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VARIATION NORM CONVERGENCE OF
FUNCTION SEQUENCES!
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ABSTRACT. We prove that a pointwise convergent sequence of con-
vex functions with a continuous limit converges with respect to the to-
tal variation norm. This yields a theorem on convexity-preserving oper-
ators which has as a corollary the result that a complex function f is
absolutely continuous on [0, 1] if and only if the sequence B,(f) of Bem-
stein polynomials of f converges to f with respect to the total variation norm.

In this paper a theorem which is analogous to Dini’s theorem is proved;

Theorem 1. If {, is a pointwise convergent sequence of real-valued
functions, each of which is convex on [a, b] and the limit function F is
continuous on [a, bl, then the sequence f, converges to F with respect

to the total variation norm on [a, b).
This is then used to prove

Theorem 2. Suppose T. is a sequence of linear operators from ACla, b)
into ACla, bl such that for each f € ACla, b}, (1) T.(f) converges point-
wise to [ on [a, bl; (2) if [ is convex on [a, b] and n is a nonnegative
integer, Tn(f) is convex on la, b); and (3) there is a number M >0 such
that for each nonnegative integer n, f2|a(7‘n(f))| < MfZld”. Then, for each
f € ACla, b), the function sequence T (f) converges to [ with respect to

the total variation norm.
Corollary. A complex-valued function { is absolutely continuous on
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340 RANDOLPH CONSTANTINE, JR.

[0, 1] if and only if the sequence B.f of Bernstein polynomials of { con-

verges to [ with respect to the total variation norm.

An example is given to show that Theorem 1 does not extend to differ-

ences of convex functions.

Definitions and notation. A real-valued function [ on [a, 6] is said to
be convex on [a, b] (or simply, convex) provided that for each [«, v] C[a, 5]
and each number ¢, 0 <t <1,

U1 = Du+ tv) > (1 = Df(a) + tf(v).

I denotes the identity function on the complex plane, and we employ the con-
vention that I° is the constant function 1 so that for each nonnegative in-
teger n and each complex number x, I”(x) = x". Hence if { is a complex

function on [0, 1], the Bernstein polynomial sequence of [ is defined by

Byf=/(0) and B f= ) (Z)/(%’)Iﬂ(l-z)n—p

p=0

for n-a positive integer. For a complex function [ from a subset of the real
numbers, f(x~) and f(x+) respectively denote the left and right hand limits
of f at x in case the limit exists; if S is a subset of the domain of [ and
{(S) is a bounded set, |f|¢ = sup{|f(%)|: x in S} if [ is of bounded varia-
tion on [a, b, fz[d/'] denotes the total variation of f on [a, b]. The nota-
tion la, b[ denotes the open interval {x: a < x < b} and (a, b) is reserved
for an ordered pair.

1. Convex functions. We note without proof the following properties of
convex functions:

If { is a convex function on [a, ], then

(1) f is continuous on la, &l;

(2) each of f(a+) and f(b-) exists and f(a) < f(a+) and f(b-) > [(]);

(3) if, in addition, { is nonconstant on la, &[, then only one of the fol-
lowing statements is true:

(a) f is nondecreasing on [a, &,

(b) f is nonincreasing on la, b},

(c) there is a number x, in la, bl such that f is nondecreasing on
[a, xO],/ is nonincreasing on [xo, b] and { is nonconstant on Ja, xo[ and
on ]xo, ol;

(4) if in addition [ is continuous at @ and at b, then [ is absolutely
continuous on [a, b];
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(5) a continuous polygonal function is a difference of continuous convex
polygonal functions. ’

Theorem 0. If [, is a pointwise convergent sequence of convex functions
on la, b] and F denotes the limit function, then
(1) F is convex on la, b} and

(2) if F is continuous on la, bl, then [, converges uniformly on [a, b).

Proof. Part (1) follows from the facts that a pointwise convergent func-
tion sequence converges uniformly on a finite set, and, hence, for each [«, 7}
Cla, ) and t,0 <t <1, F((1 = Du + tv) > (1 - )F(z) + tF(v) must be true
since f ((1 = Du + tv) > (1 = Of (&) + tf (v) for each n.

