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Probabilistic Finite Element Methods

Probabilistic finite element méthods (PFEM), synthesi;ing the\éower
of finite element methods with second-moment techniques, are formulated
for various classes of problems in structural and solid mechanics.
Time-invariant random wmaterials, geometric properties and loads are
incorporated in terms of their fundamental statistics viz. second-
moments. Analogous to the discretization of the displacement field in

finite element methods, the random fields are also discretized. __

Preserving the conceptual simplicity, the response moments are
calculated with minimal computations. By incorporating certain
computational techniques, these methods are shown to be capable of
handling large systems with many sources of uncertainties.

By construction, these methods are applicable when the scale of
randomness is not very large and when the probabilistic demsity
functions have decaying tails. The accuracy and efficlency of theée ]
methods, along with their limitations, are demonstrated by various
applications. Results obtained are compared with those of Monte Carlo
simulation and it is shown that good accuracy can be obtained for both

linear and nonlinear problems. The methods are amenable to implementa-

tion in deterministic FEM based computer codes.
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CHAPTER 1
INTRODUCTION

Traditionally, engineering analysis has been based on deterministic
models with well-defined parameters., However, it is increasingly being
recognized that uncertainties are often associated with parameters such
as material and geometric properties, forces and boundary conditions and
that these should be adequately modeled. An example is the degradation
of material properties with time as a result of fatigue, wear and long-

term creep; such changes in material properties can be treated as -

uncertainties. In general, the random uncertainties which are included
in a stochastic process can be classified into threc major categories:
(1) physical uncertainty, (2) statistical uncertainty and (3)
uncertainty in the model. A detailed discussion of these topics can be
found in, for example, Refs. [1-4]. Theoretically, these uncertainties
can be modeled as random variables or random fields governed by joint
probability density or distribution functions. In practice, the exact
joint probability density functions are not always available; it is more
likely that only the first few moments such as the mean and covariance
are known.

Uncertainty analysis in structural mechanics has concentrated on
problems of an almost totally stochastic nature. Within this setting,
even a single degree of freedom system with nonlinearities poses a
formidable challenge and has not been solved satisfactorily. The most
commonly employed solution technique is Monte Carlo simulation (see e.g.

[3]). In general, these simulation procedures are computationally



expensive, even though they are easily applicable to both linear and
nonlinear systems. For linear systems, nonstatistical methods such as
"second-moment analysis”™, are available [2]. A related second order
perturbation technique applied to a special class of linear structural
vibrations is discussed in [5). The emphasis is on the modal decoupling
of the equations of motion with uncertain damping. The “second-moment
analysis™ has also been extended in [6] to define the mean and variance

of vector functions. This formulation is mathematically elegant and

Kronecker algebra and matrix calculus are employed. While this
formulation has also been extended in [7] to linear stochastic systems
with colored multiplicative nolse, the direct application of this
technique to nonlinear structural dynamics is not feasible, because in
most nonlinear structural analysis, concern lies more with deviations in
loads from a deterministic path and in uncertainties in material
properties to which a value can be assigned rather than completely. }
stochastic loads or systems.

The research reported here can be subdivided into two parts: (1)
development of a variational principle to embed the probabilistic
character of the constitutive properties and loads (which are part of
the boundary conditions and body forces) and to obtain the corresponding
probabilistic character of the nodal forces; (2) the determination of
the probabilistic distribution of the response (displacement and stress)
from the probabilistic description of the nodal forces.

The main thrust of this research has been to integrate second-

monment based techniques with finite element methods in a method called



probabilistic finite elements (PFEM); finite elements are currently the
most versatile tools of analysis in large-scale structural and solid
mechanics. Through this synthesis, we have developed versatile and
efficient techniques for probabilistic analysis. The investigation 1s
restricted to time invariant uncertainties which may be present as
discrete random variables or random fields in ;aterial, geometric

properties and/or forces. These methods are applicable when the

uncertainties are not very large and when the probabilistic density

functions or histograms have decaying tails. The most appealing i
features about PFEM are its conceptual simplicity, ease of computer
implementation and the flexibility to accommodate efficient numerical
techniques at every stage of the methodology.

PFEM has been formulated for various classes of problems in
structural and solid mechanics. In the next chapter, methods are
developed for nonlinear structural dynamics with discrete random
variables. In Chapter 3, random fields are modeled, essentially by
discretization. The encumberances of correlated random variables are
avoided by an eigenvalue transformation to the space of uncorrelated
random variables., In Chapter 4, these methods are derived from
variational principles. The linear formulation is obtained from the
potential energy variational principle and the nonlinear counterpart is
derived from the principle of virtual work with appropriate stress and
strain measures to account for the large deformation. In Chapter 5,
numerical applications in elastoplastic mechanics are studied in detail,
along with improved computational techniques. The summary and

conclusions are presented in Chapter 6.



CHAPTER 2
PROBABILISTIC FINITE ELEMENTS FOR NONLINEAR STRUCTURAL DYNAMICS

2.1 Introduction

It i{s important to be able to treat the effects of uncertainties in
a reasonably economical manner; standard Monte Carlo procedures are
simply too expensive, Furthermore, the methods should be designed so
that they ean be incorporated into widely used finite element programs
in a natural and concise manner. Thus, the approach should be
integrable with the elemental discret;zation and nodal assembly
procedures that characterize finite element theory and software
implementation.

