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A variational analysis of the spiked harmonic oscillator Hamiltonian operator 
- d 21dx2 +x2 + 1(1 + 1)/x2 +A lxi-a, where a is areal positive parameter, is reported in 

this work. The formalism makes use of the functional space spanned by the solutions of the 
SchrOdinger equation for the linear harmonic oscillator Hamiltonian supplemented by a 
Dirichlet boundary condition, and a standard procedure for diagonalizing symmetric matrices. 
The eigenvalues obtained by increasing the dimension of the basis set provide accurate 
approximations for the ground state energy of the model system, valid for positive and 
relatively large values of the coupling parameter A. Additionally, a large coupling perturbative 
expansion is carried out and the contributions up to fourth-order to the ground state energy 
are explicitly evaluated. Numerical results are compared for the special case a = 5/2. 

I. INTRODUCTION 

A general problem connected with the so-called spiked 
harmonic oscillator (SHO) Hamiltonian - d 21 dx2 

+ x 2 + 1(1 + 1 )!x2 + A Ixl- a, where a is a positive con
stant, has been thoroughly studied by Harrell.1 The name 
spiked derives from the graphical appearance of the pertur
bative term A Ixl- a. The quantity A, is a positive definite pa
rameter and measures the strength of the perturbative poten
tial. The angular momentum term is represented by the 
expression 1(/ + 1)/x2. The spiked harmonic oscillator 
problem is of practical importance as it occurs in both chem
ical and nuclear physics. 1-7 In the elegant work reported in 
Ref. 1, a modified perturbation series to a finite order is em
ployed to obtain analytical expressions for the eigenenergies 
of a SHO Hamiltonian for small values of A, and arbitrary 
values of the exponent a. In this work, we report attempts to 
solve the SHO problem, employing a variational procedure 
and a large coupling perturbative calculation. A short review 
of the SHO problem is presented in Sec. II. The variational 
approach is outlined in Sec. III. The large coupling expan
sion is discussed and developed in Sec. IV, and a summary of 
the results and conclusions is found in Sec. V. 

II. BACKGROUND 

To compare our results with those reported by Harrell,1 
we concentrate ourselves on the zero angular momentum 
case. The Hamiltonian associated with the SHO then reads 

d 2 

H(a,).) = ~ + x2 +A,lxl-a=Ho + A, v, (2.1) 
dx 

where Ho is formally equal to the simple harmonic oscillator 
Hamiltonian, and V = Ixl- a. The sum of Ho and AV must 
be understood to be the Friedrichs extension of the quadratic 
form defined by Eq. (2.1) on the domain of the Schwartz 
space with the boundary condition u(O) = 0, with u(x) de-

noting a solution of the Schrodinger equation for the simple 
harmonic oscillator. The latter condition is necessary since 
not all functions in the domain of Ho are in the domain of V. 
Therefore, when A--.O, a fixed, the operator H(a,).) con
verges to an operator formally equal to - d 21 dx2 + x 2

, but 
supplemented by the Dirichlet boundary condition (DBC) 
that all functions in its domain vanish at x = O. This opera
tor is Ho. With this definition, the family of ,operators 
H(a,).) is both analytic for A, > 0, and continuous for A, --.0+. 

The spectrum of Ho consists of the (two-fold degener
ate) simple harmonic oscillator eigenvalues, whose eigen
functions vanish at x = O. Since one purpose of the present 
work is to consider the perturbation expansion of the eigen
values of H (a,). ) , all operators will be restricted to the space 
L 2[0,00], with theDBC u(O) = 0, to avoid problems stem
ming from the degeneracy of the spectrum. 

As has been pointed out elsewhere, the perturbation V 
considered in this article is singular. I

.4--6 The series expan
sion for the eigenvalues En (a,).) of Ho + A, V, calculated by 
means of the Rayleigh-Schrodinger procedure, yields diver
gent expressions for the second- and higher-order perturba
tive corrections. Harrell' has thus utilized an improved per
turbation scheme to obtain corrections for order greater 
than unity for the eigenvalues. For instance, his expression 
for the SHO ground state energy and for a = 5/2 reads, I 

E(~,).)=3+ 2r(1/4) A, 
o 2 r( 112) 

+ 16 A21nA +O(A,2). (2.2) 
r( 112) 

In the expression above, we have corrected for a misprint in 
the sign of the log term. 

