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The average blocking temperatures of ferritin molecules containing differing amounts of 

iron were determine? by Mossbauer. spectroscopy. The. results imply that. the m ~ . f . n e t i c  

amsotropy of the fern tIn core particles IS a functIOn of particle volume. By addItIOn of' Fe to 

ferritin core particles it was determined that. at a given temperature within the superpara

magnetic temperature region. the" last-in" ferric ions have average relaxation times that are 

shorter than those of the bulk ferric ions. 

1. Introduction 

Mammalian ferritin is a roughly sphericaL 130 Adiameter protein composed 

of 24 subunits that form a shell enclosing a central cavity or core of 70 A 
diameter [1]. Up to 4500 iron atoms can be sequestered in the core in the form of 

a ferric-hydrous-oxide mineral particle associated with phosphate. The function 

of the protein is to provide cells with a readily mobilizable, biologically compati

ble form of iron necessary for various metabolic purposes while simultaneously 

binding iron strongly and thereby protecting cells from deleterious effects of free 

cellular iron. Similar proteins are found in a wide variety of plants and animals, 

and in bacteria [2-4]. 

Ferritin catalyzes the oxidation of ferrous iron by oxygen or other oxidants 

with deposition of the resulting ferric ions in the protein core [5]. A combination 

of statistical factors results in a distribution in the number of ferric ions per 

ferritin molecule. Mobilization of iron from the protein is accomplished by 

reduction of ferric ions in the core and chelation of the resulting ferrous ions by 

external chelators. The mechanisms and kinetics of these processes are currently 

under intense investigation. 



The structure of mammalian ferritin has been reported [1,5] at 2.8 A resolution. 

The subunits are arranged in pairs with 432 symmetry, and form channels leading 

from the exterior of the protein to the central core along 3-fold (8 channels) and 

4-fold (6 channels) symmetry axes. The 4-fold channels are lined with leucine 

amino acid residues and are essentially hydrophobic. The 3-fold channels are 

lined with carboxylate groups and are essentially hydrophyllic. These channels 

presumably play a significant role in the deposition and mobilization of iron from 

the ferritin core. 

A variety of physical techniques including X-ray and electron diffraction [6,7], 

high resolution transmission electron microscopy [8,9], EXAFS [10], EPR [11], 

NMR relaxometry [12,13], magnetic measurements [14-17], and M/Sssbauer spec- 

troscopy [10,14,18-26] have been used to study the properties of the ferric 

oxy-hydroxide core particles of ferritin. The particles consist of the quasicrystal- 

line, ferric-hydrous-oxide mineral, ferrihydrite. The ferric ions in each particle are 

octahedrally coordinated by oxygen atoms and are in the high-spin (S 5/2)  

state. Negative (antiferromagnetic) exchange interactions between the ferric ions 

in a particle result in a reduced effective paramagnetic moment per iron ion at 

room temperature and antiferromagnetic ordering of the ions in a particle at low 

temperature. The N6el temperature has been estimated to be 174 K [17]. Because 

the core particles are very small, the antiferromagnetically coupled sublattice 

magnetizations in a particle do not completely cancel and there is a small, 

permanent, magnetic dipole moment  per particle below the N~el temperature. 

According to N6el [27], the number of uncompensated ions in a small, antiferro- 

magnetically-ordered particle is n 1/2, where n is the number of transition metal 

ions in the particle. The magnetic moment of a ferritin particle with 2000 ferric 

ions, each with magnetic dipole moment 5 /x B, would then be about 224 /~. 

Because of the protein shells, the particles in adjacent molecules are at least 30 A 

apart and the interparticle interaction energy is low. Thus the ferritin core 

particles are superparamagnetic, or superantiferromagnetic, below the N6el tem- 

perature. 

Superparamagnetism also accounts for the characteristic temperature depen- 

dence of the M/Sssbauer spectrum of ferritin in zero applied magnetic field [14]. 