In the next section, the formulation of the probabilistic finite
element method (PFEM) is presented. The method is applicable in
structural dynamics with discrete random variables with or without
correlation. In Section 2.3, the computational aspects of PFEM are
discussed. In Section 2.4, the analysis of a two degree of freedom
spring—-mass probabilistic system is then given. Results are also
presented for a ten—-bar probabilistic system with nonlinearities. The
proposed PFEM method 1s compared to (1) Monte Carlo simulations (MCS)
and (2) Hermite-Gauss Quadrature (HGQ) schemes. All these methods are
schematically depicted in Fig. 1, highlighting the major computational
steps. In Section 2.5, the relative performance of the PFEM as compared
to the other two methods is discussed. The reason for the limitation of

each solution technique is also presented.



2.2 Formulation of the Probabilistic Finite Element Method (PFEM)

We consider the structural system to be governed by the following
system of nonlinear algebraic equations which arises from a finite

element discretization:

o

Md+£(b, d, &) = E(t) (2.2.1)

where M, £, d and F are the generalized mass, internal force,

==

displacement and external force respectively; and a superscript dot
represents material tim; (t) derivative. While the internal and
external nodal forces are obtained from one variational statement, they
are segregated for convenience. The probabilistic effects are described
through the gq-dimensional random vector E; this can include the
probabilistic distributions of the material properties; the mass 5 is
assumed to be deterministic. All these probabilistic distributioms, as
reflected in the variance of the material properties, the composite load
spectra, etc. are represented by the generalized variance vector,
Var(g). We shall denote the expected value operator by E[ ] and use
second order expansions so E[ ] is given by

a?{

o S
E[p(®)] = ¢ +5 7%, 35, Cov(by, b,) (2.2.2)

where ¢ 1is a vector function of the random variables. The superposed

~

bar denotes “at the mean value of E“ and the symbol Cov represents the

covariance; summations on i and j from l to q are assumed. 1f bi is



uncorrelated to bj for { # j, then

Cov(bi, bj) =0 for 1 # j (2.2.3a)

and

Cov(bi, bi) = Var(bi) no sum on i (2.2.3b)

I

Applying the expected value operator to Eq. (2.2.1) yields
E[M d] + E[£(b, d, d)] = E[F(t)] (2.2.4)

Employing Eq. (2.2.2) and the chain rules:

223
- - 1 ~
E[Md] = Ma+<oM Cov(b,, b.) (2.2.5a)
~ ~ ~ 2~ 3b3b, 1° 73
5£) =
) 2%
* 2 35.ap, Cov(by, b))
13
aC av 3K ad
+ { —— + 7w =—} Cov(b,, b,)
3b; ab, 7 3b, 3b, 1° 75
(2.2.5b)
L s oy %
+ 5 {C +K } Cov(b,, b,)
2 ab;ab, 3b, 3b, 1’ 7]



and
E[F(t)] = F(t) (2.2.5¢)

where d and é have been replaced by v and a respectively. The C and K
matrices are the damping and stiffness matrices, respectively. They are

ag

o —

(2.2.6a)

and

i (2.2.6b)

R
[ ]
2l

In the case of a linear structure, f is given by

trn
[]
0
1L
+
R
A

(2.2.6c)

For simplicity, let us assume that Eqs. (2.2.3) holds. This
assumption is quite suitable for finite element models which are built
up from discrete structural elements, such as bars and beams. Using
this simplification and applying perturbation techniques on Egs.

(2.2.5), Eq. (2.2.4) can be shown to yield

§§+f-g(:) (2.2.7a)



and
M Aa + C Av + K ad = AF (2.2.7b)

where

Fuo {(@ 3y K ad
AF = = + ) Var(b,)
1 ab, ab ij abj ]

3= 373 , ,
2.2.8a
1 o’ =
) Var(bj)}
ab
3
L 803
Ag - -2' z -—2' Vat'(bj) (Z.Z.Sb)
j=1 3ab’
J
N
av =3 1 ——E-Var(bj) (2.2.8¢)
j=1 3b
J
and
e
A g -3 2 ——E-Var(bj) (2.2.8d)
j=1 abj

Once &E, Kf and &g are obtained by solving Eq. (2.2.7b), the secoad-

order means are

E(d] = E(a] =3 + a3 (2.2.9a)



E[d] = E[v] =V +ay (2.2.9b)
and

E[d] =d + ad (2.2.9¢)

