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ABSTRACT 

 

The effect of coffee consumption on human health is still discussed controversially. Here we 

report results from a metabolomics study of coffee consumption, where we measured 363 

metabolites in blood serum of 284 male participants of the KORA (Cooperative Health 

Research in the Region of Augsburg) study population, aged between 55 and 79 years. A 

statistical analysis of the association of metabolite concentrations and the number of cups of 

coffee consumed per day showed that coffee intake is positively associated with two classes 

of sphingomyelins, one containing a hydroxy-group (SM(OH)) and the other having an 

additional carboxy-group (SM(OH,COOH)). In contrast long- and medium-chain 

acylcarnitines were found to decrease with increasing coffee consumption. It is noteworthy 

that the concentration of total cholesterol also rises with an increased coffee intake in this 

study group. The here observed association between these hydroxylated and carboxylated 

sphingolipid species and coffee intake may be induced by changes in the cholesterol levels. 

Alternatively, these molecules may act as scavengers of oxidative species which decrease 

with higher coffee intake. In summary, we demonstrate strong positive associations between 

coffee consumption and two classes of sphingomyelins and a negative association between 

coffee consumption and long- and medium-chain acylcarnitines.  
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INTRODUCTION 

 

Coffee is one of the most widely consumed beverages in the world [1]. Roasted, it consists of 

more than 800 components, including lipids, diterpenes such as cafestol and kahweol, 

carbohydrates, volatile and nonvolatile acids (e.g. acetic acid, chlorogenic acids), alkaloids 

such as caffeine, minerals and vitamins (e.g. niacin) [2]. The effects of coffee consumption on 

human health – beneficial as well as detrimental – are still discussed in the literature: 

Detrimental effects of coffee intake to health are thought to occur with respect to coronary 

heart disease: Most case-control studies suggest that the consumption of more than five cups 

of coffee per day leads to an increased risk for coronary heart disease or myocardial infarction 

[3-7]. However, the majority of the cohort studies could not confirm this observation [4, 8-

12]. Also, the assumption that coffee induces hypertension is only supported by case-control 

studies [13-16], but not by cohort studies [8, 17-20]. The suspicion that coffee consumption 

may induce cancer could not be confirmed in several studies [21-23]. In contrast, a positive 

effect of coffee on cancer could be detected depending on the particular tissue: One meta-

analysis and one review reporting the results of several case-control studies as well as of 

cohort studies show that, in the case of colorectal cancer, an inverse association between this 

cancer and coffee intake is observed and that, in contrast, cohort studies could not confirm 

such an association [24, 25]. However, for the hepatocellular carcinoma, the results of case-

control as well as of cohort studies yielded a reduced risk of this cancer for heavy coffee 

drinkers [26-29].  

 

Another potentially beneficial effect of coffee lies in the prevention of diabetes mellitus type 

2. Higdon and Frei [8] reported that in six out of nine cohort studies a significant inverse 

association between coffee consumption and the risk for diabetes type 2 was found. For 
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example, a study with 1,000 Finnish twins found that the intake of more than seven cups of 

coffee per day reduces the risk of diabetes by 35% compared to a consumption of at most two 

cups per day [30]. An even larger effect, namely a decrease of 50%, was observed in a study 

with 17,000 Dutch individuals, again when more than seven cups of coffee per day were 

ingested [31]. Although an improvement of the glucose tolerance or of the insulin sensitivity 

by coffee consumption could not be determined in short-term trials, several cohort studies 

indicate that coffee consumption supports the maintenance of a normal glucose tolerance [32-

35]. Coffee also seems to have a positive effect on the prevention of Parkinson’s Disease [36-

39]. Moreover, coffee consumption appears to lower the suicide risk [40-42] as well as the 

risk for dementia [43]. These studies demonstrate that coffee has many diverse effects on 

human health. However, it should be taken into account that some of these effects may also be 

explained by common, not yet identified covariates that may be traced back to general life 

style factors. Thus, more research in this field is needed. 