Typically, the spectrum of ferritin at helium temperatures consists of a broadened 

magnetic sextet corresponding to a distribution of magnetic hyperfine fields with 

a mode of about 500 kOe in the antiferromagnetically ordered particle. As the 

temperature is raised, a quadrupole doublet is superposed on the sextet, with the 

absorption intensity of the doublet and sextet increasing and decreasing, respec- 

tively, with increasing temperature. Above 80 K, well below the N6el temperature 

of 174 K, the spectrum consists of just the quadrupole doublet. 

According to the theory of superparamagnetism applied to the M/Sssbauer 

spectra of small, magnetically ordered particles including ferritin [14,19,20,28,29], 

thermal energy can excite transitions of the sublattice magnetizations between 

energetically equivalent orientations (easy axes) in the particle with a frequency ~, 
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that is given by 

u : u 0 e x p [ -  E A / k T  ] (1) 

where u 0 is a constant characteristic of the material typically of the order of 10  9 

sec -1, E A is the magnetic anisotropy energy of the particle, and k B T  is the 

product of Boltzmann's constant and temperature. For a particle with uniaxial 

anisotropy, E A is usually written 

E A K V ,  (2) 

where K is the anisotropy energy per unit volume and V is the core volume. For 

v > v L, the nuclear Larmor precession frequency of the 5VFe nucleus in the local 

magnetic hyperfine field, the M6ssbauer spectrum collapses to a quadrupole 

doublet. For v < yr., the spectrum is the full magnetic hyperfine sextet. By 

definition, the blocking temperature T B is the temperature at which v yr. 

Because there is a distribution of particle volumes in each ferritin sample, there is 

a corresponding distribution of blocking temperatures; hence one usually refers 

to the average blocking temperature (TB}. 

In this paper, we report on the variation of the average blocking temperature in 

ferritin, determined by MOssbauer spectroscopy, due to variation in the average 

size of the ferritin core particle. This variation was accomplished by subjecting 

samples of ferritin to reduction and chelation to remove specified amounts of 

iron from the cores. We have found that the average blocking temperature, and 

hence the anisotropy energy, is not linear with particle volume, which implies that 

the anisotropy energy per unit volume K is a function of particle volume. We 

have also studied the superparamagnetic properties of the "last-in" ferric ions, 

~pvresumably on or near the surfaces of the ferritin core particles, by addition of 

Fe-enrlched ferrous ions to ferritin, followed by oxidation. This experiment 

showed that the relaxation times that characterize these "last  in" ferric ions are 

shorter than those reflected by the bulk average blocking temperature. 

2. Materials and methods 

Samples were prepared as previously described [30,31]. Horse spleen holoferri- 

tin was obtained from Sigma at a concentration of 100 m g / m l  in 0.15 M NaCI. 

The average iron content was determined to be 2100 iron atoms per ferritin 

molecule by the bathophenanthroline method. Ferritin samples with 20%, 40%, 

60% 80% and 100% of the original 2100 Fe3+/molecule  removed were prepared 

by: 1) reducing ferritin to the desired extent (i.e., 20%, 40%, etc.) with $204- 

containing 5 x 10 -5 M methyl viologen (MV) for 30 min; 2) adding excess 

bipyridyl (bipyd) and incubating an additional 30 min.; and 3) separating Fe 

(bipyd)~ + from ferritin on an anaerobic 1 x 40 cm, G-25 Sephadex column. The 

emerging ferritin was free of Fe(bipyd)~ + and the ferritin bound iron was all in 
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tile Fe 3+ state, as determined by coulometry and M~Sssbauer spectroscopy. These 

modified ferritin samples were concentrated, their protein concentrations made 

equal and their iron content determined. Sedimentation patterns for each protein 

sample (10 mg /ml  in 0.05 M TES 0.1 M NaC1 pH 7.5) were recorded on a 

Beckman Model E ultracentrifuge under identical ultracentrifugation conditions 

of 50400 rpm and 20~ [31]. 

