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VARIATION OF THE GREEN FUNCTION

ON RIEMANN SURFACES AND WHITNEY'S HOLOMORPHIC

STRATIFICATION CONJECTURE

by ROBERT HARDT* and DENNIS SULLIVAN*

With great admiration to RenS Thorn

who explained what « manifolds with singularities » are.

Introduction

A complex algebraic variety can frequently be studied by the following two step
procedure:

1. Prove an appropriate theorem for curves (i.e. Riemann surfaces).

2. Fiber an n-dimensional variety by curves, apply Step 1 to the fibers, and pro-

ceed by induction.

In our case the desired result about a Riemann surface concerns how the Green

function varies when the conformal structure changes in a particular manner provided

inductively in Step 2. We assume the Riemann surfaced is given as a ̂ -sheeted branched

covering of the unit disk B with branch points a^ ..., a/ in B^g. We also suppose that

4» is an e-isometry of the unit disk in the sense that | log dist[^(A:), ^(jp)J — log dist^,^) [ < e

for x,y e B. Then there is a corresponding induced Riemann surface -^ over B with

branch set ^(^1)3 ..., ^{a/) and a commutative diagram

// ^ ^
e^W / t/wv

\ \
B -^ B

* Research partially supported by the National Science Foundation.
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Theorem A (§ 4.5). — There is a constant No depending only on k and t so that, for

e<w-i) ,

I G^coW - G^.5«o)C?W] I ^ No for x e J K ^ { (o },

where the Green function G^ ^ (respectively, G^^) is the unique positive harmonic function

mJ( (resp. JK^) that has a unit mass pole at co (resp. ̂ {^)} and that vanishes on ̂ J( (resp. 8^}.

This estimate for the variation of the Green function is far from true for e-almost

isometric Poincare metrics on a Riemann surface. This will be clear from the proof in § 4.

We use Theorem A to treat Whitney's conjecture (1956 [W, § 9]). For complex
projective algebraic varieties, we show:

Theorem B (§ 6.1). — Any complex algebraic subvariety of W admits a finite partition

(stratification) y into holomorphic submanifolds such that, for each stratum S in e$ ,̂ every point

^{fS has a neighborhood in CP" that may be foliated by (dim ̂ -dimensional holomorphic leaves that

respect the strata.

Whitney's conjecture concerned real or complex analytic varieties. The real

analytic case of the Whitney conjecture was treated in [H3, § 8], and the local complex

analytic case is easy to obtain from the present paper. Here we treat the complex pro-

jective case because it is easy to describe the stratification globally in CP" (see 5.4).

However, this stratification is not canonical, and it is not clear what class of stratifi-

cations admit such analytic foliations. In our inductive construction, the holonomy of

these foliations locally preserve a fixed complete affine flag in C", i.e.

parallel lines C parallel planes C . . . .

Moreover, in each quotient C?, the induced maps are Lipschitz on each of the corres-

ponding complex lines. In fact, jp. coordinates compatible with this flag, these homeo-
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morphisms have Jacobian matrices a. e. which are upper triangular with diagonal

entries bounded away from zero and infinity. Because the off diagonal partial deriva-

tives are not uniformly bounded, the homeomorphisms are not fully Lipschitz (see

[SS, p. 5 II], [M], and [P]) which was one of our original goals.

W. Thurston suggested some of the ideas used in proving Theorem A, in parti-

cular, the plumbing metric of § 3. In this metric, S2
 ̂ { 4 points } may look like

A

In our e-variation, the length \ changes to X ± s; whereas, in the corresponding Poin-

car^ metric e-variation, X would change to X^6.

In our proof of Theorem B, we employ an interpolation formula of H. Whitney

[W, § 11] and generalize [W, § 12] where he proved that his conjecture held near a

codimension 1 stratum in a hypersurface.

The plumbing metric is determined by the locations of the branch points in the

unit disk. By scaling, we first obtain a unique decomposition of the disk that respects

the clustering of subsets of the branch set (see the figure in § 1). In § 2, we observe that

this clustering and hence the decomposition are essentially preserved under an s-iso-

metry of the disk. An explicit formula for the plumbing metric, in terms of the decom-

position, is given in § 3 and is used in § 4 for a uniformly accurate approximate formula

for the Green function. This formula is based on a corresponding problem on a one-

dimensional network, and, along with a linear algebra lemma (4.4), provides a proof

of Theorem A. The stratification for Theorem B is obtained inductively using a sequence

of corank 1 projections (as in [HI], [H2], [H3]). Trying to construct the trivializing

maps by induction leads one to the interpolation problem studied by H. Whitney

in [W, § 11]. Use of the interpolation formula of [W, § 11] requires (as explained

in 2.2 and the proof of 6.1) that the movement of points on the variety between cor-

responding one-dimensional fibers be an s-isometry, for some positive e (depending

only on the variety). Attempting to prove this needed uniform estimate by an argument

analogous to [W, § 12] led to investigating the Green function property of Theorem A.

For the special case of behavior near a codimension 1 stratum in a hypersurface (as
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treated in [W, § 12]), the appropriate Riemann surface is a simple branched cover of

a once-punctured disk and the Green function may be suitably approximated by simply
using a logarithm function.

1. The Swiss cheese decomposition of a multiply-punctured disk

1.1. Notation. — For a finite nonempty subset E of C, let c^ denote the center of
mass of E (^ = S^g^ e} and p^ denote the smallest p such that the closed ball Bp(^)
contains E.

For a family € of at least two finite nonempty disjoint subsets of C, let

a^ = max{ r : B^,^) n B^(cp) = 0 for distinct E, F e £ }.

1.2. Z^mwfl. — For a finite nonempty ACC, the family ̂  o/ ̂  partitions ^ of A for

which max^g^pE^ (1/4) CT^ contains a unique partition S^ with CT.A = max^p^ CT^.

Proo/: — Since {{ ;?} : 2: eA}e^\, and ̂  is finite, there exists a maximizing

partition ^A. Moreover ^A is unique because | z — w \ ̂  (15/2) CT^ whenever z

and w belong to distinct members of ^A. Q

1.3. Z^wwfl. — For t e{ 2, 3, ... },

^ ==== sup { 2pA/c^A : 2 < card A < i } is finite.

Proof. — We need only consider sets A with c^ == 0 and p^ = 1. We now argue
by contradiction. If ^ were infinite, then there would exist 7 z e { l , 2 , . . . , ^ } and

points ^eBi(O) with | a} | == 1 for i e{ 1, 2, ..., n} and j e { l , 2 , . . . } so that

^ = lim^^ .̂ exists for each i, 0 = lim,^ o^y, and ^. = 0 where A, = { a}, . . . ,<??}.