 

In this study, we took a targeted quantitative metabolomics approach to detect coffee-induced 

changes on human metabolism. Targeted metabolomics aims at the quantitative measurement 

of ideally all key metabolites in a body fluid, thereby representing a snapshot of the full 

metabolic state of the organism. Changes in the metabolic profiles can be caused for example 

by specific food intake, disease or medication. Such changes can be detected in a very 

detailed manner using metabolomics techniques, so that the affected pathways may eventually 

be identified. This aim is now coming into reach with recent advances in the field of high 

resolution electrospray ionization tandem mass spectrometry. Here, we use this technology to 

determine the metabolic profiles of 284 participants from the KORA (Cooperative Health 

Research in the Region of Augsburg) study population [44]. Information on many different 

factors concerning life style (e.g. smoking and alcohol consumption), disease state or 
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medication use are available for each participant. These factors and their association with 

metabolic changes are presently analyzed in a number of separate studies which are based on 

this metabolomics dataset. Some of which have already been published for the association 

with nicotine consumption [45] and genetic variation [46]. The results from these studies also 

provide some kind of independent validation of this metabolomics dataset. In the present 

study we specifically examined the consequences of coffee consumption on the human 

metabolism.  

 

 

MATERIAL & METHODS 

 

Experimental Setup 

KORA is a research platform for population-based surveys and subsequent follow-up studies 

in the fields of health economics, epidemiology, genetics and health care research [44]. It 

provides a multitude of different parameters, such as life style factors (nutrition, physical 

activity, smoking, alcohol consumption, etc.), sociodemographic variables, and medical 

history. The dataset presented here comes from the F3 study conducted in 2004-2005 as a 

follow-up of the third MONICA (Monitoring of Trends and Determinants in Cardiovascular 

Disease) survey (S3; 1994/1995). For this F3 study, 3006 of the 4856 participants of the S3 

were reexamined for a second time, thus, 10 years apart from the baseline examination. From 

this group, 284 male individuals, aged between 55 and 79 years at the examination for F3, 

were chosen randomly for our analysis and were again recruited one to two years later for 

additional blood sampling. Out of this group, 239 of these individuals provided details 

concerning their coffee consumption (only participants younger than 75 were asked for this 

information). 82 participants (~34.3%) drank one to two cups of coffee per day, 100 
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individuals (~41.9%) had three to seven cups/day, twelve (~5.0%) regularly drank eight and 

more cups/day, and 45 (~18.8%) totally abstained from coffee consumption. As a control, 

information on the consumption of green tea and black tea was also analyzed. The study 

design was approved by an ethical committee and the informed consent of all participating 

subjects was obtained. 

 

Blood samples 

Blood samples for metabolic analysis were collected during 2006. To avoid variation due to 

circadian rhythm, blood was drawn in the morning between 8 and 10 am after a period of 

overnight fasting. Material was immediately horizontally shaken (10 min), followed by 40 

min resting at 4°C to obtain complete coagulation. The material was then centrifuged (2000g; 

4°C). Serum was aliquoted and stored for 2-4 hours at 4°C, after which it was deep frozen to  

-80°C until mass spectrometry analysis. 

 

Metabolite profiling 

Targeted metabolite profiling by electrospray ionization (ESI) tandem mass spectrometry 

(MS/MS) was performed at Biocrates life sciences AG, Austria. The technique is described in 

detail by patent US 2007/0004044 (accessible online at 

http://www.freepatentsonline.com/20070004044.html). A summary of the method can be 

found in ([47]; [48]). A comprehensive overview of the field and the related technologies is 

given in the review paper by Wenk [49]. Briefly, the assay preparation was done by an 

automated robotics system (Hamilton Robotics GmbH) on a special double-filter 96 well plate 

containing isotope labeled internal standards. Assays used 10µl plasma and include 

Phenylisothiocyanate (PITC)-derivatisation of amino acids, extraction with organic solvent 

and several pipetting, drying, and centrifugation steps. Flow injection analysis coupled with 
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multiple reaction monitoring scans (FIA MS/MS) on a 4000 QTrap instrument (Applied 

Biosystems) was used for quantification of amino acids, acylcarnitines, sphingomyelins, 

phosphatidylcholines, and hexoses. LC-MS/MS methods using multiple reaction monitoring, 

neutral loss and precursor ion scans were applied for biogenic amines, eicosanoids and 

hydroxylated fatty acid derivatives as well as for intermediates of the energy metabolism. The 

quantification of the metabolites is achieved by reference to appropriate internal standards. 

