0.35) when adjusting for baseline 101 

HbA1c; whilst without adjustment the allelic effect of C-allele was 0.17% (p=6.6x10-14, phet=0.52). 102 

There was no effect of rs8192675 on the efficacy of metformin in delaying progression to diabetes, 103 

or on metformin efficacy in a small insulin treated cohort (Supplementary table 3). 104 

We tested the pharmacogenetic effect of rs8192675 in 2,566 participants of non-European 105 

ancestries (Supplementary Table 4). The meta-analysis showed the C-allele was associated with a 106 

0.08% greater HbA1c reduction (p=0.006, phet=0.63) when adjusting for baseline HbA1c; whilst the 107 

allelic effect of the C-allele was 0.15% (p=0.005, phet=0.95) without the baseline adjustment. In the 108 

meta-analysis of 13,123 participants of any ancestry (data not shown), no genetic heterogeneity 109 

(phet>0.29) was observed between different ethnic groups despite the C-allele frequency ranging 110 

from 24% in Latino to around 70% in African Americans. 111 
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We examined whether rs8192675 had an impact on baseline HbA1c, because the effect sizes of its 112 

association with glycaemic response to metformin differed depending on whether adjusting for the 113 

baseline HbA1c. In the 10,557 participants of European ancestry, the C-allele was associated with a 114 

0.13% (p=2.6x10-8) higher baseline HbA1c but a 0.04% (p=0.007) lower on-treatment HbA1c, which 115 

together contributed to the observed 0.17% (p=6.6x10-14) pharmacogenetic impact on HbA1c 116 

reduction in the model without baseline adjustment (Supplementary Figure 3). 117 

Given the association of rs8192675 with HbA1c prior to treatment with metformin, we assessed 118 

whether this variant was marking a general ability to respond to any antihyperglycaemic treatment. 119 

Therefore we studied the pharmacogenetic impact of rs8192675 in 2,654 participants treated with 120 

sulfonylureas (Supplementary Table 5), another commonly used class of antidiabetic drug13,14. As in 121 

metformin users, the C-allele was also associated with a higher baseline HbA1c in these 122 

sulfonylureas users (beta=0.15%, p=3.1x10-4). However, in contrast to metformin, the C-allele 123 

remained associated with a higher on-treatment HbA1c (beta=0.09%, p=0.006) in these 124 

sulfonylureas users, which resulted in no net pharmacogenetic impact (beta=0.04%, p=0.44) on 125 

sulfonylurea induced HbA1c reduction. These data suggest that rs8192675 is marking a genetic 126 

defect in glucose metabolism in type 2 diabetes that is ameliorated by metformin treatment but not 127 

by sulfonylurea treatment. The fact that rs8192675 is not associated with sulfonylurea response 128 

strongly supports a specific role for this variant on glycaemic response to metformin, rather than 129 

simply reflecting the higher pre-treatment (baseline) HbA1c seen within carriers of this C-allele. In 130 

addition, the association with metformin induced HbA1c reduction remain significant after 131 

adjustment for baseline HbA1c, corroborating a specific effect on response beyond its effect on 132 

baseline glycaemia. 133 

Metformin is particularly recommended for the treatment of diabetes in obese individuals due to its 134 

beneficial effect on body weight15-17. Therefore, we explored whether the pharmacogenetic impact 135 

of rs8192675 varied by BMI in the MetGen cohorts (n=7581). BMI is associated with HbA1c 136 

reduction (beta=-0.01%; p=1.7x10-4) but not rs8192675 genotype (p=0.52). Adjusting for BMI does 137 

not attenuate the observed pharmacogenetic effect of rs8192675 (Supplementary Table 6). When 138 

participants were stratified into non-obese (BMI<30 kg/m2) and obese groups (BMI≥30kg/m2), there 139 

was a significant (p=0.02) gene by BMI group interaction (Figure 2). The pharmacogenetic effect size 140 

of the C-allele was 0.13% (SE=0.04%, p=0.001) in the non-obese participants as compared to that of 141 

0.24% (SE=0.04%, p=5.0x10-11) in the obese participants.  142 

We performed a locus-wise meta-analysis to narrow down the candidate causal gene and variant list. 143 