Then card{^1, . . ., ̂  }^ 2 because | ^ | == 1 and S^i ̂  = 0. Let

^ = (1/9) inf{ | ^ - ̂  | : 071 + ^ } and E^ = B,(^) n A,.

Then §^ == { E^.: i == 1, ..., TZ } is a partition of A, and

CTyA/^ G^.^ S> 0

for '̂ sufficiently large, a contradiction. Q

1.4. Definitions. — A iSW.?.? cheese (with I holes and modulus (x) is a set in the form
KrM-U^B^) where c.e-K^c) and

min{ | ^ — ^ | : 1 ̂  i <j^ I }$: 4r/(Ji.

A n^ is a Swiss Cheese with 1=1 and q = c.

A center-punctured disk is a ring of modulus oo.
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1.5. The Swiss cheese decomposition. — Given a finite subset A of C with card A ̂  2

and a number r^ 4p^, we now use Lemmas 1.2 and 1.3 to obtain a unique finite par-
tition ^ u y ^ u 2^ of B,.(^) ̂  A where

3t^ consists of rings with disjoint closures,

y\ consists of multi-holed Swiss cheeses with moduli ^ ^, and

2\ consists of center-punctured disks.

If card A = 1, then A = { c^ }, and we let ̂  = 0 = y ^ and Q^ == { D^ }
where D^ = By(c^) ^{ c^}.

If card A ̂  2, then we obtain the ring

RA=B^)-B^)

and, by 1.2 and 1.3, the multi-holed Swiss cheese

SA=B^)-U^AB^),

which has modulus ^ (A/.

For each E e S^ we may repeat this construction with A, r replaced by E, O.A
to obtain either the center-punctured disk

in case card E = 1DB = B^(^)

or the ring and multi-holed Swiss cheese

^(^E^^P^E) andRE=BO^E)-I SE=B^) 'Upe^B^(^)

in case card E ̂  2.

Continuing we find that this process eventually ends; in fact, we readily estimate that

card Q^ < /, card ̂  < (/ — 1)2? and card ̂  < t — 1.

Although the moduli of the Swiss cheeses in y^ are all bounded by ^, the moduli
of the rings in ̂  are not bounded independent of A.
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2. Bilipschitz variation

2.1. Some elementary estimates. — For a bilipschitz homeomorphism ^ : C -> C, let

(1) H=sup^|[D^)-id||.

Then, by integration,

| ̂ {z) — ^{w} — {z — w) ] < [^} I z — w I whenever z, w e C.

Moreover, if [4*] ̂  l^ then

1|D+| |^ i + [ + L IIDr1!!^!--^])-1,
[r ' l^^HDr'IK^Ki-H)-1 .

Recalling the notation of § 1, we readily observe, by integration, that

(2) | W - ̂  | ̂  [^] p.,.

Moreover,

(3) ll-P^PE1!^^!

because if pjg == \ e — c^ \ and p^) == I W — ^(E) I? ^^^ ^ (2),

1 - 2[+] ̂  C| ̂ e) - ̂ ) I / ] , - ̂  I) - [+] ̂  ̂  | ̂ ) - ̂ (^) | - [^

< P<KE) PE^ PE 1 1 +(^) - W I + [+]

< Cl ̂ ) - +(^) I / I ^ - ^E D + l+l < 1 + 2W.

Similarly,

(4) | 1 — | ^{z) — ^(E) I I z — c^ |~1 I ^ [̂ ] whenever | z — c^ \ > PE.

For any finite nonempty A C C, it follows, as in the proof of 1.2, that

^A) = = { ^ ( E ) :E e <?} and

(5) | 1 — CT^(A) orjA1 | ^ 2[+] whenever [̂ ] ̂  1/4.

In case

(6) +[B,(^)] = B^(A)) /^ ^^ ^> 4p^) ̂  [+] ̂  1/4,

^ Swiss cheese decompositions of By(^J^A and B,(c^) ^/ ^(A) ^At^ correspond; the

sets DE? RE? SE defined in 1.5 correspond to D^gp R^E)? S^(E) and the ratios of cor-
responding radii are governed by (3) and (5).

2.2. A modified Whitney interpolation formula. — Given a bilipschitz map ^ : C -> C

as in 2.1, recall that the estimate

| ̂ ) - W - [z - w) | / 1 z^ w I ̂  [+]

holds for any distinct z, w e C. Whitney observed in [W, § 10] that, conversely, given

any t e {2, 3, ...} and points b == {b^ ..., b^) and d == (^i, ..., df) in Cf with the b^s

distinct and

A(6, d) = max,^,^ | d, - d, - {b, - &,) |/| A, - 6, | < 1/4(^ - 1),
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there exists a bilipschitz ^: C -> C with « ,̂) == </, for i = 1, ..., m. Here, for use

in 5.4, we describe and slightly modify his formula for ^ to give a map which is the
identity near infinity.

For distinct b^ ..., b( in C and i e{ 1, 2, ... }, the function ̂  defined by

W = 1,

CT ,̂) =0 for j 6 (1 , ...,/}~{,},

<^) =\2-b^\-
l
^

t
,^\z-b)\-

l
 for z e C ^ { ^ , . . . , b ( } ,

is continuous, as is the cut-off function a defined by

^ = 1 for zeB^(c),

a(0 = 2 - 2r-1 j ^ - c \ for ^ e B,(c) ~ B,/,(c),

a(^) =0 for ^eC~B,(c),

where c e C and r > 0 are fixed. Our interpolation is based on the function

k.:c-^c,
^,«(^) = z + a(^) .S^i <^(z) (rf, - ̂ ,).

rAi'J wft'^ ^,d(^) =^ for i= l , . . . , { , and

I ka(2') - k^) - (2 - w) I < 8(/ - 1) A(^ rf) I z - w |

whenever b^, ...,b{ are distinct points in B^(c) and a?i, ..., d/, z, and w belong to C.

To verify this, we repeat Whitney's calculation [W, p. 235] with his notation,
while replacing <r, by a<4. For the first line of [W, p. 236] we have now the additional
term + c\. {6v.fffK), and so the factor 2 on the second line may be replaced by 3 because

| p, (T^a/ax) I < r.r-1 = I.

