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Variation Over Time of the Effects of Prognostic Factors in a Population-
based Study of Colon Cancer: Comparison of Statistical Models

Catherine Quantin,1 Michal Abrahamowicz,2-34 Thierry Moreau,3 Gillian Bartlett,2 Todd MacKenzie,5 Mohammed
Adnane Tazi,6 Luc Lalonde,7 and Jean Faivre,8

The authors compare the performance of different regression models for censored survival data in modeling
the impact of prognostic factors on all-cause mortality in colon cancer. The data were for 1,951 patients, who
were diagnosed in 1977-1991, recorded by the Registry of Digestive Tumors of Cote d'Or, France, and followed
for up to 15 years. Models include the Cox proportional hazards model and its three generalizations that allow
for hazard ratio to change over time: 1) the piecewise model where hazard ratio is a step function; 2) the model
with interaction between a predictor and a parametric function of time; and 3) the non-parametric regression
spline model. Results illustrate the importance of accounting for non-proportionality of hazards, and some
advantages of flexible non-parametric modeling of time-dependent effects. The authors provide empirical
evidence for the dependence of the results of piecewise and parametric models on arbitrary a priori choices,
regarding the number of time intervals and specific parametric function, which may lead to biased estimates and
low statistical power. The authors demonstrate that a single, a priori selected spline model recovers a variety of
patterns of changes in hazard ratio and fits better than other models, especially when the changes are non-
monotonic, as in the case of cancer stages. Am J Epidemiol 1999; 150:1188-1200.
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The Cox proportional hazards (PH) model (1) is the
basic tool for analyzing censored survival data. The
underlying assumption is that the hazard ratio associ-
ated with a given predictor is constant over the entire
follow-up period. In practice, the Cox PH model is
often selected a priori and is the only regression
method employed. However, if the impact of a predic-
tor on hazard changes during follow-up, the PH model
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may produce biased results (2). Several tests have been
proposed to check the PH assumption (3) but they are
seldom used. A review of survival analyses in cancer
journals by Altaian et al. (4) showed that only two out
of 43 articles that used multivariable Cox model veri-
fied the assumptions. One reason is that after having
rejected the PH hypothesis it may not be apparent how
to remodel the predictor's effect.

The standard method for modeling the effect of a
predictor that violates the PH assumption is to include
a time-dependent covariate representing an interaction
between the predictor and a parametric function of
follow-up time fit), the shape of which represents the
changes in hazard ratio (HR) during follow-up (1). If
available substantive knowledge makes this choice
difficult, two alternative approaches are possible: 1)
restricting a priori Jit) to a single arbitrarily selected
parametric function; or 2) estimating several different
functions and selecting a posteriori the one that fits
the best. In the Results section, we present empirical
evidence of the difficulties incurred by each approach.

Another method was proposed by Moreau et al. (5),
who fit a piecewise PH model. HR becomes a step
function that is constant within each a priori deter-
mined time interval but varies between intervals. The
resulting estimates are un-smooth and the impact of
the number of intervals is not obvious.
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To avoid these difficulties, in the 1990s several
authors developed non-parametric methods for model-
ing time-dependent HR as a smooth flexible function of
time (6-11). All of these methods share the ability to
select the shape of the HR function directly from the
data, without imposing strict a priori assumptions typi-
cal of parametric models. Simulations indicate that
non-parametric models yield practically unbiased esti-
mates of a broad range of HR functions (6, 7).
However, some of the more flexible models do not
allow for accurate inference (10). Moreover, increasing
flexibility raises concerns about over-fitting bias (12).
In this context, a relatively parsimonious regression
spline model, recently proposed by Abrahamowicz et
al. (6) seems to offer a reasonable compromise between
modeling flexibility and the accuracy of inference, as
demonstrated in simulations.

The ability of non-parametric time-dependent mod-
els to offer new insights into real data remains yet to be
evaluated, especially when several predictors have to
be investigated. In the present study, we use the exam-
ple of predictors of mortality in colon cancer to assess
the performance of different models in the univariate
and multivariable analyses of a large cohort followed
for several years. Following the Occam's razor princi-
ple, we first focus on testing the PH hypothesis, and
accept a more complex time-dependent model only if
this hypothesis is rejected. Indeed, simulations indicate
that if the improvement in fit due to a time-dependent
model is statistically nonsignificant, then there is an
increased risk that the estimate of pattern of changes is
biased (6). Next, we compare the results of different
models for non-proportional hazards and explain the
observed differences in terms of the underlying
assumptions.

MATERIALS AND METHODS

Data source

We analyzed survival data for 1,951 patients, repre-
senting all cases of colon cancer diagnosed among the
residents of Cote d'Or region in France between 1977
and 1991. Demographic and clinical data were
obtained through medical files and recorded in the
Registry of Digestive Tumors of Cote d'Or.
Information on vital status and date of death was
obtained regularly through administrative and medical
sources, town hall and medical files, until December
31, 1994 when the follow-up was terminated.