~ ~

If one is interested in the deviatioms in response from a

deterministic path due to the uncertainties in material properties to

which a value can be assigned, the number of time integrations

(simulations) reduces to only two. These two simulations are

Ma+f=F (2.2.10a)
and
Maa+Cay +Kad = aF (2.2.10b)
where
q 23
aa = § ——ab (2.2.10¢)
b.
3=1 9 J i
q 3y
av = § —— ab (2.2.10d)
ab,
j=1 77 i



q
ad = ¥ —— ab, (2.2.10e)
< ab,
3= %
q 3f
sF= -1 55 ) ab (2.2.10%)
=1 j |d, v = constant ]

and Abj is equal to the preassigned value of bj' It is also necessary

to obtain the sensitivity vectors, f.e. 3 )/abi; see Section 3.
Finally, once the means and the sensitivity vectors are determined,

the variance vectors can be computed easily by the following first order

formulas
q 3a ag)
Var(a) = ——}(=—] Cov(b,, b.) (2.2.11a)
0 1 GG Gvey
cz; v 3y
Var(v) = ——}{=——)} Cov(b,, b,) (2.2.11b)
ve 1 GG vy
q ad
Var(d) = 1I " ( )(3b ) Cov(b,, bj) (2.2.11¢)

]

In the case of uncorrelated b's, the covariance matrix becomes a

diagonal matrix and the diagonal terms are denoted by

’a
Var(a) = jg (ab ) Vat(bj) (2.2.12a)
Var(y) = 2 ( ) Var(bj) (2.2.12b)
3=l

10



g ad ,
var(d) = § (gz7)° var(b)) (2.2.12c)
~ . 3b, 3
j=1 J
Similar procedures can also be developed for the probabilistic
distributions of stresses. However, this direct approach can be very
expensive if the number of random variables is greater than the number

of requested probabilistic distributions of stresses. For this

situation, an alternative approach, termed an adjoint probabilistic

stress analysis, is developed. This is described in ([12].

Remark 1 The uncertainties discussed here are described by discrete
random variables. Physical parameters, such as material properties, are
often continuous functions in space. When there are uncertainties

assoclated with these parameters, we have random fields. The

probabilistic distributions at any two points can be represented by a
~correlation function.” One way to adapt the above procedures to
“random fields™ is to first do a finite element discretization of the
correlation function and thus obtain the covariance matrix. Once this
matrix is obtained the PFEM method as developed here could be used with

minor modifications.

Remark 2 To the author's knowledge, Eqs. (2.2.7) through (2.2.12)

represent the first consistently derived second moment probabilistic

finite element method (PFEM) which can readily be adapted to existing

deterministic finite element computer programs. The second order

11



terms Aa, av and ad are computed directly from the second moment mean
Eq. (2.2.7b). Consequently Eqs. (2.2.9) are second order accurate and

Eqs. (2.2.11) are first order accurate.

Remark 3 The complete probability distributions are not available for
most random variables except perhaps the first two moments. Methods
such as MCS or HGQ usually require knowledge of probability density

functions. The PFEM method requires only the first two moments and is

therefore widely applicable.

12



2.3 Computational Aspects of PFEM

The computing procedures essentially involve time integrations of
the various equations derived in the previous section. In gener;l, the
sensitivity vectors can be obtained directly by integrating the
sensitivity equations in time. However, this is not possible for some
noalinear systems. In such cases, the usual procedure 1is to calculate
the derivatives by finite differences [l]. Calculating the finite
difference derivatives increases the computation for a probabilistic
system. However, results obtained are excellent when compared to EEZ

solutions obtained by other methods. The computing procedures for

linear and nonlinear systems are described separately below.

Linear Systems

Por a linear system, Eqs. (2.2.7) become

Ma+Cv+XKd=Er) (2.3.1a)
Maa +Cav+Kad=aF (2.3.1b)

The solutions of Eq. (2.2.7a) and (2.2.7b) are obtained in sequence so
that the additional computation due to the latter is minimized. The
solution algorithms, such as implicit and/or explicit time integration,
used in Eq. (2.3.1a) can be applied directly to Eq. (2.3.1b) with the

formulation of only one additional vector function AF.

13



1f we examine Eq. (2.2.8a) clgpely, it can be shown that AF can be

av ad
computed element-wise once v, d, sg— and 3%— are given. In addition,
3

the corresponding variation of the elemental nodal forces can then be
assembled into a description of the probabilistic distribution of the
elemental nodal forces for the complete finite element model.

It can be easily shown that the governing equations for the

sensitivity vectors are obtained by differentiating Eq. (2.2.1) with

respect to bj' They are
3a _av _ad aF
M— 4+ C o+ Ko = —— (2.3.2a)
~ 3b ~ ab ~ 3b b
3by = 3by  ~ by BBy
where
3F af
— - ——— (2.3.2b)
abj abj d,v = constant
or
3F aC _ oK
= w - ad - = E (2.3-2C)
3b ab_ ~ _ ab_ ~
J h| h|

From Eqs. (2.3.la-b) and (2.3.2a); it can be seen that the whole
procedure uses the same effective stiffness matrix so only one matrix
needs to be triangulated.

To evaluate the mean and variance from Eqs. (2.2.9) and (2.2.12),
the total number of time integrations required is q + 2. These are:

one integration to evaluate the displacement, velocity and acceleration

14



at the mean value of B (Eq. 2.3.10a); 'q' integrations to evaluate the
sensitivity vectors (Eq. 3.2a); and one more integration to evaluate the
second order variations (Eq. 2.3.1b). The computational steps involved
in PFEM are shown in Fig. 2. Notice that all time integrations employ

the same effective stiffness matrix; parallel computation procedures

could be employed, thereby increasing the efficiency tremendously.