The method is proven to be in conformance with 21CFR (Code of Federal Regulations) Part 

11, which implies proof of reproducibility within a given error range. This measurement 

platform has been used in the past in different academic and industrial applications [45, 46, 

50-52]. 

 

Metabolite spectrum 

Concentrations of all analyzed metabolites are reported in μM. In total, 363 different 

metabolites were screened and detected in plasma: 18 amino acids, nine reducing mono-, di- 

and oligosaccharides (abbreviated as Hn for n-hexose, dH for desoxyhexose, UA for uronic 

acid, HNAc for N-acetylglucosamine), 21 acylcarnitines (Cx:y, where x denotes the number 

of carbons in the side chain and y the number of double bonds), seven hydroxylacylcarnitines 

(C(OH)x:y) and dicarboxylacylcarnitines (Cx:y-DC), free carnitine (C0), seven biogenic 

amines, seven prostaglandins and 293 lipids. These lipids are subdivided into 14 different 

ceramides (Cer) and glucosylceramides (GlcCer), 71 different sphingomyelins (SMx:y) and 

sphingomyelin-derivatives, such as N-hydroxyldicarboacyloylsphingosyl-phosphocholine 

(SM(OH,COOH)x:y) and N-hydroxylacyloylsphingosyl-phosphocholine (SM (OH)x:y), five 

glycero-phosphatidic acids (PA), 124 glycero-phosphatidylcholines (PC), 42 glycero-

phosphatidylethanolamines (PE), four phosphatidylglycerols (PG), 30 glycero-

phosphatidylinositols (PI) and glycero-phosphatidylinositol-bisphosphate (PIP2), and three 
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glycero-phosphatidylserines (PS). Glycero-phospholipids are further differentiated with 

respect to the presence of ester (a) and ether (e) bonds in the glycerol moiety, where two 

letters (aa, ae, or ee) denote that the first as well as the second position of the glycerol unit are 

bound to a fatty acid residue, while a single letter (a or e) indicates a bond with only one fatty 

acid residue. E.g. PC ae 33:1 denotes a plasmalogen phosphatidylcholine with 33 carbons in 

the two fatty acid side chains and a single double bond in one of them. In some cases, the 

mapping of metabolite names to individual masses can be ambiguous. For example, stereo-

chemical differences are not always discernable, neither are isobaric fragments.  

 

Statistical analysis 

The statistical analysis system R (http://www.r-project.org/) and SPSS for Windows (Version 

16.0, Chicago: SPSS Inc.) were used for the statistical analysis. For the identification of 

metabolites influenced by coffee consumption, a Kendall’s test was applied to each variable 

(metabolite concentration). Kendall’s test is a non-parametric test that calculates the 

correlation of two variables based on the rank of their data. This test was chosen as it does 

neither require a linear correlation of the variables nor a normal distribution of the data. To 

control for the effect of testing multiple hypotheses, the positive false discovery rate (q-value) 

was computed, which is a measure for the fraction of false positives appearing even if the test 

itself was significant [53]. The rank correlation coefficient Kendall’s tau was determined for 

every metabolite to indicate the direction of the correlation.  
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RESULTS 

 

We analyzed the metabolic dataset to identify those metabolites that are most strongly 

associated with coffee consumption. The results of the Kendall tests are given in Table 1. 

