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Summary

� Plant functional types (PFTs) aggregate the variety of plant species into a small number of

functionally different classes. We examined to what extent plant traits, which reflect species’

functional adaptations, can capture functional differences between predefined PFTs and

which traits optimally describe these differences.
� We applied Gaussian kernel density estimation to determine probability density functions

for individual PFTs in an n-dimensional trait space and compared predicted PFTs with

observed PFTs. All possible combinations of 1–6 traits from a database with 18 different traits

(total of 18 287 species) were tested.
� A variety of trait sets had approximately similar performance, and 4–5 traits were sufficient

to classify up to 85% of the species into PFTs correctly, whereas this was 80% for a bioclimat-

ically defined tree PFT classification. Well-performing trait sets included combinations of cor-

related traits that are considered functionally redundant within a single plant strategy.
� This analysis quantitatively demonstrates how structural differences between PFTs are

reflected in functional differences described by particular traits. Differentiation between PFTs

is possible despite large overlap in plant strategies and traits, showing that PFTs are differently

positioned in multidimensional trait space. This study therefore provides the foundation for

important applications for predictive ecology.

Introduction

Plant functional type (PFT) classifications are used to aggregate
the enormous number of plant species into a relatively small
number of functionally different classes. As the term implies, a
PFT classification should be functional, based on ecological con-
cepts, and differentiate between groups of plants with similar
responses to changes in their environment and with comparable
impacts on this environment (Diaz & Cabido, 1997; Lavorel &
Garnier, 2002). Classifications of plants have a long history (for
an overview of the development of the PFT concept, see Ustin &
Gamon, 2010; Wullschleger et al., 2014) and are broadly applied
in ecology as well by the modeling community. Especially when
making predictions at regional to global scales, there is a need to
aggregate species into a simplified, workable number of func-
tional groups, thereby reducing the need for knowledge on the
underlying species.

Although there are different conceptualizations of PFTs, for
example based on structural aspects (growth forms), environmen-
tal constraints or plant traits (Box, 1996; Lavorel et al., 1997,
2007; Woodward & Kelly, 1997; Harrison et al., 2010), (global)
applications of PFTs are often classified ‘a priori’ based on

growth form. The idea behind such classification is that growth
forms reflect structural adaptations to different environmental
conditions, that is ‘form follows function’ (Box, 1996). In addi-
tion to basic growth forms, depending on the application, charac-
teristics related to, for example leaf phenology (deciduous vs
evergreen), leaf structure (broadleaved vs needleleaved) or photo-
synthetic pathway add subdivisions within growth forms. Growth
forms and their derived PFTs are a basic first division reflecting
and explaining differences in plant functioning in relation to
environmental conditions (Lavorel et al., 1997; Reich et al.,
2007; Kattge et al., 2011). Such a classification is commonly used
in applications such as global vegetation mapping and investiga-
tions on the impacts of climate change, land use change or man-
agement strategies on vegetation cover.

A way to quantitatively test how functional differences
between PFTs are related to (structural) plant properties is to
investigate their positioning in multidimensional domains of
plant functional traits. Plant traits are a suitable tool for describ-
ing different functional aspects of plants and their relations to
environmental conditions, because the different growth and sur-
vival strategies of plants in response to (a)biotic determinants
such as water, light and nutrient availability, competition and
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disturbances are reflected by a plant’s set of trait values (Westoby
et al., 2002; Reich et al., 2003; Reich, 2014). As a consequence of
the different strategies of plants, trait values vary between species
(both within and between habitats). By relating this variation in
traits to a number of largely independent strategy axes (or ‘axes of
trait variation’; Westoby, 1998), differences in plant strategies
between species can be explained. For example, the leaf–height–
seed strategy scheme (Westoby, 1998) distinguishes three func-
tionally different strategy axes, which relate variation in leaf traits,
like specific leaf area (SLA) and leaf life span (LLS) (so called ‘leaf
economics’ traits), to differences in growth and resource acquisi-
tion (Reich et al., 1999; Wright et al., 2004; Reich, 2014), varia-
tion in seed mass (SM) and output to variation in reproductive
strategies (Moles & Westoby, 2004; Moles et al., 2004) and vari-
ation in plant height to differences in strategies concerning light
competition and disturbances (Westoby, 1998; Westoby et al.,
2002).

Different methods that use traits to distinguish among vegeta-
tion types or to describe functional classifications have been
developed (Diaz & Cabido, 1997; Pillar & Sosinski, 2003).
Combinations of traits with different functional roles may be par-
ticularly useful for differentiating between different plant strate-
gies and consequently allow classification of functionally different
groups of plant species (Diaz et al., 2004; Boulangeat et al.,
2012). However, the extent to which predefined growth form-
based PFTs can be described from a bottom-up, functional traits-
based approach has not been quantified yet. Global scale analyses
can clarify which traits are most important in explaining func-
tional differences between growth forms and, as such, reveal
which functional aspects of plants underlie differences in growth
forms. In addition, knowing both the extent to which plant traits
can quantitatively discriminate between PFTs as well as knowing
the most important traits is highly relevant, as it would allow
global vegetation mapping based on trait maps. Such global trait
maps can be constructed relatively easily based on the relation-
ships between traits and climate (Van Bodegom et al., 2014).
Even though there is large overlap in traits between growth forms
or PFTs (Reich et al., 2003, 2007; Wright et al., 2005; Kattge
et al., 2011; Van Bodegom et al., 2012; Verheijen et al., 2013),
suggesting substantial overlap between functional strategies of
PFTs, combinations of (functional different) traits might allow
discrimination between PFTs. With this information, changes in
vegetation distribution upon climate change can be predicted
based on modifications in plant trait values.