The remaining calculations of [W, p. 236] give the desired estimate. An immediate
consequence is that if

0 < r < 1/8(^-1), ^..,^, ^...,^eB^),

and (6, d) e Clos A-^O, F],

then, for any sequence (b^, d^) in A-^O, P] approaching {b, d),

^d = ̂ T^oo ^),dW

rf^j fl bilipschitz homeomorphism ofC which is independent of the choice of the sequence (b^, d^)

and which satisfies ,̂(A) == ̂  and

(1) [kdl^8^-!)^
Note that the points b^ ..., ̂  are not necessarily distinct even though, for each h, the
points b^\ ..., b^ are distinct. Note also that, for fixed b and z, the function

(2) +M-)(^) is
 holomorphic (in fact, affine) on { r f : (6, <f) e Glos A-^O, F]}.

16
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For completeness, we also discuss the case i = 1. Here for two points b, d in B^(^),
we define

k^)-^^)^-^)
and verify that

(3) [^d}^m\d-b\.

3. The plumbing metric for a branched cover of the disk

Here we explicitly construct a metric suggested by W. Thurston. Suppose A is
a finite subset of C, i = card A ̂  2, 4p^ < r < oo, Jl is a connected compact bordered
Riemann surface,

n:^->B^j

is a ^-sheeted branched cover with branch set contained in 11 ~1 (A), and co is a dis-

tinguished point of II'^A). Using § 1, we will now describe a complete metric (called

the plumbing metric) on ̂  ̂  { <o } whose curvature has bounds depending only on k

and t. In this metric J( will consist of several pipes of varying lengths, but all of cir-

cumference 1, which are assembled together by fittings of compact bordered surfaces
having uniformly bounded geometry.

The desired metric is in the form 6 ds
2 where 6 is a positive smooth function on

Jl ^ {(o } and ds
2 denotes the II-pullback of the Euclidean metric on C. It suffices to

describe 6 on each component G of the II inverse image of a member of the Swiss cheese

decomposition (1.5) of By(^)/^/A. Let k^ e { 1, . . . , A } denote the multiplicity of
the covering map II | G.

To handle the transition between adjacent components we employ affixed smooth
monotone function T] : [— oo, 1] -> [0, 1] with

7)(^) =0 for ̂  0, T](I) == 1,

T^(O) == 0 == ^(l) for i == 1, 2, . . . ,

and define, for any numbers 0 < a < b < oo and smooth functions y, g : [0, oo) -> R,

the transition function

A=^,V^):[(U]->R,

h{t) = [1 - ̂  - a)f(b - a)])f{t) + ̂ [{f - a)f[b - a)] g{t).

Then h is smooth with

h | [0, <| =f | [0, a] and h^b) = g^b) for z = 0, 1, 2, ....

Let ^,{x) = | Tl(x) — c | for x e^ and c e C.

Using this notation and that of § 1, we now explicitly define 6:

(1) For any component G of II'^U 2^ with G) ^ Glos G, let

6 = (27ra)~1 on Clos G where a is the radius of II (G).
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(2) For the component D of n-^U ̂ J with 0) e Glos D, let

6 == AC(B/2, (3, [2nW]-\ (27Tp)-lJ o !:n(o) on D

where [B is the radius of 11 (D).

(3) For any Swiss cheese S = B^(rf) — U»Li B^) e ̂ , note that U.LiB^) is

contained in B^^af) by § 1, and let

6 == AC5Y/8, Y, (ZTC 8)-1, (27rY)-1] o ?:, on II-^S).

(4) For any component Qof II'^U^A), let

6 == ACp, 4p/3, (27ro)-1, (27r^ pd)-1 [p + o + (•)]]o^

on Qnn-^B^-B^)],

6 = AC3o/4, a, (2^pa)-1 [p + a + (.)], (27^p)-lJo^

on Qnn-^^-B,^)]

where n(Q) =B,(,)-B^).

For such sets G, D, and Q, observe that, in the plumbing metric 6 ds
2
,

C becomes a flat disk of circumference k^y

D n II~1 B^(II(co)J becomes a half-infinite right circular cylinder of circumference 1,
and

Q,n n'^pBgQ^) -^ B^g(<;)] becomes SL finite right circular cylinder of circumference 1

and of length

(5) .C7"1 dr := ^^/P) + ^(S/16) where "(O-) = "oM - "pM-

Finally the possible components of II'^S) for S e y\ as well as the transition collars,

D-n-^^Cn^)] from (2),

and n-^^M-B^.)] and H-^o) ̂ B^(c)] from (4),

form, in the plumbing metric, a compact family of bordered Riemann surfaces. For example,

the boundaries occurring are circles of circumference at least [L^~
1 and at most^. There

exist universal bounds for the diameters and curvatures of all these surfaces in terms of k

and L

4. An approximate formula for the Green function

Viewing, via the plumbing metric of § 2, Jl ^ {co } as a system of unit circum-

ference pipes joined with bounded-size junctures, we now imagine a unit flux water

flow coming in from a source at infinity (co) and exiting from (L .̂ The pressure at some

point will be roughly the value of the Green function there. The approximate formula

developed in 4.3 will show that this pressure is a Lipschitz function of the length of

pipes with Lipschitz norm independent of these lengths. The proof involves considering
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a corresponding model problem on a one-dimensional complex and establishing a linear

algebra estimate (4.4) for equations derived from Kirchoff's laws.

Suppose /, A, r, e ,̂ n, k, co, D, (3, 6 are as in § 3, and let R^ denote the (half)

infinite right circular cylinder D n II ~1 B^[n((o)J.

4.1. Lemma. — With respect to the plumbing metric., there exists a unique nonnegative

harmonic function on ^K r^{ co } which vanishes on 8^ and has net inward flux one. (G is called

the Green function with pole at co.)

Proof. — For i == 2, 3, . . . , choose a harmonic function A, on

^ =^^{ (o }^ [R, n n-1 Bp^n(co)J]

with ^ [ 8^ = 0 and grad ^ | (^^ ̂  d^) equalling the outward unit normal vector
field. Extending ^ to be 0 on ^r^Jf^ we infer from the maximum principle and the

Hopf boundary point lemma that all the h^ are bounded above by the harmonic

function h = — log | II o ^ — II (co) | where ^ : ^ ^ { ( ^ } - > ^ ^ { ( ^ } is a conformal

mapping taking the plumbing metric to the Euclidean metric ds
2
. Moreover, near any

of the poles a e^~
1 n^lT^co)] of h, the ^ are uniformly bounded by the maximum

of A on a small circle about a. A subsequence of the A, now converges uniformly on

compact subsets of JK r^ { co } to the desired function G.

For uniqueness, note that | G o ^~1 + log | II(-) — n(co) || is bounded near G).