Proof of (2). There is an x, € [a, b] such that F is monotone on each
of [a, xo] and [xo, b]. Hence it is enough to prove the theorem under the
added assumption that F is nondecreasing. Suppose c > 0. There is an in-
creasing sequence {ti}g with t) =a and t, = b such that F(¢) - F(z,_ P <
c,i=1,+¢, k.

Let s, =(¢;_, + tz.)/2, i=1,-++, k. If t, , <x<s, then, since f is

convex,

(1 () = [ N/(s; = 2) 2 ([, () = [ (s N/(t; = ).
Since (s; - x)/(ti - Si) <(s; - ti-l)/(ti - sz.) =1, this implies

LG <10+ 1£,(2) = [ ,(s)l;

and hence

(A) sup 1/, (%) - FGW <[, (s) = F(t,_ )+ |f () = [ (s))].

t. <X<s.
i-1 i

Similarly, if s, <x <t, then
(1,0 = [ (s N/ (x —s) <[ ()= [ (2, _ N/(s; = t._ ),

whence

(B) sup {f (x) = FGO} < f (s) - F(x)) + |f (s) = £,(¢,_ )

S .<x<tl.
1] 1

Also, if t, | <x<t,then f (x) >minif (¢,_)), [ (t)}, and

©) sup {F(x) - /n(x)} < F(tl.) — min {/n(ti-l)’ /n(tz.) o

ti- lsxstz.

As n > o, the right-hand side of each of (A), (B) and (C) has a limit less

than ¢, and the theorem is proved.
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Lemma 1.1. If { is convex on [a, bl, e >0, g is convex on [a, b] such

that

1(8) - {(a)

V- gl[a,b] <e and P= ——h—a—‘(l— a) + [(a),
then
) fb (/- P)| = 2/ - Pl ,
and .
2 [ - P)l < [21df - P+ de.

Proof. (1) follows immediately from the unproved assertion (3) about con-
vex functions. To prove (2) we note that g — P is convex and apply the same
assertion (3) in the three separate cases. Let us consider only the case where
there exists a number % in Ja, bl such that g — P is nondecreasing on [a, xO],‘

nonincreasing on [xo, 4] and nonconstant on each of la, xo[ and ]xo, Y. Thus

[21dg - P)| = 20g - P)x)) - (g~ PXa) - (g~ P)(B)
= 2g(x ) - 2P(x () - gla) + [(a) - g(b) + (b)
<2A/(x) + e} - 2P(x) + e+ e

= A/(xg) - Plx)} + 4e <2|f = P|[, ;] + 4e

= [214f- P + de.

We omit proof of the other two cases.

Lemma 1.2, which follows, was proved independently by the author for
convex functions only. It follows immediately from a result of J. R. Edwards
and S. G. Wayment [1, p. 254] on absolutely continuous functions and the fact

that a continuous convex function is absolutely continuous.

Lemma 1.2. If F is a continuous convex function on [a,b] and c >0,
then there is an increasing sequence {tp §o with t) =-a and t =b such that
if P is the function on [a, b] defined by

F(t,, ) - F(z,)
p+1 7 %

then f‘;ld(F -P)|<ec.

P(x) = (x - tp) + F(tp) for x in‘[tp, tyy 1]’

Theorem 1. If f, is a pointwise convergent sequence of functions on
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[a, b] each of which is convex on [a, b] and the limit function F is continuous
on la, bl, then the sequence [, converges to F in the total variation norm

on [a, b).

Proof. Suppose the hypothesis and let ¢ > 0. There is an increasing
sequence {t } with 1, = a and ¢ = b such that if P is the function as de-
fined in Lemma 1.2 for F, then f |d(F P)| < c/4. Let e = c/(8n). There is
a positive integer N such that if g is an integer, ¢ > N, then |/q Fl[a,b]
< e by Theorem 0. For each integer ¢ > N

J21ag, - Pl < [P1ay, - P+ [P 1dp - P

n-1 t, ., c
<X [P, - Plsg
p=0 " P

But Lemma 1.1 and the fact that |/~ Fl[tp'tp“] Sy = Flla,p) <€ imply
that for each integer p,0<p<n-1,

t
[Ny, - Pl s [P AE - f) s de.
b 4

Whence we see that

f"“w _p)|<

;f 2*1\ AF - P)| +4e%

fld(F P)|+4ne—f |d(f - P)|+ <_

Thus fZId(/q - F)| < ¢ for each integer ¢ > N.