We investigated to what extent plant traits can capture func-
tional differences between growth forms and their derived PFTs
by analyzing how well these PFTs can be differentiated from each
other based on plant traits, and which (sets of) traits are needed
to describe these functional differences between PFTs. We did
not define a priori the most important traits, but tested a whole
range of traits from different plant strategy dimensions, including
various ‘core’ traits, related to dispersal, establishment and persis-
tence of plants (Weiher et al., 1999; Cornelissen et al., 2003b).
We asked whether combinations of traits that reflect different
functional aspects within plants (e.g. competition for water, light,
drought tolerance) will capture functional differences between

PFTs best and consequently will have the highest potential to
differentiate among PFTs.

Materials and Methods

Data collection and selection

We collected plant trait data related to different functional roles
in plants. The main source was the TRY database (Kattge et al.,
2011) (accession date 16 November 2010), which included data
from both unpublished studies (H. Kurokawa, unpublished; W.
J. Bond, unpublished; F. S. Chapin III, unpublished; A. Siefert,
unpublished; E. E. Sosinski, unpublished; E. Weiher, unpub-
lished) and published studies (Leishman & Westoby, 1992;
Shipley, 1995; Cornelissen, 1996; Cornelissen et al., 1996, 1997;
Bahn et al., 1999; Medlyn & Jarvis, 1999; Medlyn et al., 1999;
Meziane & Shipley, 1999; Niinemets, 1999; Pyankov et al.,
1999; Wohlfahrt et al., 1999; Fonseca et al., 2000; White et al.,
2000; Craine et al., 2001; Medlyn et al., 2001; Niinemets, 2001;
Klotz et al., 2002; Shipley & Vu, 2002; Cornelissen et al., 2003a;
Loveys et al., 2003; Ogaya & Penuelas, 2003; Pillar & Sosinski,
2003; Poschlod et al., 2003; Quested et al., 2003; Cornelissen
et al., 2004; Diaz et al., 2004; Moles & Westoby, 2004; Moles
et al., 2004; Wright et al., 2004; Craine et al., 2005; Han et al.,
2005; Kirkup et al., 2005; Louault et al., 2005; Moles et al.,
2005; Soudzilovskaia et al., 2005; Bakker et al., 2006; Cavender-
Bares et al., 2006; Cornwell et al., 2006; He et al., 2006; Kazakou
et al., 2006; Ogaya & Penuelas, 2006; Preston et al.,
2006; Wright et al., 2006; Ackerly & Cornwell, 2007; Blanco
et al., 2007; Campbell et al., 2007; Duarte et al., 2007; Muller
et al., 2007; Ogaya & Penuelas, 2007; Swaine, 2007;
Wright et al., 2007; He et al., 2008; Kleyer et al., 2008;
Kurokawa & Nakashizuka, 2008; Ogaya & Penuelas, 2008;
Pakeman et al., 2008; Paula & Pausas, 2008; Reich et al., 2008;
Sardans et al., 2008a,b; Van Bodegom et al., 2008; Baker et al.,
2009; Chave et al., 2009; Craine et al., 2009; Fortunel
et al., 2009; Fyllas et al., 2009; Kattge et al., 2009; Laughlin &
Moore, 2009; Pakeman et al., 2009; Paula et al., 2009; Poorter
et al., 2009; Reich et al., 2009; Wirth & Lichstein, 2009;
Zanne et al., 2009; Freschet et al., 2010a,b; Laughlin et al., 2010;
Messier et al., 2010; Ordo~nez et al., 2010; Wright et al., 2011;
Onipchenko et al., 2012; Soudzilovskaia et al., 2013). Additional
data was collected from other publicly available and private
databases (Hendricks et al., 2000; Pregitzer et al., 2002; Craine &
Lee, 2003; Comas & Eissenstat, 2004, 2009; Tjoelker et al.,
2005; Kerkhoff et al., 2006; Pittermann et al., 2006; Roumet
et al., 2006; Green, 2009; Liu et al., 2010; Zanne et al., 2010;
Holdaway et al., 2011; Choat et al., 2012; Douma et al., 2012b;
McCormack et al., 2012; Fort et al., 2013; Tobner et al., 2013)
or unpublished data (P. M. van Bodegom, unpublished). The
traits are listed in Table 1. In light of the debate on area- vs mass-
based photosynthesis-related traits (Lloyd et al., 2013; Westoby
et al., 2013), both mass- and area-based estimates of leaf traits
were investigated for leaf nitrogen content (LNCmass and
LNCarea), maximum photosynthetic rate (Amax,mass and Amax,area)
and leaf dark respiration (Rdmass and Rdarea). To eliminate a small
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number of biologically impossible trait values while preventing
selective removal of entries in PFTs occurring at the upper and
lower boundaries of trait values, only data within the 99% quan-
tiles of every PFT separately were selected. For most individuals
of a species, only a subset of the traits was measured, which
resulted in a database with many trait gaps. By calculating species
means, the database became smaller, but the number of traits per
species increased, allowing us to investigate more trait combina-
tions. This database based on species means consisted of 18 287
species for which information for one or more traits was available.