Variant rs8192675 and its proxies showed the strongest association with HbA1c reduction (Figure 3). 144 
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The linkage disequilibrium block covers three genes, of which SLC2A2 encodes the facilitated glucose 145 

transporter GLUT2, whilst EIF5A2 and RPL22L1 have little known functionality. Previous GWAS 146 

studies showed the nonsynonymous rs5400 in SLC2A2 is the main variant associated with glycaemic 147 

traits such as fasting glucose and HbA1c18,19.  Because rs8192675 and rs5400 are in partial LD (D’=1; 148 

r2=0.35), here rs5400 was also associated with metformin response (beta=0.13%, p=5.2x10-4). 149 

However, when conditioning on rs5400, rs8192675 remains strongly associated with metformin 150 

response (beta=0.21%, SE=0.04%, p=2.3x10-9); when conditioning on rs8192675, rs5400 is non-151 

significant (p=0.29). These results suggest the pharmacogenetic impact of rs8192675 is unlikely to be 152 

via the amino acid change of GLUT2 at rs5400. 153 

Given that liver is the most established site of metformin action, we examined whether rs8192675 is 154 

an eQTL in 1,226 liver samples of European ancestry. Figure 3 shows rs8192675 as the top cis-eQTL 155 

for SLC2A2, with the C-allele associated with decreased (p=4.2x10-12) expression level. In the 48 156 

tissues examined by GTEx, SLC2A2 was sufficiently expressed in 7 tissues (Supplementary Table 7). 157 

rs8192675 showed a significant (p=5.7 x10-4) impact on SLC2A2 expression in the 271 transformed 158 

fibroblasts samples, but no other significant associations20. Beyond GTEx, we sought additional eQTL 159 

evidence for other tissues that have been implicated in metformin action or glucose homeostasis.  160 

Directionally consistent and supportive evidence of rs8192675 or its proxies being SLC2A2 cis-eQTLs 161 

was found in 118 islets (rs8192675, p = 0.0025)21, 173 intestinal samples (rs5398, p = 0.007)22, and 44 162 

kidney samples (rs1905505, p = 0.04) (Supplementary Table 7).  163 

Patients with Fanconi-Bickel Syndrome (OMIM#227810), who carry rare loss-of-function variants of 164 

GLUT2, can provide useful insight into the role of GLUT2 in glucose homeostasis and into the 165 

differing impact of common GLUT2 variants in different physiological states (Figure 4). Patients with 166 

Fanconi-Bickel syndrome exhibit low fasting glucose but high post-prandial glucose23,24. In parallel, 167 

the C-allele of rs8192675 that is associated with reduced SLC2A2 expression is associated with lower 168 

fasting glucose and HbA1c among individuals of normal glycaemia18,19. Here we report that in 169 

patients with type 2 diabetes the expression-decreasing C-allele of rs8192675 was associated with a 170 

higher HbA1c prior to treatment with either metformin or sulfonylureas. This deleterious genetic 171 

effect of rs8192675 on HbA1c was reversed with metformin treatment (C-allele associated with 172 

lower on-treatment HbA1c and therefore better response to metformin), but not by sulfonylurea 173 

treatment. 174 

In humans, GLUT2 is a facilitative glucose transporter highly expressed in the liver, kidney, small 175 

intestine and islets, and to a lesser extent in certain brain regions and other tissues. Genetic defects 176 

in GLUT2 could potentially alter glucose homeostasis at any or all of these sites25. Metformin’s main 177 
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site of action is widely believed to be the liver, primarily acting to suppress hepatic glucose 178 

production1,26-28. In mice with Glut2 inactivation, glucose and glucose-6-phosphate accumulated in 179 

the cytoplasm due to reduced glucose efflux, resulting in increased expression levels of nuclear 180 