Most remarkable is the association of two sphingomyelin classes (SM(OH,COOH)x:y and 

SM(OH)x:y) with coffee intake, with p-values ranging between 7.5x10-4 and 2.4x10-5. The 

Kendall q-value confirms a very low false positive rate (smaller than 2.5%). The positive 

values of the Kendall’s tau for all sphingomyelins listed in Table 1 suggest that the 

sphingomyelins species SM(OH,COOH)x:y and SM(OH)x:y positively correlate with coffee 

intake. In order to further test this hypothesis, we calculated the sum of the concentrations of 

all SM(OH,COOH)x:y as well as the sum of the concentrations of all SM(OH)x:y and applied 

the Kendall’s test to each. The sums of these sphingomyelin classes also correlate positively 

with coffee consumption, as shown in Figures 1 and 2.  

Besides the sphingomyelins, also long- and medium-chain acylcarnitines showed low p-

values concerning the association to the coffee intake (Tab.1; Supplemental Tab.1). However, 

this association concerns mainly the two groups of coffee drinkers consuming 1-2 cups/day 

and 3-7 cups/day respectively. For the individual long- and medium-chain acylcarnitines as 

well as for the sum of all acylcarnitines with a chain length of at least 10, the Kendall’s tau 

yielded negative values. Thus, the coffee consumption and the plasma concentration of long- 

and medium-chain acylcarnitines are inversely associated.  

From the remaining metabolites none was associated with coffee consumption with a positive 

False Discovery Rate (pFDR; q-value) lower than 5%. As a positive control, showing that null 

findings within this rest of the metabolites cannot be attributed to a potentially poor data 

quality, we note the identification of a number of very significant associations in other studies 

concerning different metabolites from this same metabolomics dataset, such as different 
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phosphatidyl-choline, -ethanolamine and -inositol species, as well as amino acids and short 

and medium chain length acyl carnitines, with p-values down to 10-21 as documented by [46] 

and [45]. As a negative control, the effect of green tea as well as that of black tea on the 

presented set of metabolites was analyzed. For neither kind of tea a significant correlation 

with any metabolite could be found, especially all q-values were larger than 0.1. This fact 

emphasizes the significance of the observed associations between the coffee consumption and 

the two reported sphingomyelin species. 

 

 

DISCUSSION 

 

In this paper, we analyzed the influence of coffee consumption on the metabolism of 239 

male participants of the KORA project. The measurement of 363 metabolites by tandem mass 

spectrometry provides a deeper insight into changes in the metabolic state caused by coffee 

intake. Humans are exposed to many different environmental influences, such as various 

nutrition, physical activity or medication. Therefore, it is remarkable that three groups of 

metabolites clearly associated with coffee consumption could be identified in this study. 

Among these metabolites are the long- and medium-chain acylcarnitines, whose 

concentrations decrease with rising coffee consumption. One explanation might be the effect 

of niacin, which is a component of coffee [54]. Niacin lowers the concentration of 

triglycerides and free fatty acids in the plasma [55-59]. A reduced concentration of these 

triglycerides and free fatty acids causes a decrease of the concentration of acylcarnitines, 

which are synthesized during the transport of fatty acids into the mitochondrium for ß-

oxidation. Thus, an increase of fat storage could be a consequence. 
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The sphingomyelin classes SM(OH,COOH)x:y and SM(OH)x:y showed a positive 

association to coffee intake. The synthesis of sphingomyelin is located in the golgi apparatus 

and is based on the transfer of the phosphorylcholine from a phosphatidylcholine to a 

ceramide [60, 61]. A ceramide consists of a sphingosine and a fatty acid that is added to the 

C2 of the sphingosine by N-acetylation [62]. SM(OH)x:y is formed by adding an α-

hydroxylated fatty acid [63]. For SM(OH,COOH)x:y this fatty acid additionally carries a 

carboxyl group, presumably at the ω-position (Figure 3). In contrast to SM(OH)x:y, the 

sphingomyelin class SM(OH,COOH)x:y is not described in much detail in the literature. In 

principle, there are two mechanistic explanations for the biogenic formation of this molecule: 