PFT classification

Species were assigned to a PFT based on the categorical data
available from multiple trait data sources, the most important
being the TRY database. These included plant growth form, leaf
phenology, leaf type and photosynthetic pathway. When no
information about C3- or C4-photosynthesis was available, the
species was assumed to be a C3-species. Species that could not be
classified because of missing or ambiguous categorical data were
omitted. Species known not to belong to the seed plants, species
with crassulacean acid metabolism (CAM)-photosynthesis, suc-
culent species (e.g. cacti), climbers or vines, (hemi-)parasitic
species, aquatic species, (hemi)-epiphytes, crops and palmoids
were left out as well, because little data trait was available for
these plant types.

Different PFT classifications were evaluated. The first PFT
classification consisted of seven broadly applied PFTs (including
only angiosperms and gymnosperms): C3- and C4-graminoids
(including grasses, sedges and rushes), (C3-)forbs, (C3-)shrubs,
broadleaved deciduous trees, broadleaved evergreen trees and

needleleaved evergreen trees. Needleleaved deciduous trees could
not be included, because of trait data limitations (a minimum of
seven species per trait (set) per PFT was needed, explained in the
next section). For this classification, there were 15 traits with suf-
ficient species per PFT to be included in the analyses (see
Table 1). The number of species within the C4-graminoid PFT
was too low to include a number of traits considered to be impor-
tant in plant survival strategies (stem specific density, SSD, and
LLS). Therefore, a six-PFT classification was constructed, with
C4- and C3-graminoids merged into a single graminoids PFT.
This allowed additional inclusion of LLS, SSD and Rdmass and
Rdarea. The distribution and number of observations (species’
means) per PFT and per trait are listed in Supporting Informa-
tion Fig. S1.

We also tested a PFT classification of trees only, which
included bioclimatic descriptions. This classification de-empha-
sizes the role of plant height as a descriptor of growth form and
allowed the inclusion of a number of additional traits; vessel area
(VA) and the water potential at which 50% loss of conductivity
occurs (Ѱ50). To associate each species to a climate zone, species
distributions were determined based on their spatial occurrences
in the Global Biodiversity Information Facility (http://
www.gbif.org, data accessed 18 October 2014), extracted with
the R-package RGBIF (Chamberlain et al., 2014). The climate
zone within the K€oppen–Geiger climate classification (Kottek
et al., 2006) with most occurrences was taken to represent the
correct climate zone that a species originated from. For species
occurring mostly in deserts, the climate zone with the second
most occurrences for this species was taken. The different cli-
matic zones were aggregated into tropical (equatorial climates),
extratropical (warm temperate climates, snow and polar climates,

Table 1 List of traits used in the different plant functional type (PFT) classification analyses

Trait Abbreviation Unit

Classification

7-PFT 6-PFT Tree PFT

Leaf life span LLS months x x
Specific leaf area SLA mm2mg�1 x x x
Mass based maximum photosynthetic rate Amax,mass lmol g�1 s�1 x x x
Area based maximum photosynthetic rate Amax,area lmol m�2 s�1 x x x
Mass based leaf dark respiration Rdmass lmol g�1 s�1 x x
Area based leaf dark respiration Rdarea lmol m�2 s�1 x x
Mass based leaf nitrogen content LNCmass mg g�1 x x x
Area based leaf nitrogen content LNCarea g m�2 x x x
Leaf phosphorus content LPCmass mg g�1 x x x
Leaf carbon content LCCmass mg g�1 x x x
Leaf area LA mm2 x x x
Stomatal conductance Gs mol m�2 s�1 x x x
Leaf dry matter content LDMC g g�1 x x x
Maximum plant height MPH m x x x
Seed mass SM mg x x x
Stem specific density SSD mgm�3 x x
Vessel area VA mm2 x
Water potential at which 50% loss of conductivity occurs Ѱ50 MPa x
Minimum rooting depth MinRD m x x x
Root nitrogen content RNCmass mg g�1 x x
Specific root length SRL cm g�1 x x
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and steppes from the arid climates) and deserts (arid climates).
An extra subdivision of extratropical climates into temperate and
boreal climates was not possible due to limited data on boreal
species. This resulted in five PFTs with sufficient trait data: tropi-
cal broadleaved deciduous and evergreen trees and extratropical
broadleaved deciduous and evergreen trees and needleleaved ever-
green trees. The traits used for analysis with this tree PFT classifi-
cation were broadly similar to the six-PFT classification described
earlier, except that there were not sufficient data to include root
nitrogen content (RNCmass) and specific root length (SRL),
whereas VA and Ѱ50 were additionally included. In Fig. S2, the
data distribution per trait is given.

