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Variational algorithms to remove stationary noise.

Applications to microscopy imaging.
Jérôme Fehrenbach, Pierre Weiss, and Corinne Lorenzo

Abstract—A framework and an algorithm are presented in
order to remove stationary noise from images. This algorithm
is called VSNR (Variational Stationary Noise Remover). It can
be interpreted both as a restoration method in a Bayesian
framework and as a cartoon+texture decomposition method.
In numerous denoising applications the white noise assumption
fails: structured patterns (e.g. stripes) appear in the images. The
model described here addresses these cases. Applications are
presented with images acquired using different modalities: scan-
ning electron microscope, FIB-nanotomography, and an emerging
fluorescence microscopy technique called SPIM (Selective Plane
Illumination Microscope).

Index Terms—Stripe removal, non linear filtering, fast algo-
rithms, total variation, Gabor filter, SPIM microscope, scanning
electron microscope, nanotomography, texture-geometry decom-
positions.

I. INTRODUCTION

MAny imaging modalities tend to impair images with

structured noise. For instance, stripes appear in im-

ages produced by recent microscopes such as Single Plane

Illumination Microscope (SPIM) [13], Atomic Force Micro-

scope (AFM), scanning electron microscopy (SEM) [8], [15],

Synchrotron X-Ray Tomographic images, Focused Ion Beam

nanotomography [18], or in remote sensing imaging such

as MODerate-resolution Imaging Spectroradiometer (MODIS)

images or digital elevation models [6], [7]. Figure 1 shows ex-

amples of stripes in images obtained using different modalities.

The main purpose of this work is to propose a simple

noise model which describes accurately the kind of distortions

appearing in Figure 1. This statistical modeling allows to

formulate the restoration problem in a Bayesian framework.

It leads to the resolution of a large scale convex programming

problem which is solved using recent advances in numerical

optimization. We call our algorithm VSNR which stands for

Variational Stationary Noise Remover.

As far as we know, few works address this restoration

problem. Recently, [18] proposed a combined wavelet and

Fourier method which allows to interpolate and restore wavelet

coefficients impaired by stripes. In [8], a Fourier filtering is

proposed, where noisy Fourier coefficients are first detected

using statistical tests. Contrarily to our work, these approaches

do not rely on a precise statistical modeling of the noise and

incorporate prior information on the images only implicitly.

The general image formation model we consider can be

stated as follows:

u0 = Hu+ b
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Fig. 1. Stripes for various imaging modalities. Top-left: cement paste image
using Ion beam nanotomography. Top-right: sintered specimen of CeO2 image
using Scanning Electron Microscope (SEM). Bottom: medaka fish embryo
image using Selective Plane Illumination Microscope (SPIM)

where u0 is the observed digital image, H is a deterministic

linear operator that models the acquisition process (sampling,

convolution, indirect measurements, ...) and b is a noise or a

texture. In restoration applications, the objective is to retrieve

u knowing the observation u0 and the observation operator H .

In texture+cartoon decomposition, H is the identity operator,

and the objective is to retrieve both the cartoon component u
and the texture component b.

A standard assumption in the literature is that the noise

is white, meaning that the different components of b are

independent random variables of finite variance. Though this

noise assumption models accurately some real applications,

it fails to do so in many scenarii. In the case of image

restoration/denoising problems, it often leads to unsatisfactory

results.

In this article we propose a noise model that suits more

complex frameworks and that can be handled numerically

in reasonable computing times. We replace the white noise

assumption by a stationary noise assumption. A stationary

noise b can be defined as a stochastic process having the

following translation invariance property:

∀τ ∈ Z
2, p(b) = p(Tτ (b)) (1)
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where p denotes the probability density function and Tτ is the

translation of vector τ with periodic boundary conditions on

the image domain.

This hypothesis is natural in many applications, since it

amounts to assume that there is no a-priori knowledge about

the location of any feature or noise pattern in the image. How-

ever, the sole hypothesis of stationarity appears to be hardly

numerically tractable. In this work, we restrict to a subclass

of stationary stochastic processes, that can be easily described

in the frequency domain: these processes are generated by

convolving white noise with a given kernel. The noise thus

appears as ”structured” in the sense that some pattern might

be visible, see Figure 3.

The proposed model shares many similarities with the

negative norm models of Y. Meyer [17], its successors [2] and

the decomposition algorithms proposed in [11]. Meyer’s idea

is to decompose an image into a piecewise smooth component

and an oscillatory component. We refer to [2] for a review

of the principles, algorithms and results using this approach.

An alternative way of decomposing images was proposed in

[11]. The idea is to seek for components that are sparse in

given dictionaries. Different choices for the elementary atoms

composing the dictionary allow to recover different kind of

textures.

The main contributions of the present paper are:

1) We propose a simple class of random processes that

describes real-life noises and textures.

2) Similarly to [11], the texture is described through a

dictionary. In our work each dictionary is composed

of a single pattern shifted in space, ensuring translation

invariance and fast computation in Fourier domain.

3) The proposed formalism and algorithms can be used

when dealing with inverse problems such as deblurring

or sampling with indirect measurements.

4) A Bayesian approach is provided in order to take into

account the statistical nature of textures precisely.

5) The decomposition problem is recast into a convex opti-

mization problem that is solved with a recent algorithm

of A. Chambolle and T. Pock [4] allowing to obtain

results in an interactive time.

6) We propose a C and Matlab implementation on our

webpage in the spririt of reproducible research http:

//www.math.univ-toulouse.fr/∼weiss/PageCodes.html.

The outline of this paper is as follows. In section II, we

introduce the notation. Section III contains detailed definitions

and some elementary properties of the noise model. Section

IV presents a restoration or decomposition model based on the

maximum a posteriori (MAP) estimator. Section V details an

efficient numerical scheme based on [4] to solve the resulting

convex programming problems. In section VI we present some

applications and results on synthetic and real images.

