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Abstract

The stress hormone cortisol modulates fuel metabolism, cardiovascular homoeostasis, mood, inflammation and cognition.

The CORtisol NETwork (CORNET) consortium previously identified a single locus associated with morning plasma

cortisol. Identifying additional genetic variants that explain more of the variance in cortisol could provide new insights into

cortisol biology and provide statistical power to test the causative role of cortisol in common diseases. The CORNET

consortium extended its genome-wide association meta-analysis for morning plasma cortisol from 12,597 to 25,314 subjects

and from ~2.2 M to ~7M SNPs, in 17 population-based cohorts of European ancestries. We confirmed the genetic

association with SERPINA6/SERPINA1. This locus contains genes encoding corticosteroid binding globulin (CBG) and α1-

antitrypsin. Expression quantitative trait loci (eQTL) analyses undertaken in the STARNET cohort of 600 individuals

showed that specific genetic variants within the SERPINA6/SERPINA1 locus influence expression of SERPINA6 rather than

SERPINA1 in the liver. Moreover, trans-eQTL analysis demonstrated effects on adipose tissue gene expression, suggesting

that variations in CBG levels have an effect on delivery of cortisol to peripheral tissues. Two-sample Mendelian

randomisation analyses provided evidence that each genetically-determined standard deviation (SD) increase in morning

plasma cortisol was associated with increased odds of chronic ischaemic heart disease (0.32, 95% CI 0.06–0.59) and

myocardial infarction (0.21, 95% CI 0.00–0.43) in UK Biobank and similarly in CARDIoGRAMplusC4D. These findings

reveal a causative pathway for CBG in determining cortisol action in peripheral tissues and thereby contributing to the

aetiology of cardiovascular disease.

Introduction

Cortisol plays a vital role in adaptation to environmental stress,

modulating fuel metabolism, cardiovascular homoeostasis,

mood, memory and inflammation [1]. Cortisol levels vary

throughout the day under the control of the

hypothalamic–pituitary–adrenal (HPA) axis. Patients with

tumours causing excess cortisol develop Cushing’s syndrome,

characterised by a host of features including obesity, hyper-

tension, diabetes mellitus, depression, cognitive impairment

and osteoporosis with an excess mortality due primarily to
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cardiovascular disease [2]. Similarly, higher plasma cortisol in

the population associates with hypertension, hyperglycaemia,

cardiovascular disease, type 2 diabetes, cognitive dysfunction

and depression, while lower cortisol associates with immuno-

logical abnormalities and post-traumatic stress disorder [3–10].

We established the CORtisol NETwork (CORNET) con-

sortium with the initial aim of identifying genetic determinants

of inter-individual variation in HPA axis function. A genome-

wide association meta-analysis (GWAMA), investigating

~2.2M SNPs in 12,597 individuals from 11 European cohorts,

identified a single locus on chromosome 14 associated with

morning plasma cortisol at genome-wide significance [11]. The

locus spans SERPINA6 and SERPINA1 and influences function

of corticosteroid-binding globulin (CBG, the product of SER-

PINA6), a protein that binds cortisol in the blood. However, it

was unclear if the effect is mediated directly through SER-

PINA6 or indirectly through the product of SERPINA1, α1-

antitrypsin, which is involved in regulating cleavage and

inactivation of CBG [12]. Using these genetic variants as a

proxy for morning plasma cortisol levels in Mendelian rando-

misation analyses we provided evidence to suggest that cortisol

is a causal risk factor for coronary heart disease, but the odds

ratio was not statistically significant (OR: 1.06, 95% CI:

0.98–1.15) [13]. An independent study has confirmed recently

that common variants in SERPINA6 are associated with plasma

cortisol and with coronary artery disease [14].

The genetic variants in the SERPINA6/A1 locus explain

only ~0.5% of the variance in morning plasma cortisol.

Moreover, attempts to identify genetic variants associated with

an alternative phenotype of salivary cortisol have not been

successful [15]. Identifying additional genetic variants that

explain more of the variance in cortisol could provide new

insights into cortisol biology and statistical power to test the

causative role of cortisol in the aetiology of other common

diseases. We aimed: to identify additional specific loci influ-

encing cortisol; to refine where in the SERPINA6/A1 locus

there is an influence on cortisol; to establish whether SER-

PINA6/A1 variation influences tissue-specific expression of

CBG and α1-antitrypsin; and to confirm whether high cortisol

is causal in ischaemic heart disease and test if it is causal in

other common diseases. To achieve these aims, we undertook

an extended GWAMA analysis, with more subjects and more

SNPs than the original CORNET GWAMA [11], and used the

results to provide instruments for expression quantitative trait

loci (eQTL) and Mendelian randomisation analyses.