57Fe-enriched ferritin samples were prepared by incubating holoferritin (2100 

ferric ions per molecule) with ferrous ions prepared from 95% enriched 57Fe iron 

metal under anaerobic conditions. The sample was oxidized by exposure to air 

following anaerobic Sephadex G-25 column chromatography to remove unbound 

ferrous ions [30]. Approximately 100 57Fe ferric ions were added to ferritin core 

particles each originally containing an average of 46 5VFe ferric ions (based on the 

2.2% natural abundance of 57Fe). Thus M~Sssbauer spectroscopy of this sample 

was weighted toward the "last-in" ferric ions. 

M/3ssbauer spectra were recorded with frozen ferritin solution samples in 

sealed plastic containers, using a constant acceleration spectrometer with a 

variable temperature dewar. Samples I - IV  corresponded to 0% (holoferritin), 

20%, 40% and 60% iron removed from the protein, respectively. Sample V had 

40% iron reduced but not removed from the protein. Sample VI had 5VFe-en-

riched ferric ions added to holoferritin. 

3. Results 

M~Sssbauer spectra of samples I to IV were similar to those reported previously 

for oxidized ferritin [10,14,18 26]. In each case the spectrum consisted of a 

broadened quadrupole doublet for T > 80 K, and a broadened magnetic hyper-

fine sextet for T ~< 10 K. Between 10 and 80 K the magnetic hyperfine sextet and 

quadrupole doublet were superpose& with intensities that decreased and in-

creased, respectively, with increasing temperature. The magnetic hyperfine field 

distributions in the sextet spectra were similar for all four samples. 

The temperature dependence of the spectra was associated with superpara-

magnetism of the ferritin iron core particles. We defined the magnetic fraction of 

the spectrum as the ratio of the intensity of the sextet spectrum to the total 

(sextet + quadrupole) spectral intensity. This quanti ty is plotted as a function of 

temperature for I, IV, and V in fig. 1. Data for II and III were similar but omitted 

for clarity. For samples I to IV, there was a monotonic decrease in the average 

blocking temperature <TB>, defined as the temperature for which the magnetic 

fraction is 0.5, as the average number of ferric ions per ferritin core decreased. 

<TB> is plotted as a function of the average number of iron atoms in the core of 

samples I to IV in fig. 2. 

The spectrum of V was similar to those previously reported for partially 

reduced ferritin [22,30]. In addition to the ferric spectrum, consisting of a 
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Fig. 1. Magnetic fraction, defined as the ratio of the intensity of the magnetic hyperfine sextet to 

the total intensity, of the ferric spectrum, plotted as a function of temperature for samples I, IV and 

V. The blocking temperature is the temperature for which ttle magnetic fraction 0.5. 
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Fig. 2. Blocking temperatures plotted as a function of the number of iron atoms in lhe ferritin core 

particles for samples I to IV. The solid line is theoretical assuming different contributions of bulk 

and surface ferric ions to the magnetic anisotropy energy (eqs. (4) and (5)). 
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Fig. 3. MOssbauer spectra at 2 K for: (a) holoferritin following incubation with S7Fe2+ and 

subsequent oxidation (sample VI): (b) untreated holoferritin (sample 1). Magnetic hyperfine field 
distributions are shown to the right of each spectrum. 

quadrupole doublet and magnetic hyperfine sextet, there was an additional 

doublet with isomer shift and quadrupole splitting characteristic of high-spin 

Fe 2+ in the core. At 80 K, the relative absorption intensities of the ferric and 

ferrous doublets were approximately 3 :2 ,  corresponding to 40% reduction of the 

ferric core particle. Below 60 K the ferric subspectrum underwent a superpara- 

magnetic transition as in fully oxidized ferritin. The magnetic fraction of the 

ferric subspectrum of sample V is also plotted as a function of temperature in fig. 

1. It can be seen that partial reduction of the core particles without removal of 

the Fe 2+ fraction resulted in an increase in the average blocking temperature 

compared to 40% reduction of the core particle followed by removal of the 

resulting Fe 2+ (sample III). 