II. NOTATION

In all the paper n = nx × ny will refer to the number

of pixels of the degraded image. m stands for the number of

filters used to describe the noise. Let u ∈ R
nx×ny be an image.

u(x) denotes the pixel of coordinates x ∈ {1, 2, · · · , nx} ×
{1, 2, · · · , ny}.

‖u‖p refers to the standard ℓp-norm of u. Let (u1, u2) ∈
R

n × R
n the dot product is denoted 〈u1, u2〉 = uT1 u2.

Let Λ = R
n×m and Q = R

n×2. These spaces are

endowed with inner products 〈·, ·〉Λ and 〈·, ·〉Q. We set ‖q‖Q =√
〈q, q〉Q and ‖λ‖Λ =

√
〈λ, λ〉Λ.

Let A : Λ → Q be a linear operator. The adjoint A∗ of A
is defined by:

〈Aλ, q〉Q = 〈A∗q, λ〉Λ, ∀(λ, q) ∈ Λ×Q. (2)

The norm of the operator A is defined by:

|‖A‖| = max
‖λ‖Λ≤1

‖Aλ‖Q (3)

∗ is the convolution operator with periodic boundary con-

ditions. F and F−1 respectively denote the discrete Fourier

and inverse Fourier transforms. We will also use the notation

û = Fu. Finally, ∇ denotes the discrete gradient operator. In

this article we use the following discretization:

∇u = (∂xu, ∂yu)

where

(∂xu)(i, j) =

{
u(i+ 1, j)− u(i, j) if i < nx

0 if i = nx
(4)

(∂yu)(i, j) =

{
u(i, j + 1)− u(i, j) if j < ny

0 if j = ny.
(5)

Let φ : Λ → R ∪ {+∞} be a convex, closed function with

non-empty domain. The domain of φ is defined by dom(φ) =
{λ ∈ Λ, φ(λ) < +∞}. φ∗ refers to the Fenchel conjugate of

φ defined by:

φ∗(η) = sup
λ∈Λ

〈η, λ〉Λ − φ(λ). (6)

The sub-differential of φ at λ1 is the set defined by:

∂φ(λ1) = {η ∈ Λ, φ(λ2) ≥ φ(λ1)+〈η, λ2−λ1〉Λ, ∀λ2 ∈ Λ}.

A function φ is said to be strongly convex of parameter γ > 0,

if the following inequality holds for all λ1, λ2 ∈ dom(φ) and

for all η ∈ ∂φ(λ1):

φ(λ2) ≥ φ(λ1) + 〈η, λ2 − λ1〉Λ +
γ

2
‖λ2 − λ1‖2Λ,

Let Ξ ⊆ Λ be a set. The indicator function of Ξ is denoted

χΞ and defined by:

χΞ(x) =

{
0 if x ∈ Ξ

+∞ otherwise
.

The resolvent or proximal operator of φ at point λ is defined

by:

(Id + ∂φ)−1(λ) = argmin
λ′∈Λ

φ(λ′) +
1

2
‖λ′ − λ‖2Λ.

It can be seen as a generalization of the projection operator

since (Id+∂χΞ)
−1(λ) is the projection of λ on the set Ξ. We

refer to [24] for a detailed presentation of the above tools.
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III. NOISE MODEL

A. A class of stationary noises

In this paper, we address the class of stationary noises that

satisfy the following hypothesis.

Hypothesis 3.1: We assume that the noise b reads:

b =
m∑

i=1

λi ∗ ψi, (7)

where:

• each ψi ∈ R
n is a known elementary pattern,

• The λi’s are independent realizations of white noise

processes with known probability density functions.

Proposition 3.1: This class of noises is stationary - in the

sense that it satisfies property (1).

The proof of this proposition can be found in [25], page 404.

B. Rationale for the noise model

The images presented in Figure 1 are corrupted by parallel

stripes. A noise removal algorithm should be able both to

locate their position and to estimate their intensity. Such a

perturbation b can be modeled by the following equation

b = λ ∗ ψ, (8)

where ψ is an elementary pattern, similar to a stripe, and λ
describes the pattern positions and intensities.

In realistic applications, the noise is seldom describable

simply as in Equation (8). A more realistic noise description

would be the sum of processes of type (8). For instance,

in SPIM imaging in addition to stripes, Poisson or Gaussian

white noise appears due to the imperfections of the imaging

system. The Gaussian white noise is a special case of (8) where

ψ is a Dirac function and λ is a sample of a Gaussian white

noise process.

The common feature of the stripes is their orientation θ, as

well as their dimensions (width and length) that belong to a

restricted range. In this paper, we simply model a stripe as an

anisotropic Gaussian function defined by :

ψ(x, y) = exp

(
−x

′2

σ2
x

− y′2

σ2
y

)
,

where x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ. In

order to describe stripes of different width or length, several

filters ψ1, . . . , ψm with different geometrical parameters can

be used.

Fig. 2. Left: a Gaussian function in space domain – Right: the same Gaussian
function in Fourier domain.

IV. RESTORATION/DECOMPOSITION MODEL

Throughout this paper, we assume the following image

formation model:

u0 = Hu+ b (9)

where H is a linear operator and b is independent of u
and satisfies hypothesis 3.1. In the numerical results, we will

concentrate on the case H = Id, however all the proposed

algorithms extend to an arbitrary operator H 6= Id.

A. A MAP reconstruction approach

In this work we assume that the samples λ = {λi}i=1..m

are drawn from stochastic processes with known probability

density functions. The prior probability on the space of images

is denoted p(u). The maximum a posteriori (MAP) approach

leads to maximize:

p(λ, u|u0) =
p(u0|λ, u)p(λ, u)

p(u0)

=
p(u0|λ, u)p(λ)p(u)

p(u0)
.

