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Variational Approach for Restoring Blurred Images with Cauchy Noise

Federica Sciacchitano†, Yiqiu Dong†, and Tieyong Zeng‡

Abstract. The restoration of images degraded by blurring and noise is one of the most important tasks in image
processing. In this paper, based on the total variation (TV) we propose a new variational method
for recovering images degraded by Cauchy noise and blurring. In order to obtain a strictly convex
model, we add a quadratic penalty term, which guarantees the uniqueness of the solution. Due to
the strict convexity of our model, the primal dual algorithm is employed to solve our minimization
problem. Experimental results show the effectiveness of the proposed method for deblurring and
denoising simultaneously images corrupted by Cauchy noise. Comparison with other existing and
well known methods is provided as well.
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1. Introduction. Image deblurring and image denoising are fundamental problems in the
applied mathematics community, see for instance [4, 5]. Most of the literature deals with the
restoration of images corrupted by additive Gaussian noise [10, 19, 46, 51]. Unfortunately,
in many engineering applications the noise has a very impulsive character and thus it cannot
be modeled by this kind of noise. The most common example of impulsive noise is given
by the impulse noise [13, 38, 39], which can be caused, for instance, by analogue-to-digital
converter errors, by malfunctioning pixel elements in the camera sensors and so on. Another
impulsive degradation is given by Cauchy noise, which appears in atmospheric and underwater
acoustic noises, radar and sonar applications, air turbulence, wireless communication system,
biomedical images, synthetic aperture radar (SAR) images, for an overview we refer the reader
to [31, 33, 34, 42, 43, 44].

Mathematically speaking, the degraded image f in presence of blurring and Cauchy noise
is given by f = Ku+v, where u is the original image defined on the image domain Ω ⊂ R

2, K
is the blurring operator and v is some Cauchy noise. A random variable V follows the Cauchy
distribution, if it has density

(1.1) g(v) =
1

π

γ

γ2 + (v − δ)2
,

where γ > 0 is the scale parameter and δ ∈ R is called localization parameter.
Recently, several approaches deal with Cauchy noise, for instance Chang et al. [12] used

recursive Markov random field models for reconstructing images with Cauchy noise. Achim
and Kuruoğlu [1] proposed a method for denoising a image degraded by Cauchy noise in the
complex wavelet domain. Wan et al. [49] studied a segmentation technique for noisy colour
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images corrupted by Cauchy noise. As far as we know, in the literature, none has never
studied a variational model for removing Cauchy noise, thus, our contribution is to propose a
variational model for deblurring and denoising degraded images with Cauchy noise.

One of the most famous variational model is the ROF model. This approach was intro-
duced in 1992 by Rudin, Osher, and Fatemi and it is defined as follows

(1.2) inf
u

J(u) +
λ

2

∫

Ω
(f − u)2dx,

where J(u) =
∫

Ω |Du| is the total variation (TV) regularization term, the last term is the data
fidelity term and λ > 0 is the regularization parameter, which represents the trade-off between
a good fit of f and a smoothness due to the TV regularization term. Due to its capability
of preserving sharp edges, it is a very successful and popular algorithm for denoising image
corrupted by additive Gaussian noise.

Overall the years, many variational models based on TV have been introduced for removing
other noises, such as multiplicative noise [3, 45], impulse noise [16, 18, 39], Poisson noise [36],
etc. In our work, inspired by the above studies, we introduce a variational model, based
on total variation as regularization term, for denoising and deblurring images with blur and
Cauchy noise. In particular, we propose the following problem for removing Cauchy noise,

(1.3) inf
u

J(u) +
λ

2

∫

Ω
log
(

γ2 + (u− f)2
)

dx,

where γ > 0 is the scale parameter, see (1.1). As one can see, we keep the same regularization
term as in the ROFmodel, but we adapt the data fidelity term to the Cauchy noise, introducing
one that is suitable for such kind of noise. We emphasize that TV regularization is very useful
tool for preserving edges, but is not so good for texture recovery, thus, clearly, the proposed
model can be extended to other modern regularization terms such as nonlocal TV [21], high
order TV [50], dictionary learning [19, 28], or tight-frame approach [8].

Unfortunately, since the data fidelity term is not convex, the uniqueness of the solution in
(1.3) is not guaranteed. Hence, to overcome this problem we use a quadratic penalty function
technique, in particular, we introduce the following convex minimization problem

(1.4) inf
u

J(u) +
λ

2

(
∫

Ω
log
(

γ2 + (u− f)2
)

dx+ µ‖u− u0‖22
)

,

where u0 is the image obtained applying the median filter [5] to the noisy image. We employ
the median filter in the quadratic penalty term, since it has been shown that it works well
for removing impulse noise, [13], and the Cauchy degradation has some similarities with the
impulse degradation.

Easily, we can also generalize our model for restoring a blurred image corrupted by Cauchy
noise. Given a linear blurring operator K, we consider the following convex model for deblur-
ring and denoising simultaneously

(1.5) inf
u

J(u) +
λ

2

(∫

Ω
log
(

γ2 + (Ku− f)2
)

dx+ µ‖Ku− u0‖22
)

.
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Due to the strict convexity of the minimization problem, the minimization problem in (1.5)
is solved using the primal dual algorithm proposed by Chambolle and Pock in [11].

Numerical results show the potentiality and the effectiveness of the proposed method for
restoring blurred images degraded by Cauchy noise. Furthermore, we compare the recon-
structed images obtained by our method with the ones given by the ROF model [46], the
median filter [20] and the L1-TV model [39].

The rest of the paper is organized as follows. In Section 2, we describe the alpha-stable
distribution, focusing on the Cauchy distribution. Using the MAP estimator, in Section 3 we
derive our model for deblurring and denoising simultaneously an image and we analyze some
theoretical properties of this model. Adding a quadratic penalty term, which depends on the
median filter, in Section 4, we propose a convex model to restore blurred and degraded image
by Cauchy noise and we prove the existence and uniqueness of the solution. In Section 5,
using the primal dual algorithm, we show some numerical results and we compare them with
the reconstructions obtained with other existing approaches. Finally, in Section 6, we draw
some conclusions.

2. Cauchy noise modeling. Many studies in image and signal processing rely on the
fundamental assumption that the noise follows a Gaussian distribution. This hypothesis is
justified due to the existence of the Central Limit Theorem, see [26]. But, unfortunately, most
of the real world problems cannot be modeled by Gaussian distribution, since the noise is much
more impulsive than the one that is modeled by additive Gaussian noise. Examples of these
applications can be found in the radar and sonar applications, where there are atmospheric
and underwater acoustic noises, in biomedical images, in SAR images and so on. These types
of noise follow the so called alpha-stable distributions [40, 41, 47].