Thus, for the difference of any two such G, the composition with ^~
1 would have a

removable singularity at co; the maximum of the modulus of this difference would occur

on (L ,̂ where it is zero. D

4.2. Lemma. — With respect to the plumbing metric on ^^{<o},

| grad G | ̂  Go

for some finite number CQ depending only on k andi (but not on A, r, e ,̂ or ^).

proof. — Note that the bound obtained in [S, Th. 1] is derived from bounds

(e.g. Harnarck's inequality) based only on the curvature, which is here bounded uni-

formly. The flux one across the boundary, which is the level G"^ 0 }, provides the desired

uniform normalization. Q

4.3. A formula with uniformly hounded error.

Here [4.3 (1) (8) (9)) we show how G is approximately linear on the cylinders des-

cribed in § 2 and approximately constant on the other pieces. The slopes of the linear functions

are determined algebraically by just the cylinder lengths and the network configuration

of these cylinders.
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With R^ being the (half) infinite cylinder as above, let Ri, R^, ..., R^ be the

finite right circular cylinders; also let \ denote the length of R, [see 3 (5)J. Note that m

is bounded in terms of k and /'.

As in § 3, the family ̂  of components of

Jt -{ co }- Int R^ - Ur=i Int R,

consists of surfaces belonging to a compact collection of compact bordered Riemann

surfaces having uniform bounds on diameters and curvatures. For V e ̂ , we let

Yv denote the mean value of G on V and infer from this uniformity and 4.2 that

(1) | G - Yv I < Ci on V

for some number Gi depending only on k and t.

Let V^ be the unique member of i^ which contains 8R^. For i e{ 1, ..., m },

^R, has two components. We choose one component and let V, denote the member

of ̂  that contains it. We then let W, denote the member of ^ containing the other

component. Then the axial coordinate function

L,{z) = dist(^ W,)

is harmonic on IntR,.

For i e { 1, 2, ..., m), LJ V, n BR, == \, and so, by 4.3 (1) and the maximum

principle, we have the linear approximation

(2) I G - [Y .̂ + V^Tv, - Tw,) LJ | ̂  Gi on R,.

To see the behavior of G on R^, we first let y^) denote the mean value of G on

the circle ' L o ~
l
{ t } . By 4.2

I G - Y o W I ^ C o onLo-1^};

hence, by the maximum principle,

I G - [Two + ^(YoW - Two) Lo] | ^ C, on LQ-̂ O, <|,

where C^ = sup{ Go, Ci}. From this and the net flux one condition, it follows that

^[YoW - Two! -^ l a s^ ->oo ,

and so we also have the linear approximation

(3) |G- (Ywo+Lo) ] ^ C^ on R,.

Note that we may view the piecewise approximations of (1) (2) (3) as being defined

on the metric 1-complex (or graph) Jf obtained by collapsing:

each V e V to a vertex,

<L^ to a single vertex,

and each R^ to an edge s^.
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To orient JT we may use the vector field grad L, on s, for i == 0, 1, ..., m. We still need

to estimate the numbers yy for V e V^ in terms of the given lengths X^, .. ., ̂  and the

configuration type of jf. For this purpose we note, by Green's theorem, that the flux
across the circle ' L ^

l
{ t } ,

(4) X< == jL-i«}Srad G.grad^

is independent of t e [0, aj. Green's theorem also implies the relations

(5) Sy^vXi- S^,=vX<=0 f o r a n y V e V

with V + Wo and V n ̂  == 0,

(6) ^v.-wo/i- ^w^Wo^+oX,^ 1

because /o = 1. Integrating (4) over R, gives

\ X< = Y,(^) - Yi(^o)

where y,(^) is the mean value of G over the circle L,"1^}; hence, by (1),

(7) I TV, - Yw, - \ Xj ̂  I Yv. - Yi(^) I + I Yi(0) - Yw, I ^ 2Gi.

We conclude from (2), (7) and (9) that, on each finite cylinder R,,

(8) I G ~ SF=I a,/^ - z,L, | < | G - r^. - V1^. - Y .̂) L, |

+ (LAO I YV, - YW, - x, Xj I

+ I S î a<(Yy, - Yw, - X< \) | ̂  Ci + 2Gi + 2mC^

where a = S^L i a, s, is any simple path in Jf from the (L^ vertex to the W, vertex

(here, a^ e { — 1, 0, 1 }). Similarly, on the infinite cylinder Rg,

(9) | G - S^ P^\ - Lo I < I G - y^ - Lo |

+ | S^i P,(Yv, - Yw, ~ Xi \) I ̂  C^ + 2mGi

by (3) and (7), where (B = S^i (3, s, is any simple path in Jf from the 8^ vertex to

the Wo vertex. D

Having obtained in (1), (8) and (9) above an approximate formula for G, we

next prove a linear algebra lemma which gives a Lipschitz bound on the variation of

this formula with changes in the lengths \.

4.4. Circuit lemma. — Suppose JT is a connected oriented 1-complex (or graph) with

oriented edges set { e^, ..., s^ }, vertex set Y^, and two distinguished vertices v^ and VQ (the source

and sink). For i = 1, ..., w, let ^ and w^ denote the boundary vertices of the edge s, so that

8^ == ^ — w^. Also let

/i = srii/i, ̂  i, == s^i^e,,..., ̂  = sr^e,
^ a basis for the simple loops of^T.
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For \ e (0, oo)^ pi e R", and v e R, there exists a unique solution x = x{^, p,, v) e R"

of the linear system

^F= i ̂ i \ ̂  == ̂  /or J e { ^ • • • -»n} [loop equations],

(°)x,tx,v • ^-t î — ̂ w^^i ==0 /or y ^^^-Oo^o} [vertex equations],

.̂-̂  ̂  - ̂ ^ ̂  == v 1>^^ equation],

Moreover,

(1) | \ ^(X, (JL, V)| ^ | \ | | V | + €3 | ^ | W

(2) |\^(X,(A,I) ^\x^,^,l)\^ C^ ~X | + |^ |+ |^ | ) ,

/or z e{ 1, .. .5 w }, \ X e (0, oo)^ (JL, ^1 e R^ a^ v e R, wfor^ Gg depends only on m.

Proof. — First note that (0)^^ is a system of w equations (in the unknowns

x^, ..., x^) because there are, by Euler's theorem, exactly m — n + 1 distinct vertices

in Y^. Note also that the source equation, the vertex equations, and the identity

^e^K^ ̂  - ̂ u^. <1 = ̂ i^ - ̂ <) = 0

imply the sink equation

S,^^-S^^= -v.