The presence in Eq. (2.2) of an explicit term between 
first and second orders in A should be mentioned. This equa
tion, valid for small values of the coupling parameter A, is 
strikingly similar to the expansion for the ground state ener-
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gy per particle for .a boson system.8 An alternative scheme 
will be employed in the present work to obtain corrections to 
Eo( a,A.). The methodology followed here is well known and 
is briefly presented in the next sections. 

III. THE VARIATIONAL APPROACH 

In the variational approach, the first step is to choose a 
complete set of basis functions. Although in principle one 
can employ an arbitrary basis of sufficiently smooth func
tions, in numerical practice the rate of convergence for sin
gular problems depends a great deal on how the basis is cho
sen. The more clever one is in choosing a set off unctions, the 
faster the convergence of the method. In this article, we take 
the basis set constructed with the normalized solutions of the 
Schrodinger equation for the linear harmonic oscillator with 
a DBC, i.e., the harmonic oscillator eigenfunctions u(x) 
normalized in the interval O';;;x < 00, with the prescription 
that U (0) = O. As is well known, these energy eigenfunc
tions are essentially the product of Hermite polynomials of 
odd degree with a Gaussian function. We write 

(xln) =Un (x) = Ane-x'/2H2n+ I (x), n = 0,1,2, ... , 
(3.1 ) 

An being a normalizing factor. The functions Un (x) define a 
complete orthonormal set of solutions of Ho in the interval 
O,;;;x';;;oo, with 

(3.2) 

Now, let ip(x) be an eigenfunction of the SHO Hamilto
nian (1), and let us expand ip(x) in terms of Un (x), namely, 

00 

ip(x) = L anUn (x). (3.3) 
n=O 

Next, we want to minimize the eigenenergies of (2.1), with 
respect to the variational parameters an' n = O,l, ... ,N - 1, 
in the finite dimensional subspace spanned by the N func
tions UO,UI' ... 'U N _ I. This variational problem is equivalent 
to diagonalizing the Hamiltonian (2.1) in the chosen basis 
representation. By varying the dimension N, we get the trend 
of the method. 

All we need is to evaluate the matrix elements of H(a,A.) 
in the basis (3.1). They can be separated into two contribu
tions (/3= - a), 

Hm + I.n + I (a,A.) = (mIHoln) + A (mlxP In), 

m,n = O,l, ... ,N - 1. (3.4) 

Since Ho is diagonal in the chosen basis, we see that the 
first term on the right hand side of Eq. (3.4) is simply the 
expression for the energy eigenvalues of the harmonic oscil
lator with DBC, that is, 

(mIHoln) = (4n + 3)8m•n, m,n = 0,1,2, ... ,N - 1. 
(3.5) 

Alternative procedures exist for deriving the matrix ele
ments of the operator xP appearing in (3.4). A direct way we 
develop here is to use the following representation for the 
odd-degree Hermite polynomials, 
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H () _ ( - 1)n(2n + 1)!r(1/2) 
2n+ I X - , 

n. 

n ( n ) x2m+ I 

Xm~o (_1)m m rem + 3/2) . (3.6) 

The desired result, which involves finite double summations, 
reads 

(mlxPln) = Tm Tnr(3/2) 

xi ± (_l)k+I(m)(n) 
k=O/=O k I 

X r[k+l+ (/3+3)/2] (37) 
r(k + 3/2)r(l + 3/2) , . 

with 

Ts = ( - 1 )S~ (2s + 1 )!/2Ss!. (3.8) 

Equation (3.7) is simple enough to be used in practical 
applications. However, it may be still reduced by carrying 
out explicitly one of the sums, e.g., the sum over I. The rel
evant terms for this sum are 

s= ± (_l)/(n) r(l+u) , 
/=0 I r(l + 3/2) 

(3.9) 

where U = k + (/3 + 3 )/2. Now we note that the binomial 
coefficient can be expressed as 

(~) = ( - 1)/( - n)/II!, 

where (- n)/ is the Pochhammer symbo1.9 Moreover, 
r(l + z) = r(z)(z)/, so that (3.9) is the same as 

S = r(u) ± 1. ( - n)/(u)/ . (3.10) 
r(3/2) /=0 I! (312)/ 

As n is integer, the sum in (3.10) corresponds to the hyper
geometric function 2F] ( - n,u;3/2; 1) which has a very sim
ple known expression.9 Thus we can write (3.10) as 

s = r[ k + (/3 + 3) 12] r( n - k - /3 /2) . 

