
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 45, Number 3, September 1974

VARIATION NORM CONVERGENCE OF
FUNCTION SEQUENCES !
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ABSTRACT. We prove that a pointwise convergent sequence of con-

vex functions with a continuous limit converges with respect to the to-

tal variation norm.  This yields a theorem on convexity-preserving oper-

ators which has as a corollary the result that a complex function / is

absolutely continuous on [O, l]  if and only if the sequence B.(f)  of Bern-

stein polynomials of / converges to / with respect to the total variation norm.

In this paper a theorem which is analogous to Dini's theorem is proved;

Theorem 1. // f. is a pointwise convergent sequence of real-valued

functions, each of which is convex on [a, b] and the limit function F is

continuous on [a, b\, then the sequence fm converges to F with respect

to the total variation norm on [a, b\.

This is then used to prove

Theorem 2. Suppose T.  is a sequence of linear operators from AC[a, b]

into AC[a, b]  such that for each f e AC\a, b], (1)   T.(f)  converges point-

wise to f on [a, b\; (2)  if f is convex on [a, b]  and n  is a nonnegative

integer, T (/)  z's convex on [a, b\; and (3) there is a number Al > 0  such

that for each nonnegative integer n, y\a\T (f))\ < Mf^\df\.   Then, for each

f e AC[a, b], the function sequence  T'.(/)  converges to f with respect to

the total variation norm.

Corollary.  A complex-valued function f is absolutely continuous on
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340 RANDOLPH CONSTANTINE, JR.

[0, l]   if and only if the sequence B.f of Bernstein polynomials of f con-

verges to f with respect to the total variation norm.

An example is given to show that Theorem 1 does not extend to differ-

ences of convex functions.

Definitions and notation.  A real-valued function / on [a, b]  is said to

be convex on [a, b] (or simply, convex) provided that for each  [u, v] C [a, b]

and each number  t, 0 < t < 1,

/((l - t)u + tv) > (1 - t)f(u) + tf(v).

I denotes the identity function on the complex plane, and we employ the con-

vention that /    is the constant function   1   so that for each nonnegative in-

teger ra  and each complex number x, I"(x) = xn. Hence if / is a complex

function on  [0, l], the Bernstein polynomial sequence of / is defined by

ß0/=/(0)    and    BJ=  ¿ ( n\f(r)lp(l - I)"-p

p=o \P/  \ I

for ra a positive integer. For a complex function / from a subset of the real

numbers, f(x-) and f(x+) respectively denote the left and right hand limits

of / at x in case the limit exists; if S is a subset of the domain of / and

f(S) is a bounded set, |/L = supi|/(x)|: x in Si; if / is of bounded varia-

tion on [a, b], f a\df\ denotes the total variation of / on [a, b\. The nota-

tion ]a, b[ denotes the open interval \x: a < x < b\ and (a, b) is reserved

for an ordered pair.

1.  Convex functions.  We note without proof the following properties of

convex functions:

If / is a convex function on [a, b], then

(1) / is continuous on ]a, b[;

(2) each of f(a+) and f(b-) exists and f(a) < f(a+) and f(b-) > f(b);

(3) if, in addition, / is nonconstant on ]a, b[, then only one of the fol-

lowing statements is true:

(a) / is nondecreasing on  [a, b[,

(b) / is nonincreasing on ]a, b\,

(c) there is a number x.   in ]a, b[  such that / is nondecreasing on

[a, xA, / is nonincreasing on [x_, b\  and / is nonconstant on ]a, x [  and

on ]x0, b[;

(A) if in addition / is continuous at a and at b, then / is absolutely

continuous on [a, b\,
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(5)  a continuous polygonal function is a difference of continuous convex

polygonal functions.

Theorem 0.   // /_   is a pointwise convergent sequence of convex functions

on [a, b]  and F  denotes the limit junction, then

(1) F  is convex on [a, b]  and

(2) if F  is continuous on [a, b], then /_   converges uniformly on [a, b].

Proof.   Part (1) follows from the facts that a pointwise convergent func-

tion sequence converges uniformly on a finite set, and, hence, for each  [u, v]

C [a, b]  and  /, 0 < Z < 1, F((l - t)u + tv) > (1 - t)F(u) + tF(v) must be true

since / ((1 - t)u + tv) > (1 - t)f (u) + tf (v) for each ra.

Proof of (2).  There is an  x.  £ [a, b]  such that  F is monotone on each

of [a, x ]  and  [x , b\.  Hence it is enough to prove the theorem under the

added assumption that  F is nondecreasing.  Suppose  c > 0.  There is an in-

creasing sequence  \t.\n  with   t   = a and  Z, = b such that  F(t.) — F(t._ .) <

1 7c, z = 1, • ■ • , k.