The alpha-stable distributions were introduced in 1925 by the French mathematician Paul
Lévy. The name stable is due to the fact that they are closed under additions, i.e. the sum
of two alpha-stable random variables is still a alpha-stable random variable. One of the main
advantage of this distribution is that the alpha-stable random variables obey to the Gene-
ralized Central Limit Theorem. But, there is also a very important disadvantage, this class
has not a close formula for densities and distribution functions (apart from Gaussian, Cauchy
and Lévy distributions). The easiest and most common way to define these distributions is
through the characteristic function or Fourier transform, see [47].

Generally speaking, an alpha-stable distribution is characterized by four parameters: an
index of stability α ∈ (0, 2], a skewness parameter β ∈ [−1, 1], a scale parameter γ > 0 and a
location parameter δ ∈ R. When α ∈ (1, 2], the location parameter δ corresponds to the mean
of the distribution, otherwise δ corresponds to its median. The scale parameter determines the
spread of the distribution around δ and it plays a similar rule as the variance in the Gaussian
distribution. If γ = 1 and δ = 0 we say that the distribution is standardized, furthermore if
β = 0 the distribution is symmetric around zero, in this case we call it symmetric alpha-stable
distributions. From now on we will focus only on symmetric alpha-stable distributions.

The distributions of this class are all bell-shaped, with increasing density on the left and
decreasing on the right. The heaviness of the distribution tails is controlled by the parameter
α, i.e., the tails grow thicker as alpha becomes smaller.

In Figure 1, we show the PDFs of symmetric alpha-stable distributions with different
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Figure 1: Comparison of the PDFs of symmetric alpha-stable distributions with α = 0.5, α = 1, α = 1.5
and α = 2. The other parameters are set equal to β = 0, γ = 1, δ = 0.

values of α. The distribution with α = 2 corresponds to the well known Gaussian distribution
and the one with α = 1 corresponds to the Cauchy distribution. Comparing the PDFs, we
see that the tails of the bells become heavier as α decreases. In fact, the Cauchy bell (α = 1)
has thicker tail than the Gaussian distribution (α = 2). Thus, the rare events have more
probability of occurring in the Cauchy bell curve than in the Gaussian bell curve and for this
reason, the noise generated from the Cauchy distribution is more impulsive than the Gaussian
one. For instance, the Cauchy noise can contain powerful noise spikes that can be more than
a hundred times the magnitude of the humbler Gaussian noise spikes.

In order to illustrate the difference between the Gaussian noise and the Cauchy noise, in
Figure 2 we show a 1 Dimensional noise free signal and the corresponded degraded signal using
the Gaussian noise and the Cauchy noise. The noisy signal corrupted by Gaussian noise has
been obtained simply adding random values from the Gaussian distribution. From [40, 41],
we know that the Cauchy noise can be obtained from the ratio of two independent Gaussian
variables. Hence, to create the noisy signal with Cauchy noise, firstly we generate two vectors
contained random values from the Gaussian distribution, and then we add the ratio between
these two vectors to the original signal. From the figures, one can see that the Cauchy noise
is much more impulsive than the Gaussian noise, thus the rare events have more probability
to occur. Note that the vertical scale goes from 30 to 120 for the original signal and the one
degraded by Gaussian noise, while it goes from −100 to 400 for the signal degraded by Cauchy
noise.

Finally, we now describe how Cauchy noise influences the clean image. Given the original
image u : Ω → R , with Ω ⊂ R

2 be a bounded, open and connected set with compact Lipschitz
boundary, the noisy image f : Ω → R is given by,

f = u+ v,



IMAGE RESTORING UNDER CAUCHY NOISE 5

0 20 40 60 80 100 120 140 160 180 200
30

40

50

60

70

80

90

100

110

120

(a) Noise free signal.
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(b) Degraded by Gaussian noise.
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(c) Degraded by Cauchy noise.

Figure 2: Symmetric alpha-stable noise in 1D: notice that the y-axis has different scale (scale between
30 and 120 on (a) and (b) and −100 and 400 on (c)). (a) 1D noise free signal; (b) signal degraded by
an additive Gaussian noise (with mean 0 and variance 25); (c) signal degraded by an additive Cauchy
noise (γ = 25). Cauchy noise is more impulsive than the Gaussian noise.

where v represents the random noise that modeles a Cauchy distribution. A random variable
V follows the Cauchy distribution, V ∼ Cauchy(γ, δ), if it has density as in (1.1). Without
loss of generality, from now on, in our analysis we consider δ = 0.

3. Variational model. In this section we analyse our variational model for deblurring and
denoising images corrupted by Cauchy noise. In the first part, we focus only on the denoising
case and using the Maximum a Posteriori (MAP) estimator (see [26]) we derive our nonconvex
model. Then, we study some properties of our restoration model, i.e. the existence of a
minimizer and the minimum maximum principle. Later, we incorporate a blurring operator
K in our variational model for deblurring and denoising simultaneously an image corrupted
by Cauchy noise and we show how a solution can be computed numerically.

3.1. Variational model via MAP estimator. Our goal is to find a variation model to
restore image corrupted by Cauchy noise, in particular, we want to recover the original image
u, given the noisy image f = u + v, where v follows the Cauchy noise. Based on [3], we
derive our model using the Bayes rule and the Maximum a Posteriori (MAP) estimator, see
[26]. In the following, we denote the random variables with the capital letters F , U and V ,
the respective instances with the small letters f , u and v and the respective density functions
with gF , gU and gV .

As already said in the previous section, we assume that v follows a “zero-centered” Cauchy
law, thus its density function is defined as follows,

gV (v) =
1

π

γ

γ2 + v2
.

Given the noisy image f , for restoring the original image U , we have to maximize the
conditional probability P (U |F ). From Bayes’s rule [26], we know

(3.1) P (U |F ) =
P (F |U)P (U)

P (F )
.
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Based on (3.1), we can equivalently minimize

(3.2) − log(P (U |F )) = − log(P (F |U)) − log(P (U)) + log(P (F )).

Since the quantity P (F ) is constant respect to the variable U , we just need to minimize
− log(P (F |U)) − log(P (U)).

The pixels of our image are corrupted by Cauchy noise, thus for x ∈ Ω, with Ω the set of
the pixels of the image, we have

P (f(x)|u) = Pu(x)(f(x)) =
γ

π
(

γ2 + (u(x)− f(x))2
) .

Inspired from [3], we assume that U follows a Gibbs prior:

gU (u) =
1

Z
exp(−βJ(u)),

where Z is the normalization factor, β > 0 and J is a non negative given function such as
J(u) =

∫

Ω |Du| (the notation will be explained in the next section).
Now, since the image is discretized and the pixels x ∈ Ω are mutually independent and

identically distributed (i.i.d.), we have P (U) =
∏

x∈Ω P (U(x)), where U(x) is the instance of
the random variable U at the pixels x. Hence, minimizing (3.2) is equivalent to minimize

(3.3) − log(P (F |U)) = −
∑

x∈Ω

(

log
(

P (F (x)|U(x))
)

+ log
(

P (U(x))
)

)

.