Definition of prognostic variables

Our analyses focused on the predictive ability of
several categorical variables evaluated at the time of

colon cancer diagnosis. Demographics included
patients' age, dichotomized at 65 years, sex and resi-
dence (urban vs. rural). Date of diagnosis was cat-
egorized into three 5-year periods: 1977-1981,
1982-1986, and 1987-1991. Tumor site was coded
according to the 9th revision of the International
Classification of Diseases for Oncology and merged
into two classes: right and left colon. We combined
information about the cancer stage at diagnosis (13)
and the type of treatment (curative surgery vs. pallia-
tive treatment). In patients who had neither surgery nor
evidence of distant metastasis, we designated the
tumors as "Dukes unclassified." Therefore, the com-
bined stage variable had four categories: 1, Dukes A
tumors; 2, Dukes B tumors; 3, Dukes C resected for
potential cure, designated as "C curative"; 4, Dukes C
with palliative treatment, metastatic, or unclassified
tumors (so-called U) designated as C palliative, D, U.

Statistical modeling

In all survival analyses, time-to-event was defined
as time to death of any cause. Time 0 corresponded to
the colon cancer diagnosis. Patients were censored
when lost to follow-up or on December 31, 1994.

Cox proportional hazards model

In the Cox PH model (1), the hazard at time t, asso-
ciated with the specific valuesxx,...jckofkcovariates,
Xu...JCk, is defined as:

(1)

where X^t) is an unspecified baseline hazard function at
time t, i.e., the hazard corresponding to JC, = ,..., = xk —
0, and Pj is a log HR that represents the effect of covari-
ate Xj on the logarithm of the hazard. The hypothesis of
no association of k > 1 variables with survival is tested by
likelihood ratio test (LRT) with k degrees of freedom

Piecewise PH model

The piecewise PH model (5) incorporates non-
proportional hazards in the Cox model by represent-
ing HR as a step function of time. HR is constant
within each of r pre-specified time intervals but
varies between the intervals. Within the z'th interval
(i = l,..,r), the hazard is expressed by:

+ yu)xj], (2)

where y^ = 0. The log HR equals py in the first inter-
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val and (p, + Y,y) in the subsequent intervals i = 2,...,r.
The PH model (model 1) becomes a special case of the
piecewise model (model 2), corresponding to y2 =
... = yr = 0. For a set of k > 1 variables, the PH
hypothesis is tested by LRT with k{r - 1) d.f.

Our piecewise analyses were limited to univariate
models with two and four intervals, delimited, respec-
tively, by the median and the quartiles of the sample
distribution of uncensored survival times. In the multi-
variable analyses, the algorithm for maximum partial
likelihood estimation of the piecewise model failed to
converge with both two and four intervals. These non-
convergence problems resulted probably from the dif-
ficulty in estimating the adjusted hazard ratios for
some high-risk subgroups, such as cancer stage 4, in
the last time interval, because almost all patients in
these subgroups have died in the earlier intervals.

Parametric time-by-covariate interactions.

In his original paper, Cox (1) proposed to represent
time-dependent effects by including in the PH model an
interaction between the covariate Xj and a pre-specified
parametric function f}{t):

(3)

where, for covariate Xj, log HR equals |3y at time t = 0
and equals P, + yjf,{t) at t > 0. The conventional PH
model corresponds to y{ = ... = yk = 0 and, for k > 1
variables, its validity is tested by LRT with k d.f.
Model 3 can be estimated as a PH model with artificial
time-dependent covariate(s) Z;{t) = Xjfft).

Because we had no substantive grounds to selector)
a priori, in univariate analyses four different functions
were estimated for each prognostic factor: linear (t),
logarithmic (ln(r)), quadratic (r2) and inverse {lit).

In the multivariable analyses, four "homogeneous"
versions of model 3 were specified a priori. Each of
these models represented time-dependent effects of all
prognostic factors by one of the four functions listed
above. The fifth model, labeled "optimal," was speci-
fied a posteriori and was "heterogeneous" as the effect
of each factor was represented by the function that fit-
ted best in the corresponding univariate analysis.

Regression spline model

In the non-parametric regression spline model (6):

(4)

the log HR becomes a smooth function of time p/r) and
is approximated by a linear combination of piecewise

quadratic polynomials known as B-splines (14, 15). The
shape of p^O is estimated directly from empirical data,
eliminating restrictive a priori assumptions and the need
to select the best fitting model a posteriori (16, 17).