Methods

Genome-wide association meta-analysis study

We performed a meta-analysis of genome-wide association

studies of morning plasma cortisol in 25,314 subjects from 17

European population-based cohorts: CROATIA-Vis (n = 886),

CROATIA-Korcula (n = 897), CROATIA-Split (n = 493),

ORCADES (n = 1974), Rotterdam Study (n = 2870),

NFBC1966 (n = 1324), Helsinki Birth Cohort Study 1934–44

(n = 399), ALSPAC (n = 1487), PREVEND (n = 1151),

PIVUS (n = 919), Raine Study (n= 860), ET2DS (n = 847),

MrOS-Sweden (n = 969), KORA (n= 1651), TwinsUK (n=

5654), SHIP (n = 910) and VIKING (n= 2073). Character-

istics of the study populations are presented in Table S1 and

details of each cohort are provided in Supplementary Material.

All individuals were of European ancestries. Exclusion criteria

were current glucocorticoid use, pregnant or breast-feeding

women, and twins (exclusion of one of each twin pair). Cor-

tisol was measured by immunoassay in blood samples col-

lected from study participants between 0700 and 1100 h in all

cohorts except for in TwinsUK which measured cortisol using

liquid chromatography-mass spectrometry. All participants

provided written informed consent and studies were approved

by local Research Ethics Committees and/or Institutional

Review Boards.

Each study performed linear regression on z-scores of log-

transformed morning plasma cortisol (additive genetic effects),

adjusted for sex, age and cohort-specific genetic ancestry.

Additional models also adjusted for smoking and body mass

index. Imputation of the gene-chip results used the 1000

Genomes European population reference panel. Details of the

genotyping, imputation and cohort-specific adjustment for

genetic ancestry are provided in Table S2 and Supplementary

Material.

Quality control was carried out on the imputed genome-

wide data for all 17 studies prior to meta-analysis; this excluded

all SNPs with a minor allele frequency (MAF) <0.5%, call rate

<95%, and poor imputation quality (MACH R2_HAT <0.30,

IMPUTE PROPER_INFO <0.60, BEAGLE INFO <0.30, as

appropriate). Furthermore, only SNPs with estimates from at

least four studies were included, resulting in a final number of

8,452,427 SNPs. Quantile–quantile (QQ) plots and genomic

control (lambda) were used to assess evidence for population

structure that was not accounted for in association analyses.

Sex chromosomes were not analysed. Quality control at the

study-level and meta-level was performed using EasyQC

software [16].

The results from all cohorts were combined into a fixed-

effects meta-analysis using Stouffer’s method with

weighting of Z-scores proportional to the square-root of the

number of individuals in each sample, using METAL

software [17]. Manhattan and QQ plots visualised the

results using EasyStrata software [18].

SNP-based heritability

Linkage disequilibrium (LD) score regression exploits the

relationship between SNP-phenotype association strengths

A. A. Crawford et al.



and LD patterns [19]. Assuming true causal effects, the

SNPs which are in higher LD with nearby SNPs are

expected to have more inflated test statistics, because they

are more likely to tag causal variants with stronger effects.

The SNP heritability was estimated using LD score

regression v1.9.0 [19]. Since imputation quality can con-

found LD score regression results, we restricted the analysis

to a list of well-imputed SNPs, as recommended by the

software authors. After applying default quality control

settings, the final SNP number was 1,028,327. The genome-

wide summary statistics were partitioned into functional

categories using the method described by Finucane et al.

[20]. More details of the partitioned heritability method can

be found in the Supplementary Material.

Genetic correlations

Genetic correlations between morning plasma cortisol and

selected diseases and traits from UK Biobank were esti-

mated using bivariate LD score regression. This technique

examines the correlation structure of genetic effects of SNPs

across the genome. The data processing pipeline devised by

Bulik-Sullivan et al. [21] was followed using LD Hub

v1.9.0 software [22].