Substituting the explicit expressions of logP (F (x)|U(x)) and logP (U(x)) in (3.3), we can
easily write (3.3) as follows,

(3.4) − log(P (F |U)) =
∑

x∈Ω

(

log
(

γ2 + (U(x)− F (x))2
)

+ βJ(U(x)) + log π + logZ − log γ
)

.

Since the last three terms are constants, our proposed functional for restoring images corrupted
with Cauchy noise is given by

(3.5) E(u) :=

∫

Ω
|Du|+ λ

2

∫

Ω
log
(

γ2 + (u− f)2
)

dx,

where λ is a strictly positive parameter.
In the following sections, we briefly recall the definition of the space of the functions

bounded variation and we give some theoretical results about the existence of a minimizer.

3.2. Total variation regularization. In 1992, in order to restore corrupted images preser-
ving edges in the image, total variation (TV) regularization was introduced by Rudin, Osher
and Fatemi in [46]. In this work, they recover the image u in the space of the functions of
bounded variation (BV). In particular, u ∈ BV (Ω) iff u ∈ L1(Ω) and the seminorm in the
space BV (Ω) is finite, where the BV-seminorm is defined as follows,

(3.6)

∫

Ω
|Du| := sup

{∫

Ω
u · div(ξ(x))dx

∣

∣

∣
ξ ∈ C∞

0 (Ω,R2), ‖ξ‖L∞(Ω,R2) ≤ 1

}

.
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The space BV (Ω) endowed with the norm ‖u‖BV = ‖u‖L1 +
∫

Ω |Du| is a Banach space. If
u ∈ BV (Ω), (3.6) corresponds to the total variation. From the compactness of the space
BV (Ω), we have the following embedding, BV (Ω) →֒ Lp(Ω), with 1 ≤ p ≤ 2, and for p < 2 it
is compact (see [2] for more explanations).

3.3. Existence of a solution. Our proposed model to restore image corrupted by Cauchy
noise is given by

(3.7) inf
u∈BV (Ω)

∫

Ω
|Du|+ λ

2

∫

Ω
log
(

γ2 + (u− f)2
)

dx,

where the TV (u) is used as the regularization term, λ > 0 is the regularization parameter and
f ∈ L∞(Ω) is the noisy image.

In the following theorem we prove that there exists at least one solution for our minimiza-
tion problem (3.7).

Theorem 3.1. Let f be in L∞(Ω), then the problem (3.7) has at least one solution in BV (Ω)
satisfying:

inf
Ω

f ≤ u ≤ sup
Ω

f.

Proof. Let’s denote a = inf f and b = sup f and let’s consider a minimizing sequence
{un} ∈ BV (Ω) for (3.7). First of all, we show that we can assume a ≤ un ≤ b without loss
of generality and so the sequence {un} is bounded in L1(Ω). Fixing x ∈ Ω and denoting the
data fidelity term with h : R → R, where h(t) := log(γ2 + (t− f(x))2), we have

h′(t) =
2
(

t− f(x)
)

γ2 +
(

t− f(x)
)2 .

Thus, the function h is decreasing if t < f(x) and increasing if t > f(x). For every M ≥ f(x),
we have

h(min(t,M)) ≤ h(t).

Hence, if M = b, we have
∫

Ω
log
(

γ2 +
(

inf(t, b)− f(x)
)2
)

dx ≤
∫

Ω
log
(

γ2 +
(

t− f(x)
)2
)

dx.

Furthermore, from [29], we know that
∫

|D inf(u, b)| ≤
∫

|Du|. By definition of our func-
tional E, we can conclude that E(inf(u, b)) ≤ E(u). In the same way, we can prove that
E(sup(u, a)) ≤ E(u), with a = inf f . Hence, since a ≤ un ≤ b, the sequence {un} is bounded
in L1(Ω).

Now, applying our functional E to the sequence {un}, we have E(un) is bounded. In
particular, there exists a constant C > 0 such that E(un) ≤ C. The data fidelity term
has minimum value 2 log γ when u = f and E(un) is bounded, hence also the regularization
term

∫

|D(un)| is bounded. Thus, the sequence {un} is bounded in BV (Ω) and there exists
u ∈ BV (Ω) such that up to a subsequence, we have un → u in BV (Ω)-weak and un → u in
L1(Ω)-strong. Furthermore, using a ≤ u ≤ b, the lower semi-continuity of the total variation
and the Fatou’s lemma, we have that u is a minimizer of the problem (3.7).



8 FEDERICA SCIACCHITANO, YIQIU DONG AND TIEYONG ZENG

Now, we are able to prove, under some hypothesis, that there exists a unique solution for
our minimization problem (3.7).

Proposition 3.2.Let f be in L∞(Ω), then the problem (3.7) has only one solution u such
that f − γ < u < f + γ.

Proof. Using the same notation as before and fixing x ∈ Ω, we have

h′′(t) =
2
(

γ2 − (t− f(x))2
)

(

γ2 + (t− f(x))2
)2 ,

where t ∈ R. If f −γ < t < f +γ the function h is strictly convex, hence there exists a unique
minimizer for the problem defined in (3.7).

In the following proposition we enunciate the minimum-maximum principle.

Proposition 3.3. Let f1 and f2 be in L∞(Ω) with a1 = infΩ f1 and a2 = infΩ f2 and we
denote b1 = supΩ f1 and b2 = supΩ f2. Let us assume that f1 < f2. Then, denoting with u1
(resp. u2) a solution of (3.7) for f = f1 (resp. f = f2), we have u1 ≤ u2, if (b2−a1)(b2−a2) <
1.

Proof. From the Theorem (3.1), we know that the problem (3.7) admits solutions. Thus,
by definition of u1 and u2 we have

J(u1 ∧ u2) +
λ

2

∫

Ω
log(γ2 + (u1 ∧ u2 − f1)

2)dx ≥ J(u1) +
λ

2

∫

Ω
log(γ2 + (u1 − f1)

2)dx,

and

J(u1 ∨ u2) +
λ

2

∫

Ω
log(γ2 + (u1 ∨ u2 − f2)

2)dx ≥ J(u2) +
λ

2

∫

Ω
log(γ2 + (u2 − f2)

2)dx,

where u1 ∧ u2 = inf(u1, u2) and u1 ∨ u2 = sup(u1, u2). From [9, 22], we know J(u1 ∧ u2) +
J(u1 ∨ u2) ≤ J(u1) + J(u2), thus, adding the two inequalities above we have,

∫

Ω

(

log(γ2+(u1∧u2−f1)
2)−log(γ2+(u1−f1)

2)+log(γ2+(u1∨u2−f2)
2)−log(γ2+(u2−f2)

2)
)

dx ≥ 0.