Systems with Material and Geometrical Nonlinearities

As in the linear case, the diéplacement, velocity and accelerégloﬁ,
at the mean value of b is obtained by integrating Eq. (2.2.7a). The
relative merits between implicit and explicit time integrations are
considered here for a probabilistic nonlinear system.

By total differentifation of Eq. (2.2.10a) with respect to Bj, i.e.

d/dbj, we have:
da df
Mgt T~ 2 (2.3.3a)
b J
and
a%a  a’f
M—F+—5 =0 (2.3.3b)
~ 2 2 ~
db db
b J
Equations (2.2.7a) and (2.3.3a) can be written as
M 21t £n+1 = E(tn+1) (2.3.4a)

15



and

Ja ad of
~n+l = “~n+tl ~
M abj +K abj abj (b, d.,)) (2.3.4Db)

where §;+1 and X are the internal force vector and the “tangent
stiffness matrix”, respectively, evaluated at 2, gn+1 and tn+l'
Equations (2.3.4a) and (2.3.4b) can be solved by the implicit Newmark-8

algorithm [10]. The “mean value” equation (2.3.4a) can be solved by

Newton-Raphson iteration

=k vl _ —v
K A3n+1 Ioel (2.3.5a)

where the residual vector is given by

-V - _7 - -_— Vv

Zn+l [En+1 £u+1 E 3n+1] (2.3.5b)
and the effective stiffness matrix 1is

—

The symbol v represents the equilibrium iteration counter at time step
n+]l and iterations are repeated until Aa::i approaches zero.
Similarly, the first order sensitivity equation (2.3.4b) can be

written as

16



% _~n+l 2 “~a+l Sa+l
X ab, = —Bat 5b. + M 3b . (2.3.6a)
J j j
where
83 ad v ja
~a+l ~0 ~nN 1 2 9%n
35, ab, 3. T 7 = eJde
a5, 3%, * A% 3, (3 - 8)at 3, (2.3.6b)

%
It is observed here that the effective stiffness matrix 5 is identical

—*

in both Eq. (2.3.5a) and Eq. (2.3.6a). Since the triangulated K is
ad e

given during the {teration procedures, sﬁﬂil can be obtained simply by

forward reductions and back substitutions; therefore, the number of time
integrations is still q + 2.

The main advantage of employing implicit time integration is its
unconditional stability. Therefore, the above methods are best suited
for structural dynamics problems dominated by low frequency response.
For impulsive and short duration transieant problems, Eq. (2.2.7a),
(2.3.3a) and (2.3.3b) can alternatively be solved by explicit
integrations. Since S(E, S) is nonlinear, the sensitivity vectors can
be obtained by central-differences. Equations (2.3.3a) and (2.3.3b) are

approximated by

+ - + -
d-a -
¥ )+ G, Dm0 (B3I
3 3
and
at-mea Tt
M ( ) + ( > ) - 9 (2.3.7b)
Ab Abj

17



where

a" = 2@ +ap) (2.3.7¢)

2 =2 -ab) (2.3.7d)
and

£t @ e, O | (2.3.7e)

£ = £ -8y, &) ’ (2.3.7£)
. -

d and d are similarly defined and 4b, 1is defined by

3

ABJ - (0, 0, sesy Abj, 0, csey O)T (2-3.73)

where T denotes the transpose., With this computational procedure, the
total number of time integrations would still be q + 2. However, the
number of internal force calculations would be 2q + l. These are: one
integration for the mean Eq. (2.2.7a) and 2q integrations with finite
differencing for Eq. (2.3.7a) and Eq. (2.3.7b). Apart from purely
implicit or purely explicit algorithms, mixed time implicit-explicit
algorithms [4] could also be employed so that the attributes of each of

the algorithms can be achieved.
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2.4 Numerical Examples

Example 1: A Two-Degree—of-Freedom Spring-Mass System.

The performance of PFEM, the new method developed here, 1is
evaluated via a two-degree—of-freedom spring-mass system. The mean is
gecond order accurate and the variance is first order accurate in this
example. The computed results are compared with those obtained
employing (1) Monte Carlo Simulation (MCS) and (2) Hermite-Gauss
Quadrature (HGQ) schemes. The two latter methods as implemented here
are reviewed in Appendix A.

The problem statement is depicted in Fig. 3. A sinusoidal vector

forcing function is used:

0.0

E(t) = (2.4.1)

25.0 x 106 sin 2000t

The random spring constants Kl and K2 are normally distributed with a
coefficient of variation (i.e. o/uy) equal to 0.05. The mean spring
constants are 24 x 10% and 12 x 106 respectively. The deterministic
masses m, and m, are 0.372 and 0.248 respectively. A stiffness-
proportional damping of 3Z is included. The probabilistic equations
derived earlier are solved by the implicit Newmark-g method [3]. The
mean amplitude 3} is depicted in Fig. 4, for all the thfee numerical
methods -- PFEM, HGQ and MCS. The PFEM solution compares very well with

the other two methods. For the variance of d1 the PFEM solution plotted
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in Fig. 5, seems to overshoot the variance at large times. The mean and
variance of d2 are similarly compared and depicted in Figs. 6 and 7.