Kernel density estimation

We analyzed which trait or set of traits had the highest power to
discriminate between PFTs by using (Gaussian) kernel density
estimation (kde) from the kernel smooting (‘ks’) package in R
(Duong, 2014). This technique allowed estimation of probability
density functions for the different PFTs within an n-dimensional
space of traits (with n varying between 1 and 6, the latter being
the maximum possible using the ‘ks’-package). Estimated density
functions in a two-dimensional trait space are visualized in Fig. 1.
For a given set of traits, we only selected species for which all
selected traits were available. This resulted in sets containing a
variables number of species, depending on both the selected traits
as well as the number of traits. Only trait sets where at least seven
species per PFT were available were tested, as seven species is the
minimum number of entries needed to create a complete density
kernel for a PFT within a six-dimensional trait space (and one
additional species for validation). This low threshold did not

strongly affect the estimate of the probability density function
(Fig. S3).

For every species within a set, the Gaussian probability density
for each PFT was calculated. This calculation was based on the
density kernels fitted for each PFT as constructed from the
remaining data in the set (leave-one-out method). Because ker-
nels were fitted independently across PFTs, probability densities
of a given species were normalized to probabilities per PFT to
enable comparisons between PFTs. To allow this normalization,
probability densities were also calculated for each PFT for a
dummy trait set. Normalization was obtained by dividing the
species’ probability density estimates for each PFT by the sum of
the density estimates calculated in the dummy trait set. This
unique dummy trait set was created for every trait set by evenly
distributing trait values between the minimum to the maximum
trait value in the dataset with a fixed number of intervals. The size
of the dummy matrix (i.e. the number of dummy trait combina-
tions) depended on the number of traits involved. Because the
size of the matrix may affect model performance we did not set a
fixed number of intervals. Instead, an optimal matrix size was
chosen for each number of traits (see Methods S1 and Fig. S4).

Due to overlapping probability density functions of PFTs
(Fig. 1), species may have probabilities larger than zero for multi-
ple PFTs. For each species, the PFT with the highest probability
was taken as the predicted PFT and compared with the observed
PFT to which the species actually belonged. In this way, for each
set, a so-called confusion matrix was constructed, which shows
for each PFT the number of correctly classified and misclassified
PFTs (e.g. Table 2). With this matrix, the fraction of correctly
predicted entries per PFT was calculated (fcp), as well as the
mean performance (fcp), the fraction of correctly categorized
entries per PFT averaged over all PFTs. We used fcp instead of
other performance measures, such as Cohen’s kappa (j) (Cohen,
1960) which includes a correction for the agreement caused by
chance. However, j weighs all species equally independent of
PFT identity, whereas fcp gives equal weight to each PFT. This
fcp therefore allows the determination of the traits that lead to
the highest differentiating power among PFTs, even in the pres-
ence of unbalanced data distribution across PFTs.

Most traits (except for LCCmass, SSD and Ѱ50) were log-trans-
formed, even though the applied kde method does not demand a
normal distribution of the data, but normalization of the traits by
log-transformation did improve model performance.

The database was not completely filled, leading to trait sets of
varying sizes. Fortunately, for the same number of traits, different
dataset sizes did not significantly affect model performance except
for sets with three and four traits (P = 0.040 and 0.045, respec-
tively), but R2

adj were very low (R2
adj = 0.021 and 0.020, respec-

tively) and slopes very flat (0.000027 and 0.000042, respectively)
(Fig. S5). This suggests that differences in model performance
are trait-related and not much confounded by dataset size.

We also investigated whether the performance of trait sets
could increase when adding traits without functional informa-
tion. We tested this by adding a random, nonfunctional trait
(with a similar mean and SD for all PFTs) to an existing trait set.
This almost always decreased the performance of the trait set

Fig. 1 Probability densities of seven plant functional types (PFTs) in a two-
dimensional trait-space (log10-transformed maximum plant height, MPH,
and mass-based maximum photosynthetic capacity, Amax,mass). The
contour lines of the different PFTs reflect upper percentages of different
density regions (from inside to outside: 75, 50 and 25%).
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(Fig. S6), suggesting that the Gaussian kernels perform appropri-
ately in relation to nonfunctional trait additions.

Results

Differentiating power of trait sets

For the seven-PFT classification, the mean fraction of correctly
predicted PFTs (fcp) for each trait set was plotted against the
number of traits included per trait set (Fig. 2). fcp increased with
an increasing number of traits included and increased to 0.73
(with a set of five traits). From four traits onwards, trait sets did
not significantly differ from each other (P > 0.85), whereas sets
with three and six traits were not significantly different from each
other either (P = 0.18). For sets of six traits, the predictive power
decreased in comparison to sets of five traits. Although there was
no clear relationship between fcp and the number of species per

trait set, the number of traits that were available for six-trait sets
was much lower than for the other trait sets and might have
affected the performance of the six-trait sets.

Predictability of PFTs in the best performing trait sets

The 10% trait sets (for 2–6 traits) with the highest fcp (‘best per-
forming trait sets’) were selected for further analyses. For seven
PFTs, it comprised trait sets with a fcp of 0.62–0.73 (j range
0.45–0.70): this included one two-trait set, nine three-trait sets,
22 four-trait sets, 15 five-trait sets and two six-trait sets (total of
49). The proportion of correctly predicted species, averaged per
PFT (Table 2), reflecting the extent to which a PFT could be dis-
tinguished functionally from other PFTs, ranged from 0.53 for
C4-graminoids to 0.87 for needleleaved evergreen trees. Although
the average number of species per PFT differed among PFTs, this
did not significantly affect performance of PFTs (P = 0.60).