ChREBP, L-pyruvate kinase and lipogenic genes29. Our eQTL data in liver samples (Figure 3) and 181 

corresponding reporter assays (Supplementary Figure 4) showed that the C-allele at rs8192675 is 182 

associated with lower expression levels of SLC2A2. This suggests that the variant may lead to similar 183 

effects on hepatic gene expression in humans, which will be potentially modulated by metformin’s 184 

well-described effect on hepatic glucose production and lipogenesis30,31. An alternative explanation 185 

could be that reduced SLC2A2 expression due to rs8192675 is associated with reduced glucose 186 

mediated glucose clearance (glucose effectiveness) due to a decreased ability for glucose to enter 187 

the liver.  This is seen in mice lacking Glut2 in the liver, and is an effect that is improved by 188 

metformin treatment32, although the mechanism for this is not understood. 189 

Metformin is also increasingly believed to exert some of its beneficial effects by acting on the 190 

intestines to increase gut glucose uptake and non-oxidative glucose disposal, as well as increasing 191 

bile acid reabsorption, GLP-1 secretion and altering the microbiome33.  In ob/ob mice, metformin has 192 

been shown to increase translocation of Glut2 to the apical surface resulting in improved glucose 193 

homeostasis34.  Interestingly, in light of the interaction we report between rs8192675 and BMI on 194 

metformin response, obese humans are reported to have altered GLUT2 localisation in the fasting 195 

state compared to non-obese humans34, suggestive of dysregulation of glucose sensing and 196 

transport in obese individuals.  If reduced SLC2A2 expression due to rs819265 were to result in 197 

reduced apical GLUT2, metformin could potentially overcome this by restoring GLUT2 transport in 198 

the enterocytes and improving glucose homeostasis.   199 

Finally, given that metformin is transported into different tissues by several organic cation 200 

transporters, including OCTs, MATEs and THTR235, we examined whether GLUT2 is able to transport 201 

metformin in X. laevis oocytes.  Our results suggest that metformin is not a substrate or an inhibitor 202 

of GLUT2 (Supplementary Figure 5).  Detailed human physiological studies, as well as functional 203 

exploration in animal and cellular model systems, are required to fully elucidate the role of GLUT2 in 204 

metformin response, and whether this is mediated via a hepatic, intestinal or other mechanism. 205 

We examined the potential clinical impact of rs8192675. An unbiased (from the non-discovery 206 

cohorts) estimate of its allelic effect is a 0.15% absolute reduction in %HbA1c. This is equivalent to 207 

the pharmacological impact of taking 250mg extra metformin per day, which is 26% of the average 208 

daily dose. More clinical potential is seen in obese patients as the C-allele homozygote carriers had a 209 

0.33% (SE=0.09%, p=6.6x10-4) greater reduction in %HbA1c than those carrying the T-allele 210 
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homozygotes; this equates to 24% of the average glycaemic reduction seen with metformin 211 

treatment in the MetGen cohorts and is equivalent to the impact of 550mg extra metformin.  Given 212 

that newer agents such as DPP-4 inhibitors only reduce HbA1c by 0.6-0.8% on average36, this genetic 213 

effect is large and has potential to be of clinical utility.  C-allele homozygotes could be treated with 214 

lower doses, and be exposed to less side effects; conversely T-allele carriers could be treated with 215 

doses higher than normally recommended to achieve a response. This may be of particular 216 

importance in African Americans where 49% of the population are C-allele homozygotes, in contrast 217 

to only 9% in European Americans.  Stratified clinical trials, in different ethnic groups, are required to 218 

evaluate the potential for this pharmacogenetic variant to impact on clinical care. 219 

In conclusion, we have established a robust association between rs8192675 and metformin-induced 220 

HbA1c reduction with a large multi-ethnic cohort. rs8192675 was the top cis-eQTL for SLC2A2 in the 221 

liver and potentially islets, kidney and intestine. Reduced SLC2A2 expression resulted in a defect in 222 

glucose homeostasis in type 2 diabetes before initiation of therapy, which could be ameliorated by 223 

metformin. The clinically appreciable impact in obese patients suggests rs8192675 has the potential 224 

to be a biomarker for stratified medicine.  225 
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Figures legends 329 

 330 

Figure 1. Pharmacogenetic impact of rs8192675 on metformin response in participants of 331 