Flexibility is controlled by d.f, selected depending
on sample size and expected complexity of the HR
functions to be estimated (6). For large samples, a 5
d.f. model, consisting of three quadratic polynomial
pieces, is recommended (6). The 1 d.f. PH model
(model 1) is a special case of the spline model (model
4), corresponding to $£f) = p\. Thus, for a set of k ^ 1
variables, the PH hypothesis is tested by LRT with 4k
d.f. The precision of the estimate at time t is assessed
by pointwise confidence intervals (6).

Data analytical procedures

In univariate analyses, unadjusted effects of all prog-
nostic factors were estimated mainly to compare prop-
erties of different models. However, because of the
risks of confounding bias, these univariate results were
not considered a reliable basis for the decisions regard-
ing multivariable modeling. Thus, in the initial multi-
variable model, all prognostic factors were included and
represented by time-dependent effects. Next, all effects
that were not statistically significant at the 0.05 level
were removed. In the following, "(non)significant"
stands for "statistically (non)significant at the 0.05 sig-
nificance level." Significance of p dummy variables
related to a multi-categorical factor was jointly assessed
by the global p d.f. LRT test. Because the null hypothe-
sis (log HR = 0) is a special case of the PH hypothesis
(log HR = P), the rejection of the latter indicates that
the predictor has a significant effect on survival (6). In
the final model, HR associated with each selected vari-
able was represented as either time-dependent or con-
stant, depending on whether the PH hypothesis was
rejected. To facilitate comparisons between models, no
interactions between covariates were considered.

Akaike Information Criterion (AIC) (18) was
employed to compare the goodness-of-fit of different
models, while accounting for the differences in d.f.
Lower AIC values indicate better fit. If a more com-
plex of the two models yields lower AIC, then the
worse fit of the simpler model is likely due to under-fit
bias (19). In the opposite case, a visual comparison of
the estimates may help in assessing to what extent the
more complex model over-fits (19). In general, differ-
ences in AIC below 4.0 may be considered as "minor"
and differences above 10.0 as "important."

Software

The Cox PH model (model 1), the piecewise model
(model 2), and the parametric interactions (model 3)
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were implemented using the BMDP program 2L (20).
The spline model 4 (model 4) was estimated using a cus-
tomized software in C (6), available from the authors.

RESULTS

Conventional analyses

There were 1,514 deaths among 1,951 patients fol-
lowed for up to 15 years, with the median survival time
of 22 months. Table 1 shows the distributions of prog-
nostic factors and the results of univariate and multi-
variable Cox model analyses. Almost all effects are
statistically very significant. Given the large number
of deaths, the power is of no concern and all non-
significant predictors are likely to be dismissed as def-
initely irrelevant. For example, patients diagnosed in
the first period (1977-1981) and the second period
(1982-1986) seem to have the same risks of mortality
(p = 0.953 in table 1). However, the validity of this
conclusion relies on the PH assumption.

Figures 1 and 2 show the Kaplan-Meier (21) survival
curves for three periods of diagnosis and four cancer
stages, respectively. In epidemiologic studies, the deci-

sion to accept the PH hypothesis often depends on
whether these curves cross each other. However, very
high initial mortality makes it difficult to separate curves
in figure 1. Moreover, while the curves for the two first
periods seem to cross twice, it is not clear if this depar-
ture from the PH assumption is statistically significant.

By contrast, stage-specific curves in figure 2 are
well separated, suggesting the PH assumption is met.

Univariate time-dependent analyses

Table 2 presents univariate tests of the PH hypothe-
sis. Rows correspond to different prognostic factors
and columns to different models. Table 3 compares
goodness-of-fit of different models. For each factor,
the best fitting model (minimum AIC) is identified by
"-". For other models in the same row, the difference
from the minimum AIC is reported, with lower values
indicating better fit.

Piecewise models

P values in the first two columns of table 2 show that
using both two- and four-intervals models, the PH

TABLE 1. Univariate and multlvariable Cox proportional hazards analyses In a population-based study
of 1,951 French colon cancer patients, 1977-1991