Corollary. If F is a continuous convex function.on [0, 1), then the
sequence B_F of Bernstein polynomials of F converges to F with respect

to the total variation norm on [0, 1].

Proof. This is an immediate consequence of the well-known facts that
since F is continuous, B_F converges uniformly to F and that for each non-
negative integer, 7, BnF is convex on [0, 1]; cf. Lorentz [3, p. 5 and p. 23
resp.}.

Remark. Theorem 1 does not extend to sequerices of differences of con-
vex functions, as may be seen from the following example: let f, be a sequence
of functions on [0, 1] such that for each positive integer n, and nonnegative
integer p <2"
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x— p/2" if x €[p/2%, (p+1)/2"( and p is even,
[n(x) =

1/2" —(x - p/2") if x € [p/27, (p + 1)/27] and p is odd.
Each function [ is a continuous polygonal function with fz|d/n| =1, and

the sequence [, converges uniformly to the constant function 0.

2. Absolutely continuous functions. A function [ is said to be absolute-
ly continuous on [a, 4] provided that for each ¢ > 0 there is a positive num-
ber 4 such that if {[up, vp] J5 is a sequence of nonoverlapping subintervals
of [a, b] with 2;':0(11? - up) < d, then 2;=o|f(vp) - f(up)l <ec. It is well
known [1] that the class ACla, &] of all absolutely continuous real-valued
functions on [a, 4] is complete with respect to the total variation norm and

that the polygonal functions form a dense subset thereof.

Theorem 2. Suppose T. is a sequence of linear operators from ACla, b} into
Ada, b] such that for each f in ACla, b), (1) T.f) converges pointwise to f on
la, 8];.(2) if  is convex onla, b) andn is a nomnegative integer, Tn(/) is convex
on la, b); and (3) there is a number M >0 such that for each nonnegative in-
teger n, f’;la(Tn(f)ﬂ < Mled/|. Then, for each f € ACla, b}, the function

sequence T (f) converges to { with respect to the total variation norm.

Proof. Let B denote the set of all real-valued functions f on [a, b]
such that T f converges to [ with respect to the total variation norm. B is
closed with respect to the total variation norm, for if F is the limit with re-

spect to the total variation norm of a sequence [, with values in B, then

[21aF - T,P < [D1aE -1+ [, - T

w 21T () - T (P,

But from part (3) of the hypothesis we have that
JP1ar, () - T (0 = [Pl - O] < [P, - P
Thus
[21aF ~ T (P < w1 [P1dE - ]+ [T 1, - T,

from which it is clear that B is closed with respect to the total variation
norm.

If P is a polygonal function on [a, b] then P is a difference of contin-
uous convex functions, say P = h — k. But for each nonnegative integer n,
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T P=T/(h-k)=T(h) - T, (k); whence by Theorem 1 and parts (1) and (2)
of the hypothesis, P must belong to B. Thus B = ACla, b] since B contains

all polygonal functions and is closed with respect to the total variation norm.

Corollary. A complex-valued function { is absolutely continuous on
[0, 11 if and only if the sequence B.f of Bernstein polynomials of { con-

verges to [ with respect to the total variation norm.

Proof. Let us note that if { is a complex-valued absolutely continuous
function on [0, 1], then each of Re f and Im { is absolutely continuous; and
if n is a nonengative integer, B [= B Re f+iB Im f. Thus it is sufficient
to suppose f to be real valued, and we do so. Since any polynomial is ab-
solutely continuous on [0, 1], then any function f on [0, 1] such that B.f
converges to [ with respect to the total variation norm must perforce be ab-
solutely continuous. Theorem 2 yields the converse.

Comment. The corollary to Theorem 2 has been obtained independently
by G. G. Johnson, who used methods different from ours. While the results
herein give no estimate on the size of féla(F - B_(F))|, they offer an exten-
sion of a result of W. Hoeffding [2, p. 349] that: If f is a continuous convex
function such that fél%(l - I)% a(j") exists, then B[ converges with respect
to the total variation norm. Some applications of these results to moment prob-
lems will appear in a subsequent paper.
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