r(n + 3/2)r( - k - /3 12) 
Finally, the matrix element of interest is given by 

(mlxPln) = T T r(3/2) 
m n r(n + 3/2) 

X k~O ( - 1) k ( ; ) 

(3.11 ) 

X r[k + (/3 + 3)/2]r(n - k - /3 12) 
r(k + 3/2)r( - k - /3 12) , 

(3.12) 

where the sum can be shown to be a polynomial of degree 
m + n in /3. A case of particular interest is the matrix ele
ment (OlxP In) which, after some trivial algebra, reduces to 

(OlxPln)= 1 r[(/3+3)/2] 
~(2n + I)! r(3/2) 

x/3(/3 - 2)'" (/3 - 2n + 2), n = 1,2, .... 
(3.13) 

Equation (3.12) is an exact closed form expression for 
the matrix elements of the operator xP in the simple harmon-
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ic oscillator representation supplemented by DBC. Explicit 
forms of the first few matrix elements of xf1 are given in the 
Appendix. The same procedure leads to similar closed form 
expression for the matrix elements of xf1 in the regular har
monic oscillator representation. 

IV. LARGE COUPLING EXPANSION 

The idea behind the large coupling expansion is to con
sider the potential 

Vex) =x2 +Ax- a (4.1) 

and Taylor expand it around its minimum. Let x m and V m be 
the values of x and V(x), respectively, at the minimum. It is 
easy to see that 

xm = (Aa/2) l/(a + 2) 

and 

(4.2) 

Vm =A2/(a+2)[(a/2)2/(a+2) + (2/a)al(a+2)]. (4.3) 

Let z = x - x m. The expansion of Vex} around z = 0 
can be written as 

where (a}k is the Pochhammer symbol9 and 

p = (2/Aa}l/(a+2). (4.5) 

Now let us rewrite the Schrodinger equation as 

[ ~~2 + V(z) ]Y = Ey. (4.6) 

The zero-order contribution to E is given by 

Eo = Vm = (1 + 2/a}p-2 (4.7) 

and the next contribution comes from a harmonic oscillator 
in z, characterized by the energy parameter 

{J)=~a+2. (4.8) 

Thus, in the large coupling expansion method we have 

E(p} = (1 + 2/a}p-2 + (a + 2) 1/2 

+ higher-order terms in p. (4.9) 

For the particular case a = 5/2, we have 

E(A} = ~ (! yl9 A 4/9 + ( ~ y12 + .... (4.1O) 

Numerical results for several values of A are displayed in 
Table I. 

The higher-order contributions can be obtained through 
a special perturbation expansion as shown in the following 
discussion. Consider 

00 

H=Ho+ I pnHn' (4.11 ) 
n=l 

(4.12) 

where, as before, z = x - x m , and Vm and (J) are given by 
(4.3) and (4.8), respectively. In (4.11), Hn is given by 

H m_ 2 = (_l)m(2/a)(a}m(zm/m!) (4.13) 

with p, defined in (4.5), playing the role of a coupling con
stant. 

Now, as usual, set 

(4.14 ) 

TABLE I. Ground state energy eigenvalues of the spiked harmonic oscillator for a = 5/2. The superscripts in the energy E denote the dimension of the 
harmonic oscillator basis set (supplemented by Dirichlet boundary condition) employed for diagonalizing the matrix of the energy operator defined by Eq. 
(3.4). Also shown are the energies obtained from Eq. (4.10) and from fourth-order large coupling perturbative calculation Eq. (4.33). For comparison, the 
values obtained from Ref. 1 and from numerical integration of the corresponding Schrodinger equation, labeled "Exact," are also tabulated. All energies are 
displayed in arbitrary units. 

Large coupling 4th order 
A. Ell) E (2 ) EIlOl E I20l expansion perturbation Ref. 1 Exact 

0.001 3.004 091 3.004086 3.004078 3.004075 3.004028 3.004022 

0.005 3.020455 3.020346 3.020148 3.020071 3.019259 3.019 142 

om 3.040910 3.040475 3.039701 3.039409 3.036753 3.036729 

0.05 3.204 553 3.193800 3.177840 3.172 753 3.136946 3.152429 

0.1 3.409 106 3.366866 3.316061 3.302485 2.835650 3.201 251 3.266873 

0.5 5.045531 4.216199 3.919691 3.882167 3.581992 3.860 533 3.481 265 3.848553 

7.091062 4.688097 4.354247 4.329449 4.108987 4.323602 4.317311 

5 23.455313 6.304223 6.297319 6.296712 6.185725 6.297553 6.296472 

10 43.910 626 7.951033 7.735637 7.735 136 7.652122 7.735582 7.735 111 

100 412.106269 36.802319 17.541891 17.541890 17.511 104 17.541916 17.541889 

1000 4094.062 688 324.897482 44.967048 44.955485 44.944 307 44.955486 44.955485 
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rP(p,) = rPo + P,rPl + p,2rP2 + .... 
From 