Predictor

Age (years)
<65
£65

Residence
Urban
Rural

Sex
Female
Male

Stage
1
2
3
4

Time period
1977-1981
1982-1986
1986-1991

Site
Left
Right

No.
of

patients

496
1,455

1,221
730

968
983

296
644
387
624

578
653
720

1,134
817

Hazards
ratio

1.00f
1.60

i.oot
1.18

100t
1.06

i.oot
1.64
2.55
7.69

i.oot
0.91
0.73

i.oot
1.25

Univariate analysis

95% Cl*

1.41, 1.81

1.07, 1.31

0.95, 1.17

1.36, 1.98
2.10,3.11
6.37, 9.30

0.80,1.02
0.64, 0.83

1.13, 1.38

P
value

<0.001

0.002

0.293

<0.001
<0.001
<0.001

0.117
<0.001

<0.001

Hazards
ratio

1.00
1.65

1.00
1.03

1.17

1.00
1.50
2.51
7.50

1.00
1.00
0.82

1.00
1.20

Multivariable analysis

95% Cl*

1.45,1.87

0.93,1.14

1.06,1.30

1.24, 1.82
2.06, 3.06
6.19, 9.08

0.88, 1.13
0.72, 0.93

1.09, 1.34

P
value

<0.001

0.620

0.003

<0.001
<0.001
<0.001

0.953
0.002

<0.001

• Cl, confidence interval,
t Referent category.
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FIGURE 1. Kaplan-Meier survival curves for three periods of colon cancer diagnosis in a population-based study of 1,951 French colon cancer
patients: period 1 (1977-1981), period 2 (1982-1986), and period 3 (1987-1991). The estimated probability of survival is plotted against follow-
up time, measured in months. Period 3 curve ends at about 7 years (84 months) because the follow-up was terminated in December 1994.

assumption is definitely rejected for both period vari-
ables. Moreover, risks for patients enrolled in period 2,
compared with period 1, change significantly over
time according to all other models in table 2. Thus, the
conclusion of no difference in the survival between the
first and second periods, implied by the PH model
(table 1), is incorrect.

However, table 2 demonstrates also that some con-
clusions depend on the number of intervals. For age
and stage 4, the non-proportionality of hazards is very
significant with four intervals (p < 0.001), but not with
two intervals. Table 3 shows that the 4-interval model
fits these variables considerably better, suggesting
under-fit bias of the simpler model.

Parametric interactions

Columns 3-6 of tables 2 and 3 refer to interactions
between predictors and parametric functions of time. For
each prognostic factor, the "I" symbol in table 3 identi-
fies the best fitting of the four parametric models. Each
of the four models fits best the effect of at least one pre-

dictor but fits quite poorly in at least one other case. For
example, while the quadratic model is definitely supe-
rior to the inverse model for cancer stage, it is quite infe-
rior for period variables and both differences in AIC are
very important (above 40.0 and 20.0, respectively).
Thus, restricting parametric analyses of all predictors to
any single function would induce considerable bias in
some estimates. Moreover, while six variables have sig-
nificant time-dependent effects in at least one model,
this occurs in all four models only for period 2 (table 2).

In addition, even a significant estimate may be con-
siderably biased. For stage 3, the inverse (l/t) model
yields a significant result (table 2) and the estimate in
table 4 suggests that HR increases with increasing
follow-up time. However, the quadratic model, that
shows a significant decrease (tables 2 and 4), fits the
effects of stage much better (table 3). For cancer site,
the results are even more difficult to interpret.
Whereas three models are significant (table 2) and
the differences in their AIC values in table 3 are very
small, the corresponding estimates in table 4 show
opposite directions of changes.
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FIGURE 2. Kaplan-Meier survival curves for four cancer stages, determined at the time of colon cancer diagnosis in a population-based study
of 1,951 French colon cancer patients. The estimated probability of survival Is plotted against follow-up time, measured in months.

TABLE 2. Testing the proportional hazards model (PH) hypothesis for each predictor In a population-
based study of 1,951 French colon cancer patients, 1977-1991: p values based on unlvarlate models*

Predictor

Age

Residence

Sex

Stage (global)
1$
2
3
4

Time period (global)
1977-1981*
1982-1986
1986-1991

Site

Piecewise PH mode)

r f = 2

0.133

0.242

0.148

<0.001

0.932
0.217
0.061

0.002

0.002
0.002

0.005

r = 4

<0.001

0.268

0.264

<0.001

0.855
0.127

<0.001

0.002

0.014
<0.001

0.034

Time

0.027

0.127

0.055

<0.001

0.114
0.017

<0.001

0.008

0.004
0.034

0.012

Parametric interactions

Time1

0.001

0.420

0.124

<0.001

0.061
0.007

<0.001

0.048

0.014
0.494

0.039

In(Ume)

0.377

0.094

0.090

<0.001

0.624
0.888
0.008

<0.001

<0.001
<0.001

0.013

1/Hme

0.004

0.394

0.301

0.007

0.813
0.033
0.974

<0.001

<0.001
<0.001

0.171

Splines

<0.001

0.270

0.390

<0.001

0.200
<0.001
<0.001

<0.001

0.020
0.001

0.026

• p values for the test of the Ho of constant hazard ratio against H, of time-dependent hazard ratio obtained
with a corresponding model-based likelihood ratio test (see section on statistical modeling),

t r, number of intervals used,
i Referent category.
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TABLE 3. Goodness-of-ftt of univariate time-dependent models In a population-based study of 1,951
French colon cancer patients, 1977-1991: differences In Akaike Information Criterion (AlC) values*

Predictor

Age
Residence
Sex
Stage
Period
Site

Piecewise

4 = 2
(2df§)

20.0
1.6
1.6

69.8
13.2

-

PHt
r = 4
(4df)