Gene- and pathway-based association analysis

Gene- and pathway- based associations, which assign SNPs to

genes and biological pathways respectively, were performed

using MAGMA and FUMA software [23, 24]. SNPs were

assigned to 18,062 genes using the National Centre for Bio-

technology Information build 37.3. The gene boundary was

defined as the start and stop site of each gene. The European

panel of the 1000 Genomes data (phase 1, release 3) was used

as a reference panel to account for LD between the SNPs. A

Bonferroni correction was used to control for 18,062 tests

(α= 0.05/18 062; P < 2.768 × 10−6).

eQTL analysis in the Stockholm Tartu
Atherosclerosis Reverse Networks Engineering Task
(STARNET) study

eQTL analyses were undertaken in the STARNET study which

is composed of Caucasian individuals of Eastern European

origin (30% female), with a confirmed diagnosis of coronary

artery disease. Of these individuals 27% had diabetes, 77% had

hypertension and 37% had suffered a myocardial infarction

before the age of 60 years. Genotyping and RNA sequencing

of seven vascular and metabolic tissue samples from 600

patients undergoing coronary artery bypass surgery was per-

formed [25]. The tissue sets available in STARNET include;

whole blood, atherosclerotic-lesion free internal mammary

artery, atherosclerotic aortic root, subcutaneous fat, visceral

abdominal fat, skeletal muscle, and liver. Whole blood samples

were taken pre-operatively and the remaining tissue biopsies

were obtained during surgery.

For the analysis, we included 580 SNPs within SER-

PINA6/SERPINA1 locus on chromosome 14 identified from

the CORNET plasma cortisol GWAMA, defined as within

100 Kb of SERPINA6 (±of the transcription start/end point),

with no missing data, and MAF >5%. All transcripts were

annotated using the Human Genome Reference Consortium

Human Build 37 (GRCh37).

Transcriptome-wide eQTL associations between selected

SNPs and all genes expressed in the STARNET tissues

were tested using the Kruskal–Wallis test, a non-parametric

ANOVA used to determine whether sample groups origi-

nate from the same distribution that has been used pre-

viously in genetic association studies [26]. Kruskal–Wallis

test statistics and p values were computed using the kruX

algorithm [27], using available pre-processed and normal-

ised genotype and expression data matrices [25] as input.

Multiple testing correction was performed for all SNP

associations with every STARNET gene in each tissue

separately by calculating q values [28] using the qvalue

package in Python. eQTL associations with SERPINA6

were visualised using the GWAS visualisation tool Locus-

Zoom [29]. The allelic effect of individual SNPs on SER-

PINA6 was visualised by constructing boxplots for each

allele.

The global tissue-specific effect on gene expression for

SNPs associated with plasma cortisol at a genome-wide level

of significance was depicted using Q–Q plots showing the

observed transcriptome-wide SNP-gene associations against

the expected uniform distribution. Deviation from the uniform

distribution was tested using the Kolmogorov–Smirnov test

statistic and p value for each SNP.

Bayes factor colocalisation analysis was performed in R

using the package Coloc [30]. eQTL analysis was repeated

using linear regression with the R package MatrixEQTL

[31] to obtain beta values required for colocalisation. linear

regression and Kruskal–Wallis p values were consistent

(Fig. S7). For visualisation of the colocalisation event, LD

with the lead SNP was calculated using the package

LDlinkR [32].

Two-sample Mendelian randomisation

The instrument for morning plasma cortisol consisted of

independent (r2 < 0.3) genetic variants that reached a

genome-wide level of significance (P < 5 × 10−8). To detect

independent top SNPs we used the clumping function as

implemented in PLINK. The European samples from the

1000 Genomes Project were used to estimate LD between

SNPs. Amongst those SNPs within 1000 kb and r2 < 0.3,

only the SNP with the lowest P value was retained.

Variation in the SERPINA6/SERPINA1 locus alters morning plasma cortisol, hepatic corticosteroid. . .



Two-sample Mendelian randomisation [33] was used to

estimate the causal effect of morning plasma cortisol on

hypothetically cortisol-related diseases and traits (chronic

ischaemic heart disease, myocardial infarction, diabetes

mellitus, body mass index and osteoporosis) available in

UK Biobank and publicly available GWAS consortia in the

MR Base platform [34].

Genetic instruments for various traits/conditions were

also constructed to estimate the causal effect these had on

morning plasma cortisol (bidirectional Mendelian rando-

misation). Details of the selected disease and traits, the

population, consortia details and genetic instruments are

provided in Table S3. The SNP-cortisol estimate was divi-

ded by the SNP-outcome estimate (Wald ratio method [35])

and then combined using inverse variance weighting.

Additional analyses described in the Supplementary Mate-

rial were performed to investigate the robustness of this

causal estimate and any potential pleiotropic effects.