C4-graminoids were correctly classified least often (0.53), fol-
lowed by C3-graminoids (0.57) and forbs (0.58). For both
graminoids and forbs, species were only occasionally misclassified
as shrubs or trees. Similarly, trees were almost never confused
with herbaceous PFTs or shrubs. For the trees, needleleaved ever-
green trees could be distinguished from other PFTs most reliably
(0.87), followed by broadleaved deciduous trees (0.76), whereas
predictability of broadleaved evergreen trees was clearly lower
(0.59). Shrubs had intermediate predictability (0.65) and most
misclassifications were as C3-graminoids, but shrubs were con-
fused with any other PFT as well. Better predictability of some
PFTs was not necessarily caused by a more detailed PFT defini-
tion, as reflected in less variation in trait values (Fig. S1); shrubs
were the third best performing PFT (Table 2), but encompassed
a wide range of species and associated trait values.

Most selected traits in best performing trait sets

Because the number of sets in which a trait occurred varied, we
did not compare the absolute number of occurrences in the best
performing trait sets. Instead, we compared occurrences of a trait
in these best performing trait sets relative to the occurrence of a
trait in the full multitrait dataset (2–6 trait sets). The trait with
the highest relative occurrence was specific root length (SRL)

Table 2 Confusion matrix of mean of best performing trait sets for the seven-plant functional type (PFT) classification, with in bold the fraction correctly
classified PFTs

Obs

Pred

C3-graminoids C4-graminoids Forbs Shrubs Bl dec trees Bl ev trees Nl ev trees

C3-graminoids 0.57 0.15 0.20 0.07 0.01 0.00 0.00
C4-graminoids 0.26 0.53 0.11 0.10 0.00 0.00 0.00
Forbs 0.27 0.10 0.58 0.04 0.00 0.00 0.00
Shrubs 0.13 0.07 0.06 0.65 0.04 0.04 0.01
Bl dec trees 0.00 0.00 0.00 0.04 0.76 0.18 0.01
Bl ev trees 0.01 0.00 0.00 0.06 0.30 0.59 0.04
Nl ev trees 0.00 0.00 0.00 0.07 0.01 0.06 0.87

Obs, observed PFT; Pred, predicted PFT; Bl dec trees, broadleaved deciduous trees; Bl ev trees, broadleaved evergreen trees; Nl ev trees, needleleaved
evergreen trees.

Fig. 2 Mean fraction correctly predicted (fcp ) of all tested trait sets against
size of tested trait sets for the seven-plant functional type (PFT)
classification. Box plots show the median (middle line), the 25 and 75%
quartiles (hinges), the outer value within the 1.59 interquartile range
(whiskers) and outliers (open circles).

� 2015 The Authors

New Phytologist� 2015 New Phytologist Trust
New Phytologist (2016) 209: 563–575

www.newphytologist.com

New
Phytologist Research 567



(Fig. 3), but this trait occurred only seven times in the full
multitrait dataset, so its actual performance in a database without
gaps remains unknown. Maximum plant height (MPH) had the
second highest relative occurrence (22.0%), followed by leaf area
(LA) (18.6%). After these traits, a range of traits performed simi-
larly well (relative occurrences between 10–15%): minimum
rooting depth (MinRD), LNCmass, mass-based leaf phosphorus
content (LPCmass), SLA and Amax,area. Other traits had a lower
occurrence than would be expected by chance (< 10%), or were
never selected (stomatal conductance, Gs, and mass-based root
nitrogen content, RNCmass), although they had a low occurrence
in the full multitrait dataset as well (see Table S1 for occurrences
of traits within 2–6-trait sets). However, other traits with low
occurrences (SRL, Amax,mass; see Table S1) did occur in the best
performing trait sets, suggesting that these nonselected traits have
a low differentiating ability.

Co-selection of traits with maximum plant height and leaf
area or leaf life span

The high occurrence of MPH and LA in the best performing trait
sets is not unexpected, because these traits are included in the

definition of PFTs (e.g. MPH distinguishes trees from the other
PFTs, and LA separates broadleaved from needleleaved trees).
Therefore, including these two traits is likely to increase the
chance of achieving a high fcp. Looking at the traits that were
selected together with these two traits can reveal which traits add
additional functional information. From the 49 best performing
trait sets in the seven-PFT classification, 26 trait combinations
(53.1%), contained both MPH and LA. Traits that occurred with
these two traits more often than what would be expected by
chance alone (i.e. occurrence of > 53.1%) were SM (13 times,
which is 72.2% of its occurrences in the best performing trait
sets), followed by LNCarea (four times, 66.7%), MinRD (nine
times, 60%) and LPCmass (13 times, 59.1%) (Fig. 4), whereas
other traits had lower occurrences than 53.1%, or did not occur
at all in combination with MPH and LA.

Six-PFT classification performance

When merging C3- and C4-graminoids, resulting in a six-PFT
classification, fcp increased to 0.85 (Fig. S7) and j increased to
0.79, meaning that performance increased even when corrected
for chance effects. The fcp of the best performing trait sets (240
sets) ranged from 0.69 to 0.85 (j range 0.51–0.79). The confu-
sion matrix for this classification (Table S2) was broadly similar
to that for the seven-PFT analysis.