5.0
3.0
3.6

25.4
9.6
3.0

Time
(2df)

17.4
0.6
-1

36.4
16.6
1.4

Parametric interactions

Time1

(2df)

11.61
2.2
1.2

32.01
20.2
3.4

In(time)
(2df)

21.6
-1
0.8

72.2
4.0
1.41

1/Ume
(2df)

13.8
2.2
2.6

78.6
-1
5.8

Splines
(5df)

-

5.0
7.0
-

3.4
4.8

• In each row, - indicates the best fitting model (minimum AlC). The numbers in the same row show the dif-
ference in AlC values between respective models and the "best" model with smaller numbers indicating better fit

t PH, proportional hazards model.
t r, number of intervals used.
§ df, degrees of freedom.
11ndicates the best fitting among four parametric Interaction models.

Regression spline modeling

P values in the rightmost column of table 2 indicate
that spline-based LRT detected a significant time-
dependent effect in all cases in which at least one other
test was significant. These results, based on a single a
priori selected model, provide unambiguous evidence
of significant changes in the impact of stage 3 and age,
for which simpler models yielded discrepant results.
The PH hypothesis is definitely rejected for cancer
stage (p < 0.001 for the global test in table 2), even

though the four stage-specific curves in figure 2 are
well separated. Thus, the acceptance of the PH hypoth-
esis based on the visual assessment of Kaplan-Meier
curves may be risky and alternative graphical tech-
niques may be considered. Schemper (22) compared
different methods for assessing PH assumption and
found that Arjas cumulative hazards plots (23) per-
formed quite well.

The AJC values in table 3 show that for age and
stage the spline model fits the data considerably better
than any of the six simpler models. Thus, the flexibil-

TABLE 4. Unadjusted hazard ratio estimates for cancer stage 3 and site at selected times In a popula-
tion-based study of 1,951 French colon cancer patients, 1977-1991

Predictor
and model

Stage 3 vs. stage 1
CoxPH*
2 intervals
4 Intervals
Time
Time2

ln(time)t
1/time
Splines

Site (right vs. left)
CoxPH*
2 intervals
4 intervals
Time
Time*
ln(time)t
1/time
Splines

1
month

2.55
2.15
1.34
3.38
3.08

-
1.67
1.07

1.25
1.44
1.35
1.37
1.30
1.47

-
1.33

6
months

2.55
2.15
2.66
3.26
3.07

-
2.51
3.47

1.25
1.44
1.54
1.35
1.30
1.31

-
1.57

Time
1

year )

2.55
2.86
2.61
3.14
3.04

-
2.71
4.11

1.25
1.08
1.08
1.31
1.30
1.23

-
1.29

2
rears

2.55
2.86
2.61
2.87
2.91
-

2.83
123

.25

.08
1.08
1.25
1.31
.16
-

1.07

5
years

2.55
2.86
2.24
2.23
2.15

-
2.90
2.47

1.25
1.08
1.08
1.08
1.35
1.07

-
1.11

10
years

2.55
2.86
2.24
1.47
0.73

-
2.93
1.18

1.25
1.08
1.08
0.85
1.51
1.00

-
0.97

* PH, proportional hazards model.
t As the PH hypothesis was not rejected in this model (table 2), the time-dependent estimate should not be

interpreted.
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ity of the non-parametric model was necessary to
account for the complex changes in their effects. For
stage 3, the spline estimate in table 4 initially increases
and then decreases. Simple parametric models are
unable to represent such non-monotone changes and
each is locally biased, which explains why their esti-
mates diverge (table 4).

A similar pattern is seen in figure 3, which explores
the discrepancies between different estimates for stage
4. The constant PH model-based estimate considerably
underestimates early risks and overestimates later risks,
compared with most time-dependent estimates, that all
suggest very significant changes over time (table 2).
The bias is important as the 95 percent confidence
intervals (constant dotted lines in figure 3d) do not
overlap with the spline-based pointwise confidence
intervals (vertical bars), both around the early peak in
HR and near the end of follow-up. Interestingly, at 25

months, when the two point estimates are almost iden-
tical, the two confidence intervals are equally narrow,
suggesting similar precision. The spline model (solid
curve in figure 3d) offers a smooth representation of a
complex pattern of changes. By contrast, figure 3c
shows that parametric interaction models are unable to
recover the initial rise-and-fall phase of changes in HR.
Finally, the 2-interval piecewise model (figure 3a) fits
poorly because major changes occur within each of the
two intervals. Increasing the number of intervals to four
(figure 3b) reduces the bias, but yields a clinically
implausible estimate, with big "jumps."