European ancestry. The forest plot shows meta-analyses of association test results for metformin 332 

induced change in HbA1c in a total number of 10,557 participants from 10 MetGen cohorts. The two 333 

panels present the results from linear regression models with (left) and without (right) adjustment 334 

for baseline HbA1c respectively. HbA1c was measured in percentage.  335 

 336 

Figure 2. HbA1c reduction by BMI group and rs8192675 genotype. Participants were stratified into 337 

obese (BMI≥30 kg/m2) and non-obese groups (BMI<30 kg/m2). The error bars are for the standard 338 

error of the mean HbA1c reduction. 339 

 340 

Figure 3.  Regional plots of SLC2A2 locus. SNPs are plotted by position on the chromosome 3 against 341 

association with meta-analysis of HbA1c reduction without baseline adjustment (-log10P) in 7,223 342 

participants (left panel) and meta-analysis of SLC2A2 expression (-log10P) in 1,226 liver samples (right 343 

panel). In both plots rs8192675 (purple circle) and its proxies are the top signals. The non-344 

synonymous SNP rs5400 (pointed by arrow) is also nominally associated with HbA1c reduction.  345 

Estimated recombination rates (cM/Mb) are plotted in blue to reflect the local LD structure.  The 346 

SNPs surrounding the most significant SNP, rs8192675, are color coded to reflect their LD with this 347 

SNP.  This LD was taken from pairwise r2 values from the HapMap CEU data.  Genes, the position of 348 

exons and the direction of transcription from the UCSC genome browser are noted.  349 

 350 

Figure 4. Genetic impact of GLUT2 variants on glucose homeostasis in different physiological and 351 

pharmacologic states. In patients with the monogenic Fanconi-Bickel Syndrome (FBS), the loss-of-352 

function variants led to lower fasting glucose but higher post-prandial glucose; the reduced 353 

expression C-allele at rs8192675 was associated with lower HbA1c in normal glycaemia state but 354 

higher HbA1c in hyperglycaemia state (before pharmacological treatment was indicated in patients 355 

with type 2 diabetes); metformin, but not sulfonylurea treatment reverses the genetic impact on 356 

HbA1c.  357 

 358 
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METHODS 359 

Studies and Samples 360 

Both GWAS screening and the first-stage replication analysed participants with type 2 diabetes of 361 

European ancestry from the GoDARTS cohort. The current GWAS screening used 1,373 participants, 362 

which included data from 345 samples released after our initial GWAS report on 1,028 participants12. 363 

The first-stage replication included up to 1,473 from the remaining GoDARTS participants depending 364 

on the call rate and genotyping assay. The second-stage replication consisted of 1,223 participants of 365 

European ancestry from the UKPDS study. The final replication and meta-analysis was conducted 366 

within the MetGen Consortium which included an extra 6,488 participants of European ancestry and 367 

2,566 participants of non-European ancestry. Detailed information on the MetGen participants is 368 

provided in Supplementary Table 2. Of note, about 50% of the MetGen cohort is from PMT, which 369 

represents ethnically diverse U.S. populations. These cohorts were used extensively in our multi-370 

ethnic analysis for replication purposes. Participants from the largest PMT cohort, PMT2, were 371 

selected from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort, a 372 

subsample of the Kaiser Permanente Research Program on Genes, Environment, and Health (RPEGH) 373 

37. Three MetGen cohorts, GoDARTS, UKPDS and DCS also provided data on response to 374 

sulfonylureas. All human research was approved by the relevant institutional review boards, and all 375 

participants provided written informed consent. 376 

Genotyping and quality control 377 

Genotyping for the GWAS screening and the first-stage CardioMetabochip replication in GoDARTS 378 

cohort has been described before by WTCCC2 and DIAGRAM12,38. Standard quality control 379 

procedures were applied to both data sets to filter SNPs with minor allele frequency (MAF)<1% or 380 

call rate <98% or Hardy-Weinberg Equilibrium (HWE) deviation (p<10-4). Samples with call rate <98% 381 

or extra heterozygosity (more than 3 standard deviation away from the mean) or correlated with 382 

another sample (identity by descent [IBD]>0.125) were filtered out. In-house genotyping of the 383 

GoDARTS samples in the first-stage replication were performed with Sequenom MassArray for 66 384 

SNPs and TaqMan based Allelic Discrimination assays for 9 SNPs. Details of the SNP selection 385 

procedure is described in Supplementary Data.  All 75 SNPs had call rate >90% and no deviation from 386 