Let  s . = (t.   , + t .)/2, i - 1, • • • , k.  If  t.   , < x < s . then, since  /    is
2 2-1 7 ' 2- 1   — —       7 '72.

convex,

(/>:) - />))/(- - *) > W - W<«i - «<)•

Since (s . - x)/(t. - s .) < (s . - t.   .)/(/.— s .)= 1, this implies2 2 2—2 Z — 1 2 7 r

and hence

sup      |/n(x) - F(x)| < />.) - Fit     A + \fnit.) - f(s.)\.
(A)v    7 /.     ,<x<s .

7-1 7

Similarly, if s . < x < t. then

(/>) - ¿u^)/u - *2 < &J - f¿0)Asi - 't-1^
whence

sup    |/ U) - F(x)| < />.) _ Fix) + \fais.) - /„(/._ pi.
s .<x<í.

2 2

Also, if  Z.    , < x < t., then f (x) > min\f (t.   .), / (z .)S, and' 7—1— —      7' J77— ' 72      7— 1    '   ' 77      2      '

(C) SUP    SFW - 4(^i < *<) - miní/^íf-xX fJLtfi
'i-isxsí¿

As  n -> oo, the right-hand side of each of (A),   (B)   and (C) has a limit less

than  c, and the theorem is proved.
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Lemma 1.1.   // / is convex on [a, b\, e > 0, g  is convex on [a, b\  such

that

f(b) - f(a)
^-S\[a,b]<e    and    P = —1-(I-a) + f(a),

then

(1) />/-P)l = 2|/-P1Ui]

an d

(2) [b\d(g-P)\ <  [b \a\f - P)\ + Ae.
Ja Ja

Proof.  (1) follows immediately from the unproved assertion (3) about con-

vex functions.  To prove (2) we note that  g — P is convex and apply the same

assertion (3) in the three separate cases.  Let us consider only the case where

there exists a number x    in ]a, b[  such that  g — P is nondecreasing on [a, x ],<

nonincreasing on  [x  , b]  and nonconstant on each of ]a, xA and ]xQ, b\. Thus

Ja
b\aXg-P)\ = 2(g - P)(x0) -(g- P)(a) -(g- P)(b)

= 2g(xQ) - 2P(x0) - g(a) + f(a) - g(b) + f(b)

<2{f(x0) + e\- 2P(xQ)+ e+e

= 2{/(x0) - P(x0)| + Ae< 2|/- P|[a>fc] + 4e

~b

yJa
\a\f- P)\ + Ae.

la

We omit proof of the other two cases.

Lemma 1.2, which follows, was proved independently by the author for

convex functions only.  It follows immediately from a result of J. R. Edwards

and S. G. Wayment [l, p. 254] on absolutely continuous functions and the fact

that a continuous convex function is absolutely continuous.

Lemma 1.2.  // F is a continuous convex function on [a, b] and c > 0,

then there is an increasing sequence \t  !"  with  tQ = a and t   = b such that

if P  is the function on [a, b]  defined by

FW-F(V,

then fba\d(F -P)\<c.

Theorem 1.   // ¡%   is a pointwise convergent sequence of ¡unctions on

p(x) .       p   _t    P  (x - tp) + F(tp)     for x  in-[tp, tp + 1l
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[a, b]  each of which is convex on [a, b\  and the limit function F is continuous

on [a, b], then the sequence /_   converges to  F  in the total variation norm

on [a, b\.

Proof.  Suppose the hypothesis and let  c > 0.  There is an increasing

sequence  lz   !" with  Z„ = a and  Z   = b such that if  P is the function as de-
* pU U 72

fined in Lemma 1.2 for F, then j~ba\d(F - P)\ < c/A. Let  e = c/(8ra). There is

a positive integer N  such that if  a is an integer,  q > N, then   \f   — F|r    ,n

< e by Theorem 0.  For each integer  a > N

il W* - F)l Í fa  W« - P)| + fa '4P - F)l

77- 1

P + 1  I    „  . „. . C

<z j;+ik/?-p)i+4
p=0        P

But Lemma 1.1 and the fact that  \f   - F\\t   t      1 < l/„ - F\i    b\< e "^Pty

that for each integer p, 0 < p < n — I,

rip+1i4/9-p)i<^+1i4F-4)i + 4e.
lp p

Whence we see that

77 - 1 / 77-1

£   j(P + 1\d(fq-P)\<Z    U^'ldiF-P^+Ae

p=0     ■ P p = 0   (     P

r \d(F - P)\ + Ane =   Cb \d(f - P)| + C- <
Ja Ja 2

3ç
4 "

Thus /*K/   - F)| < c for each integer a > N.

Corollary.   // F  is a continuous convex function.on [0, l], Z//era ZÂe

sequence B.F  of Bernstein polynomials of F  converges to  F with respect

to the total variation norm on [0, l].

Proof.  This is an immediate consequence of the well-known facts that

since  F is continuous,  B.F converges uniformly to  F and that for each non-

negative integer, n, B  F is convex on [0, l]; cf. Lorentz [3, p. 5 and p. 23

resp.].