The maximum coefficilent of variation of the displacements d1 and dz are

found to 0.13 and 0.10 respectively. The £3g bounds for the

displacements d, and d2 are plotted in Figs. 8 and 9 respectively.

1

Example 2: A Ten-Bar Probabilistic System with Material and Geometrical
Nonlinearities.

The problem statement is depicted in Fig. 10. The load time =
function, which is also shown in Fig. 10, is applied at node 3. This
particular load-time history is chosen such that only four of the ten
bars, elements 1, 3, 7 and 8, will yield. Therefore the probabilistic
model can be simplified by choosing the yield stresses of these four
elements as the normal random variables which have the major impact on
the response. The coefficient of varfation is 0.05. Since the other
six elements do not come close to yleld, they are considered
deterministic variables. With this approach, instead of 59049 analyses,
only 81 analyses are required for the Hermite Gauss Quadrature method.
The justification for this drastic simplification is explained in detail
in Appendix A.

For the PFEM method, the finite difference derivatives are

evaluated with an interval AbJ equal to 0.05 bJ and the equations are
solved by explicit time integration. The mean is second-order accurate
whereas the variance is first-order accurate., The Monte Carlo

Simulation results are obtained with 400 simulations.

The probabilistic displacement and stress solutions at selected

20



locations are given in Figs. 11 through l4. The maximum coefficient of
variation of the displacement of node 1 is found to be 0.13 and that of
the stress in element 1 is 0O.ll. For this example, the three methods
(PFEM, HGQ and MCS) have been employed and they all compare quite well.
The bounds of the displacement and stress can be estimated based on

the Chebyschev inequality
B|x-u|>m) < n>0 (2.4.2)

2

n- -

where p = E(x) and 02 = Var(x). The #3¢ bounds (i.e., n = 3) for the
displacement and stress are plotted in Figs. 15 and 16, and the
solutions can be expected to be within these bounds with 89Z coanfidence

level.
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2.5 Comparisons Among the Three Methods and Conclusions

Based on these numerical studies, we have drawn the following

tentative conclusions:

1) Although all three methods agree very well and are evidently
comparable in accuracy, PFEM is the most efficient solution procedure
for small to medium size problems. The relative computational

efficiency of the three methods is summarized in Figure 17.

Relative Computational Efficiency of Three Probabilistic Methods.

PFEM HGQ MCS
2 bar 1l 8 400
Structure
10 bar 1 4 60
Structure
Figure 17

The number of time integraticns required for a general structure
with q random variables can be summarized as follows:
i) PFEM with partial derivatives evaluated directly: q + 2
11) PFEM with partial derivatives evaluated by finite differenmce: 2q

+ 1

)
w

114) HGQ with three-point quadrature

iv) MCS with simple Monte Carlo Simulation of sample size N : N
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2) Although PFEM is expected to be most accurate when the variances are
small, it performs quite well even when the respouse shows a large
coefficient of vartiation (e.g., 0.13 for the displacement at Node | in
the ten-bar structure). This could be attributed partly to the nature
of the probabilistic distribution. For most distributioas, values of
response far- away from the mean are less likely to be found than those
near the mean. Hence second moment analysis about the mean turns out to

be quite accurate.

3) The three methods are applicable to linear and nonlinear systems.
In linear systems the partial derivatives can be obtained directly. In
nonlinear system the brute force method is to obtain these derivatives
by finite differences. We are currently investigating ways to compute
these derivatives efficiently. However, the methods are problem

dependent.

4) A minor drawback of PFEM is that its accuracy deteriorates for large
times even with structural damping. An explanation is given in Appendix

B. We are currently investigating several ways of improving this.

5) PFEM can be easily incorporated into widely used finite element

prograas.

6) A PFEM analysis can be obtained with q + 2 simulations if Cov(by,

b,) # 0 for 1 # j. For this purpose the bi must be transformed into

3
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another set of random variables ¢, through an eigenproblem such

J

that Cov(ci, c.) =0 for 1 # j and in most cases only a few modes are

B |
sufficient [13].

7) Curreatly the PFEM is being extended to the transient analysis of

nonlinear continua. The details of the method can be found in [S].

Since this method involves only matrix and vector assembly it can

be incorporated in a natural and concise manner in general purpose

finite element programs.
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CHAPTER 3
RANDOM FIELD FINITE ELEMENTS

3.1 Introduction

At the present time, probabilistic methods in mechanics, for
problems involving time-independent uncertainties, can be broadly
classified into two major categories: (1) methods using a statistical
approach and (2) methods using a non-statistical approach. The
literature in these areas 1is quite considerable and so only a few sample
references are indicated below.