For other variables, the differences in AIC between
the spline and the best-fitting among the simpler mod-
els reflect mostly the penalty for the additional d.f.'s
(table 3). Thus, for example, a (slight) non-monotonic-
ity of the non-parametric estimate for cancer site (table
4) may be due to overfitting.
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FIGURE 3. Comparison of unadjusted hazard ratio (HR) estimates for stage 4 (vs. stage 1) of colon cancer, obtained with different univariate
models. HR for all-causes mortality, associated with stage 4, is plotted against time since colon cancer diagnosis (in months). In panels a) and
b) dotted lines represent the constant HR estimate yielded by the conventional PH model and the solid lines represent piecewise PH estimates
with two and four time intervals, respectively. Panel c) shows estimates obtained with four parametric models of time-by-predictor interactions:
1, linear; 2, quadratic; 3, logarithmic; 4, inverse. Panel d) compares constant PH estimate (dotted line) and its 95% confidence limits (dashed
lines) with the 5 d.f. spline estimate (solid curve), for which pointwise 95% confidence intervals (vertical bars) are shown at selected points in
time.
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Multivariable time-dependent analyses

The second row of table 5 shows that, for each time-
dependent model, the global test rejected the PH
assumption, indicating a very significant improve-
ment in fit. Thus, the PH model fails to correctly rep-
resent the effects of prognostic factors on survival of
colon cancer patients. The top row of table 5 com-
pares the fit to data, in terms of AIC values, of multi-
variable time-dependent models. Each other row
shows the p values for testing time-dependence of a
particular variable, adjusted for time-dependent
effects of all other variables.

Multivariable parametric models

Table 5 shows that while the quadratic and linear
models provide much better overall fit to data than two
other "homogeneous" parametric models, none of the
four models fits well the effects of every prognostic
factor. Moreover, as in univariate analyses, the four
models disagree with respect to the significance of
time-dependent effects of particular variables. As
expected, the "optimal" model (fifth column) detects

all significant time-dependent effects and fits the data
considerably better. However, specific time-dependent
functions in the optimal model (e.g., quadratic, linear,
logarithmic, and inverse functions for, respectively,
age, sex, residence, and period) were selected a poste-
riori, in order to optimize the fit to our data. As in the
classic multiple testing context, this induces optimistic
bias (6, 24). The p values are optimistically low, the
goodness-of-fit and the predictor effects are overesti-
mated, and the magnitude of this bias increases with
the number of alternative models considered (6, 25).
As our "optimal" model was specified by selecting,
independently for each of six predictors, the best-fit-
ting among four parametric functions, the resulting
bias is probably big enough to undermine the reliabil-
ity of conclusions.

Interpretation of spline estimates

AIC values in table 5 show that the spline model
overall fits much better than even the "optimal" para-
metric model. Moreover, a priori selected spline model
detected significant time-dependent effects more fre-
quently than any of the four homogeneous parametric

TABLE 5. Multivariable modeling and testing of time-dependent effects In a population-based study of
1,951 French colon cancer patients, 1977-1991: p values for tests of the proportional hazards model
(PH) hypothesis

Model's AIC*

Overall test of PHf

Age

Residence

Sex

Stage (global)

2
3
4

Time period (global)
1977-1981*
1982-1986
1986-1991

Site

Time

33.4

79.0
<0.0001

0.005

0.204

0.008

<0.001

0.582
0.152

<0.001

0.034

0.011
0.195

0.010

Time1

28.8

83.6
<0.0001

<0.001

0.581

0.016

<0.001

0.433
0.038

<0.001

0.073

0.023
0.736

0.078

Parametric model

In(time)

70.9

41.5
<0.0001

0.733

0.201

0.053

0.003

0.885
0.463
0.079

0.002

0.001
0.006

0.017

1/time

75.4

37.0
<0.0001

0.013

0.518

0.385

0.018

0.562
0.019
0.508

<0.001

0.002
<0.001

0.285

•OptimaT

12.4

100.0
<0.0001

<0.001

0.127

0.005

<0.001

0.310
0.029

<0.001

<0.001

0.002
<0.001

0.015

Splines

166.4
<0.0001

<0.0001

0.487

0.089

<0.0001

0.535
0.002

<0.0001

0.003

0.002
0.006

0.031

* Spline model had the lowest (best) Akaike Information Criterion (AIC) value. For other models, the difference
in AIC from the spline model is shown with lower values indicating better fit.

f Likelihood ratio test (LRT) based on the difference in log likelihood between a respective time-dependent
model and the PH model (9 degrees of freedom (d.f.) for parametric models, 36 d.f. for spline model).

t Referent category.
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models. These significant results indicate that the cor-
responding time-dependent estimates fit better than the
constant HR estimates and, thus, reflect systematic
trends in the data rather than over-fitting (6). Figure 4
shows the spline estimates of the adjusted effects of
selected prognostic variables, and pointwise 95 per-
cent confidence intervals. The variation of the shapes
presented in figure 4 and figure 3d (stage 4) is rather
remarkable, given that all these shapes were estimated
using a single model. However, while statistical sig-
nificance of a given time-dependent effect allows for a
meaningful interpretation of the general pattern of
changes, confidence intervals have to be taken into
account when assessing finer aspects of the estimate
(6). For example, the confidence intervals in figure 4
consistently become wider during late follow-up, indi-
cating that pattern of changes cannot be reliably esti-
mated beyond 10 years after diagnosis.