The 2K spectrum of sample VI is shown together with that for holoferritin 

(sample I) in fig. 3. Computer analysis showed that the low temperature sextet 

spectral parameters of the two samples were very similar, including the magni- 

tude and sign of the quadrupole shift. This was also true for the parameters of the 
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Fig. 4. Magnetic fractions plotted as a function of temperature for holoferritin (sample I) (,7) and 

holoferritin following incubation with 5VFe2 and subsequent oxidation (sample VI) (zx). 

high temperature quadrupole doublet. However, as can be seen in fig. 3, the lines 

in the sample VI spectrum were broader than the lines in the sample I spectrum, 

indicating a broader distribution of hyperfine fields in sample VI. Moreover, as 

shown in fig. 4, the average blocking temperature of sample VI was lower than 

that of sample I. 

4. Discussion 

According to the data in figs. 1 and 2, the average blocking temperature 

decreases as iron is removed from the core. This result is consistent with 

measurements on ferritin samples fractionated by iron content [26]. It is also 

consistent with the theory of superparamagnetism applied to ferritin. According 

to eqs. (1) and (2), the blocking temperature should be linearly dependent  on n, 

the number of iron atoms in the core, assuming the volume increases linearly with 

n, and the anisotropy energy per unit volume is a constant. However, the data in 

fig. 2 show that <TB> decreased much more slowly than linearly with decreasing 

n. This experimental result requires that the average anisotropy energy per iron 
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a t o m ,  e A EA/n, inc rease  as the n u m b e r  o f  i ron  a t o m s  decrease .  Th i s  c a n  be 

a c c o u n t e d  for  qua l i t a t ive ly  by  a s s u m i n g  tha t  the  a n i s o t r o p y  e n e r g y  c o n t r i b u t e d  

by  each  i ron  a t o m  d e p e n d s  on  w h e t h e r  it is a bu lk  i ron  a t o m ,  in the  in t e r io r  o f  the  

core  par t ic le ,  o r  a su r face  i ron  a t o m ,  on  the s u r f a c e  o f  the  c o r e  par t ic le .  T h e  

d i s t i nc t i on  is r e a s o n a b l e  c o n s i d e r i n g  tha t  su r f ace  i ron  a t o m s  are  s t r u c t u r a l l y  m o r e  

a n i s o t r o p i c  than  bu lk  i ron  a toms .  F o r  a E u c l i d e a n  solid,  the n u m b e r  o f  su r f ace  

i ron  a toms ,  n~, is g iven by  

a , , -  , ( 3 )  

where  a is a c o n s t a n t  tha t  d e p e n d s  on  the s h a p e  o f  the  core  solid.  F o r  a c u b e  a n d  

a sphere ,  a is 6 a n d  4, respect ive ly .  Since  the co re  pa r t i c l e  is p r o b a b l y  an  i r r egu la r  

sol id we a s s u m e  a 5. T h e n  the a ve r a ge  a n i s o t r o p y  e n e r g y  pe r  i ron  a t o m  e a is 

given by 

n~K~ + n u K  B (4) 
e A  17 

where  n u is the n u m b e r  o f  bu lk  i ron  a t o m s ,  K+ a n d  K u are  the r e spec t ive  

a n i s t r o p y  c o n t r i b u t i o n s  a nd  n n+ + n u. T h e  b l o c k i n g  t e m p e r a t u r e  is d e f i n e d  by  

eq. (1) wi th  v v L, the L a r m o r  p r e c e s s i o n  f r e q u e n c y  (10 s s - l ) :  

T., e A , , / 2 . 3 k  ( K ) .  (5) 