HWE (p>0.005). The second-stage genotyping of the UKPDS sample was carried out in duplicate runs 387 

using standard TaqMan assays. All the SNPs were in HWE (p>0.05) and only samples with concordant 388 

genotypes from both runs were analysed. The third-stage replication used high quality genotypes 389 

from either TaqMan assay or GWAS imputed data on rs8192675 (Supplementary Table 2).   390 
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Assessment of glycaemic response to metformin and sulfonylureas 391 

As with our previous GWAS12, two correlated measures of glycaemic response to metformin were 392 

used in the current GWAS screening and the first-stage replication. A quantitative measure of HbA1c 393 

reduction (baseline minus on-treatment HbA1c) and a categorical measure of whether achieving a 394 

target of treatment HbA1c≤7% were used for genetic association tests. Therefore only participants 395 

with type 2 diabetes and a baseline HbA1c>7% were included. Baseline HbA1c was measured within 396 

6 months prior to metformin start whilst on-treatment HbA1c was taken as the minimum achieved 397 

within 18 months after metformin start.  398 

In the second-stage replication and the meta-analysis in the third-stage replication, we opted to 399 

maximize the sample size by synchronizing the measurement of metformin efficacy in a wider 400 

spectrum of participants with type 2 diabetes (including those with baseline HbA1c<7%) across the 401 

MetGen. Therefore only the quantitative outcome of HbA1c reduction was used to assess the 402 

glycaemic response to metformin. To maintain relative clinical homogeneity, only participants with 403 

type 2 diabetes on metformin monotherapy or using metformin as an add-on therapy to another 404 

oral agent were included.  405 

Data from two MetGen cohorts, which used alternative measures of glycaemic response, were not 406 

included in the current meta-analyses, but the results are shown in Supplementary Table 4. In the 407 

DPP cohort of pre-diabetes participants, Cox proportional hazards regression was used to evaluate 408 

the genetic impact on the time to diabetes incidence8. In the HOME cohort, a multiple linear 409 

regression was used to test the genetic association with the difference in daily dose of insulin 410 

because metformin was used in conjunction with insulin in these participants39. 411 

Assessment of glycaemic response to sulfonylureas adopted a similar approach as the quantitative 412 

outcome of metformin response in the MetGen. Baseline HbA1c and on-treatment HbA1c were 413 

captured in a similar manner as those in defining metformin response. Only participants with type 2 414 

diabetes who were on sulfonylureas monotherapy or using sulfonylureas as an add-on therapy to 415 

metformin were included. All participants had a baseline HbA1c>7%. 416 

Statistical Analysis 417 

In the GWAS screening and first-stage replication, each SNP was tested for association with the 418 

continuous measure and categorical measure of glycaemic response to metformin separately with 419 

PLINK software using linear and logistic regression respectively40. Baseline HbA1c, adherence, 420 

metformin dose, creatinine clearance and treatment scheme (whether on metformin monotherapy 421 

or dual therapy of metformin add-on to sulfonylureas) and the first 10 principle component from 422 

EIGENSTRAT were used as covariates41. Statistical evidence of the two associations at each SNP was 423 
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averaged by taking the geometric mean of the two p-values in cases in which  the direction of effect 424 

was consistent (for example more HbA1c reduction and more likely to achieve the treatment target 425 

both indicate better response). 426 

In the second and third stage replications, association with HbA1c reduction was tested with 427 

multiple linear regression. Within each cohort, two linear models were fitted either with or without 428 

adjustment for baseline HbA1c. Baseline HbA1c has been shown as the strongest predictor of 429 

metformin induced HbA1c reduction in pharmaco-epidemiological studies42. Adjusting for baseline 430 

HbA1c could reduce the confounding of measurement error in baseline HbA1c and increase the 431 

statistical power for pharmacogenetic studies43. However, if a variant is associated with baseline 432 

HbA1c, adjusting for baseline HbA1c would lead to a reduced estimate of its pharmacogenetic effect 433 

compared to a model that did not adjust for the baseline HbA1c. Therefore we presented both 434 

models in the current study. Other clinical factors such as creatinine clearance (or other 435 

measurement of kidney function) and treatment scheme were included as covariates where 436 

available (Supplementary Table 2). Combining the association results from individual cohort was 437 

conducted by a fixed-effect inverse-variance–weighted meta-analysis as applied in GWAMA 44. 438 