We now split the domain Ω into two parts Ω = {u1 > u2}∪{u1 ≤ u2} and we deduce that

∫

{u1>u2}

(

log(γ2+(u2−f1)
2)−log(γ2+(u1−f1)

2)+log(γ2+(u1−f2)
2)−log(γ2+(u2−f2)

2)
)

dx ≥ 0.

Using the properties of the logarithm and collecting the terms (f1 − f2)(u1 − u2), we can
rewrite the above expression as follows,

(3.8)

∫

{u1>u2}
(f1 − f2)(u1 − u2)

(

2γ2 + (f1 + f2)(u1 + u2)− 2(f1f2 + u1u2)
)

dx ≥ 0.

Hence, if the following inequality holds

(3.9) 2 + (f1 + f2)(u1 + u2)− 2(f1f2 + u1u2) > 0,
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we have the thesis of this proposition. In fact, since f1 < f2, we have that {u1 > u2} has a
zero Lesbegue measure, thus we have proved that u1 ≤ u2 a.e. in the domain Ω.

Now, we prove that, under our hypothesis the inequality (3.9) holds. Introducing a new
variable u in (3.9), such as u2 = u1u2, and using the Cauchy inequality, we can easily find
that (3.9) is equivalent to the following inequality

(3.10) (u− f1)(u− f2) < 1.

From the previous theorem, we know that a1 ≤ u1 ≤ b1 and a2 ≤ u2 ≤ b2, thus, by hypothesis
that f1 < f2, we have a1 < u < b2. Hence, the inequality in (3.10) always holds if (b2 −
a1)(b2 − a2) < 1.

3.4. Deblurring and denoising case. Since in the real applications the observed image f

is not only corrupted by noise, but it is also blurred, we extend the minimization model in
(3.7) to the deblurring and denoising case. In particular, the blurred and noisy image is given
by f = Ku+ v, where K ∈ L(L2(Ω)) is a known linear and continuous blurring operator and
v ∈ L2(Ω), as above, represents the Cauchy noise. In the deblurring and denoising case, the
minimization problem becomes

(3.11) inf
u∈BV (Ω)

∫

Ω
|Du|+ λ

2

∫

Ω
log
(

γ2 + (Ku− f)2
)

dx.

3.5. Steepest gradient descent. In this subsection, we show how to compute numerically
a solution of (3.11). We consider directly the deblurring and denoising case, since (3.7) can
be seen as a special case of (3.11), when K is the identity operator.

First of all, we derive the discrete version of our minimization problem (3.11) and then
we study how to solve it numerically. For simplicity we keep the same notations from the
continuous contest. Let f ∈ R

mn be the noisy image obtained from a two-dimensional pixel-
array, with dimension m × n, by concatenation in the usual columnwise fashion and K ∈
R
mn×mn be the discretization of the continuous blurring operator K. The discrete version of

our proposed minimization problem is given by

(3.12) min
u

‖∇u‖1 +
λ

2

∑

i

log
(

γ2 + ((Ku)i − fi)
2
)

,

where the first term represents the discrete total variation of the image u and it is define as
follows,

‖∇u‖1 =
∑

i

√

(∇xu)2i + (∇yu)2i .

The discrete gradient ∇ ∈ R
2mn×mn is given by

∇u =

(

∇xu

∇yu

)

,

where the discrete derivative operators in the x-direction and y-direction, respectively, ∇x and
∇y, are obtained using the finite difference approximations to the derivatives with symmetric
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boundary conditions,

(∇xu)l,j =

{

ul+1,j − ul,j, if l < n

0 if l = n
and (∇yu)l,j =

{

ul,j+1 − ul,j, if j < m

0 if j = m.

As [3], in order to solve the problem in (3.12), we use a steepest gradient descent approach,
and we have

∂u

∂t
= div

(

∇u

‖∇u‖1

)

+ λ
Ku− f

γ2 + (Ku− f)2
,

where the operations above are pointwise. Thus, for a small parameter δt > 0, a solution of
the minimization problem is given by

(3.13)
ut+1 − ut

δt
= div

(

∇ut
√

‖∇ut‖21 + α2

)

+ λK⊤

(

Kut − f

γ2 + (Kut − f)2

)

,

where div = −∇⊤ ∈ R
mn×2mn is the divergence operator and α > 0 is a small fixed parameter

which ensures that the denominator is different from zero.

4. Convex variational model. In this section we introduce a convex variation model for
deblurring and denoising an image corrupted by Cauchy noise. At the beginning, we focus
only on the denoising case and then we generalize the model for the deblurring case. Drawing
inspiration from the nonconvex model defined in (3.7), we introduce a new model by adding
a quadratic penalty term that is based on the image given by applying the median filter to
the noisy image f . The reason why we choose to use the median filter will be explained in
the paragraph 4.1.

In particular, introducing a quadratic penalty term into the previous nonconvex model
(3.7), we have

(4.1) inf
u∈BV (Ω)

∫

Ω
|Du|+ λ

2

(∫

Ω
log
(

γ2 + (u− f)2
)

dx+ µ‖u− u0‖22
)

,

where u0 is the image obtained applying the median filter to the noisy image f and λ > 0 and
µ > 0 are the regularization parameters. In this way, we will prove that the model, under some
assumptions, is strictly convex and we will not have anymore issues about the uniqueness of
the solution and the convergence of our numerical algorithm.

4.1. Median filter. In this part we explain the reason why we choose the median filter
[20] as a quadratic penalty term, focusing on the analogies between the Cauchy noise and
impulse noise. Due to its simplicity and its capability of preserving image edges, in the past
decades, the median filter has attracted much attention in the image processing [7, 30, 35, 48],
especially for denoising images corrupted by impulse noise, see [13, 17]. Given the original
image u, the noisy image f corrupted by impulse noise is defined as follows,

f(x) =

{

u(x) with probability 1− σ

η with probability σ,
with x ∈ Ω,
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(a) Original image (b) Gaussian noise (c) Cauchy noise (d) Impulse noise

(e) Zoom of (a) (f) Zoom of (b) (g) Zoom of (c) (h) Zoom of (d)

Figure 3: Comparison of different noisy images. (a) Original image u0; (b) u corrupted by an additive
Gaussian noise (with mean 0 and variance 0.15); (c) u corrupted by an additive Cauchy noise (γ =
0.05); (d) u corrupted by an impulse noise (σ = 0.15); (e)–(h) zoom of the top left corner of the images
(a)–(d), respectively. Cauchy noise and impulse noise are more impulsive than the Gaussian noise.

where η is a uniformly distributed random variable with values in [minu,maxu] and σ > 0 is
the noise level.