HrP(p,) = EprP(p,) 

( 4.15) 

(4.16) 

and collecting terms in powers of p" we get 
n n 

L HmrPn-m = L Em'l1n_m, n=0,1,2 .... (4.17) 
m=O m=O 

To solve this hierarchy of equations, let us project on the 
complete basis IN) generated by the harmonic oscillator 
eigenvalue problem 

HoW) = ( ~~2 + (Jir )W) 

( 4.18) 

The solution to (4.18) is well known and given by 

( 4.19) 

with 

eN = 2w(N + 1/2), ( 4.20) 

where H N is a Hermite polynomial normalized in the inter
val - ao "Z" ao. Moreover, Eqs. (4.17) are to be supple
mented by the following orthogonality conditions 

(rPolrPo) = 1 and (rPolrPn) =0, forn>O. (4.21) 

The energy expression is obtained by projecting (4.17) 
on I rPo > == 10 > . In doing so, we get 

n-I 

En = L (OIHn_m I rPm ), n = 1,2, .... (4.22) 
m=O 

From parity considerations, it can be seen that EI (as 
well as any E2n + I ) vanishes. So, the first high-order contri
bution comes from E2 and is given by 

(4.23) 

with HI and H2 given by (4.13). The first contribution to E2 
is easily calculated. To evaluate the second one, we need to 
express IrPI) in terms of the basis functions IN). To do this, 
let us first project (4.17) on IN). From 

n 

L (NIHm -EmlrPn-m) =0, (4.24 ) 
m=O 

it is straightforward to obtain that (N ;60,n = 1,2, ... ) 

1 N 

(NlrPn) = 2Nw m~1 ~ (NIEm -Hm~)(PlrPn-m)' 
(4.25) 

wherep runs over the complete set (4.19). For n = 1, we get 

(NlrPI) = (a + ~~: + 2) (NIz310), (4.26) 

which tells us that the only possibilities for N are N = 1 and 
N = 3, as in (4.26) we have harmonic oscillator matrix ele
ments. These can be easily obtained through direct calcula
tions. The results are 

102 

(01z311) = (9/8w3
) 1/2, 

(01z3 13) = (6/8w3) 1/2. 

(4.27) 

(4.28) 

Thus, from (4.26) and the results above, we obtain 

J. Math. Phys., Vol. 31, No. 1 ,January 1990 

(4.29) 

Going back to (4.23), we see that to get the contribution 
E2 we need the following harmonic oscillator matrix ele-
ments 

(0IH2 10) = (a + l)(a + 2)(a + 3)/16w2
, (4.30a) 

(OIHIIl) = - (a+ l)(a+2)/(8w3)1/2, (4.30b) 

(0IHI13) = -../6(a+ l)(a+2)/3(8w3 )1/2. (4.3Oc) 

Thus, using (4.8) we get the total second-order contri-
bution 

(4.31 ) 

The calculation of the next correction is quite involved, 
because of the long emerging expression to be manipulated. 
We have used a (deceptively simple) algorithm using the 
symbolic manipulation package SMP 10 to get the next E4 
correction. We ran out of memory when trying to evaluate 
E6 • The contribution is given by 

4 _ (a+ 1){a-2){a2 -a-74) (2 )4/(a+2) 

p, E4 - 1728(2 + a) 1/2 • Aa ' 
(4.32) 

and putting everything together we finally obtain, for a 
=5/2, 

E(A) =- - + - +--9 (5,1 )4/9 ( 9 ) 112 77 (4 )4/9 
5 4 2 288 5,1 

_ 1967 (~)1/2(-±-)8/9 + .... 
27648 9 5,1 

(4.33 ) 

Numerical results for several values of A are displayed in 
Table I. 