Either an unsaturated fatty acid chain in a sphingomyelin is oxidized, or an existing α-

hydroxy-1,ω-dicarboxyl fatty acid is added to the C2 position of the sphingosine. α-hydroxy-

1,ω-dicarboxyl fatty acids have been found in the cell wall of Legionella in a study by 

Sonesson et al. [64]. An alternative explanation for the formation of SM(OH,COOH)x:y 

might be an oxidative attack on a double bond of the fatty acid moiety. During this process 

the carboxyl group might be built at the ω-position. Hence, SM(OH,COOH)x:y could 

function as a scavenger and might therefore reduce the risk of oxidative damage leading for 

instance to cancer. Sargis and Subbaiah [65] reported that sphingomyelins are able to protect 

cholesterol from oxidation, but the exact mechanism is still unknown and requires further 

investigation. 

 

Sphingomyelins are mainly located in biological membranes, including the myelin sheath of 

nerve cell axons. These membranes are mainly composed of different lipids, proteins and 

further components such as cholesterol, which interacts with phospholipids to stabilize them 

and thus supports their ability to build membranes. Among the phospholipids sphingomyelins 

show the strongest interaction with cholesterol [66, 67]. Moreover the analysis of Gronberg et 
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al. [67] showed that cholesterol increases the packing of SM(OH)x:y in the membrane. Both, 

SM(OH,COOH)x:y and SM(OH)x:y, were positively associated with coffee consumption in 

our study. This could be linked to an increased cholesterol level in plasma. It is known, that 

cholesterol stabilizes and increases the packing of sphingomyelins and, hence, supports the 

formation of membranes. In course of the KORA project, blood parameters, including 

cholesterol, have been determined for each participant. Our analysis showed that total 

cholesterol increases with coffee consumption in this study group (Kendall p-value: 1.1·10-4; 

Kendall’s tau: 0.165, Figure 4). Using data from the entire F3-population indicates that this 

positive association is still significant after adjustment for age and sex (data not shown). 

Based on this observation, and the described function of cholesterol, one may, thus, speculate 

that the increased cholesterol levels and the increased SM(OH,COOH)x:y and SM(OH)x:y 

are functionally related.  

 

Whether the intake of coffee really increases the concentration of cholesterol is still discussed 

in literature. In the 1980s, evidence was provided that coffee consumption causes a higher 

concentration of cholesterol in blood [68]. But the subsequent studies found that this effect is 

based mainly on the diterpenes cafestol and kahweol, which are only present in unfiltered 

coffee [69-71] Thus, this would indicate  that there is no association between coffee 

consumption and cholesterol. This aspect is important, since the people in southern Germany 

(location of the KORA project) mainly drink filtered coffee. Exactly the opposite result, a 

positive association of filtered coffee intake with the concentration of cholesterol in blood, 

was reported by the studies of  [72], [73], [74] and [75]. So we can conclude that there are 

indicators for this positive correlation between filtered coffee and cholesterol, but still more 

evidence is needed. 
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An additional aspect worth considering is the association of sphingomyelin with 

atherosclerosis. Since decades it is known, that sphingomyelin accumulates in atheromas [76] 

Recent studies have confirmed the association of atherosclerosis with an increased 

sphingomyelin level in animals as well as in humans [77-80]. In this context one might 

speculate that coffee consumption heightens the risk of atherosclerosis by increasing the 

levels of the two resulting classes of sphingomyelins. 

 

Concerning these sphingomyelins, an interesting association was identified in a genome-wide 

association study. In this study, the above discussed (coffee-associated) sphingomyelin 

species are found to be strongly associated with a genetic variant (SNP) in the PLEK gene. 

The PLEK gene codes for pleckstrin, a protein that has been proposed to facilitate 

protein/lipid interactions and to affect membrane structure. It is supposed to enable the 

localization to the cell membrane by acting as a signal adapter molecule. Ma et al. [81] report, 

that pleckstrin associates with human platelet membranes and supports the formation of 

membrane projections from transfected (Cos-1) cells. Pleckstrin is recruited into natural killer 

cell membranes, when these cells are activated [82], and it associates with the membranes of 

stimulated macrophages [83]. This observation raises the question, whether coffee 

consumption and variation in the PLEK gene may have an interacting effect on the level of 

the described sphingomyelins, and possibly related medical outcomes. 