The traits with the highest relative occurrence in the best per-
forming trait sets was (again) MPH (22.0%), followed by traits

Fig. 3 Relative occurrence (%) of traits in best performing trait sets (i.e.
occurrences relative to occurrences in the full multitrait dataset) for the
seven-plant functional type (PFT) classification. Colors reflect relative
occurrence of traits for trait sets with different sizes. Absolute number of
combinations that occurred in the best performing trait sets in brackets
behind size of trait set. Dashed line indicates threshold for chance
occurrences: above the line occurrences of traits are higher than by
chance, below the line lower than by chance. SRL, specific root length;
MPH, maximum plant height; LA, leaf area; MinRD, minimum rooting
depth; LNCmass, mass-based leaf nitrogen content; LPCmass, mass-based
leaf phosphorus content; SLA, specific leaf area; Amax,area, area-based
maximum photosynthetic rate; SM, seed mass; Amax,mass, mass-based
maximum photosynthetic rate; LDMC, leaf dry matter content; LNCarea,
area-based leaf nitrogen content; LCCmass, mass-based leaf carbon
content; Gs, stomatal conductance; RNCmass, mass-based root nitrogen
content.

Fig. 4 Relative occurrence of traits (%) together with maximum plant
height (MPH) and leaf area (LA) in the best performing trait sets (i.e.
occurrences of traits with MPH and LA in best performing trait sets relative
to occurrences of traits in all best performing trait sets) for the seven-plant
functional type (PFT) classification. Dashed line indicates threshold for
chance occurrences: above the line occurrences of traits are higher than by
chance, below the line lower than by chance. SM, seed mass; LNCarea,
area-based leaf nitrogen content; MinRD, minimum rooting depth;
LPCmass, mass-based leaf phosphorus content; LNCmass, mass-based leaf
nitrogen content; SLA, specific leaf area.
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that were not present in the seven-PFT classification: LLS (rela-
tive occurrence of 19.5%), and SSD (17%) (Fig. S8). Traits with
a relative occurrence between 15 and 10% included again a num-
ber of leaf traits (LA, LNCmass and SLA) and MinRD.

Only 20% of the 240 best performing trait sets contained both
MPH and LA (48 sets). The traits that were co-selected more
often than expected by chance with these traits were MinRD and
LPCmass (27.0 and 22.6%, respectively) as in the seven-PFT clas-
sification, but also SSD (24.5%) (Fig. S9). By contrast, SM and
LNCarea were no longer selected more often than expected by
chance. Like MPH and LA, LLS is also part of the PFT-defini-
tion (for trees), suggesting that LLS will also have a high differen-
tiating power. Indeed, 107 combinations out of the 240 best
performing trait combinations (44.6%) contained LLS and
MPH. Traits which had a higher occurrence than expected by
chance (44.6%) were Amax,mass and LNCarea (60.5 and 50.8%,
respectively), whereas in contrast to traits associated with MPH
and LA, MinRD and SSD were selected less often.

Bioclimatic tree classification

For classifications with trees only, as separated into extratropical
and tropical trees, fcp ranged from 0.68 to 0.80 (j range 0.44–
0.77) in the best 10% performing trait sets (302 trait sets).
Because the tree PFT classification comprised five PFTs, the frac-
tion correctly predicted averaged per PFT was expected to increase
by 3.3% to 5.7% by chance alone. However, the percentage cor-
rectly predicted increased only for the tropical and extratropical
broadleaved evergreen trees (by 7–10% and 13–16%, respectively)
(Table S3), suggesting that traits are less effective at distinguishing
among bioclimatic classifications than growth forms.

In the best performing trait sets, LLS appeared to be the domi-
nant trait (Fig. 5). By comparing different tree PFTs with each
other, height as a major determinant of growth form was
removed, but MPH was still selected, although less often than in
the seven and six PFT classification analyses. In contrast to these
PFT classifications, traits directly related to carbon assimilation
and release, Amax,mass, Amax,area, Gs and Rdmass were much more
frequently selected in the tree PFT classification. By contrast,
traits that did well in the general PFT classifications, like MinRD
and SSD, were not often selected to distinguish among tree
PFTs. The additional traits, Ѱ50 and VA, did not occur very
often either, but this can be due to the fact that they occurred in
a lower number of trait sets. Looking at trait associations with
LLS, the traits that were co-selected more often than expected by
chance (81.5%) with LLS were Ѱ50 (100%, but occurring only
once in the best 10% dataset), LNCarea (98.5%) Amax,mass

(93.3%) and Rdmass (87.1%), followed by Gs (85.9%) and SSD
(85.3%) (Fig. S10).