To go further we must abandon algebraic methods and 
use some kind of seminumerical algorithm. The hierarchy of 
equations (4.22) and (4.25) can be quite easily coded in 
FORTRAN, in order to obtain the value of the amplitudes 
(N IrPn) for a given value of a and subsequently the corre
sponding energy corrections En + I in a chained way. Note 
that in order to obtain -En + I we require all wavefunctions 
rPO,rPI, ... ,rPn, but to obtain (N IrPn + I ) we need the value of 
En + I' The calculation does not involve any approximation, 
aside from rounding errors. The values of the first twenty 
coefficients of the expansion corresponding to a = 5/2 are 
displayed in Table II. The notation is such that the energy 
E(A) is given by 

TABLE II. Coefficients for the large coupling perturbation expansion equa
tion (4.34), for a = 5/2. 

n 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

0.267361 111 
- 0.033 537 785 
- om 7 395 489 

0.011679410 
0.001 109577 

- 0.006 825514 
0.002 542 598 
0.008 178874 

- 0.Q11 093 142 
- 0.014427769 
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9 (5A )4/9 ( 9 )112 ( 4 )2n/9 
E(A) =- - + - + L En - . 

5 4 2 n=2 5A 
(even) 

(4.34) 

Here, En behaves quite erratically with n, and probably 
this is not a well behaved series expansion. When A is large 
enough, say larger than 2, one can expect to get very precise 
results from the expansion. However, A = 4/5 is certainly 
outside the convergence radius, if such radius exists. 

One can try to understand this strange behavior. The 
large coupling perturbation method expands both interac
tion and wavefunction around the classical minimum of the 
potential, extending the new coordinate z = x - Xm to the 
full real axis. Certainly the region ( - 00,0] is spurious be
cause of the mere statement ofthe problem. When A is large, 
the minimum is placed at a large value of x, so that the har
monic oscillator wavefunctions centered at Xm will not pene
trate too much into the forbidden region. Obviously this is 
not the case for small A. Probably the proper way of control
ling this unwanted characteristic is to change variables to a 
new coordinate extending along the full real axis and carry 
out afterwards the large coupling perturbative expansion. 

v. NUMERICAL RESULTS AND CONCLUSION 

Since it is of some interest to have an idea of the relative 
size of the ground state spiked harmonic oscillator energies 
as the potential parameter increases, we have numerically 
integrated the SchrOdinger equation. The exponent a was 
fixed at 5/2 to compare with Harrell's result Eq. (2.2). The 
energies so obtained are displayed in Table I under the entry 
"Exact." 

From the computational point of view it resulted in a 
quite complex problem. First of all, because of the singular 
character of the potential near the origin, we could not use a 
small error integration formula, like, e.g., Numerov's meth
od. 11 Instead, we had to use the lowest order approximation 
to the second derivative 

D 2 =tP/h 2
, 

where tP represents the second-order centered differences, 
and h is the mesh spacing. Nevertheless, the results could be 
improved and tested by means of the Richardson extrapola
tion algorithm. To give an idea of the numerical difficulties, 
let us mention that to obtain the energy for A = 0.001 with 
six decimal places, we had to use a mesh with 80 000 points. 

From Eqs. (3.4), (3.5), and (3.7) and the results given 
in the Appendix, it can be readily seen that the first vari
ational approximation (subspace of dimension 1) to the 
ground state eigenenergy of the SHO is 

E(l)=Hll = (OIHIO) =3+Ar[ (P;3) 1/r(3/2), 

(5.1) 

which coincides with the O(A) correction of Harrell, Eq. 
(2.2). 

When N = 2 the diagonalization can also be easily per
formed analytically, via the secular equation approach, and 
we have 
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E(2)=~ [1O+~Ar 
2 24 

± ( 16 + ~A 2425 A 2y2 )112]. 
3 r+ 576 

(5.2) 

From this expression, we notice that when the spikelike per
turbation vanishes (A = 0), the two eigenvalues become 3 
and 7, as expected. 

For higher values of N we have to resort to numerical 
diagonalization procedures and we employed the known Ja
cobi method. Table I shows the convergence of the results for 
the ground state energy of the SHO, for selected values of A, 
as the dimension of the basis set is increased. 

To analyze the results of the variational calculation it is 
convenient to distinguish among three cases, corresponding 
to a) large values of the coupling constant (A# 10); b) small 
values of A ( < 0.1 ); and c) medium values (A = 1). 

For large A the calculations involving few basis states 
are definitely poor, but very good results are obtained when 
the basis space is enlarged (dimension 10 or more). In this 
region of A, the variational method converges quite rapidly 
to the exact results. 