To see that (0)^ ^ ^ has a unique solution whenever X e (0, oo)"1, we observe

that otherwise there would exist a nonzero solution z = (z-^, ..., z^) of (0)^ o Q. Using
the equation

S ,̂ ̂  - 2^^ = 0

which would be true for all v e i^, we would obtain a nonzero loop in the
form S,gi(sgn z^) e^. But then 2^i(sgn ^) \ z^ would be positive, contradicting that

(A, = 0 for all j.

Next we will study | ^(X, 0, v)|. Since, as above, there are no nonzero loops of

the form S,gi[sgn x^(\, 0, v)] s,, we may define a partial ordering on the vertex set i^

by letting

i(&) = sup { card I: ^(X, 0, v) =t= 0 for i e I,

a2;,gi[sgn ̂ (X, 0, v)] e, = ̂  ~ y}

for v ei^. Then we use (O)^o^ to verify, for K = 1, 2, ..., that

S {[sgn^(X, 0, v)] A^(X, 0, v) : either i(^) < K ^ i(w,) or i(^) < K< ^(y<)}

is identically | v |. Thus

(3) K(X,0,v)|^ | v | .

Next, to estimate | \ x^\, \L, 0)|, we note that the loop equations of (O)^^o imply,

for any different loop-basis, equations whose right hand side gives a vector of length

comparable to | (A |. Since there are only finitely many such bases of simple loops, it

suffices to prove an estimate

(4) |W^M)I^G4M
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with respect of any particular basis of loops. A basis, facilitating this estimate is obtained

by starting with one loop ̂  and a distinguished edge s^ of ^. Then, because ^ ̂  e^

is simply-connected, we may choose a second loop ^ in jf ^ c^ along with a distin-

guished edge s,̂ ) of ^. Continuing and discarding linearly dependent loops, we obtain

a basis {^ , . . . , / '„} of loops with associated oriented edges e^p .. ., e^ so that ± G^)
is an edge for ^ if and only if j == k.

Assuming this loop condition holds, we fix j e { 1, .. ., n} and now estimate

| \A^(X, yLCj, 0)| where (JL eR and e^ is the^-th unit coordinate vector in R". Reorien-

ting ̂  if necessary, we may assume [L ̂  0. Let jf^. be the graph obtained from JT by

adding a new vertex u to i^ and by insisting that

^(3) == u
 ~~ ^(3) (rather than v^ — w^^.

Thus, on Jf,, fj is no longer a closed loop, rather

^, == [sgn x^[\ ̂ ,, 0)] {u - v^).

As above, the loop equations on J^j now give a (potential) function g : ^ u { u } - > ' E L

which is well-defined by:

g^iU)) == °. §W == ̂

g(v) == S^ g H x* I ^(x? ^,» °) I whenever H C { 1, . . . , m } and
8 ^GH^g11 ^(^ (̂  0)] e^ = [sgn ̂ ,/X, ̂ ,, 0)] (z/ - z^).

For each z e { 1, .. ., m }, the edge [sgn ^(X, ̂ ., 0)] e, may, by the vertex equations,

be extended to a path of the above form with boundary u — w^. Since g is increasing

along the vertices of this path,

| \ x^\ \LC^ 0)] ^ \L whenever X e (0, oo)^ and (JL e R.

This implies (4) because ^(X, ̂ ., 0) == S^^^(X, pi^,., 0). After changing loop bases

as described above, we obtain (1) from (3), (4), and superposition.

To establish (2) we use (1) and superposition to reduce to the case [L = 0. Since

\x^{\ 0, 1) is homogeneous of degree 1 in X, it suffices to prove that

a
(5) sup^ e Q ̂  [\ ̂  (^ 0, 1)] < oo

where Q = { \ e (0, oo)^1: | X | == 1 } and i, k e { 1, 2, ..., m }. Note that, for each

such z, A, Cramer's rule implies that, on (0, oo)"1,

(6) ^(X, 0, 1) = [A^) \ + B?(X)]/[C?(X) X, + D^(X)]

where the A^, B^, C ,̂ D^ are polynomials that do not depend on \. Here the deno-

minator d^(\) is the determinant of the coefficient matrix of (0)^ o i. We show that

rf^ is bounded away from zero on Glos Q by induction on m. The case m = 1 being

trivial, we assume this is true for m — 1, but (for contradiction) not true for m. Since

d^ is clearly nonzero and continuous on Q, there would then be a sequence T^ on Q^
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approaching a point X° e Clos Q^ Q with lim^^^, ^(^3?) = 0. Then X^ = 0 for some

h e { 1, ..., m}. Let Jf^ be the oriented graph obtained from jf by collapsing the

edge e^ to a single vertex v^= w^. Then a corresponding m — 1 by w — 1 linear system

for Jf^ is obtained from (0)^ g ^ by eliminating the one variable ^ and replacing the

vertex equations for v^ and w^ by the sum of these two equations (with ^ = w^. Then

evaluating the determinant ^(7^) by expanding on the A-th column, we readily verify

that ± d^V) is precisely the determinant of the coefficient matrix for the new system

associated with Jf\ By induction this determinant is nonzero. This contradiction esta-

blishes the positive lower bound of \d^\ on Q.

Differentiating (6) and using this lower bound now gives (5). D

4.5. Variation of the Green function. — Suppose ^ is as in § 2 and satisfies 2.1 (5)

with the set A as above. Repeating the discussion of§3 and 4.1 with A and 11 replaced

by ({/(A) and ^ o II, we obtain another plumbing metric and corresponding Green func-

tion Gft on ̂  r^ [co} (which is harmonic with respect to the new conformal structure
induced by ^ o II).

Theorem. — One has | G — G^ [ < No whenever [^\ < 1/4, for some finite number No
depending only on k and t (but not on A, r, ̂ , co, or ^ ) .

Proof. — The corresponding Swiss cheese decompositions discussed in 2.1 (5)

pullback via 11 and ^ o II to corresponding partitions of JK ^ {co }. The corresponding

oriented graphs Jf and JT^ are homeomorphic.

We wish to use 4.3 (8) (9) to approximately describe G and G^. For this, we

may choose corresponding paths a and oft and (B and ^ with coefficients a, = a^ and

(^ = (3^ in { -- 1, 0, 1 }. From 2.1 (3) (4) and 3 (5) we readily compare the correspon-
ding lengths

| \ - ̂  | ̂  8[̂ ] whenever [^} ̂  1/4.