Results

Genome-wide association meta-analysis

The GWAMA of morning plasma cortisol levels in 25,314

identified a single locus on chromosome 14 reaching a

genome-wide level of significance (p < 5 × 10−8) (Fig. 1).

This is the same locus as the CORNET consortium pre-

viously identified [11] and includes the SERPINA6 gene,

encoding corticosteroid binding globulin (CBG), and the

SERPINA1 gene, encoding α1-antitrypsin, an inhibitor of

neutrophil elastase which cleaves and inactivates CBG. In

an additive genetic model, the top SNP rs9989237 reported

a per minor allele effect of 0.11 cortisol z-score (p = 2.2 ×

10−19). The effect allele frequency was 0.22 and this var-

iation explained 0.13% of the morning plasma cortisol

variance. Within this locus we identified four blocks of

SNPs in low LD (r2 < 0.3) visualised in Figs. 1, S1.

Fig. 1 a Manhattan plot of −log10 P values of the SNP-based asso-

ciation analysis of morning plasma cortisol (n= 25,314). The locus

on chr14 spans SERPINA6 and SERPINA1 genes; no other loci

reached genome-wide significance. b, c Zoomed in Manhattan plot

(LocusZoom plot) of −log10 P values of the SNP-based association

analysis of morning plasma cortisol (n= 25,314). These show two (of

the four) LD blocks (r2 > 0.3) in this locus

A. A. Crawford et al.



SNP-based heritability

Using LD score regression, common SNPs across the

genome were found to explain 4.2% (s.e. 1.9%) of the

phenotypic variation of morning plasma cortisol. There was

no evidence of enrichment in a particular cell type, and

particularly not in the adrenal/pancreas or liver cell type

groups of SNPs, when partitioning the heritability into

functional cell types (all P values > 0.5, Table S4).

Genetic correlations

LD score regression was used to test whether genetic var-

iants associated with morning plasma cortisol also con-

tribute to health-related traits. Estimated genetic correlations

are presented in Fig. S2. There was evidence of a positive

genetic correlation between morning plasma cortisol and

acute myocardial infarction (rg= 0.50, 95% CI 0.04–0.97)

and a negative genetic correlation with BMI (rg=−0.32,

95% CI −0.54 to −0.10).

Gene-based and pathway-based association
analyses

Gene-based association analysis identified three genes, SER-

PINA6, SERPINA1 and SERPINA10, all located on chromo-

some 14, that attained genome-wide significance following

correction for multiple comparisons (Fig. S3). Pathway-based

association analysis identified the top pathway as metabolism

of lipids and lipoproteins (P= 1.6 × 10−5) (Table S5).

Tissue-specific eQTL analyses

The statistical effects of 580 SNPs in the SERPINA6 region

on gene expression were obtained using individual-level

genotype and RNA-sequencing data from seven vascular

and metabolic tissues from the STARNET study [25].

Following multiple testing correction (q ≤ 0.05), 32 cis-

eQTLs for SERPINA6 were identified in the liver, the only

tissue where SERPINA6 is highly expressed (Fig. 2a). Of

these 32 cis-eQTLs, 21 were also at genome-wide

Fig. 2 Tissue-specific association of cortisol-related SNPs with gene

expression in STARNET. a LocusZoom plot showing genomic loci of

given SNPs against measure of significance (−log10 (p value)) for an

eQTL analysis in liver for all SNPs within 100 Kb of SERPINA6.

Squares represent the 21 significant cis-eQTLs (q ≤ 0.05) that are also

at genome-wide significance in CORNET (p ≤ 5 × 10−8). b Genotypic

effect of representative SNP for LD block 2 (rs2736898) on

SERPINA6 gene expression in liver. c Global tissue-specific effects on

gene expression for rs2736898 represented as Q–Q plots for genes in

liver, subcutaneous fat and visceral abdominal fat describing observed

p values vs. those expected by chance. Deviation from expected uni-

form distribution described by Kolmogorov–Smirnov test p value (Ks-

test)

Variation in the SERPINA6/SERPINA1 locus alters morning plasma cortisol, hepatic corticosteroid. . .



significance in CORNET (p ≤ 5 × 10−8), and therefore also

associated with variation for plasma cortisol (Table S6).