In the case of very small A, one can get the wrong 
impression that the variational method behaves properly. 
Just to clarify the previous statement let us consider the 
number 3.004 075 which appears in the column labeled E(20) 
corresponding tOA = 0.001, in Table I. That numberis actu
ally 3 + 4.09U - 1M 2, where the first term is the unper
turbed energy, the second is the first-order perturbation cor
rection, Eq. (2.2), and the third is the contribution of all 
remaining nineteen states. The coefficient of A. 2 varies very 
slowly with the number of states of the basis: adding more 
figures, it changes from - 14.97 for N = 10 to - 16.16 for 
N = 20. Certainly, the energy eigenvalue decreases when in
creasing the number of basis states, but very slowly. This 
behavior is a direct consequence of the abnormal properties 
of the perturbation, as pointed out by Harrell in Ref. 1. 

It is interesting to study this point more closely. Assume 
a very small A and solve the matrix eigenvalue problem by 
expanding the determinant in powers of A up to and includ
ing A 2. As it is well known, we end up with the perturbation
like formula 

E=Eo+ (OlxfiIO).,.t _,12 i:. 1(0Ixfi ln)1
2

, (5.3) 
n¥O En -Eo 

with the difference that the sum in the A. 2 correction is limit
ed to the chosen number of basis states. Analyzing this sum, 
we will understand the slow variation of the matrix eigenval
ue problem solutions. 

Using (3.13) for P = - 5/2 there results 

(2n + !)2 

2n(2n + 1) , 
(5.4) 
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where y = r[ (,8 + 3) /2]1r( 3/2) and the factors 
(2n + 1)! and P(P - 2)'" (P - 2n + 2) have been or
dered in a special form. The ratio of the (n + 1) th and nth 
terms of the sum in (5.4) is 

(OlxPln + 1)2/(En+ I - Eo) 

(0IxPln)2/(En - Eo) 

(2n + 2 +!)2 
-----=---- ..... 1, 

n + 1 2(n + 1 )(2n + 3) n- '" 

n 

so that successive contributions to the coefficient of A 2 are of 
the same size. Moreover, each ofthe grouped terms in (5.4) 
is bigger than 1, i.e., 

(2k + 1/2)/2k(2k + 1) > 1 

and each term of (5.4), apart from a global constant, is big
ger than the corresponding term of the harmonic series 
l: ( 1/ n) which is known to be divergent. 

Thus, the standard perturbation theory, Eq. (5.3) for 
N ..... 00, makes no sense, and our variational method will give 
a ground state energy which converges very slowly when the 
number of basis states increases. Note finally that Eq. (5.3) 
is no longer an upper bound formula, and it is only valid for 
N sufficiently small. 

The variational results are somewhat poor for small A 
and quite good for large A. At small A the non-power series 
expansion of Harrell I is appropriate, as well as at large A our 
large coupling perturbation expansion gives a proper de
scription of the ground state energy. 

Finally we have the region of intermediate A ( == 1). In 
this region, the best method is the variational one. By using 
sufficiently large basis one could obtain the correct value of 
the energy, but no definite statements about the speed ofthe 
convergence can be drawn from our results. 

In conclusion, it seems that the appropriate method to 
deal with this class of potentials is to use a nonpower series 
expansion for small coupling constant, and a large coupling 
perturbative expansion for large A. Both expansions should 
be an appropriate extension of the presently known forms. 
Moreover, it would also be of interest to find a connection of 
both expansions for intermediate values of the coupling con
stant. 
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APPENDIX 

A program has been written in BASIC for symbolically 
handling the evaluation of the matrix elements ofthe opera
tor xp

. A listing of the program can be obtained from the 
authors on request. The first ten matrix elements of xP run as 
follows; where 

x~n =(m - llxPln -1), 

xfl =Y = r (P ~ 3 )/ r(3/2), 

Xf2 = py/{3!, 

xf3 = P(P - 2)y/~, 

xf4 = P(P - 2)(P - 4 )y/.j7i, 

x'f.2 = (P 2 + 2P + 6)y/3!, 

x'f.3 = P(P 2 + 2f3 + 12)y/.J3!5!, 

x'f.4 = P(P 3 + 14P - 36)y/.J3!7!, 

x'f3 = (P 4 + 4p 3 + 36p 2 + 64p + 120)y/5!, 

x'f4 = P(P 4 + 4p 3 + 56p 2 + 104,8 + 360)yl.J5!7!, 

~ = (,86 + 6p 5 + 106p4 + 454,83 

+ 1660,82 + 3968,8 + 5040)y/7!. 
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