Taking the log of the conditional probability leads to the

following optimization problem:

Find λ∗ ∈ Argmin
λ∈Λ

− logp(u0|λ, u)− logp(λ)− logp(u).

(10)

As we assumed independence of the λis,

− logp(λ) =

m∑

i=1

− logp(λi)

and

p(u0|λ, u) = p(Hu+

m∑

i=1

λi ∗ ψi|λ, u)

= δ

(
Hu+

m∑

i=1

λi ⋆ ψi − u0

)
,

where δ denotes the Dirac mass.

In order to specify problem (10), we need to define the

densities p(u) (image prior) and p(λ) (noise prior).

Remark 4.1: In some applications the independence of u
and λ is questionable and a multiplicative model could be

considered. However our numerical experiments using multi-

plicative models did not improve the results sensibly compared

to the additive models and required heavier computations.

B. Image prior

In this work, we use the standard assumption that images

are smooth or piecewise smooth. This can be promoted by a

p.d.f. of the form

p(u) ∝ exp(−‖∇u‖1,ǫ). (11)

where

‖ · ‖1,ǫ : R
n×2 → R

q 7→ ‖q‖1,ǫ =
∑

x
φǫ(‖q(x)‖2)
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and

φǫ(t) =

{
t2

2ǫ if |t| ≤ ǫ

|t| − ǫ
2 otherwise.

This function can be rewritten using duality as [27]:

||z||1,ǫ := max
‖q‖∞≤1

〈z, q〉 − ǫ

2
‖q‖22.

The interest of this prior is twofold:

• by choosing ǫ = 0, ‖ · ‖1,0 corresponds to the standard

isotropic ℓ1-norm R
n×2 and lim

ǫ→+∞
ǫ‖ · ‖1,ǫ = ‖ · ‖22. This

formalism thus captures the standard ℓ1 (total variation)

and ℓ2 (Tikhonov) regularization.

• by setting ǫ 6= 0, the numerical scheme designed to solve

(10) converges faster than for ǫ = 0 and may provide

better results in some applications.

C. Noise priors

The p.d.f. p(λi) in equation (10) still needs to be defined

in order to specify the optimization problem completely. The

p.d.f. should be chosen depending on the noise nature. In the

experiments of this paper we consider three cases:

• Uniform noise. It is obtained by setting

p(λi) ∝
{

1 if ‖λi‖∞ ≤ αi

0 otherwise.
.

This assumption allows to model bounded noises. See

right images in Figure 3.

• Gaussian noise. This hypothesis consists in setting

p(λi) ∝ exp(−αi‖λi‖22). The corresponding noise com-

ponent bi = λi ∗ ψi is then a colored Gaussian noise. Its

power spectral density is given by the Fourier transform

of ψi. See middle images in Figure 3.

• Laplace noise. It is obtained by setting p(λi) ∝
exp(−αi‖λi‖1). This distribution is known to be a con-

vex approximation of Bernoulli processes [9], [16]. See

left images in Figure 3.

All these noise priors are generalized Gaussian distributions

and their distribution function writes:

p(λi) ∝ exp(−φi(λi)). (12)

Remark 4.2: The middle and right columns in Figure 3 look

very similar. This can be explained using Lindeberg-Feller

theorem (an extension of the central limit theorem). It asserts

that under suitable hypotheses, a weighted sum of independent

variables tends to a normal distribution. This remark has an

important practical consequence: in most applications, it is

convenient to approximate λ by a Gaussian process. Indeed,

the numerical algorithms we develop have a convergence rate

of order O(1/k2) - where k is the iteration counter - for

Gaussian priors, while it is only of order O(1/k) for the others

(see proposition 5.3).

Fig. 3. Examples of stationary processes obtained by convolving white noises
with different marginals with a filter. Top row : convolution with a Gabor filter.
Bottom row: convolution with a fish pattern. From left to right : convolution
with a white Bernoulli process, a Gaussian white noise and a uniform white
noise.

D. Resulting optimization problems

By replacing formulas (11) and (12) in (10) and denoting

λ = {λi}mi=1, we obtain the following optimization problem:

Find (λ, u) ∈ argmin ‖∇u‖1,ǫ +
∑m

i=1 φi(λi)

subject to u ∈ R
n, λ ∈ Λ

Hu+
∑m

i=1 λi ∗ ψi = u0
(13)

In the case H = Id it simplifies to:

Find λ ∈ Argmin
λ∈Λ

P (λ), (14)

where

P (λ) =

∣∣∣∣∣

∣∣∣∣∣∇
(
u0 −

m∑

i=1

λi ∗ ψi

)∣∣∣∣∣

∣∣∣∣∣
1,ǫ

+

m∑

i=1

φi(λi). (15)

Remark 4.3: We show in [12] that the proposed model

provides a Bayesian interpretation and generalizes the negative

norm texture+cartoon decomposition models [2], [17] in the

discrete setting.

V. NUMERICAL ALGORITHMS

In the case of Tikhonov regularization (which corresponds

to φi(λ) =
αi

2 ‖λi‖22 and JR(u) = ‖∇u‖22), Problem (14) can

be solved exactly in O(m3n log n) operations using Fourier

transforms and inversion of small m ×m linear systems. In

the more general case, it is impossible to get an exact solution.

The objective of this section is to design iterative methods that

lead to approximate solutions of (14).

A. Problem relaxation

Since problem (14) cannot be solved exactly, we are inter-

ested in finding an ǫ-solution defined by:

Find λǫ ∈ Λ such that P (λǫ)− P (λ∗) ≤ ǫ. (16)

An iterative optimization algorithm defines a sequence

(λk)k∈N that converges to a solution of (14). The resolution of
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(16) amounts to define an appropriate stopping criterion. Since

P (λ∗) is unknown, P (λk) − P (λ∗) cannot be evaluated, but

this quantity can be bounded by the duality gap defined in

equation (23) [26]. In order to prevent the duality gap to be

infinite (corresponding to an infeasible dual variable), we add

a box constraint to problem (16). This extra constraint also

allows to obtain convergence rates, see Proposition 5.3.