The global effect on tissue-specific gene expression of

representative SNPs from each LD block was assessed

using the distribution of transcriptome-wide eQTL p values

(Figs. S4, S5). LD block 2, represented by the SNP

rs2736898, with the alternate allele C, exerted a negative

effect on SERPINA6 expression in liver (q= 0.00015)

(Fig. 2b) and showed the strongest tissue-specific effects,

particularly in visceral abdominal fat, subcutaneous fat and

liver (Fig. 2c). In all cases the allele associated with higher

plasma cortisol in the GWAMA was the allele associated

with higher SERPINA6 expression in STARNET (Fig. S6).

To determine if the signal identified for SERPINA6 cis-

eQTLs in liver and SNPs associated with plasma cortisol are

driven by the same causal variant, Bayes factor colocali-

sation analysis was performed while accounting for allelic

heterogeneity [30] (Fig. 3). The probability of both traits

sharing a causal variant was low (40.6%) when examining

all SNPs within 100 Kb of SERPINA6. However, when

examining each LD block individually, the block repre-

sented by rs2736898 returns a 99.2% probability of shared

causal variant in this region (Table S7).

Two-sample Mendelian randomisation

The clumping procedure identified four SNPs (rs9989237,

rs2736898, rs11620763, rs7146221) as markers represent-

ing genome-wide significant signals in this region. Two-

sample Mendelian randomisation analyses provided evi-

dence that each genetically-determined standard deviation

(SD) increase in morning plasma cortisol was associated

with an increased risk of chronic ischaemic heart disease

(0.32, 95% CI 0.06–0.59) and myocardial infarction (0.21,

95% CI 0.00–0.43) in UK Biobank (Fig. 4a). Similar esti-

mates were observed for these disease outcomes in non-UK

Biobank cohorts (CARDIoGRAM plus C4D, Fig. 4b).

The bidirectional Mendelian Randomisation analyses,

estimating the genetically predicted effect of various traits

or disease on plasma cortisol, did not support any causal

associations (Fig. 5).

Discussion

These results confirm that genetic variation in the SER-

PINA6/A1 locus on chromosome 14 is associated with

morning plasma cortisol. Despite doubling the sample size

and trebling the SNP density from the previous genome-

wide association study [11] no new genetic loci were

identified. The improved imputation of genetic markers

used in this analysis allowed identification of new SNPs

within the SERPINA6/A1 locus and strengthened the

instrument used in two-sample Mendelian randomisation

analyses. This additional information coupled with tissue-

specific gene expression data suggests that genetic variation

within this locus influences expression of SERPINA6 rather

than SERPINA1 in the liver. Furthermore, it appears that the

eQTL and GWAMA signals colocalise within the block of

SNPs in LD, represented by rs2736898, suggesting this

block is primarily responsible for driving CBG-mediated

variation for cortisol. Moreover, it demonstrates effects on

adipose tissue gene expression, suggesting that resulting

variations in CBG levels in turn influence the delivery of

cortisol to peripheral tissues.

Given previous evidence of heritability of plasma corti-

sol it is surprising that the increase in sample size and SNP

coverage from our earlier GWAMA did not identify any

new loci associated with morning plasma cortisol. Twin

studies have estimated the heritability of plasma cortisol

ranging from 14 to 45% [36–38]. However, SNP heritability

estimates of plasma cortisol are considerably lower at 6%

[15], and were confirmed in this sample at 4%. Never-

theless, despite poor prediction of plasma cortisol by com-

mon autosomal SNPs, our interrogation of the SERPINA6/

SERPINA1 locus demonstrates important insights.

To test the functional significance of SERPINA6/A1

variants we used eQTL analyses in the STARNET cohort.

A hypothesis-free approach that investigated the effect of all

580 SNPs within the SERPINA6/SERPINA1 locus on

expression of all STARNET genes in each of the seven

tissue types identified cis-eQTLs for SERPINA6 expression

in the liver, the only tissue where SERPINA6 is highly

expressed. This effect was refined to one of the LD blocks,

represented by rs2736898. Importantly, genetic variation in

Fig. 3 Scatterplot showing colocalisation of joint signal from COR-

NET GWAMA and SERPINA6 cis-eQTLs from STARNET-liver.

Includes all SNPs within 100 Kb of SERPINA6 that were present in

both datasets (n= 535). Colour bar indicates degree of LD with

rs2736898. Formal colocalisation analysis with Coloc indicates 99.2%

probability of the presence of a shared causal variant within LD block

2 mediating GWAMA and SERPINA6 cis-eQTL signal

A. A. Crawford et al.



SERPINA6/SERPINA1 was also associated in trans-eQTL

analyses with gene expression in visceral abdominal fat and

subcutaneous fat as well as liver. These results suggest that

not only does cortisol-associated genetic variation influence

CBG expression in the liver, but it also influences cortisol

signalling in peripheral tissues, an effect that is likely to be

mediated by CBG.