Figure 3(a) shows the original Parrot image and Figures 3(b), 3(c), and 3(d), respectively,
represent the images corrupted by additive Gaussian noise, impulse noise and Cauchy noise.
In Figures 3(e)–3(h) we show the zooms of the top left corner of 3(a)–3(d). One can see
that the image degraded by Gaussian noise looks slightly different from the images corrupted
by Cauchy noise and impulse noise, while in someway Cauchy noise and impulse noise are
quite close each others. For instance, in the impulse noise and in the Cauchy noisy there are
some pixels equal to white or black, while the image corrupted by Gaussian noise is uniformly
modified and white and black pixels are very rare. Although Cauchy noise has some analogies
with the impulse noise, there are also some very important differences, for instance in the
impulse noise some pixels are noise free (see Figure 3(h)), while in the Cauchy noise all the
pixels are corrupted by noise (see Figure 3(g)). Thus, due to the impulsive character of the
Cauchy noise and to its analogies with the impulse noise, we decide to employ the median
filter in our minimization problem (4.1).

In the literature, there exist also some filters created for removing noise in impulsive
environments, for instance the myriad filter [24, 25]. The myriad filter theory is based on the
definition of the sample myriad as the maximum likelihood location estimator of the alpha-
stable distribution. It is a very robust filter for suppressing impulsive noise, in particular
alpha-stable noise, but it is controlled by a parameter and the computational time is relativity
long. For these reasons, we decided to employ the median filter instead of the myriad filter.
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4.2. Existence and uniqueness of a solution. We now prove that the convex minimization
problem defined in (4.1) is strictly convex and that the minimizer is unique

Proposition 4.1.If 8µγ ≥ 1, the model defined in (4.1) is strictly convex.
Proof. We start to prove that the data fidelity term in (4.1) is strictly convex. Fixed x ∈ Ω

we define a function h : R → R as

(4.2) h(t) := log
(

γ2 +
(

u− f(x)
)2
)2

+ µ
(

t− u0(x)
)2

and we prove that is strictly convex. Easily, we can compute the first and the second order
derivative of h, and we have

h′(t) = 2
t− f(x)

γ2 + (t− f(x))2
+ 2µ(t− u0(x)) and h′′(t) = 2

γ2 − (t− f(x))2
(

γ2 + (t− f(x))2
)2 + 2µ.

A direct computation, show that h is strictly convex for 8µγ2 ≥ 1. Since total variation
regularization is convex, we can also conclude that the objective function in (4.1) is strictly
convex, for 8µγ2 ≥ 1, and hence we have the thesis.

We now prove the existence and uniqueness of a solution to (4.1).
Theorem 4.2.Let f be in L∞(Ω), then the model (4.1) has a unique solution u ∈ BV (Ω)

satisfying
min{inf

Ω
f, inf

Ω
u0} ≤ u ≤ max{sup

Ω
f, sup

Ω
u0}.

Proof. In order to prove the existence of a solution to (4.1) we can repeat the proof in
Theorem 3.1. In fact, also in this case the function defined in (4.2) is decreasing if t <

min{inf f, inf u0} and it is increasing if t > max{sup f, supu0}.
The uniqueness of the solution follows directly from the strict convexity of our model.

As in section 3, we enunciate the minimum-maximum principle for the convex minimiza-
tion problem. The proof of this proposition follows the same arguments as in the Proposition
3.3.

Proposition 4.3.Let f1 and f2 be in L∞(Ω) with a1 = infΩ f1 and a2 = infΩ f2 and we denote
b1 = supΩ f1 and b2 = supΩ f2. Let us assume that f1 < f2. Then, denoting with u1 (resp.
u2) a solution of (4.1) for f = f1 (resp. f = f2), we have u1 ≤ u2, if (b2 − a1)(b2 − a2) < 1.

4.3. Deblurring and denoising case. We now modify our model to include a linear and
continuous blurring operator K ∈ L(L2(Ω)). To restore a blurred image corrupted by Cauchy
noise, we introduce the following optimization problem,

(4.3) inf
u∈BV (Ω)

∫

Ω
|Du|+ λ

2

(
∫

Ω
log
(

γ2 + (Ku− f)2
)

dx+ µ‖Ku− u0‖22
)

,

where u0 is the image obtained applying the median filter to the blurred and noisy image f .
Since the blurring operator K is nonnegative and it is linear, we can conclude that the

model in (4.3) is strictly convex. One can prove that the results about the existence and
uniqueness of the minimizer and the minimum-maximum principle hold also in this general
case.



IMAGE RESTORING UNDER CAUCHY NOISE 13

4.4. Numerical method. In this part we show how to compute numerically the minimizer
of (4.3). We focus directly on the general case, since the denoising case can be seen as a special
case of deblurring and denoising one. As in the paragraph 3.5, for sake of simplicity we keep
the notation from the continuous contest. Due to the strict convexity of (3.11), there exists
many algorithms to solve the proposed model, for instance the primal dual algorithm [10, 15],
the alternating direction method with multipliers (ADMM) [6], the split-Bregman algorithm
[23] and the Chambolle-Pock algorithm [11]. Since, under some hypothesis, the convergence
of the Chambolle-Pock algorithm is guaranteed, see [11], we decide to employ it to solve our
minimization problem (3.11).

In order to compute numerically the solution of our minimization problem, we introduce
the discrete version of (4.3),

(4.4) min
u

‖∇u‖1 +
λ

2
G(Ku),

where K ∈ R
mn×mn is the blurring matrix obtained from the discretization of the operator K

and G : Rmn → R is defined as follows

G(u) :=
∑

i

log
(

γ2 + (ui − fi)
2
)

+ µ‖u− u0‖22.

As in [14], for using the primal dual algorithm, we introduce two new variables v ∈ R
2mn

and w ∈ R
mn and, instead of consider the unconstrained problem, we look at the following

constrained optimization problem,

(4.5) min
u,v,w

‖v‖1 +
λ

2
G(w), subject to v = (vx, vy)

⊤ = ∇u and w = Ku.

To apply the Chambolle-Pock algorithm, we study the primal dual optimization problem,

(4.6) min
u,v,w∈Rmn

max
p,q∈Y

‖v‖1 +
λ

2
G(w) + 〈v −∇u, p〉+ 〈w −Ku, q〉,

where p ∈ R
2mn and q ∈ R

mn are the dual variables, and Y = {q ∈ R
2mn : ‖q‖∞ ≤ 1}, with

‖q‖∞ is the ℓ∞-vector norm and it is defined as follows

‖q‖∞ = max
i∈{1,...,mn}

√

q2i + q2i+mn.

Then the Chambolle-Pock algorithm for solving (4.6) is described in Algorithm 1.