The spline estimate in figure 3d shows that the effect
of stage 4 is rather modest at the very beginning but
immediately increases sharply, reaching the peak in
the second year, and then gradually declines with
increasing follow-up. To interpret this pattern, we take
into account that, whereas we don't know the actual
causes of death, very early mortality in colon cancer is
caused mostly by post-surgical complications. Thus,
initial cancer stage appears to have a relatively minor
impact on (early) post-surgical fatality but becomes
very important after few months, when mortality
reflects mainly disease severity. However, with
increasing follow-up duration, the initial stage
becomes a less adequate proxy for the current
unknown cancer severity, because patients presumably
progress at different rates. This decline in the predic-
tive ability of the initial cancer stage suggests that cur-
rent stage should be updated after a few years. A simi-
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FIGURE 4. Non-parametric 5 d.f. estimates of adjusted time-dependent effects of selected prognostic factors for all-causes mortality in Rench
colon cancer patients. Each panel shows a hazard ratio estimate (solid curve) obtained from the multivariable spline model and the corre-
sponding pointwise 95% confidence intervals (vertical bars) at selected times: a) period 2 (diagnosis in 1982-1986) vs. period 1 (1977-1981);
b) age at diagnosis (>65 years vs. <65 years); c) sex (male vs. female); d) residence (rural vs. urban). Horizontal lines correspond to the rela-
tive risks of 1.0.
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lar pattern was observed for stage 3 (table 4), while for
stage 2 the changes were too small to reach statistical
significance (table 5).

Figure 4a shows the estimated HR for patients diag-
nosed in period 2 (1982-1987). The estimate suggests
that post-surgical mortality was reduced compared with
period 1 (1977-1981), but there was no improvement
in (later) cancer-related mortality. The fact that the esti-
mated effect of period 2 inverts, from an early "protec-
tive" effect (HR below 1.0) to a slightly detrimental
effect later on, explains why this effect was completely
nonsignificant in the multivariable PH model (p > 0.9
in table 1). The PH estimate, constrained to be constant,
represents the average-over-time of the actual HR,
which in the case of risk inversion is close to 1.0 (6).
Whereas the general shape of the estimate for period 3
(not shown) was similar to period 2, the HR did not
exceed 1.0 over the entire follow-up period, explaining
its significance in the PH model (table 1).

Figure 4b shows that the pattern of changes in the
effect of patient's age is opposite to that observed for
higher cancer stages. While elderly patients have much
higher risks of post-surgical mortality, the impact of
age is practically null in the second and third year and
increases only later. Figure 4c shows a similar increas-
ing pattern for the effect of sex (male vs. female). Both
estimates may partly reflect the effect of patient's
demographics on mortality from causes other than
colon cancer, the share of which likely increases with
the aging of the cohort. The estimate for sex is almost
perfectly linear so that the test based on a complex 5
d.f. regression spline model becomes inefficient, yield-
ing a marginally nonsignificant result (table 5). Finally,
figure 4d shows convincingly that the patient's resi-
dence (rural vs. urban) has no any effect on mortality.

After having removed all nonsignificant effects, in
the final multivariable spline model age, cancer stages
3 and 4, cancer site and both period variables are rep-
resented by time-dependent spline HR estimates,
whereas stage 2 and sex are represented by the con-
stant HR.

DISCUSSION

Our results demonstrate the importance of account-
ing for non-proportionality of hazards and advantages
of flexible modeling. Restricting analyses to the con-
ventional PH model resulted in incorrect conclusions
regarding the nonsignificance of period 2 and substan-
tially biased estimates for higher cancer stages. The
ability to reject the incorrect PH assumption depends,
however, on the method. The example of cancer stages
illustrates the risks of relying on visual assessment of
Kaplan-Meier curves. Piecewise models (5) yield
"jumpy," clinically implausible, estimates (figures 3a,

b) and are difficult to implement in multivariable mod-
eling. Moreover, the results depend on the arbitrary
number of time intervals.