Simulation, 1nvolving sampling and estimation, is the most
prevalent statistical approach. Direct Monte Carlo simulation,
stratified sampling and Latin Hypercube sampling are some of the
frequently employed simulation techniques. A comparative discussion of
these techniques can be found in, for example, Refs. [1,2,3,6]. These
techniques, however, have their limitations. Transformations of the
distributions are necessary before simulation can be done [4,5,8,9].
This implies, of course, that the multivariate distribution function
needs to be known for simulation. The topic of transformation
techniques is still an area of current research. Furthermore, since the
accuracy of sampling techniques depends on the sample size, in
accordance with the "Weak Law of Large Numbers” {4,11}, simulations can
become prohibitively expensive; hence the interest in non-statistical
methods.

Non-statistical approaches include numerical integration

[10,15,16], second-moment analysis [4,5,7,9,14-17], and stochastic
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finite element methods [11-13,15,16}. Particularly, second-monent
techniques have proven to be accurate and efficient in structural
mechanics. A major advantage of these techniques is that the
multivariate distribution function need not be known but only the first
two moments. An inherent limitation of secoﬁd moment analysis is that
the uncertainties cannot be too large, i.e., variances of the random
variables cannot be large when compared with their mean values.
Typically, the maximum coefficient of variation is around 10% although
it has been shown that it could be as high as 20%Z for acceptable results
to be obtained [5,14].

Linear problems in structural mechanics with uncertain parameters
have been solved by second-moment analysis [11-13]. However, similar
solution techniques for nonlinear problems in structural dynamics arve,
to the authors' knowledge, nonexistent. Recently, the authors have
developed probabilistic finite element methods for nonlinear structural
dynamics ([15,16]. The methods are applicable to correlated and
uncorrelated discrete random variables, though they are limited to
discrete structures such as spring-mass systems and nonlinear truss
structures.

The herein proposed method is applicable to nonlinear structural

dynamics problems with random fields — both homogeneous and

inhomogeneous. In the next section, the formulation of the
probabilistic finite element methods for linear coatinua is outlined.
In Section 3.3, the procedures for the transformation of the full

covariance matrix to a diagonal matrix are discussed. In Section 3.4,
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the computational procedurés using the transformed random variables are
given. The PFEM, as applied to continua with material and geometrical
nonlinearities, 1s formulated in Section 3.5. Applications to a one-
dimensional elastic/plastic wave propagation problem and a two-
dimensional plane-~stress beam bending problem are described in Section

3.6. The results and conclusions are presented in Section 3.7.
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3.2 Probabilistic Finite Element Methods (PFEM) for Linear Continua

The linear finite element equations are:

Kd=F (3.2.1)
where the stiffness matrix is

K =/ BIDB d (3.2.2)

~ n ~ A A

The transpose 1s designated by a superscript "T"; the generalized
gradient matrix, material response matrix, nodal displacement vector and
nodal force vector are denoted by 2(5), B(E’b)’ g(b) and E(b),
respectively; X are the spatial coordinates; @ is the domain and b(ﬁ) is
a random function. In this formulation, b(x) can be a random material
property or a random load.

The basic idea of the "Second Moment Analysis™ in PFEM is to
expand, via Taylor Series, the g, B and E matrices about the mean value
of b and to retain only up to second order terms. Equations will then
be obtained for the mean values of the nodal displacements and the
covariances of the nodal displacements in terms of the derivatives of
the nodal displacements with respect to the random variables.

Similarly, the mean and covariance of the element stresses and strains
are obtained.

The random function b(x) is appro;imaced using shape functions

Ni(.’.‘) by
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q
b(f) = T Ni(f)bi (3.2.3a)
i=]

where bi are the nodal values of b(x), that is the values of b at X
i=1, .'.., qe.

To derive the PFEM matrix equations, the following notation will be
used. For a given function g(b) and a small parameter e:

3(5) = E(b(x)] mean value of b, i.e. the

expectation E[ ] of b(x)

db, = eab, = t:(b1 - Fl). first order variation of b,
about Fl

dbldb2 = ezAblAbz second order variation of b, and
bz about Fl and 752, respectively

E(f) = 3(5,3(5)) value of g evaluated at b

Ebl - %%T partial derivative of g with
respect to b1 evaluated at b

Eblbz = -a—bi—:% mixed partial derivatives of g

with respect to bl and b,
evaluated at b
The random function is defined by its expectation F(J_E), coefficient
of variation g and autocorrelation R(b(xi),b(xj)). The mean and

variance are approximated by the same shape functions as b, so

_ q
Elb(x)] = z N (x)E[b, ] (3.2.3b)
1=1 ,

q
Var(b(x)) = [ Ni(gg)N

(x) Cov(b,,b.) (3.2.3c¢)
1,§=1 b 17
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The matrices D, d and F are expanded about b via Taylor series:

- Q9 _ qQ _
D=D+ £ D, db, += I D
~ o~ gt 21,3-1“

- 9 _ . B
d=d+ f d, . db, += ¢ d

q 4

F=F+ ¢ F.db, += ¢ F
1,j=1

~b1 i 2

dbidb

§ 3.(2.4)
dbidbj (3.2.5)
dbidbj (3.2.6)

Substituting Eqs. (3.2.4) through (3.2.6) into Eq. (3.2.1) and equating

equal order terms, the zeroth, first and second order equations

corresponding to Eq. (3.2.1) are:

Zeroth Order

Kd~-F
where
K=/ BDBa&

First Order (¢ terms)