The objective functions (4.7) – (4.9) are quadratics, thus the update of p, q and u is given
by

(4.15)

pk+1 = σ(v̄k −∇ūk) + pk,

qk+1 = σ(w̄k −Kūk) + qk,

uk+1 = uk + τ(K⊤qk+1 − divpk+1).
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Algorithm 1 Solving (4.6), by using the Chambolle-Pock algorithm

1: Fixed σ > 0 and τ > 0. Initialize: p0 = 0, q0 = 0, u0 = ū0 = f , v0 = v̄0 = ∇u0 and
w0 = w̄0 = Ku0.

2: Calculate pk+1, qk+1, uk+1, vk+1, wk+1, ūk+1, v̄k+1 and v̄k+1using the following equations:

pk+1 = argmax
p

〈v̄k −∇ūk, p〉 − 1

2σ
‖p− pk‖22,(4.7)

qk+1 = argmin
q

〈w̄k −Kūk, q〉 − 1

2σ
‖q − qk‖22,(4.8)

uk+1 = argmin
u

−〈∇u, pk+1〉 − 〈Ku, qk+1〉+ 1

2τ
‖u− uk‖22,(4.9)

vk+1 = argmin
v

‖v‖1 + 〈v, pk+1〉+ 1

2τ
‖v − vk‖22,(4.10)

wk+1 = argmin
w

λ

2
G(w) + 〈w, qk+1〉+ 1

2τ
‖w − wk‖22,(4.11)

ūk+1 = 2uk+1 − uk,(4.12)

v̄k+1 = 2vk+1 − vk,(4.13)

w̄k+1 = 2wk+1 − wk.(4.14)

3: Stop or set k := k + 1 and go back to step 2.

The equation in (4.10) can be rewritten in the following way,

vk+1 = argmin
v

‖v‖1 +
1

2τ
‖v − tk‖22,

where tk = vk − τpk+1. Thus, the update of v is easily given by applying the soft shrinkage
operator,

vk+1
i =

tki
|tki |

max{|tki | − τ, 0} and vk+1
i+mn =

tki+mn

|tki |
max{|tki | − τ, 0}, for i = 1, . . . ,mn,

with |tki | =
√

(tki )
2 + (tki+mn)

2.

The optimality condition for (4.11) is given by

(4.16) λ
w − f

γ2 + (w − f)2
+ µλ(w − u0) + qk+1 +

1

τ
(w − wk) = 0,

where, as usual, the division and the exponentiation have to be considered pointwise. Easily,
one can see that (4.16) is equivalent to cubic equation. From Cardano’s formula, we can find
the explicitly expression for the solutions of a cubic equation, see the following proposition.
For more details, we refer the reader to [32].

Proposition 4.4.A generic cubic equation with real coefficients

(4.17) ax3 + bx2 + cx+ d = 0, with a 6= 0
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has at least one solution among the real numbers. Let

q =
3ac− b2

9a2
and r =

9abc− 27a2d− 2b3

54a3
,

if there exists a unique real solution of (4.17), the discriminant, ∆ = q3+r2, has to be positive.
Furthermore, if ∆ ≥ 0, the only real root of (4.17) is given by

(4.18) x =
3

√

r +
√
∆+

3

√

r −
√
∆− b

3a
.

Due to the strict convexity of our problem, we know that there exists a unique real solution
for (4.16) and, from the above proposition, it can be computed explicitly using (4.18). Other-
wise, since the objective function in (4.11) has the second derivative, one can also determine
the solution in a efficient way using the the Newton method following with one projection
step, in order to guarantee the nonnegativity of u, see [18, 29]. In our simulations, we decide
to compute the explicit expression of unique real solution using Cardano’s formula.

We remark that, if K is the identity operator, i.e. the degraded image f is not blurred
but it is only corrupted by noise, there is no need to introduce the primal variable w and the
dual variable q, and the algorithm can be simplified accordingly.

In the last part of this section, we study the existence of the solution and the convergence
of the algorithm. First of all, we reformulate (4.6) in the following way

(4.19) min
x

max
y

H(x) + 〈Ax, y〉,

with H(x) = ‖v‖1 + λ
2G(w) and

A =

(

−∇ I 0
−K 0 I

)

, x =





u

v

w



 , x̄ =





ū

v̄

w̄



 , y =

(

p

q

)

.

Proposition 4.5.The saddle-point set of (4.19) is nonempty.

For the proof, we refer the reader to Proposition 2 in [37].
The following proposition shows the convergence of the algorithm described in Algorithm

1.

Proposition 4.6.The iterates (xk, yk) defined in Algorithm 1 converge to a saddle point of
the primal dual problem defined in (4.19) if στ‖A‖22 < 1, where ‖A‖2 denotes the operator
2-norm of A.

This proposition can be seen as a special case of the Theorem 1 proved by Chambolle and
Pock in [11].

In order to use the inequality given in the above proposition, we need to give an estimate
of ‖A‖2. Easily, using the property of the norm, one can find that

‖Ax‖2 ≤
√

‖∇‖22 + ‖K‖22‖u‖2 +
∥

∥

∥

∥

(

v

w

)∥

∥

∥

∥

2

.
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(a) (b) (c)

Figure 4: Original images. (a) Peppers; (b) Parrot; (c) Cameraman .

If ‖x‖2 = 1, by definition of x, we have that ‖u‖22 +
∥

∥

(

v
w

)∥

∥

2

2
= 1, therefore, from Cauchy

inequality, we obtain

‖Ax‖2 ≤
√

‖∇‖22 + ‖K‖22 + 1.

Hence, we have ‖A‖2 ≤
√

‖∇‖22 + ‖K‖22 + 1.

From [10], we know that ‖∇‖22 ≤ 8 and from [37], we have that ‖K‖2 ≤ 1, thus ‖A‖2 ≤√
10. Therefore, in order to ensure the convergence of our algorithm we just need that στ < 0.1.

In our numerical simulations we set σ = τ = 0.3, which ensures the convergence of the
algorithm.

5. Numerical simulations. In this section, we report some numerical reconstructions ob-
tained applying our proposed model to blurred images corrupted by Cauchy noise. First of all,
we focus only on the denoising case and then we consider also the deblurring case. In order
to show the potentiality of our method, we compare our reconstructions with other images
obtained employing other well known methods, as ROF model [46], the median filter [20] and
the L1-TV model. The L1-TV model was introduced by Nikolova in [38, 39] for restoring
images corrupted by impulse noise, in particular, in this model, the total variation regulariza-
tion is combined with an L1 data fidelity term. Motivated by the impulsive character of the
Cauchy noise, we decide to compare our reconstructions also with the L1-TV model. For the
ROF model and the L1-TV model, we employ the primal dual algorithm proposed in [11] to
solve the minimization problem.