Next, for any loop t^ as in 4.4, we let

^ == sr^^\xo ^ = sr̂ ,,̂ ,
and infer from 4.3 (7) that

I ^1 ̂  I ̂ i^[\ Xi ~ .?v, - ̂ w,] I + I S?Li^v, - gwil I ^ 2mGi + 0,

and similarly that | ^ | ^ 2mC^. Letting

^ - (^ ..., \), ^ = M, ..., ̂ ), (x = (^, . . . , (.J,

^=(^...,^),

we use 4.3 (5) (6) and the Circuit Lemma 4.4 to deduce that

(Xi, • • . , Xj = ̂  ̂  1), (X?, ..., it) = ^(^, ̂  1), and

(1) I \X< - ̂ X? I < CaCI ^ - ̂  | + | pt | + | ̂  D^ 03(8^] +4mGi) ^.

17
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Moreover, since each R,, for j = 1, ..., n, is a right circular cylinder with respect to

either metric, the corresponding axial distance functions are proportional; in particular,

(2) sup^.l^Li-xW == |^~^|< G3(8[+] + 4mGi) n.

Finally, a computation similar to that of§ 3(5) shows that, on the infinite cylinder Rg,

(3) I Lo - U I < 6[^].

Noting that /o = 1 = ̂ , we may now combine (1), (2), and (3) with our approximate

formulas 4.3 (8) (9) to complete the proof. D

5. Stratification via corank 1 projection

5.1. Definitions. — A holomorphic submanifold S of CP" which occurs as a con-

nected component of the difference of two subvarieties of CP" is here called an (alge-

braic) stratum. In this case Clos S is an irreducible subvariety and Fron S = Glos S ̂  S

is a subvariety of lower dimension. A finite partition <$^ofa subvariety ofCP" into strata
is here called an (algebraic) stratification if

S C Fron ̂  whenever S e ̂ , 'S e y, and So Fron § =(= 0.

A stronger notion is that of a localizable stratification y\ here

S n U C Fron G whenever S e y^ U is open, G is a component of § n U

for some 'S e < ,̂ S n U is connected, and S n U n Fron G + 0.

A stratification y is compatible with a family 2K of sets if

S C Z whenever S e y, Z e ^T, and S n Z =(= 0.

Any A-dimensional subvariety Z of CP" contains a lower dimensional (singular) sub-

variety S(Z) consisting of points near which Z fails to be a A-dimensional holomorphic

submanifold. Moreover, for any holomorphic map q : Z -> CP
76 having finite fibers,

the set

S(Z, q) = Glos{ z e Z ̂  S(Z) : rankC? | ZJ {z) < k }

is also a subvariety of dimension less than k.

5.2. Lemma. — For any finite family 2£ of subvarieties of CP^* and any holomorphic map q

of a neighborhood of X = \^2 into CP"-1, there exists a stratification 3i of X compatible

with S such that:

(1) { q{R) : R e39} is a stratification of ?(X), and q \ R is a proper holomorphic immersion

for each R e St.

(2) For any localizable stratification ̂  of y(X) compatible with { y(R) : R e S9}, the family y

of components of X n ̂ (T), for T e r, is a localizable stratification of X compatible

with ̂ , and q \ S is a proper holomorphic immersion with q(S] e ̂  for each S e y.
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Proof of (1 ) . — We use induction on k = dim X. In case k == 0, X is finite, and (1) is
trivial. For k > 0, the set

W = X n (r'CS^X)] u y[S(X) u S(X, y) u U { Z e ££ : dim Z < k }]J

is a subvariety ofCP'1 with dim W < k. Letting S be the family of components ofX^W,
we apply induction with 3£ replaced by

^ = { W } u { W n Z : Z e^r}u{FronQ:Qej2}

to obtain a suitable stratification of W = U^. Using the rank theorem, we readily
verify, as in [HI], that Si == ̂  u S satisfies (1).

Proof of (2 ) . — Here we use the rank theorem and find that the main difficulty

is showing that the partition y of strata satisfies the local frontier property of 5.1. It

comes down to proving that, for S, U, G, and S as in 5.1, the set S n U n Fron G is
open (as well as closed) relative to the connected set S n U.

To show this, we suppose z e S n U n Fron G and choose neighborhoods Q
of z in U and A of q{z) in q{0.) so that

q \ S n Q is injective, Q. n X n q'^S n 0.)] == S n D,

y(S) n A is connected, X n (Bdry Q) n y-^A) = 0,

and y(D) == y(S) nA where D = S n Q n y-^A). For any component E of G n D n y-^A)

with z e Fron E, y(E) is a component of q(S) n A with q{z) e Fron y(E). Thus

y(D) =y(S) nACFrony(E)

by the localizability of .̂ Since q \ D is injective and since

q{D) ny[(GlosE)-D] =0,

we see that

q(D n Clos E) = y(D) n y(Clos E) == y(D) n Clos q{E) = y(D),

D n Glos E = D, DC Clos E, and

S n Q n q-
1 (A) == D C S n U n [(Clos E) /^ G] C S n U n Fron C.

Thus S n U n Fron G is open relative to S n U. Q

5.3. Jactation for CP". — For any k dimensional subspace P ofCP",

P-^^^: (^°; ...;^) eCPn:z.w=^,ziwi=0 for all w e P }

is a well-defined n — k — 1 dimensional subspace of CP"*.

For any point c = (c0; . . . ; ^n) e CP^ the (corank 1) projection

q , : C P
n

^ { c } - > { c }
l

is well-defined by q,{z) = O0 — | c \~
2
{z.c) c

0
; ...; ^ — \ c \~

2
(z.c) 0.
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5.4. Theorem. — For any finite family S of proper subvarieties of CP", there exist sub-

varieties

0 = X_iC XoC XiC ... C X^ = CP"

and orthogonal points CQ,C^ ....^eCP" with associated subspaces

^—{^i}1^... n{^}1

flnrf projections

^^...o^CP^P^P,

yor j = 0, ..., n —- 1, such that

y = { components of^ ̂  X^_i : A == 0, ..., w }

t^ fl stratification of CP" compatible with 2K and. such that, for each i e { 0, ..., n} and

j e{ i, i + 1, ..., n — 1 }, X, is purely i-dimensional, X< n P -̂ = 0, j&J X^ ̂  X^_i u

a holomorphic immersion^ and

y, == { components of̂ ,(X,) -^,(X,_,) : ^ = 0, .. .j}

=={^(S):Se^,dimS^j}

is a stratification of ̂ .(X^).

Proo/l — We choose,

first, a purely % — 1 dimensional subvariety Y^ containing U^,

second, a point ^eCP^^/^Y^, and

third, a stratification ̂  of Y^ satisfying the conclusions of 5.2 (1)

with S, X, q replaced by ^ u{Y^}, Y^, $^.