 

Our results demonstrate that the quantitative measurement of more than 360 metabolites by 

tandem mass spectrometry may detect unexpected correlations in human metabolism. 

Especially the influence of coffee on the two classes of sphingomyelins is a remarkable result 

of our analysis. This could be a starting point for further research on the function of these 

sphingomyelins. 
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FIGURES AND TABLES  

 
FIGURE 1: Boxplots of the plasma concentrations [μM] of the sum of all sphingomyelin species 

SM(OH,COOH)x:y as a function of coffee consumption. The Kendall p-value for the association is 

4.9x10-5. Boxes extend from 1st quartile (Q1) to 3rd quartile (Q3); median is indicated as a 

horizontal line; whiskers are drawn to the observation that is closest to, but not more than a 

distance of 1.5(Q3-Q1) from the end of the box. Observations that are more distant than this 

are shown individually on the plot. The number of individuals in each group is given in the 

boxes. 

 
FIGURE 2: Boxplots for the sphingomyelin species SM(OH)x:y (legend see Fig. 1). The Kendall p-

value for the association is 1.0x10-4. 
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FIGURE 3: Assumed structure of the sphingomyelin species SM(OH)x:y (A) and SM(OH,COOH)x:y 

(B). 

 

 
FIGURE 4: Boxplots of the plasma concentrations of total cholesterol levels (legend see Fig. 1). The 

Kendall p-value for the association is 1.1x10-4. 
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Table 1: Results of the Kendall rank test, with p- and q-value as well as the Kendall’s tau; all 

tested metabolites yielding a Kendall p-value smaller than 10-3 and a q-value smaller than 

3x10-2 are listed. The sums of SM(OH,COOH)x:y, of SM(OH)x:y and of all acylcarnitines 

Cx:y with chain length greater or equal to ten are indicated in italics. In cases where 

alternative assignments of the metabolites are possible, these are indicated by a ‘*’.  

 

metabolites mean 
standard 

deviation 

Kendall 

p-value 

Kendall 

q-value 

Kendall’s 

tau 

 μM μM    

SM (OH,COOH) 20:2 64.741 22.394 2.4E-05 3.1E-03 0.179 

SM (OH,COOH) 16:2 * 84.938 26.854 2.6E-05 3.2E-03 0.179 

SM (OH) 20:3 172.874 53.820 4.2E-05 4.2E-03 0.174 

C16:1 0.036 0.014 4.3E-05 4.2E-03 -0.174 

Sum(SM(OH,COOH)x:y) 528.757 149.989 4.9E-05 2.2E-03 0.172 

C10:1 0.166 0.075 9.8E-05 6.8E-03 -0.165 

Sum(SM(OH)x:y) 423.809 126.783 1.0E-04 3.0E-03 0.165 

SM (OH,COOH) 18:2 92.451 30.334 1.1E-04 7.3E-03 0.164 

C12:1 0.122 0.054 1.3E-04 7.9E-03 -0.163 

C14:1 0.126 0.064 1.4E-04 8.3E-03 -0.162 

SM (OH) 22:1 44.567 17.038 1.4E-04 8.5E-03 0.162 

C14:2 0.052 0.024 1.7E-04 9.9E-03 -0.159 

Sum(Cx10:y) 1.463 0.510 1.9E-04 3.3E-03 -0.159 

SM (OH,COOH) 24:0 20.928 8.206 2.2E-04 1.2E-02 0.157 

SM (OH,COOH) 18:1 19.272 6.467 4.0E-04 1.7E-02 0.150 

SM (OH) 28:0 59.325 22.334 5.0E-04 1.9E-02 0.148 

C6 0.089 0.036 7.5E-04 2.5E-02 -0.143 