To summarize, the constrained problem we consider reads

:

Find λǫ ∈ Ξ such that P (λǫ)− P (λ∗) ≤ ǫ. (17)

where

Ξ =
{
λ ∈ R

n×m, ‖λ‖∞ ≤ C
}

and where λ∗ is one exact solution of (14) and C is large

enough (e.g. C ≥ ‖λ∗‖∞). Under the latter condition, the

extra box-constraint is inactive and the solutions of (17) are

the same as those of (16).

B. Reformulation as a saddle-point problem

This section is devoted to the resolution of (17). The

extension to problems (13) is straightforward. In order to apply

the ideas presented in [4], we reformulate (17) as a saddle-

point problem.

To simplify the reading, let us first introduce some notation.

A is the following linear operator:

A : Λ → Q

λ 7→ ∇ (
∑m

i=1 λi ∗ ψi)
(18)

We detail a procedure to compute the highest singular value

L of A in appendix B. By denoting

F (g) = ‖∇u0 − g‖1,ǫ (19)

and

G(λ) =

m∑

i=1

φi(λi) + χΞ(λ), (20)

problem (17) can be recast as the following convex-concave

saddle-point problem:

min
λ∈Ξ

max
q∈Q

〈Aλ, q〉Q − F ∗(q) +G(λ). (21)

The interest of this saddle-point reformulation is twofold:

• It allows the use of primal-dual algorithms which are

known as being robust and efficient.

• It will allow to define a duality gap, which will provide

a reliable stopping criterion for the iterative algorithm.

C. Elementary properties of the problem

By inverting the minimum and the maximum in (21) we

obtain the following dual problem :

max
q∈Q

min
λ∈Ξ

〈λ,A∗q〉Q − F ∗(q) +G(λ). (22)

Let us denote:

P (λ) = max
q∈Q

〈λ,A∗q〉Λ − F ∗(q) +G(λ)

= F (Aλ) +G(λ),

D(q) = min
λ∈Λ

〈Aλ, q〉Q − F ∗(q) +G(λ)

= −F ∗(q)−G∗(−A∗q)

and

∆(λ, q) = P (λ)−D(q). (23)

The letter P stands for Primal and D stands for Dual. By

using standard results of convex programming, we prove that:

Theorem 5.1 (Characterization of problem (17) solutions):

1) Problem (17) admits a convex, non-empty set of solu-

tions.

2) Problem (21) admits a non-empty set of saddle points.

3) Let (λ∗, q∗) be a saddle point of (21). It satisfies

∆(λ∗, q∗) = 0 and λ∗ is a solution of problem (17).

4) Finally, for any (λ, q) ∈ Ξ× R
n×2,

∆(λ, q) ≥ P (λ)− P (λ∗).

The last item in this theorem indicates that the duality gap

might be used as a stopping criterion for an iterative algorithm:

it is an upper bound of the difference between the objective

function and the minimum.

Proof: Points (1) and (2) result from boundedness of the

set Ξ× dom(F ∗) and convexity of the functionals. Points (3)

and (4) are standard results of convex analysis [24].

The following propositions will be useful in order to deter-

mine the algorithm step sizes.

Proposition 5.1: In the standard Euclidean metric, if ǫ > 0,

then F ∗ is strongly convex with parameter ǫ.

Proposition 5.2: In the standard Euclidean metric, if

φi(λi) = αi

2 ‖λi‖22 for all i ∈ {1..m}, then G is strongly

convex with parameter:

γ = min
i∈{1..m}

αi (24)

D. A primal-dual algorithm

Indeed, Nesterov paved the way to the development of new

efficient algorithms in ( [19], [22]). From a theoretical point

of view, these algorithms are shown to be optimal in the

class of first order methods and they outperform second order

algorithms - like interior point methods - for large scale prob-

lems and moderate accuracy. Among all the papers published

recently on this topic, [4] is probably the most versatile and

we decided to present and implement this strategy.

The algorithm proposed by Chambolle and Pock in

[4] applied to problem (17), can be written as follows:
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Algorithm 1: Primal-Dual algorithm [4]

Input:

ǫ: the desired precision;

(λ̄0, q0): a starting point;

σ0, τ0 such that σ0τ0L
2 < 1;

Output:

λǫ: a solution to problem (17).

begin
k=0;

while ∆(λk, qk) > ǫ∆(λ0, q0) do

qk+1 = (Id + σk∂F
∗)−1(qk + σkAλ̄k)

λk+1 = (Id + τk∂G)
−1(λk − τkA

∗qk+1)
(τk+1, σk+1, θk) =Update(τk, σk, ǫ, γ, L)
λ̄k+1 = λk+1 + θk(λk+1 − λk)
k = k + 1;

end

end

The calculation of the resolvents of F ∗ and G are described

in the appendix. Following [4], the Update function should be

implemented according to the following rules:

Algorithm 2: Step size update rules

Input:

ε: parameter of strong convexity of F ∗

γ: parameter of strong convexity of G (see eq. (24))

L: highest singular value of G
σk and τk: step sizes at iteration k
Output: θk, σk+1 and τk+1.

begin

if φi(·) = αi

2 ‖ · ‖22 for all i ∈ {1..m} then

if ε > 0 then
The sequence ((τk, σk))k∈N

is constant:

µ = 2
√
γε/L

τk+1 = µ
2∗γ

σk+1 = µ
2∗ε

θk = 1
1+µ

else

θk = 1√
1+2γτ

τk+1 = θkτk
σk+1 = σk

θk
end

else
The sequence ((τk, σk))k∈N

is constant:

θk = 1
τk+1 = τk
σk+1 = σk

end

end

The convergence properties of this algorithm are summa-

rized below.