Having chosen Y^,Y^_i , .. .,Y^i,^, • • • , ^+1 , and ^, ...,^^.1, by down-
ward induction, we choose,

first, a purely {i — 1)-dimensional subvariety Y< of P^ containing U^ where

^< = { ?^(Glos R) : R e ̂ +i, dim R < i - 1 },

second, a point ^ e P, ̂  Y,, and

third, a stratification ,̂ ofY^ satisfying the conclusions of 5.2 (1)

with S, X, q replaced by ^u{Y,},Y,,^..

Having obtained c^ . . . 3^+1 , and Y^, ..., Y^ = { ̂  }, we use upward induction
starting with y^ = { { CQ }} to define

^ = { components of Y< n ^(S) : S e <S^_i }

for i = 1, 2, ..., n. Then, X^ == U { Clos S : S e ̂ , dim S < i} is purely z-dimensional

because X^__i = Y^, and, for z = 0, ..., n •— 2,

X< == Y^ n ̂ ^Y^., n y^C... ?^(Y^,) .. J),
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each Y,. is purely (j — 1)-dimensional, and each fiber q^^ } n Y^ is finite for y e Y^_i.
Also

^ = { components of X, ̂  X,_i: i = 0, ..., n — 1 },

and the conclusions of the theorem now follow by repeated use of 5.2 (2). D

6. Local triviality and the Whitney conjecture

6.1. Theorem. — With the subvarieties, projections, and the stratification y obtained

in Theorem 5.5, there exist, for any j e { 1, ..., n — 1 } and point a ej&,(X^) ^/^(X^_i),

a relatively open ball U in P^ centered at a and a homeomorphism

0:U XpT^a}^?^)

so that, for each u e U and v ^ p j 1 { a },

(1) ^oO(M,zO =y,

(2) $CU X (S r\p^{ a }))C S for S e y,

(3) 0(U X {v } ) is a holomorphic disk which p^ maps biholomorphically onto U, and

(4) lim,,̂  4>(M, y) == w for w e P^-.

Proq/'. — Since j & ^ _ i | X^_i ̂  X^_g is a proper holomorphic covering map,
the casej = n — 1 is easily treated. We assume that^< n — 2. Let

V^Glos^^^^-^^uP^.

In a manner analogous with the proof of [H2, § 4], we will obtain 0 as <!>„ where, for
i ==j + I? J + 2, ..., n, balls U< in P,. centered at a and maps $^ are obtained by
increasing induction on i to satisfy the theorem with

y and V replaced by ̂  and V, = V n P<,

and to satisfy the commutativity

(5) ?«o<D^,.) ==<I><-iC^y<(-D where ?i=^|Pi-{^}.

To start the induction, note that V^ = { a}, let U^ be any ball in P,^,(X,_i)
centered at a, and define O/M, a) = u for M 6 U^.

Assuming now that i ^ j + 1, we observe that the inductive definition of 0^
from 0<_i reduces, by (5), to determining, for u eP^ near a and j eV^_i, a suitable
map between the two complex lines

q^{y} and q^{ 0^i(^)}

in P^. Let Y, be as in the proof of 5.4 so that

Y, =A(X<_.i) = U { S e y,: dim S < i - 1 }.

Since

(6) ^ | Y^/^y^^Y^i) is a finite-sheeted holomorphic covering map,
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a bijection between the finite sets

Yi^i"1^} and Y, n ̂ (^i-i^)} for y eV,_i - Y<_i

is uniquely determined by condition (2) (with e97 replaced by «$^) as follows:

(7) For x e Y, n q^~
1
 [y }, choose S e <$^ with A? e S and any curve ^ from a

to u in U,_i. Then O,(M, x) is the endpoint of the unique curve in S which

begins at x and which is the lift under ^ | S of the curve ^-iC^-),^)).

To extend this bijection to the rest of the two complex lines q^
1
^} and

9^~
l
{^i-l{

u
^)})

 we w1!1 use the modified Whitney interpolation of 2.2. As discussed
in 2.2, these interpolating maps give rise to interpolating maps also for points y in the

" discriminant set " Y,_i n V,_i. Finally putting together all of these maps of lines,
for all such u andj/, we obtain the full map 0,.

The main difficulty here is verifying, for u sufficiently close to a, the necessary

uniform (independent ofy) estimate [A(6, d) < 1/8^ — 1)] on the relative positions of

these finite subsets. In suitable local coordinates the quantity A(&, d) is here estimated

by studying a multiple-valued holomorphic function F^ ̂  obtained from the difference

of two branches of Y, which lie over the complex line

yr-1!^} for wep,_i ^p^{u}.

To show that the ratio ofF^ and F^, evaluated at corresponding points, approaches

one uniformly (independent of w) as u approaches a, we study the difference of the expres-
sions log [ F^y, | and log | F^ ̂  | evaluated on an appropriate branched cover of the

disk. After subtracting off uniformly bounded harmonic functions, the latter functions

become integral combinations of the Green functions studied in § 4. By the bound

of 4.5, the difference of corresponding Green functions is uniformly bounded. Thus the

ratios in question, viewed as functions of u alone, form a normal family of holomorphic
functions, and the proof is easily completed.

We now argue in more detail. To use the affine constructions o f § 2 and § 4, we

need to describe two suitable maps, (JL and v, into C which correspond roughly to the

" (^ -— l)-st and z-th coordinate functions ".By simply using a local holomorphic coor-

dinate system near a, we could obtain a trivializing map defined locally near a. However

to obtain a trivializing map that is defined globally in CP"* with respect to the fiber

variable, we use the more technical definitions of (JL and v given below.
First note that

w=
 ̂ e^dosp^{u}==p^{\3,_,) uPf,

and that there is, by induction, a retraction p : W n P,_^ ->-V,_i such that

PE^-iM] = = ^ for {u,v) eU_i XpT^a}.

Changing coordinates, we may assume that

^ o = ( l ; 0 ; 0 ; . . . ;0) , .... ^=(0 ;0 ; . . . ;0;1).
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Choose continuous functions K^ : P,_i -> [0, 1] for h =. 0, 1, ..., i — 1 so that

K^ =. 1 near ^ and K^ = 0 near ^ for A + h.

Moreover, we may insist that

(8) ^ - i ^ O and ^^^^Pi-i for A == 0, 1, ..., i - 2
on 0/GP,_i:dist(j^_J> idist(^_,,Y,_i)}.

With the normalized weighting functions \j = K^./S^^ K^, we now define

P'00 -V^/S^o ̂ [p(j/)]y for y e W n P<_, and

v(^) = ̂ /S^ Vp[^)]J ̂  for ^ e W n P,- { .,},

and observe that each restriction

[
L
\9i~-

l
l{

w
} f o r w e W n P , _ 2 and ^ \ q ^ '

l
{ y } f o r ^ e W n P , _ i

is a biholomorphic map onto C; let

^C-^r-1!^} and P^C-^-1^}

denote the corresponding inverse functions.