CBG binds ~90% of cortisol in plasma but it is usually

thought that only the free cortisol can access tissues and

have biological effects. Patients with mutations in SER-

PINA6 [39] and animals with deletion of CBG, however,

exhibit features consistent with cortisol deficiency despite

biochemical changes in the CBG-bound rather than free

cortisol pool. Our data support the hitherto speculative

evidence that CBG is involved actively in delivery of

cortisol to peripheral tissues. We and others had proposed

that this is mediated by altered cleavage of CBG by neu-

trophil elastase in tissues [11, 12], and evidence from

immunoassays suggested that variants in SERPINA6/SER-

PINA1 might mediate their effect through altered inhibition

of neutrophil elastase by α1-antitrypsin. However, the more

detailed analyses facilitated by the expanded GWAMA

presented here do not support this interpretation since we

did not identify eQTLs for α1-antitrypsin expression.

Moreover, the reliability of immunoassays to determine

CBG cleavage has since been called into question [40].

Epidemiological analysis of cortisol has demonstrated

associations with a large number of diseases and traits

[2–9], but the direction of causality, if any, has not been

established. The improved imputation of genetic markers

Fig. 5 Bidirectional causal

estimates of the effect of the

disease or trait on morning

plasma cortisol. Estimates are

from two-sample Mendelian

randomisation analyses using

inverse variance weighting to

combine estimates from each

genetic variant

Fig. 4 Causal estimates of a 1 SD increase in morning plasma cortisol

on relevant disease and trait outcomes. Estimates are from two-sample

Mendelian randomisation analyses using inverse variance weighting to

combine estimates from each genetic variant. a Outcomes from UK

Biobank (chronic ischaemic heart disease, cases= 8755, controls=

328,444; myocardial infarction, cases= 7790, controls= 328,893;

diabetes mellitus, cases= 16,183, controls= 320,290; body mass

index, sample size= 336,107; osteoporosis, cases= 5266, controls=

331,893); (b) Equivalent outcomes from non-UK Biobank sources—

CARDIoGRAMplusC4D (coronary heart disease, cases= 60,801,

controls= 123,504; myocardial infarction, cases= 43,676, controls=

128,199), DIAGRAM (type 2 diabetes, cases= 26,488, controls=

83,964), GIANT (BMI, sample size= 339,224) and GEFOS (lumber

spine mineral density, sample size= 28,498)
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used in this analysis allowed identification of new SNPs

within the SERPINA6/A1 locus and strengthened the

instrument used in the two-sample Mendelian randomisa-

tion analyses. We tested whether genetically-elevated cor-

tisol is causally associated with cortisol-related outcomes

selected from the features of Cushing’s syndrome—a rare

condition caused by tumours secreting ACTH or cortisol—

that are highly prevalent in the general population. Con-

sistent with previous reports based on a less refined genetic

instrument [13, 14] we found evidence that cortisol causally

increases the risk of heart disease. However, we did not find

conclusive evidence that elevated cortisol causes type 2

diabetes, osteoporosis or obesity; given the relatively small

variance in cortisol accounted for by the genetic instrument,

it is possible that causal associations with additional dis-

eases and traits would be revealed by analysis of larger

sample sizes. We also tested whether common diseases and

traits underlie elevated plasma cortisol, using bidirectional

Mendelian randomisation analyses. The strongest evidence

suggested that higher BMI reduces cortisol levels, con-

sistent with prior epidemiological and experimental evi-

dence that obesity enhances clearance of cortisol from the

circulation [1].

It is arguable that morning plasma cortisol or salivary

cortisol are poor surrogates for overall cortisol exposure

given their diurnal and ultradian fluctuations and variation

with acute stress. A more robust assessment of cortisol

phenotype, perhaps from hair cortisol [41] or ambulatory

sampling of interstitial fluid over 24 h, may reveal stronger

epidemiological and genetic associations.

In summary, this large GWAMA has revealed the limited

magnitude and range of genetic effects on plasma cortisol,

but has identified a pathway from variation in the SER-

PINA6/SERPINA1 locus through variation in liver SER-

PINA6 expression to variation in CBG-mediated gene

transcription including in adipose tissue that is causally

associated with cardiovascular disease.
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