Parametric modeling of time-by-predictor interac-
tions in the Cox model (1) implies choosing between
two sub-optimal alternatives. Restricting the analyses
to a single a priori selected parametric function may
result in biased estimates and/or loss of statistical
power, if the actual pattern of changes is not consistent
with the shape of the selected function. An alternative
strategy requires estimating different parametric func-
tions and selecting, a posteriori, the best fitting model.
However, in the case, for example, of cancer site, very
different parametric estimates fit the data equally well
(tables 3 and 4). A similar phenomenon was illustrated
in a recent study of various parametric models of expo-
sure intensity (27). Moreover, a posteriori model selec-
tion invalidates conventional statistical inference and
induces overestimation bias, especially in multivari-
able analyses which entail data-dependent decisions
regarding each of several predictors (6, 24, 25).
Whereas testing a posteriori selected model in an inde-
pendent study might corroborate the findings, it may
be difficult to find a comparable data set of similar size
and quality. Moreover, simulations suggest that the
results of a posteriori identification of multivariable
Cox models are quite unstable (28), making such a
corroboration rather unlikely. Finally, as illustrated in
figure 3, it is possible that even if several parametric
functions are considered, none is able to represent the
complex pattern of actual changes.

By contrast, the regression spline method (6) accu-
rately represented both simple and complex patterns of
changes with a single a priori selected model, that pro-
duced smooth, clinically plausible estimates. The
spline model fitted well the effects of all predictors
and offered the best fit in multivariable analyses. The
variety of shapes revealed by non-parametric estimates
yielded potentially important insights into the role of
some prognostic factors. Finally, the model-based test
of the PH hypothesis detected non-monotone changes
and avoided problems related to a posteriori model
selection.

Some limitations of our study should be acknowl-
edged. First, we could not separate deaths due specifi-
cally to colon cancer. Thus, our estimates may partly
reflect an increase in the proportion of deaths from
other causes, due to aging of the cohort. This could
explain why, with increasing follow-up, the impact of
cancer-specific factors (cancer stage) decreases while
the predictive ability of "generic" predictors of mortal-
ity, such as patient's age and sex, increases. Ideally,
relative survival approach could be used to establish if
the estimated effects of patient's age and sex simply
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reflect their impact on overall mortality in the general
population, rather than their effects specific to colon
cancer (29, 30). Unfortunately, we are not aware of any
method or software that combines estimation of time-
dependent HR with relative survival modeling. Even
so, we expect the methodologically relevant conclu-
sions of our study to be rather robust. The implications
of parametric assumptions underlying conventional
models and the advantages of the splines over simpler
time-dependent models were most evident in estimat-
ing the effects of higher cancer stages, especially dur-
ing the early follow-up, and natural mortality probably
has only a very minor impact on these estimates.

Our data and our analyses were Limited to fixed
covariates, measured at time of diagnosis. A more
refined analysis could use time-dependent covariates to
incorporate information on changes that occurred dur-
ing follow-up. For example, whereas treatment was usu-
ally determined very shortly after the diagnosis, time-
dependent covariates could reflect later changes in
treatment of some patients. Recently Heinzl et al. (31)
proposed a model that incorporates time-dependent
effects of binary time-dependent covariates, and the
SAS macros developed by those authors may facilitate
analyses of non-proportional hazards for both fixed and
time-dependent covariates (32).

Finally, our arbitrary choice of specific numbers of
intervals in the piecewise model and of parametric
time-by-predictor interactions should not affect our
findings. For example, although increasing further the
number of parametric models could increase the prob-
ability that one of these models would fit the effect of
a given predictor as well as the spline model, it would
further increase problems related to inference based on
a posteriori selected model and to discrepancies
between competing parametric estimates.

We demonstrated the advantages of flexible model-
ing of non-proportional hazards in a large multivariable
data set. With more than 1,500 deaths, we had no
numerical problems estimating a spline model with 45
d.f. (5 d.f. for each of nine variables). However, in
smaller samples, it may be difficult to estimate models
of that complexity. Moreover, simulations in
Abrahamowicz et al. (6) show that at least 10 observed
deaths for each model's d.f. are required to ensure accu-
rate inference. Thus, multivariable analyses of smaller
data sets will require some a priori decisions regarding
such issues as 1) which predictor effects will be con-
sidered as possibly time-dependent; and/or 2) how
many d.f. should be used to model specific effects.
Further research is necessary to develop sound method-
ological strategies to deal with such situations. One
efficient solution may be to rely on relevant previous
analyses of larger data sets when specifying plausible

parsimonious models for smaller studies. Analyses sim-
ilar to ours may provide some insights about the clini-
cal importance of changes over time in particular
effects and about possible patterns of these changes.
For instance, our estimates suggest that in future analy-
ses the time-dependent effect of sex may be represented
by a simple linear function whereas considerable flexi-
bility is necessary for higher cancer stages or age.
Finally, the time-dependent effect of cancer site, while
statistically significant, is of Limited clinical importance
so that representing this effect by a constant hazard
ratio would induce only minor bias. Thus, the results of
complex modeling may ultimately suggest some model
simplifications. However, such empirically valuable
findings would not be possible if the model were a pri-
ori constrained to yield simple estimates.
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