U s i n g  the e x p e r i m e n t a l  b l o c k i n g  t e m p e r a t u r e s  ( t ab l e  1), KB/k  - 0 . 0 4 9 3  (K)  

and  K J k  0.183 (K).  T h e  sol id  cu rve  in fig. 2 was  d r a w n  us ing  these  values .  F o r  

n ~< 125, all the i ron a t o m s  are  on  the  su r f ace  o f  the  co re  pa r t i c l e  a n d  <TB) is 

g iven by 

<T,,) 0.080,, ( K )  (n ~< 125). (6) 

Table 1 

Measured and calculated blocking temperatures 

Sample n (Tu) (K) h n s n u eA/k (K) d rl~ (K) ~" 

I 2100 38 822 1278 0.0416 38.0 

II 1680 36 708 972 0.0486 35.5 

Ill 1260 34 585 675 0.0586 32.1 

IV 840 27 446 394 0.0740 27.0 
V 2100 r 51 

4500 1367 3133 0.0213 41.6 

125 g 125 0 0.183 9.9 

~' Total iron atoms per ferritin molecule. 

h Experimental average blocking temperature. 
c 

n~ Surface iron atoms: n~3 Bulk iron atoms. 

,i Average anisotropy energy per iron atom (eq. (4)) with K,/k 0.183 K, KB/k -0.0493 K. 

Calculated blocking temperature (eq. (5)). 
f 40% Fe 2+, 60% Fe 3~. 

g Calculated only. 
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The sign difference for the bulk and surface contributions might indicate that 

the respective spin orientations are mutually perpendicular. Non-colinear spin 

arrangements in small ferrimagnetic particles, due to canting of the surface spins, 

have been reported [32]. 

Because the growth of the core particle might be limited by diffusion of ions 

into the ferritin core, the core particle might be a non-Euclidean solid. Diffusion- 

limited aggregation (DLA) processes result in fractal solids with surface dimen- 

sion d > 2 [33]. Computer  models of DLA processes give d 2.5 [34]. If the core 

particles are indeed DLA structures, the number of iron atoms on the surface will 

be a higher power of the total number of iron atoms than given by eq. (3). For 

d =  2.5, 

n s bn (7) 

where b is a constant. For a given value of b, values can be obtained for K B / k  

and K s / k .  Thus the dependence of the blocking temperature on iron loading 

alone is not sufficient to discriminate between Euclidean and fractal core par- 

ticles. 

The increase in (TB) for sample V, with 1260 ferric ions and 840 ferrous ions 

per core particle, compared to sample IV, with 1260 ferric ions and no ferrous 

ions per core particle, can be understood in terms of a model in which the ferric 

ions in sample V form a contiguous particle similar to that in sample IV, but with 

the ferrous ions on or near the surface [35]. Because of unquenched orbital 

angular momentum they could affect the magnetic properties of the core ferric 

ions. Thus we could assume that the anisotropy contribution of the bulk ferric 

ions in sample V is the same as in sample IV, but the anisotropy contribution of 

ferric ions exchange coupled to ferrous ions in sample V is increased over that of 

the ferric ions in sample IV. 

The calculated magnetic anisotropy energy for a totally filled ferritin core 

(4,500 iron atoms, 70 ,~ diameter, table 1) corresponds to an anisotropy energy 

per unit volume of 5.6 x 10  4 e r g / c m  3. This value is consistent with those 

previously reported for ferritin. For example, combined M~Sssbauer and electron 

microscope studies on ferritin [21] yield anisotropy constants of the order of 

1 x l0 s e r g / c m  3, while a value of 6.7 X 10  4 e r g / c m  3 has been deduced from an 

analysis of the low temperature M~Sssbauer line shapes based on a modification of 

the superparamagnetic theory to include collective excitations [20]. 