Kd, =F
~~b,  ~li

where
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(3-2.8)

i= 1, -oo., q (3.2.9)



B d da (3.2.10)

K4, =F, (3.2.11)
where
d L] q, b, ab | (3.2.12)
=3 I ab, Ab, 2.
~2 2 1,j-1 ~bibj i J
and
- 1 7 . -4y 8T, BT ad]
~2 2 ~b,b 2L 2 3 b~ ~
1,j=1 173 Q 173
T— -
- [,{ 2D, B Ebjdﬂ]}ﬂbibbj (3.2.13)

Once §;'E and g' are obtained by solving Eqs. (3.2.7), (3.2.9) and

(3.2.11), respectively, the mean and autocovariance matrices for the

nodal displacement are given by

and

E(d] = [ d(b) £(b) db (3.2.14)
1 PPN
cov(a®,a?) = f (at- Tr(ad- Drecnrap (3.2.15)
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respectively, where f is the joint probability density function, di is

the ith degree of freedom of d, and b is the random~variable vector

b= (b, by, eeuy b_) (3.2.16)

The second order estimate of the mean value of d is obtained by

employing Eq. (3.2.5) in Eq. (3.2.14) to give

- 1 q _
E[d] =d+<{ £ d Cov(b,,b )} (3.2.17)
S R L 173

The covariance, COV(bi,bj) is obtained from the given expectation
E{b(x)], coefficient of variation a and autocorrelation R(b(xi),b(xj))

as follows

1/2

Cov(bi,b ) = {Var(b(xi))Var(b(x N1 R(b(xi),b(x )) (3.2.18)

3 J 3

where
2 2
Var(b(xi)) = q E[b(xi)] (3.2.19)

Similarly, the first order accurate COV(di,dj), which is consistent with
a second moment analysis, can be shown to be

q
coval ad) = g Et & Cov(v_,b) (3.2.20)

r,s=] r s

ol
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The strain and stress vectors for a typical element "e” are

e (3.2.21)

M

L}
o
~

1%,
~—
o,

and

= D(x,b) ¢ (3.2.22)

ta

where se is the element nodal displacement vector. Since B1is a
deterministic function of x, the mean value and autocovariance of ¢ can
be similarly defined according to Eqs. (3.2.14) and (3.2.15),

respectively. They are

q
Blel =38 +3{ ¢ B& | Cov(b, ,b,)} (3.2.23)
i,3=1 1

and

q
eTe f=f T
Cov(g ,ee) = { T (B7dy )(B'd,)

. Cov(by,b;)} (3.2.24)
»j=1 1 3

Employing Eq. (3.2.4) and the element counterpart of Eq. (3.2.5),

the mean value and autocovariance of g can be shown to be
Elc] = § E[g]

+{ © (B, BT +3D5, ,B3)covid (3.2.25)
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and

(3.2.26)

f=£ T
gbj) Jcov(b, ,b)}

QA

al
Pat
S

respectively.
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3.3 Transformation of the Full Covariance Matrix to a Diagonal Variance
Matrix

It can be observed from Eqs. (3.2.7) through (3.2.13) that the

determination of 5; db and d2 involve one factorization of K and q + 2
~ ~i ~ ~

forward-reductions and back-substitutions. The latter operations

consist of one solution to evaluate d (Eq. (3.2.7)); q solutions to
evaluate §£1 (Eq. (3.2.9)) and one more solutioc to evaluate E; (Eq.
(3.2.11)) vhere g,

density function with Eq. (3.2.11) and integrating over the domain

is obtained by multiplying the joint probability

of b to yleld

K4, -F, (3.3.1)
where

=1 T T coven, b)) (3.3.2)

e = = Z a A\'4 » o Jde

277 ) S p VY

and

f;' g {%?bb ‘%[Igr-ébbggdn]

1,3i=1 17j Q 13
T= - .
- [J 2D, B 4, dn]}Cov(bi,bj) (3.3.3)
] i j
Hence, from Eq. (3.2.17), the mean value of d is simply
-— -t
E(d] = d + d, (3.3.4)
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Even though the above computations are compatible with the elemental
discretization and nodal assembly procedures that characterize finite
element theory and software, the number of matrix multiplicatioms is
proportional to q(q + 1)/2. This would be unacceptably expensive. The
large number of computations arise from the double summations in i and j
in Eq. (3.3.2) and (3.3.3). To remedy this situation, the covariance

matrix Cov(bi,bj) is transformed to a diagonal variance matrix

Vat(ci,cj) such that

Var(ci,cj) =0 for 1 # j (3.3.5)
and

Var(ci,cj) = Var(cy) for { = j (3.3.6)

Therefore, the number of matrix multiplications is proportional to q.

The above involves the solution of the eigenproblem:

0

Y=y A (3.3.7)
vhere the G and A matrices are used to denote Cov(bi,bj) and Var(ci,cj),
respectively; and y is a constant q x q fundamental matrix with the

following properties:

irﬁ =y !!T =1 (3.3.8)

~
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Ts . (3.3.9)

>
»
e
o
e

and

=y ¢ or ¢c= £T2 (3.3.10)

1{-4

l is the q x q identity matrix and ¢ is a transformed ¢ x 1 random
variables vector.