For illustrations, we use the 256-by-256 gray level images Peppers, Parrot and Cameraman,
the original images are presented in Figure 4. The quality of the restored images is compared
quantitatively using the peak signal noise ratio (PSNR) value [5] and the measure of structural
similarity (SSIM) [52]. The PSNR is a measure widely used in image quality assessment and
it is defined as follows,

PSNR = 20 log10
mn|maxu−minu|

‖u⋆ − u‖2
,

where u⋆ and u are respectively the restored and the original image. It is a very useful tool,
since it is able to measure quantitatively the quality of the reconstruct image compare to
the original image. Recently, another measure has become very popular among the imaging
community, the so called SSIM measure. This measure compares local patterns of pixel
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intensities that have been normalized for luminance and contrast and it has been proved that
is more consistent with human eye perception than PSNR [52].

In our simulations, the regularization parameters of the variational model are tuned em-
pirically. As a stopping rule, we decide to stop our algorithm as soon as there are not big
changes in the objective function, i.e.

E(uk)− E(uk−1)

E(uk)
< ε,

where ε is a small parameter and E denotes the objective function of the proposed minimiza-
tion problem. In our experiments, we set ε = 5·10−5. In addition, all the simulations reported
here are run in MATLAB R2014a.

5.1. Image denoising. Even our method works for simultaneously deblurring and denoi-
sing, in this section we focus only on the denoising case. Our aim is to recover the original
image u, knowing the corrupted image f . Since the ratio of two independent standard normal
variables gives a standard Cauchy random variable, we can generate the noisy image f using
the following equality,

f = u+ v = u+ γ
η1

η2
,

where the random variable v follows the Cauchy distribution, γ > 0 is the scale parameter
and η1 and η2 follow the Gaussian distribution with mean 0 and variance 1.

In the following, we compare our reconstructions with the ones obtained applying the
ROF model, the median filter (MD) and the L1-TV model. As you will see, in average with
our method we can improve the PSNRs of the recovered images of 0.55 dB.

Table 1: PSNR values and SSIM measures for noisy images and recovered images given by different
methods (γ = 0.02). In the last line of the table, we compute the average of the values.

PSNR SSIM

Noisy ROF MD L
1-TV Ours Noisy ROF MD L

1-TV Ours

Peppers 19.15 25.03 29.64 30.34 30.94 0.3243 0.4820 0.6743 0.7163 0.7168

Parrot 19.13 23.88 27.05 28.02 28.98 0.3179 0.4083 0.5894 0.6571 0.6641

Cameraman 19.07 24.00 26.14 27.21 27.91 0.2743 0.2314 0.4115 0.4715 0.4707

Lena 19.06 24.58 28.94 29.84 30.36 0.3240 0.4022 0.6488 0.6950 0.6880

Baboon 19.17 21.16 21.38 24.24 24.96 0.5174 0.2115 0.4231 0.6980 0.6950

Goldhill 18.99 24.40 26.80 28.23 28.80 0.3744 0.3191 0.5875 0.6692 0.6811

Boat 19.03 24.21 27.27 28.70 29.20 0.3566 0.3474 0.6437 0.6908 0.6931

Mean 19.09 23.89 26.75 28.08 28.74 0.3556 0.3431 0.5683 0.6568 0.6584

In Figure 5 and 8, we show the results for denoising the corrupted images Peppers, Parrot
and Cameraman for different noise levels, γ = 0.02 and γ = 0.04. The first column represents
the noisy image, in the others we show respectively the reconstructions given by the ROF
model, the median filter, L1-TV model and our model. In order to make evident the differences
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Observed: 19.15

Observed: 19.13

Observed: 19.07

ROF: 25.03

ROF: 23.88

ROF: 24.00

MD: 29.64

MD: 27.05

MD: 26.14

L1-TV: 30.34

L1-TV: 28.02

L1-TV: 27.21

Ours: 30.94

Ours: 28.98

Ours: 27.91

Figure 5: Recovered images (with PSNR(dB)) of different approaches for removing Cauchy noise. First
column: noisy images f (γ = 0.02); second column: restored images by ROF approach (λ = 10); third
column: restored images by median filter (MD); forth column: restored images by L1-TV approach
(λ = 1.5); fifth column: restored images by our approach (λ = 0.7 and µ = 10).

between the reconstruction given by different approaches, in Figure 6, we present some details
of Figure 5 (here, we also include the original image in the first column). The convergence
of the algorithm of the three TV-based method is presented in Figure 7, where we plot the
objective function values versus the number of iterations (we use the image of the Parrot
when γ = 0.02). For the comparison of the performance quantitatively, in Table 1 and 2, we
report the values of the PSNR and SSIM for the noisy and recovered images. In the tables, we
also provide the values of PSNR and SSIM for other popular test images in image processing,
i.e. Lena, Baboon, Goldhill, and Boat. Furthermore, after many simulations with different
λ-values in the ROF model, the L1-TV model and ours, we report the reconstructions that
look visually better and give the best PSNRs.

Visually, it can be seen that L1-TV model gives much better reconstructions than the ROF
model and the median filter, and that our model reaches better visual quality and higher PSNR
values. The reason why our method and the L1-TV give good images, is because Cauchy noise
is very impulsive and in some way it is very similar to impulse noise, see subsection 4.1. The
ROF model was introduced for denoising image corrupted by Gaussian noise, in fact, it is not
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Clean

Clean

Clean

Observed: 19.15

Observed: 19.13

Observed: 19.07

ROF: 25.03

ROF: 23.88

ROF: 24.00

MD: 29.64

MD: 27.05

MD: 26.14

L1-TV: 30.34

L1-TV: 28.02

L1-TV: 27.21

Ours: 30.94

Ours: 28.98

Ours: 27.91

Figure 6: The zoomed-in regions of the recovered images in Figure 5. First column: details of original
images; second column: details of noisy images f (γ = 0.02); third column: details of restored images
by ROF approach (λ = 10); forth column: details of restored images by median filter (MD); fifth
column: details of restored images by L1-TV approach (λ = 1.5); sixth column: details of restored
images by our approach (λ = 0.7 and µ = 10).

able to denoise very well the degraded image with Cauchy noise, since it smooths too much
the image, without preserving the details, especially in the cameraman we loose many details
and it does not keep the contrast. The median filter works quite well if the noise level is low,
otherwise it is not able to eliminate all the noise. From the details in Figure 6, we can see that
our reconstructions preserve better the details of the image, i.e. the stalk of the peppers, the
eye and the stripes of the parrot, the tripod and the column of the building in the cameraman.
Considering also the respective tables, our method is able to improve in average the PSNR of
0.66 dB for γ = 0.02 and 0.55 dB for γ = 0.04 than the others methods.

5.2. Image deblurring and denoising. In this section, we consider blurred images cor-
rupted by Cauchy noise. In our simulation, we test the Gaussian blur with a window size
9×9 and standard deviation of 1. After the blurring operation, we corrupt the images adding
Cauchy noise with γ = 0.02. As in the previous section we compare our reconstructions with
the ones obtained employing the ROF model, the median filter and the L1-TV model, see
Figure 9 and 10. In table 3, we report the values of the PSNR and SSIM for different images
and different variational methods.