Remark.  Theorem 1 does not extend to sequences of differences of con-

vex functions, as may be seen from the following example:  let f be a sequence

of functions on [0, l]  such that for each positive integer ra, and nonnegative

integer p < 2"
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



344 RANDOLPH CONSTANTINE, JR.

ix - p/2n if x e [p/2", (p + l)/2"[  and   p is even,

/„(*) = {

(1/2" - (x- p/2n)    if x e [p/2n, (p + l)/2"] and p is odd.

Each function  /    is a continuous polygonal function with   f  \df | = 1, and

the sequence  /.   converges uniformly to the constant function 0.

2.  Absolutely continuous functions.  A function  / is said to be absolute-

ly continuous on  [a, b\ provided that for each  c > 0  there is a positive num-

ber d such that if  \[u  , v ]!"  is a sequence of nonoverlapping subintervals

of [a, b] with ^np=Avp - up) < d, then 2^Q\f(vp) - f(up)\ < c.  It is well

known [l] that the class  AC[a, b] of all absolutely continuous real-valued

functions on  [a, b]  is complete with respect to the total variation norm and

that the polygonal functions form a dense subset thereof.

Theorem 2. Suppose T.  is a sequence of linear operators from AC[a, b] into

AC\a, b] such that for each f in AC\a, b], (1) T.(f) converges pointwise to f on

[a, b\; (2) if f is convex on [a, b] andn is a nonnegative integer, T (f)  is convex

on [a, b\; and (3) there is a number M > 0   such that for each nonnegative in-

teger ra, fba\d(TAf))\ < Mfba\df\.   Then, for each f £ AC[a, b], the function

sequence  T.(f)  converges to f with respect to the total variation norm.

Proof.  Let   B  denote the set of all real-valued functions  / on  [a, b\

such that  T.f converges to  / with respect to the total variation norm.  S is

closed with respect to the total variation norm, for if  F  is the limit with re-

spect to the total variation norm of a sequence  /_  with values in  S, then

fb \d(F - TnF)\ < £ \a\F - 4)| + /; \aXfk - Tijk))\

♦ /> W - F^))!.

But from part (3) of the hypothesis we have that

t W4) - F77^l = fi \**A - F))l   < Mfl Wk - F)l-

Thus

[h \diF - TniF))\ < (AI + 1) fb \diF - fk)\ + jb \difk - Tnifk))\,
a

from which it is clear that Jo  is closed with respect to the total variation

norm.

If  P is a polygonal function on [a, b]  then  P  is a difference of contin-

uous convex functions, say  P = h — k.  But for each nonnegative integer ra,
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T P = T (h - k) = T (h) - T (k); whence by Theorem 1 and parts (1) and (2)
72 72 72 72

of the hypothesis,   P  must belong to  id.  Thus   d = AC[a, b]   since f> contains

all polygonal functions and is closed with respect to the total variation norm.

Corollary. A complex-valued function f is absolutely continuous on

[0, l]   if and only if the sequence B.f of Bernstein polynomials of f con-

verges to f with respect to the total variation norm.

Proof.  Let us note that if / is a complex-valued absolutely continuous

function on [0, l], then each of Re / and  Im / is absolutely continuous; and

if ra is a nonengative integer, B  f = B    Re / + z'B    Im /.  Thus it is sufficient

to suppose / to be real valued, and we do so.  Since any polynomial is ab-

solutely continuous on  [0, l], then any function  / on [0, l]  such that  B.f

converges to / with respect to the total variation norm must perforce be ab-

solutely continuous.  Theorem 2 yields the converse.

Comment.  The corollary to Theorem 2 has been obtained independently

by G. G. Johnson, who used methods different from ours.   While the results

herein give no estimate on the size of f0\a\F - B (F))|, they offer an exten-

sion of a result of W. Hoeffding [2, p. 349] that:  If / is a continuous convex

function such that /./   (1 — /)    a\f )  exists, then  B.f converges with respect

to the total variation norm.  Some applications of these results to moment prob-

lems will appear in a subsequent paper.
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of Theorem 0, and for suggesting that the proof of my original Theorem 2

might indeed be a proof of a stronger theorem.

REFERENCES

1. J. R. Edwards and S. G. Wayment, Representations for transformations con-

tinuous in the  BV norm, Trans. Amer. Math. Soc. 154 (1971), 251—265.  MR 43 #466.

2. Wassily Hoeffding, The  L\  norm of the approximation error for Bernstein-type

polynomials, J. Approximation Theory 4(1971), 347—356.  MR 44 #5664.

3. G. G. Lorentz, Bernstein polynomials, Mathematical Expositions, no. 8, Univ.

of Toronto Press, Toronto, 1953.  MR 15, 217.

DEPARTMENT OF MATHEMATICAL SCIENCES, CLEMSON UNIVERSITY, CLEMSON,

SOUTH CAROLINA 29631

Current address:  Department of Mathematics, Erskine College, Due West,

South Carolina 29639

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