Proposition 5.3: The sequence (λk, qk)k∈N converges to a

saddle-point of (21). Moreover it guarantees the following

convergence rates:

• If ǫ = 0 and a function φi is non quadratic then:

∆(λk, qk) = O

(
L

k

)

• If ǫ = 0 and all functions φi are squared ℓ2-norms:

∆(λk, qk) = O

(
L

k2

)

and

‖λk − λ∗‖22 = O

(
L2

k2

)

• If ǫ > 0 and all functions φi are ℓ2-norms, the conver-

gence is at least linear:

∆(λk, qk) = O
(
ωk/2

)

and

‖λk − λ∗‖22 = O
(
ωk/2

)

with ω = 1

1+
√

γǫ

L

.

The proof of this proposition is a straightforward application

of results in [4]. These convergence rates can be shown to be

optimal for first order methods [19], [21].

Remark 5.1: As Chambolle-Pock’s method is first-order,

the algorithm depends on the choice of the inner products on

the primal and dual spaces. It is possible to define different

inner products 〈·, ·〉Λ and 〈·, ·〉Q, leading to different iterative

methods. This remark can be used to precondition the problem

and obtain faster convergence rates, see [5] and paragraph

VI-C for more details.

VI. RESULTS

In this section we first present experimental results on

images impaired by synthetic noise. We perform compar-

isons between the proposed algorithm and two recent works

dedicated to stripes removal [8], [18]. We also present an

example where the noise is synthetized as the sum of m = 2
stationary processes. This illustrates our algorithm’s ability

to cope with more complicated noises. We then present

results on real images acquired using different modalities:

FIB-nanotomography, SEM and SPIM. We finish the section

by showing the experimental convergence behavior of the

algorithm.

A. Synthetic noise examples

In order to evaluate the performance of the proposed VSNR

algorithm, we synthetise noise according to model (7) and add

it to Figure 4. In the first experiment, we consider m = 1 noise

component, the filter ψ1 is a straight vertical line running over

the entire vertical direction and λ1 is the realization of a Gaus-

sian white noise process with different variances. The noisy

images are then restored using three algorithms: VSNR, the

DeStripe algorithm available on http://biodev.cea.fr/destripe/

[8], and the wavelet-FFT algorithm [18]. The wavelet-FFT

algorithm implementation was kindly provided by Dr. Beat

Münch as a Fiji plugin.

We compare the results of the different restoration algo-

rithms using a rescaled SNR measure (denoted SNRr) defined

as follows:

SNRr(u0, u) = SNR(ũ0, u) = 10 log10

( ‖u‖22
‖ũ0 − u‖22

)
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where ũ0 = au0 − b and (a, b) = argmin
(a,b)∈R2

‖au0 − b − u‖22.

This measure provides the best SNR among all possible

affine transforms of the grey levels of u0. We chose this

measure since the wavelet-FFT algorithm tends to decrease

the contrasts.

The results are shown in Table I and in Figure 5. VSNR

outperforms the two other methods by a few dBs. Note that

when the noise level is low (first line of Table I), both the

Destripe and wavelet-FFT methods tend to degrade images.

This is due to the fact that the noise description is too rough

and this affects signal recovery.

Fig. 4. Original pirate image.

In the second experiment, we consider m = 1 noise

component, the filter ψ1 is an elongated Gaussian and λ1 is

the realization of a Gaussian white noise process with different

variances. The results are shown in table II and in Figure 6.

Once again, VSNR clearly outperforms the two other methods.

Figure 6 shows that the algorithm recovers most of the signal

even when the noise level is higher than the signal level.

TABLE I
SNRR OF THE IMAGES DENOISED USING DIFFERENT ALGORITHMS. THE

NOISE IS OBTAINED BY CONVOLVING WHITE GAUSSIAN NOISE WITH A

STRAIGHT LINE. THE THIRD LINE CORRESPONDS TO FIGURE 5.

Initial SNRr DeStripe Wavelet - FFT VSNR

33.85 33.70 22.61 43.00

19.73 20.52 22.03 37.54

8.63 16.60 15.15 25.32

TABLE II
SNRR OF THE IMAGES DENOISED USING DIFFERENT ALGORITHMS. THE

NOISE IS OBTAINED BY CONVOLVING WHITE GAUSSIAN NOISE WITH AN

ELONGATED GAUSSIAN. THE THIRD LINE CORRESPONDS TO FIGURE 6.

Initial SNRr DeStripe Wavelet-FFT VSNR

32.68 30.64 23.63 34.42

21.80 22.53 18.98 26.31

8.14 8.15 8.29 13.31

In the third experiment, we consider m = 2 noise compo-

nents, the first filter ψ1 is a radial sinc function, the second

filter ψ2 is an elongated Gaussian in the vertical direction, λ1
is a sample of a white Gaussian process and λ2 is a sample

of a white Bernoulli process with low probability. The noisy

image is shown in Figure 7 and the decomposition result is

shown in Figure 8.

Fig. 5. Top-left: noisy pirate. Top-right: denoised using VSNR. Bottom-left:
denoised using DeStripe [8]. Bottom-right: denoised using Wavelet-FFT [18].
This experiment corresponds to the last line of Table I. The noise pattern is
a vertical line. The Destripe and Wavelet-FFT algorithms do not completely
remove low frequencies while VSNR leads to near perfect results.

B. Real images

In order to assess the efficiency of VSNR algorithm, we

perform tests on images coming from different modalities:

• FIB-nanotomography. This image was used in [18]. Re-

sults are shown in Figure 9.

• SEM imaging. This image was used in [8]. Results are

shown in Figure 10.

• SPIM imaging. Results are shown in Figure 11 and 12.

The images come from a microscope prototype developed

at ITAV-UMS3039 (CNRS).