Comparing the results of the three TV-based methods, i.e. the ROF, the L1-TV and our
method, one can see that the proposed method performs best visually. In fact, the images



20 FEDERICA SCIACCHITANO, YIQIU DONG AND TIEYONG ZENG

0 50 100 150 200
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
F

u
n
c
ti
o
n
 v

a
lu

e
s

Iterations

(a)

0 20 40 60 80 100 120 140 160
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

F
u

n
c
ti
o

n
 v

a
lu

e
s

Iterations

(b)

0 50 100 150

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

F
u

n
c
ti
o

n
 v

a
lu

e
s

Iterations

(c)

Figure 7: Plots of the objective function values versus iterations of the three TV-based method corre-
sponding to the experiments in the first line of Figure 5. (a) ROF model; (b) L1-TV model; (c) our
model.

Observed: 16.25

Observed: 16.27

Observed: 16.08

ROF: 23.95

ROF: 22.75

ROF: 23.17

MD: 27.25

MD: 25.50

MD: 24.87

L1-TV: 28.29
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Figure 8: Recovered images (with PSNR(dB)) of different approaches for removing Cauchy noise. First
column: noisy images f (γ = 0.04); second column: restored images by ROF approach (λ = 9); third
column: restored images by median filter (MD); forth column: restored images by L1-TV approach(λ =
1.3); fifth column: restored images by our approach (λ = 0.8 and µ = 6).
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Table 2: PSNR values and SSIM measures for noisy images and recovered images given by different
methods (γ = 0.04). In the last line of the table, we compute the average of the values.

PSNR SSIM

Noisy ROF MD L
1-TV Ours Noisy ROF MD L

1-TV Ours

Peppers 16.25 23.95 27.25 28.29 28.80 0.2246 0.4294 0.5605 0.6347 0.6411

Parrot 16.27 22.75 25.50 26.55 27.16 0.2334 0.3289 0.4706 0.5529 0.5676

Cameraman 16.08 23.17 24.87 25.99 26.66 0.1989 0.2081 0.3379 0.3857 0.3920

Lena 16.21 24.29 26.88 28.79 29.30 0.2220 0.4025 0.5394 0.5993 0.6170

Baboon 16.16 20.67 20.90 22.50 23.05 0.3651 0.1588 0.3681 0.5525 0.5650

Goldhill 16.21 23.72 25.48 26.49 27.00 0.2426 0.2786 0.5108 0.5205 0.5684

Boat 16.28 23.55 25.67 26.67 27.18 0.2479 0.3266 0.5429 0.5843 0.5930

Mean 16.21 23.16 25.22 26.47 27.02 0.2478 0.3047 0.4757 0.5471 0.5634

Observed: 18.31

Observed: 18.23

Observed: 18.29

ROF: 24.21

ROF: 24.06

ROF: 23.98

MD: 25.19

MD: 24.48

MD: 24.43

L1-TV: 26.70

L1-TV: 25.75

L1-TV: 25.49

Ours: 27.46

Ours: 26.79

Ours: 26.72

Figure 9: Recovered images (with PSNR(dB)) of different approaches for deblurring and denoising of
image blurred and corrupted by Cauchy noise. First column: blurred and noisy images f (γ = 0.02);
second column: restored images by ROF approach (λ = 14); third column: restored images by median
filter (MD); forth column: restored images by L1-TV approach (λ = 3); fifth column: restored images
by our approach (λ = 2 and µ = 30).
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Clean

Clean

Clean

Observed: 18.31

Observed: 18.23

Observed: 18.29

ROF: 24.21

ROF: 24.06

ROF: 23.98

MD: 25.19

MD: 24.48

MD: 24.43

L1-TV: 26.70

L1-TV: 25.75

L1-TV: 25.49

Ours: 27.46

Ours: 26.79

Ours: 26.72

Figure 10: The zoomed-in regions of the recovered images in Figure 9. First column: details of original
images; second column: details of blurred and noisy images f (γ = 0.02); third column: details of
restored images by ROF approach (λ = 14); forth column: details of restored images by median filter
(MD); fifth column: details of restored images by L1-TV approach (λ = 3); sixth column: details of
restored images by our approach (λ = 2 and µ = 30).

given by the ROF model are too smooth and the details are missed (see, for instance, the
detail of the peppers in Figure 10), L1-TV preserves more details than the ROF model, but
still some features are lost or not well recovered as in our model, such as the eye of the parrot
and the columns of the building in the cameramen, see Figure 10. In the third column of
Figure 9, the reconstructions given by the median filter are reported. One can note that the
images are still blurred, this is because we do not employ any deblurred method but we just
denoise the image using the filter. Visually and from the values of the PSNR and SSIM, we
can clearly see that our method outperforms the others even in presence of blur.

6. Conclusion. In this paper, we introduce a variational method for deblurring and denoi-
sing of blurred images corrupted by Cauchy noise. In particular, inspired by the ROF model
we combine a total variation regularization term with a data fidelity term suitable for the
Cauchy noise. In order to obtain a convex minimization problem, we add a quadratic penalty
term based on the median filter. Due to the strict convexity of our problem, we prove the
existence and the uniqueness of a solution to our proposed model. Then, applying the primal
dual algorithm, we solved our convex minimization problem and the convergence is ensured.
The restored images show the efficiency and the capability of the proposed model comparing
to other well known models, such as the ROF model, the median filter and the L1-TV model.
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Table 3: PSNR values and SSIM measures for noisy images and recovered images given by different
methods (γ = 0.02). In the last line of the table, we compute the average of the values.

PSNR SSIM

Noisy ROF MD L
1-TV Ours Noisy ROF MD L

1-TV Ours

Peppers 18.31 24.21 25.19 26.70 27.46 0.2413 0.4974 0.5909 0.6086 0.6297

Parrot 18.23 24.06 24.48 25.75 26.79 0.2316 0.4439 0.5145 0.5278 0.5655

Cameraman 18.29 23.98 24.43 25.49 26.27 0.1753 0.2609 0.3433 0.3516 0.3880

Lena 18.64 25.74 26.70 27.26 28.14 0.2487 0.4748 0.5764 0.5712 0.6071

Baboon 17.42 20.84 21.54 21.36 21.81 0.1955 0.2167 0.3573 0.3208 0.3905

Goldhill 18.47 24.84 25.88 26.17 26.76 0.2262 0.3678 0.5070 0.4911 0.5390

Boat 18.48 24.36 25.42 26.18 26.69 0.2410 0.4059 0.5313 0.5478 0.5721

Mean 18.28 24.00 24.81 25.56 26.31 0.2228 0.3811 0.4887 0.4884 0.5274

REFERENCES
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