Let I denote the multiplicity of the covering ^ [ Y^ ̂  9^~
l
{^

r
i-l)

 so ^^ ^or eac!1

J £V^_i /^Y,_i , v(Y^ n ?4'l{^}) is a set of ^ distinct complex numbers, say

^(Y, n q^{y}) ={ ̂ (j.), . . .,^00}.

Using (6), let

^j0 = 4 ,̂ PJ^(^)]3] for j == 1, ..., I ;

in particular, ^(fl.j) = b^y). Letting b = (&i, ..., ^) and d = (rfi, ..., ̂ ), our
main goal now is to prove, for t ̂  2, a uniform estimate (see 2.2)

(9) AC&(jO,^,jO^NodistM

for all y eV,_i^Y,_i and ^ eP, with dist(M, a) ^ No'1. (The constants No, ..., Ng

used below will only depend on the original varieties XQ, ..., X^.)

Since, by pure dimensionality, Y^ == Clos[Y^^ ̂ (Y^i)], Rouch^'s Theorem

implies the continuity of the points with multiplicities of Y, n ̂ "^ . } on all of V,_r

From the estimate (9) [or 2.2 (3) in case t = 1J, we may use 2.2 to obtain the inter-

polating bilipschitz homeomorphism

^b(v),d(u,v) ; C ->C

foral l j /eV,_i . Then a suitable map 0, would be obtained by choosing U^ to be a

small neighborhood of a in P, and letting

(10) 0^ ̂  = Po,_,^, ̂ .,(,)] o Y^-^)]. d[«, p,_i(.)] o <^

for (u,v) GU, X V^.

To prove estimate (9), we now assume 1^2 and note, by (6), that (9) clearly

holds uniformly for dist(«, a) ^ N^'1 and y e V^_i ^-/ Q where

Q ={j/ eV,_i: dist(j/, c,_i) > idist(^_i, Y,_i)}.
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To prove (9) for points y e Q, we will use the Green function estimate 4.5. First observe
that

9u,w == ^o^i-i^ •) oa^ , :C ->C

is a bilipschitz map satisfying an estimate

KJ^ Ngdist^a)

whenever w eV^, ^ eP,, and dist(^, fl) ^ N^. Consider the finite set

A^^CYi-in^iW;!

of complex numbers and choose r > 4?^ so that

^B )̂) n Q == 0.

We wish to apply the discussion of § 4 to the finite set ^ y,(AJ. Unfortunately

Vu,wCB,.(^)) "^y not be exactly a disk whose center is the center of mass of the
set 9«,w(AJ. Nevertheless to obtain (9) for points y e ̂  we are free to modify y^^

outside of B^(^J. Accordingly we use (10) and 2.1 (2) (5) to choose a bilipschitz
map ^^:C ->C with

kw I ̂ (^J =E 9^.w I Kr^Aj. Ikwl < N3 dist(^ a), and

kwEB^A,)] = "^J^^A,)) for some j^ > 4p^^^

whenever w eV^^i, ^ eP^., and dist(t<, a) < N^1.

For any weV,.^ and ;? eB,(^) ^A^,, we may choose &[a^(<?)] as above

and any pair h, k of integers with 1 < h < k < t, and then analytically continue the
expression

^K(^)] - ̂ K(O]

over B,.(^) ̂  A^ to give a bounded continuous multiple-valued function. This is

holomorphic because the only non-analytic terms are the weight functions iq, ..., ic^_i
which are, by (8), constant on a^[By(^)].

On an appropriate branched cover

n,:^->B^j

(^ — ^) ° ^w ° t1^ becomes single-valued. We may construct II^, so that it has at
most ^ sheets and has branch set in II^AJ. For estimate (9) we want to consider
the corresponding difference function

^.w = D4(^ •) - <4(^ •)] o ^.a^w) ° rL-
Establishing (9) now reduces to showing that, for any such choice of b, h, and k,

(11) l l -^ .W^WKN^dis t^a)

whenever w eV<_2, x e^?^, M eP,., and dist(^, a) < No"1.

Let ^y ^ denote the set Jl^ equipped with the conformal structure that makes

^ ^ o 11̂ , holomorphic. Also we give ̂  ^ the plumbing metric of § 3 with II replaced
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by ^^oll^, . Since the function Fy ̂  is holomorphic on ^^^, Rouchd's theorem

implies that both the zero set

F^o^n^Aj

and the order of vanishing n^ of F^ ^ at any zero <o are independent of u near fl. Thus
we may write

(12) - log | F^J = H,,, + S -̂î  ̂  G,,^

where H^w
 ls harmonic on ^^y, and, for each <o e Fj^{ 0 }, the function Gy ^ ^ is a

Green function on e^ ,̂ /^ { c>) } as in § 4. Moreover,

(13) Ng'1 ̂  H^ «, ̂  N5 whenever w e V,_2, ^ e P,, and dist(M, a) < N^"1,

by the maximum principle and the definition of Fy ^ because the set

{dist^.^^yeX.ny,-1^}, ^ + ?, ̂  e a ,̂̂ B,(̂ )]J, ^eV,_i,

^ eP,, dist(M,fl) < N2~1}

is bounded above and below.

Combining (12) and (13) with the Green function estimate 4.5, we deduce the

bound

1 I»,«(») I ^ N. where I,» = ̂ ^{x).F^{x)

for ^eV,_2 , x e^lf^y u e ' P j , and dist(^, a) < Ng"1. For each such w, x, the func-

tion ly,^ is a holomorphic function on { u e P^.: dist(^, a) < Ng"1} by (10), (6), and

(the inductively-verified) holomorphic nature of ^-i^jO for j/ e V,_^. Moreover,

(14) lim^I,,^)==l.

The family
{I^:weV^_2,^e^,,}

of holomorphic functions, being uniformly bounded by Ng, becomes equi-Lipschitzian

when restricted to compact subdomains. Thus the convergence in (14) is uniform, and

we finally obtain (11) and hence (9). This, along with 2.2, shows that the expres-

sion (10) defines a homeomorphism satisfying (1) (with y and V replaced by e$^

and V,).

Noting that the weight functions KQ, . . . ,K ,_ i are constant for fixed w and Xy

we see that expression (10) along with 2.2 (2) and induction also implies the holomorphic

property (3). Finally property (4) follows from 2.2, and (2) is guaranteed by (7). Q
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