Discussion

Functional dissimilarity of PFTs

Many studies describe which traits are considered important in
distinguishing between different plant ecological strategies

(Westoby, 1998; Weiher et al., 1999), but different plant strate-
gies are not restricted to specific PFTs. PFTs can include multiple
plant strategies and plant strategies can overlap between PFTs as
well, as is reflected by the large variation in trait values observed
within PFTs and the overlap in trait values between PFTs (Kattge
et al., 2011; Van Bodegom et al., 2012; Verheijen et al., 2013).
Here, we quantitatively determined to what extent plant traits
can distinguish between predefined, growth form-based PFTs
and which trait sets are most likely to produce a model with a
high differentiating ability. We show that despite overlap in plant
strategies within and between PFTs, traits are a powerful tool to
distinguish between PFTs. In our study, four to five traits were
found to be sufficient to classify PFTs correctly up to 85% (j of
0.79, for six PFTs), without the need for any additional con-
straint. This high percentage indicates that although PFTs might
overlap in single trait values and plant strategies, the kernel den-
sity estimation method shows their different positioning in mul-
tidimensional trait-space. This different positioning of PFTs
reflects, at least in part, functional differentiation across several
strategy axes. Our study therefore quantitatively demonstrates

Fig. 5 Relative occurrence (%) of traits in best performing trait sets (i.e.
occurrences relative to occurrences in the full multi-trait dataset) for the
tree plant functional type (PFT) classification. Colors reflect relative
occurrence of traits for trait sets with different sizes. In brackets behind
size of trait set, absolute number of combinations that occurred in the best
performing trait sets. Dashed line indicates threshold for chance
occurrences: above the line occurrences of traits are higher than by
chance, below the line lower than by chance. LLS, leaf life span; Gs,
stomatal conductance; SLA, specific leaf area; LNCmass, mass-based leaf
nitrogen content; Amax,area, area-based maximum photosynthetic rate;
MPH, maximum plant height; Rdmass, mass-based leaf dark respiration;
Amax,mass, mass-based maximum photosynthetic rate; LPCmass, mass-
based leaf phosphorus content; LNCarea, area-based leaf nitrogen content;
SSD, specific stem density; Ѱ50, water potential at which 50% loss of
conductivity occurs; Rdarea, area-based leaf dark respiration; LA, leaf area;
VA, vessel area; SM, seed mass; LDMC, leaf dry matter content; LCCmass,
mass-based leaf carbon content; MinRD, minimum rooting depth.
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that structural properties of plants (growth form, leaf shape, leaf
phenology) also reflect functional differences.

Correlated traits still have differentiating ability

Some traits were selected more often than others in the best per-
forming trait sets of the different PFT classifications. As expected,
traits that are reflected in the definitions of the PFTs, such as
MPH, LA and LLS, appeared most often in the best performing
traits sets of the seven- and six-PFT classifications. Because PFTs
differ more in terms of LLS than of LA (Fig. S1), LLS replaced
LA as an important distinguishing trait, as soon as it was included
in the six PFT classification (Fig. S8). MPH also occurred in the
tree PFT classification, suggesting that height still plays a role in
distinguishing among different types of trees, even though Moles
et al. (2009) did not find latitudinal gradients in plant height
within trees.

A range of other traits can be combined with MPH and either
LA or LLS and provide additional information on the functions
that relate to different growth forms and associated PFTs. This
trait selection is dependent on the PFT classification, but overall,
combining MinRD and either SM or SSD with these traits, as
well as an additional leaf trait, either LNCarea, LPCmass or
Amax,mass, increases the chances of obtaining a trait set with a high
differentiating ability between PFTs.

Although we expected that sets of traits combining different
functional aspects within plants would capture functional differ-
ences between PFTs best and consequently would have the high-
est differentiating power, this is only partly true and trait
combinations that are considered functionally redundant because
they relate to similar strategy axes, for example the ‘leaf eco-
nomics traits’ like LA, LLS, SLA, LPC or LNC, or that are
involved in a trade-off with each other, like MPH and SM,
MinRD or SSD, are included in the best performing trait sets as
well.

This inclusion of correlated traits may be due to a number of
reasons. First, because PFTs include a variety of plant strategies,
these traits might be selected in combination to reflect the multi-
ple plant strategies within a PFT. In that case, PFTs can be differ-
entiated from each other because each PFT represents a different
combination of plant strategies.

Alternatively, although not excluding the first explanation,
the co-selection of correlated traits might also indicate that
within a given trade-off or strategy axis, trait variation is still
possible. It is known that trade-offs limit the occurrence of
certain combinations of trait values due to mechanistic or
physiological limitations. However, it seems that within certain
trade-offs, multiple trait value combinations can still occur,
reflecting alternative solutions within a strategy with about
equal fitness (Marks & Lechowicz, 2006). According to this
explanation, different PFTs express different (sets of) alterna-
tive solutions within a plant strategy.

For example, variation in SM, MinRD and SSD is restricted
because of trade-offs between these traits and MPH: large plants
need a minimum stem specific density and rooting depth to
mechanistically sustain a certain height (Schenk & Jackson,

2002b; Chave et al., 2009). In addition, small plants are unlikely
to bear very large and heavy seeds (Moles et al., 2004). However,
despite these trade-offs, SM, MinRD and SSD were selected with
MPH more often than expected by chance. This could mean that
for a given MPH, different PFTs have different solutions to deal
with (and partly avoid) these trade-offs and thus make different
choices with respect to for example dispersal strategies (SM)
(Westoby et al., 2002; Moles & Westoby, 2004; Moles et al.,
2004), water transport, cavitation resistance or resistance against
disturbances (SSD) (Westoby & Wright, 2006; Chave et al.,
2009) or water availability (MinRD) (Schenk & Jackson, 2002a,
b).