In all experiments, algorithm 1 is applied with m = 2
filters ψ1 and ψ2. The first filter ψ1 is a Dirac (which

allows the recovery of white noise), and the second filter

ψ2 is an anisotropic Gabor filter with principal axis directed

by the stripes (this orientation is determined by the user).

Different parameters were tested for filter ψ2 and led to similar

results, outlining the robustness of this approach with respect

to the filter choice. Since no ground truth is available for

these images, only visual inspection can help assessing the

algorithm’s performance. Let us discuss the results:

• Figure 9 and 10 show that VSNR is able to preserve the

small image details and to remove the stripes and most

of the white noise. The output of the wavelet-FFT and

DeStripe algorithms are still impaired with low frequency

striping and white noise.

• In Figure 11 only the cells contour is stained. The images

are significantly denoised and small details are preserved.

This is a particularly hard example as the images are

not piecewise constant (i.e. the perfect BV images).
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Fig. 6. Top-left: noisy pirate. Top-right: denoised using VSNR. Bottom-left:
denoised using DeStripe [8]. Bottom-right: denoised using Wavelet-FFT [18].
This experiment illustrates the third line of Table II. In that example, the noise
pattern is an elongated Gaussian in the vertical direction. The noise level is
higher that the signal level. The VSNR algorithm retrieves most of the signal
while the other two algorithms do not.

Fig. 7. Synthetic image used for the toy example. PSNR = 21.5dB.

This shows that the proposed noise model is a good

approximation of reality.

• Figure 12 is a 3D visualisation of a stack, corresponding

to a region of a multicellular tumor spheroid express-

ing a nuclear fluorescent protein, the H2B-HcRed. The

denoising obtained on the stack is significant. Moreover,

the 3D reconstruction of some objects (nuclei) performed

by extraction of the isosurfaces of fluorescence intensity

(in red, Imaris software) is substantially improved after

processing.

C. Numerical behavior

In this section, we briefly describe some aspects of the

algorithm and of its numerical performance.

(a) (d)

(b) (e)

(c) (f)

Fig. 8. Toy example. Left column: real components; right column: estimated
components using our algorithm. (a,d): Baboon image. PSNR = 27dB. - (b,e):
Colored Gaussian noise - (c,f): Impulse like noise

a) Parameter tuning: The convergence rates depend on

the parameters in algorithm 1. There are at least 4 parameters

that should be tuned:

1) First, it is important to have a tight estimate of L,

the highest singular value of A, in order to choose σ
and τ as large as possible such that στL2 < 1. An

overestimation of L will slow down the scheme and an

underestimation will make the scheme diverge. In the

case of total variation, the calculation of L can be done

explicitly, see appendix B.

2) Second, the relationship στL2 < 1 still leaves a degree

of freedom in the choice of σ and τ . It is uneasy to

choose these step sizes and it seems that only experi-

mental tuning is available today.

3) Third, as stated in remark 5.1, choosing different inner

products in the primal space Λ and dual space Q
will lead to different algorithms and can change the

numerical performances of algorithm 1 drastically. This

question is related to the previous one and we are

currently conducting theoretical investigations in order

to provide analytical solutions for these choices. A first

answer was provided in [5].

4) Finally, it is important to have a reliable stopping

criterion in order to automatize the algorithm. In all our

experiments, choosing ǫ = 10−3 as a stopping criterion
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in algorithm 1 led to solutions that were accurate enough

for the visual system (no visible difference with the true

solution). We believe that this is a very nice property of

the proposed scheme as no user input is necessary.

b) Analytical and empirical complexity: The scheme’s

analytical complexity A is given by:

A = (iterations number) × 2×m× (FFT(n) +O(n) op.)

+m× FFT(n)
(25)

where n is the pixels number, m is the number of filters used in

the model, FFT(n) indicates an FFT applied to a size n vector

and op. means operations. This theoretical convergence rate

indicates that the scheme is adapted to large scale problems:

the dependence in n is just O(n log(n)).
Our experiments showed that when the parameters in al-

gorithm 1 are chosen correctly (σ, τ and the metrics), the

scheme requires less than 50 iterations in order to decrease

the initial duality gap by a factor ǫ = 10−3. The overall cost

is thus around 100×m FFT computations. The computational

time is around 5 seconds for a 1024 × 1024 image, on a

1.2GHz laptop, using m = 1 filter. This can be accelerated

using parallel computing.

A more formal complexity result could be obtained using

the worst case convergence rates of the algorithm, but this rate

seems to be always outperformed for the class of problems

considered in this paper.

c) A heuristic choice of the metrics: All the tools used

in algorithm 1 (Adjoints, singular values, Fenchel transforms,

subgradients, proximal operators,...) depend on the choice of

the inner products 〈·, ·〉Λ and 〈·, ·〉Q. In [5] some choices of

the metrics are proposed in order to improve the convergence

rate. In the present work, we simply rescaled the filters ψi and

weights αi. This normalization is equivalent to a block-wise

constant diagonal preconditionner.

VII. CONCLUSION

We proposed a variational approach to denoise images

impaired by a class of stationary noises. It takes advantage of

recent advances in convex optimization, leading to interactive

computing times. Applications to synthetic images, and to

images issued from different microscopy imaging modalities

were presented, leading to clear improvements of the image

quality compared to existing methods.

APPENDIX A

EXPLICIT EXPRESSIONS OF THE RESOLVENTS

In this section, we assume that 〈·, ·〉Λ and 〈·, ·〉Q are the

standard dot products. The Fenchel conjugates F ∗ and G∗

can be computed using Equation (6):

F ∗(q) =

{
ǫ
2‖q‖22 − 〈∇u0, q〉Q if ‖q‖∞ ≤ 1

+∞ otherwise

and

G∗(η) =
m∑

i=1

(φi + χ[−C,C]n)
∗ (ηi) .