An increase of up to two orders of magnitude in the anistropy energies of small 

particles of c~-Fe203 and Fe304 compared to the bulk magnetocrystall ine ani- 

sotropies of these materials has been reported [36-39]. Furthermore,  the ani- 

sotropy energy increases as the particle size decreases [40,41]. The increase in 

anisotropy has been attributed to the contribution of shape, surface and stress 

anisotropies present in small particles in addition to the crystalline anisotropy of 

the material. Shape anisotropy contributions are expected in the case of ferro- 

magnetic or ferrimagnetic small particles [39] due to different demagnetizing 
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factors along different directions of a spheroid particle [42]. Due to the low 

inherent magnetization of ferritin [14-16], the shape contribution to the ani-

sotropy is expected to be small, and since any stress exerted by the surrounding 

protein shell on tile iron core particle is probably isotropic due to the spherical 

shape of the protein shell, we have primarily considered surface effects. It was 

first pointed out by N e d  [43] and later verified experimentally [44], that surface 

effects can contribute to the anisotropy. In addition, different values of the 

anisotropy energy constant in unsupported and supported ~-Fe203 microcrystals 

have been found [45,46], and the adsorption of different molecules on 6 nm F%O 4 

particles has been observed to result in different superparamagnetic relaxation 

times [37]. Tile latter observation is consistent with the increase of the anisotropy 

energy when ferrous ions were situated on or near the surface of the ferritin core 

particles. 

Williams et al. [20] compared the magnetic hyperfine field distribution in 

holoferritin with that in holoferritin which had been incubated with ferric ions 

enriched in 57Fe. They found that the mode of the distribution was 495 kOe in 

both cases, but that the distribution was broader in holoferritin, corresponding to 

a larger contribution from smaller particles in holoferritin. In the present experi-

ments, the mode of the magnetic hyperfine field distribution was the same for 

samples VI and holoferritin (sample I), but sample VI had a broader distribution 

than holoferritin (fig. 3). This could be due to different methods of addition of 

ferric iotas to the core, i.e., incubation with ferric ions [20], or, anaerobic 

incubation with ferrous ions followed by air oxidation (present experiments). 

These conditions, or incubation with ferrous iron in the presence of air [23,47], 

could affect the distribution of ferric ions in the ferritin cores. Other factors 

affecting distribution might include pH, phosphate content, and ageing (i.e., loss 

of water and rearrangement of ions) of the core particles. 

In addition to a broader hyperfine field distribution, sample VI had lower 

average blocking temperature than holoferritin, although sample VI had a larger 

ferric iron content than holoferritin. There are at least three ways to interpret this 

result: 1) the 57Fe2+ was predominantly taken up by molecules with less iron than 

average when ferrous ions were incubated with holoferritin, so that after air 

oxidation the "'last-in'" ferric ions were situated primarily in the less loaded 

ferritin molecules: 2) the "'last-in'" ferric iotas were distributed somewhat  uni-

formly among the ferritin molecules, and were situated on the surfaces of the 

holoferritin core particles, but relaxed at a different rate than the bulk ferric ions: 

3) the "last-in" ferric ions were not uniformly situated on the surfaces of the 

holoferritin core particles, but tended to form, or form on, smaller clusters or 

domains within the core, as expected for a DLA process. 

While the data presented here do not unequivocally support  any one of the 

three interpretations advanced above, they best match interpretation 3. Interpre-

tation 1 is not valid because we have found (Watt et al., unpublished) that ferritin 

molecules with more ferric ions in the core take up more ferrous ions under 



anaerobic conditions than less filled molecules. Interpretation 2 requires a radical 

reformulation of superparamagnetic relaxation theory and seems unlikely. In 

contrast, the lower blocking temperature, the broader magnetic hyperfine field 

distribution, and the remaining quadrupole doublet in the 2K spectrum of sample 

VI (about 3% of the spectral area) are all consistent with interpretation 3, with the 

"last-in" ferric ions forming, or forming on, smaller clusters or domains within 

the ferritin core. 

In conclusion, the experiments presented here show that the magnetic ani-

sotropy of ferritin core particles is a function of particle volume, and we have 

suggested a simple model based on surface and bulk contributions to the 

magnetic anisotropy per ferric ion in the particle. They further suggest that the 

"'last-in" ferric ions form, or form on, smaller clusters or domains within the 

ferritin core. 
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