As another example, needleleaved evergreen trees (consisting
exclusively of gymnosperms in our dataset), largely overlap in
MPH and completely overlap in SM and SSD with the other tree
PFTs (Fig. S1). However, the different vessel anatomy of gym-
nosperms and angiosperms (Chave et al., 2009) allows for a lower
SSD for a given MPH for needleleaved evergreen trees. In addi-
tion, there seems to be a different trade-off between SM and
height, resulting in a different relationship between these traits
for gymnosperms (Moles et al., 2004), that might allow differen-
tiation of this PFT from others based on MPH and SM. Thus,
consideration of the different choices of PFTs among the various
functions and related traits is therefore essential to better under-
stand the functioning of growth form-related PFTs.

Towards further improvements of traits-based
classifications

Misclassifications of PFTs occurred mostly between closely
related growth forms, such as within trees or within herbs
(graminoids and forbs), whereas shrubs showed functional over-
lap with both trees and herbs. Overlap in sets of traits between
PFTs could mean that there is functional similarity between
PFTs, although the high percentage correctly predicted PFTs
show that structural aspects of plants indeed also reflect func-
tional differences to a large extent. Alternatively, overlap could
mean that functional differences are not completely distinguished
by the traits chosen. For example, through the six-PFT classifica-
tion we could add a number of traits (LLS, SSD and Rdmass and
Rdarea) to the trait sets that were not possible for the seven PFT
classification due to data limitations. The inclusion of these traits
resulted in a better separation of broadleaved evergreen trees from
broadleaved deciduous trees (7–9% fewer misclassifications
between these two PFTs; see Tables 2, S2) and a better separation
of shrubs from graminoids. Additionally, other traits that were
not yet available for a large number of species, but are known to
have strong functional implications, might further improve PFT
classifications. For example, traits related to tolerances to biocli-
matic conditions such as cold tolerance thresholds of different
organs or survival thresholds (Woodward & Kelly, 1997;
Harrison et al., 2010), or disturbances like fire (reflected by e.g.
bark thickness; Hoffmann et al., 2003) might increase the predic-
tive ability of traits. C4-graminoids and C3-graminoids might be
better distinguished from each other when, for example, such
cold-tolerance related traits are included, because C3-grasses
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occur in colder climates than C4-grasses, even though this is not
true for all C3-lineages (Edwards & Smith, 2010).

Gaps in our dataset also hampered the testing trait of combina-
tions that may be fruitful. For instance, single trait performances
(Tables S4, S5 for the seven- and six-PFT classifications, respec-
tively) suggested that for a seven-PFT classification, a combina-
tion of leaf dry matter content (LDMC), SM, RNCmass,
MinRD, and either Amax,mass or LNCmass might result in a high
performing model. For the six-PFT classification this would be
LLS, MinRD, LDMC and Rdmass. Interestingly, this would
mean that MPH would not necessarily be included, but cur-
rently, data gaps prevented testing these potentially important
sets. In addition, some traits with low data coverage are poten-
tially interesting for further extensions of our approach, either
because they had a high relative occurrence (SRL) or due to a
strong association with LLS (Ѱ50). Again, data limitations cur-
rently hampered making generalizations about their actual per-
formance. Therefore, increasing the number of trait data per
species is an important next step to take.

Implications

Only a limited number of strategy axes with related traits (MPH,
SM, SLA) are typically used to distinguish between different
plant strategies (Westoby, 1998; Diaz et al., 2004). Our analysis
shows that traits related to the same strategy axis or traits involved
in trade-offs with each other, still add functional information
about and allow discrimination between sets of plant strategies as
reflected by PFTs. Therefore, although current plant ecology
strategy schemes help to theoretically understand differences in
the ecological behavior of plants and have identified some main
traits important in plant functioning, our analysis provides new
insights into how functional differences of different growth-form
based PFTs are shaped by traits. Defining a priori the most
important traits while excluding correlated traits in advance will
result in a loss of differentiating capacity and consequently ham-
per further functional understanding. This is illustrated by a
regional study that investigated which traits are needed to distin-
guish existing vegetation types. The analysis showed that the two
or three categories used in most plant strategy schemes were
insufficient to capture functional differences because they put
nonredundant traits into a single category (Douma et al., 2012a).

When this potential of plant traits to functionally differentiate
among PFTs is acknowledged, traits can be a powerful tool for
predictive ecology. The impacts of climate change on vegetation
distribution can be investigated, by predicting changes in vegeta-
tion distribution based on plant traits. The PFT analysis for trees
shows that trait combinations can also be used to distinguish
between bioclimatically defined PFTs, enabling the differentia-
tion among responses of tropical and extratropical (and likely also
between boreal and temperate) vegetation. Van Bodegom et al.
(2014) previously showed how vegetation maps may be con-
structed based on global trait maps. This vegetation map pre-
dicted a similar vegetation distribution to vegetation maps that
were modeled by global dynamic vegetation models (DGVMs).
In our analysis, multiple combinations of traits had a similar

ability to distinguish between vegetation types. Hence, the results
of this study can be used to choose those traits that have the
strongest relationsip to environmental conditions in order to
optimize our abilities to predict vegetation distribution, with
major implications for predictive vegetation modeling.
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