Cochran's heterogeneity statistic's p-value was reported as phet. 439 

For the genetic association tests with response to sulfonylureas, multiple linear regression was used 440 

to assess the association between rs8192675 and baseline HbA1c, on-treatment HbA1c, HbA1c 441 

reduction and baseline adjusted HbA1c reduction. Treatment scheme (whether on sulfonylureas 442 

monotherapy or using sulfonylureas as add-on treatment to metformin) was included as a covariate 443 

when modelling sulfonylureas induced HbA1c reduction. Association test results from the three 444 

cohorts were combined with fixed-effect inverse-variance–weighted meta-analysis in GWAMA. 445 

Locus-wise association was performed with GWAS imputed data of 7,223 participants available in 446 

the GoDARTS and PMT2-EU. Software IMPUTE2 was used to impute the post quality control GWAS 447 

data at 1Mb flank of rs8192675 against the 1000 Genomes reference panel45. Only SNPs with high 448 

imputation quality (info>0.9 and MAF>0.02) in both cohorts were tested for association with 449 

SNPTEST 46. Summary statistics from GoDARTS and PMT2-EU were combined with fixed-effect 450 

inverse-variance–weighted meta-analysis in GWAMA. 451 

To evaluate the translational potential of rs8192675, we derived an unbiased estimate of its allelic 452 

effect by excluding the discovery cohort in the meta-analysis. This effect size was aligned to the 453 

clinical impact observed in the PMT2-EU which was the biggest replication cohort and used the 454 

median average daily dose in the MetGen. The average daily dose and dosing impact in PMT2-EU 455 

were 962mg/day and an extra 0.6% HbA1c reduction per gram metformin respectively. The 456 
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evaluation of rs8192675 genotype by BMI group interaction was performed with linear regression by 457 

adjusting for treatment group, sex and study cohort.  458 

Expression quantitative trait locus (eQTL) analyses. 459 

We used four liver eQTL datasets comprising a total number of 1,226 livers samples from individuals 460 

of European ancestry (Supplementary Table 8). Tissue procurement, gene expression analysis, 461 

genotyping and eQTL analyses have been described previously for three of the datasets47-49. The 462 

forth dataset was contributed by Dr. Eric Schadt (unpublished data by Schadt, Molony, Chudin, Hao, 463 

Yang et al.). Genotypes were imputed to the 1000 Genome reference panel with IMPUTE2. 464 

Expression probe sequences were mapped to ENSEMBL genes and only the common genes across all 465 

datasets were included for subsequent analyses. Within each dataset, the genome-wide eQTL 466 

analysis was run with an additive genetic model including dataset specific covariates to examine cis-467 

associations within a 100kb flanking window. Results from the four datasets were then combined 468 

with a modified meta test statistic which was calculated using the following approach:  tmeta=(∑witi)/469 

√(∑wi
2), w=√( −(# ariates)−1) where i=data sets 1-4 and n=sample size50. This method 470 

Generation of p-values was accomplished by assuming the meta test statistics were normally 471 

distributed; a Benjamini-Hochberg multiple testing correction was applied to the p-values. For the 472 

current study, we extended the cis-association tests to all SNPs within 1Mb window of SLC2A2 and 473 

report the locus-wise p-values of the meta test statistic. 474 

We investigated whether rs8192675 is a cis-QTL in other tissues in the GTEx data release V6. Due to 475 

the sample size limitation, rs8192675 is not a genomewide significant cis-eQTL for SLC2A2 in any of 476 

tissues examined. However, given the strong evidence of the variant being a cis-eQTL in the large 477 

liver samples reported in this study, we considered a directionally consistent association with p<0.05 478 

as supportive evidence. The eQTL data for islet and intestine were acquired through contacting the 479 

authors of the original publications. The eQTL data for kidney were obtained by quantitative real-480 

time PCR of 44 kidney samples genotyped with the Affymetrix Axiom array. Sample acquirement and 481 

tissue preparation was described previously51. The transcript levels of SLC2A2 were determined 482 

using TaqMan probe (ID Hs01096908_m1). The relative expression level of SLC2A2 transcript was 483 

calculated by the comparative method (ΔΔCt) normalized to the housekeeping gene GAPDH, as 484 

described previously52.  485 
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