The adjoint of A is A∗ = AT , where:

AT : R
n×2 → R

m×n

q 7→
(
∇T q ∗ ψ̌1, · · · ,∇T q ∗ ψ̌m

)

and ψ̌i = F−1ψi.

The different Fenchel transforms useful for the computation

of G∗ are:

• If φi(λ) = αi‖λ‖1:

(φi + χ[−C,C]n)
∗(η) = C‖max(0, |η| − αi)‖1.

• If φi(λ) =
αi

2 ‖λ‖22:

(φi + χ[−C,C]n)
∗(η)

= α

∥∥∥∥∥min
(∣∣∣
η

α

∣∣∣ , C
) ∣∣∣
η

α

∣∣∣− 1

2
min

(∣∣∣∣
λ

α

∣∣∣∣ , C
)2
∥∥∥∥∥
1

• If φi(λ) = χ[−αi,αi](λ):

(φi + χ[−C,C]n)
∗(η) = min(αi, C)‖η‖1

1) Resolvent of F ∗: Let us detail the calculation of:

q∗ = (Id + σ∂F ∗)−1(qn)

= argmin
q∈Q,‖q‖∞≤1

σǫ

2
‖q‖22 − 〈σ∇u0, q〉

+
1

2
‖q − qn‖2Q. (26)

Let

q̃n = qn + σ∇u0
By writing the Karush-Kuhn-Tucker optimality conditions, we

obtain the following solution to problem (26):

q∗(x) =
q̃n(x)

max(|q̃n(x)|, σǫ+ 1)

2) Resolvent of G: In the second step of the algorithm, we

must compute

λ∗ = (I + τ∂G)−1(λn)

= argmin
λ∈Λ

τG(λ) +
1

2
‖λ− λn‖2Λ

= argmin
λ∈Ξ

m∑

i=1

φi(λi) +
1

2τ
‖λi − λn,i‖2Λi

As all the functions φi are separable, this problem reduces

to m× n unidimensional problems of form:

argmin
λ∈R,|λ|≤C

τf(λ) +
1

2
|λ− λn|2 (27)

where f is a convex function. In this work we focus on the

cases:

• f(λ) = α|λ|.

The solution of (27) is given by:

λ∗ =
max(|λn| − τα, 0) · sign(λn)
max(1,max(|λn| − τα, 0)/C)

.
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• f(λ) = αλ2

2 .

The solution of (27) is given by:

λ∗ =
λn

τα+1

max(1, | λn

τα+1 |/C)
.

• f(λ) =

{
0 if |λ| ≤ α

+∞ otherwise

Let δ = min(C,α). The solution of (27) is given by:

λ∗ =
λn

max(1, |λn|/δ)
.

APPENDIX B

COMPUTATION OF THE OPERATOR NORM L

In order to Algorithm 1 as fast as possible, it is important

to use a tight estimation of L, the highest singular value of A
defined in equation (18). In the case of total variation, L can

be computed exactly if periodic boundary conditions are used

to define the discrete gradient operator.

With these boundary conditions, the discrete gradient opera-

tor ∇ =

(
∂1

∂2

)
can be rewritten using convolution products

and is thus diagonalized by the discrete Fourier tranform

(DFT):

∂1u = d1 ∗ u = F−1diag(d̂1)Fu
and

∂2u = d2 ∗ u = F−1diag(d̂2)Fu
where d1 and d2 are finite difference filters in the horizontal

and vertical directions.

Let Hi be the matrix associated to the convolution product

with ψi. It satisfies Hiλi = ψi ∗ λi and is thus diagonalized

by the DFT:

Hi = F−1diag
(
ψ̂i

)
F . (28)

Let us denote Di = diag
(
d̂i

)
, |Di|2 = D̄iDi where D̄i

is the complex conjugate of Di and Σ =
∑m

i=1 diag
(
|ψ̂i|2

)
.

Elementary calculus then leads to:

AAT =

[
F−1 0

0 F−1

]
·
[

|D1|2Σ D1ΣD
∗
2

D2ΣD
∗
1 |D2|2Σ

]
·
[

F 0

0 F

]
.

The eigenvalues of AAT are the same as those of
[

|D1|2Σ D1ΣD
∗
2

D2ΣD
∗
1 |D2|2Σ

]
.

This matrix is symmetric, positive, semi-definite and is consti-

tuted of four diagonal blocks. L is thus given by the maximum

largest eigenvalue of the following n, 2× 2 matrices:

M(k) =


 |d̂1(k)|2Σ(k) d̂1(k)d̂2(k)Σ(k)

d̂1(k)d̂2(k)Σ(k) |d̂2(k)|2Σ(k)


 ,

where k belongs to the frequency domain and Σ(k) =∑m
i=1 diag

(
|ψ̂i(k)|2

)
. This computation is achieved in

O(n log n) arithmetic operations.

ACKNOWLEDGMENT

The authors would like to thank Bernard Ducommun,
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partly supported by a grant from CNRS.

REFERENCES

[1] A. Arrenberg AB, D. Stainier, H. Baier H, and J.Huisken, ”Optogenetic
control of cardiac function,” Science, vol. 330(6006), pp. 971–974, 2010.

[2] J.-F. Aujol, G. Gilboa, T. Chan, and S. Osher, ”Structure-Texture Image
Decomposition - Modeling, Algorithms, and Parameter Selection,” Inter-
national Journal of Computer Vision, vol. 67, no. 1, pp. 111–136, April
2006.

[3] H. Carfantan and J. Idier, “Statistical linear destriping of satellite-based
pushbroom-type images,” IEEE Transactions on Geoscience and Remote
Sensing, 48,1860–1871, 2010.

[4] A. Chambolle and T. Pock, ”A first-order primal-dual algorithm for
convex problems with applications to imaging,” J. Mathematical Imaging

and Vision, vol. 40, no.1, pp. 120–145, 2011.

[5] T. Pock and A. Chambolle, ”Diagonal preconditioning for first order
primal-dual algorithms in convex optimization,” ICCV, 2011.

[6] J. Chen, Y. Shao, H. Guo, W. Wang, B. Zhu, “Destriping CMODIS Data
by Power Filtering,” IEEE Trans. Geosci. Remote Sens. vol. 41, pp. 2119–
2124, 2003.

[7] J. Chen, H. Lin, Y. Shao, L. Yang, “Oblique Striping Removal in Remote
Sensing Imagery Based on Wavelet Transform,” Int. J. Remote Sens. vol.
27, pp. 1717–1723, 2006.

[8] S. Chen and J.L. Pellequer, “DeStripe: frequency-based algorithm for
removing stripe noises from AFM images” BMC Structural Biology, vol.
11, no.7, 2011.

[9] S.S. Chen, D.L. Donoho and M.A. Saunders, “Atomic decomposition by
basis pursuit”, SIAM review, 129–159, 2001.

[10] F. Facchinei and J. Pang, ”Finite-dimensional variational inequalities and
complementarity problems”, Springer Verlag, 2003.

[11] M.J. Fadili, J.-L. Starck, J. Bobin, Y. Moudden, ”Image decomposition
and separation using sparse representations: an overview,” Proc. of the

IEEE, Special Issue: Applications of Sparse Representation, vol. 98, no.
6, pp. 983–994, 2010.

[12] J. Fehrenbach, P. Weiss and C. Lorenzo, “Variational algorithms to
remove stripes: a generalization of the negative norm models,” Proc.

ICPRAM, 2012.

[13] J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. Stelzer, ”Optical
Sectioning Deep Inside Live Embryos by Selective Plane Illumination
Microscopy,” Science, vol. 305, no. 5686, pp. 1007–1009, 2004.

[14] P. Keller, A. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E.
Stelzer, ”Fast, high-contrast imaging of animal development with scanned
light sheet-based structured-illumination microscopy,” Nat. Methods, vol.
7, no. 8, pp. 637–642, 2010.

[15] F. Kienberger, VP Pastushenko, G. Kada, T. Puntheeranurak, L. Chtche-
glova, C. Riethmueller, C. Rankl, A. Ebner, P. Hinterdorfer I “Improving
the contrast of topographical AFM images by a simple averaging filter.”
Ultramicroscopy, vol. 106, pp. 822–828, 2006.

[16] S. Mallat, “A Wavelet Tour of Signal Processing: The Sparse Way.”
2008, Academic Press.

[17] Y. Meyer, ”Oscillating Patterns in Image Processing and Nonlinear
Evolution Equations,” The Fifteenth Dean Jacqueline B. Lewis Memorial
Lectures, American Mathematical Society, Boston, MA, 2001

[18] B. Münch, P. Trtik, F. Marone, M. Stampanoni “Stripe and ring artifact
removal with combined wavelet-Fourier filtering.” Opt. Express,vol. 17,
pp. 8568–8591, 2009.

[19] A. Nemirovski, ”Information-based complexity of linear operator equa-
tions,” Journal of Complexity, vol. 8, pp. 153–175, 1992.

[20] A. Nemirovski, ”Prox-method with rate of convergence O (1/t) for
variational inequalities with Lipschitz continuous monotone operators and
smooth convex-concave saddle point problems,” SIAM J. Optimization,
vol. 15, no. 1, pp. 229–251, 2005.



VSNR: THE VARIATIONAL STATIONARY NOISE REMOVER 11

[21] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic

Course, Kluwer Academic Publishers, 2004.
[22] Y. Nesterov, ”Smooth minimization of non-smooth functions,” Mathe-

matical Programming, vol. 103, no. 1, pp. 127–152, 2005.
[23] S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, ”Software for

bead-based registration of selective plane illumination microscopy data,”
Nat. Methods, vol. 7, no. 6, pp. 418–419, 2010.

[24] R.T. Rockafellar, Convex Analysis, Princeton University Press 1970.
[25] A. Shiryaev, Probability Second Edition, Springer, Graduate in

Mathematics 95.
[26] J.-B. Hiriart-Urruty and C. Lemarechal, ”Convex Analysis and Mini-

mization Algorithms”, Vol. 2, Springer Verlag, Berlin, Germany, 1993
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(a) (b)

(c) (d)

Fig. 9. Destriping of a single section from a 3D volume of unhydrated particles of cement paste accessed by FIB-nanotomography. (a) original image is
severely affected by the waterfall effect. (b) restored image using VSNR. (c) restored image using wavelet-FFT. (d) restored image using DeStripe.

Fig. 10. SEM imaging on a sintered specimen of CeO2 (cerium oxide) at a sintering temperature of 1400 C for 2 hours and 50 minutes [8]. The image is
composed of 512x512 pixels with each side measuring 70.55 µm; the intensity unit is 0.1 µm.
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(a)

(b)

(c) (d)

Fig. 11. SPIM images of a Multicellular Tumor Spheroid stained with DiI
acquired with an objective 20X NA 0.5, an excitation wavelength of 532 nm
and an emission wavelength of 593 nm. The voxel size is 0.32*0.32*1 µm.
(a) Single plane of a 3D stack; (c) A magnified view of a region of (a); (b)
Denoised image; (d) A magnified view of the same region of (b).

(a)

(b)

Fig. 12. Isosurface rendering (in red) of a three- dimensional stack of 42
planes of a Multicellular Tumor Spheroid expressing a fluorescent nuclear
protein, H2B-HcRed. SPIM images were acquired with an objective 10X NA
0.25, an excitation wavelength of 595 nm and a detection using a 593 nm long
pass filter (a) raw data (b) denoised data. The voxel size is 0.645*0.645*1µm.