With Egs. (3.3.9) and (3.3.10), the mixed derivatives appearing in
Eqs. (3.2.21) through (3.2.28), (3.3.2) and (3.3.3) reduce to second

derivatives. For example, Eqs. (3.3.2) and (3.3.3) become:

- 1 q__
d, =< t d__ Var(e,) (3.3.11)
2 Zgap ey
and
IR 1 1= -
Ep= T{3E. . ~3l] BD B4 da]
2 =1 2 ¢ cy 2 a c Cy
T— -
- [/ B'D_ Bd_  da]}var(c,) (3.3.12)

Analogous to modal analysis in structural dynamics problems, ounly a
few modes (i.e. Var(ci)) are required to capture the major
characteristics of the probabilistic distributions. However, the
highest eigenvalues have to be employed. This is in contrast to the

modal structural problem wherein the lowest eigenvalues are used.
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3.4 Computational Procedures Using the Transformed Random Variables ¢

Assume that n highest Var(ci) are adequate to characterize the

probabilistic distribution. The discrete ¢, are transformed according

to

q
c, = T wjibj i=1, ..o, n (3.4.1)
=1
and the mean and variance of c are
T
Elc] = 3 E[b] (3.4.2)
and
Var(s) = diagonal terms of A (3.4.3)
where
T
A=y Gy (3.4.4)

The zeroth-order matrix equations to be solved are:

tm)

1a]
(]

i)

(3.4.5)

The n first-order matrix equations to be solved are:
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i = 1, “e oy ¢} (30406)

where

1 - l, so ey a (3.4.7)

)
Y
+
~
'
L
'
-
O
lw
[~
ol
lw
1al
5

..E:;‘-z 'f; (3.4.8)
where
i lro oT= -
F,= t {5F -5{/ B'D  _Bd da]
~2 {=1 2 ~c ¢ 2 a”~ ~Cy ey~
T— -—
- [‘jz B 9c1§ gcidn]}Var(ci) (3.4.9)

It 1is also interesting to note that Eqs. (3.4.5) through (3.4.9)

can be put into the general form of

iR

d = F (304010)

where K is an (n + 2) x (n + 2) block lower triangular matrix of the

form
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X 0 0 - 0 0
X X 0 e e« O 0
gé 9 g' - 0 Y
2
K=t~ . . I . (3.4.11)
0 0 « <« K O
~c ~ ~ ~ -~
— n -— —-— — —
Ko ¥, X% - - K K
where K, Eci, 51 and 522 are

K=/ 3808 d (3.4.12)
Q

-— T_

K =[BD Bda 1 =1, ooy, n (3.4.13)

~C ~ G o~

i Q i

— T__

K, =] B [Eci"af(ci)]é da f=1, veep n (3.4.14)
a no sum

and
39 '%f B ; D, . Var(c))]B da (3.4.15)
Q 1=] ~€1%¢ ~

(3.4.16)

and
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where

and

F = (?:‘? 94F ’ "‘:.F 9‘F ) (3:4.17)
~ ~ ~Cl ~C2 ~cn ~2
- 1 n
- =] T
F, =3l 151 Ecici\lar(ci)] (3.4.18)

The mean and autocovariance matrices for the displacement are:

E[d] =d+ 4, (3.4.19)
n

cov(al,al) = 1 T T var(e,) (3.4.20)
=1 3¢

The mean and autocovariance matrices for the element strains are:

and

Ele] =33 +Bd, (3.4.21)
B ee f=f \T
Cov(g ,e¢) = {1£1(E SCI)(E gci) var(c,)} (3.4.22)

Similarly, the mean and autocovarianceé matrices for the element stresses

are:
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+3 0 B3 |var(e,)) (3.4.23)

and

)} (3.4.24)

Remark 4.1 While the presentation of the PFEM solution algorithm via

Eqs. (3.4.10) through (3.4.18) 1s quite elegant, these equations are not

employed in practical computations since the formulationms Of.E; . Ki’
i ~

522 and the triangulation of 5 are unnecessary. Instead, the
"sequential algorithms™ given by Eqs. (3.4.5) through (3.4.9) are
employed. It should be noted that only the g'matrix needs to be formed
and Crianguiated and f} ¥ and F. are obtained by vector computatioms.

~i+2 ~2

Remark 4.2 Once g'is given by Eq. (3.4.5), the E; as defined by Egs.
’ 5
(3.4.6) and (3.4.7) are best obtained with parallel computations.
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Remark 4.3 The matrices D, and D can be computed by direct
_— ~bi ~bibj
differentiation or by the least-squares fit of the series Eq. (3.2.4)

around b. Once these matrices are obtained, the transformation Eqs.

(3.4.1) and (3.4.2) can be employed to yield 5; and . Similarly

D
1 ~4%

EL and E; . can be obtained.

i 171
Remark 4.4 The PFEM, as developed here, can incorporate smooth (C°)
shape functions in Eq. (3.2.4). However, this may result in more
1ntegratioﬁ points in the evaluation of'gei,'gi and Eéz in Eqs. (3.4.13)
through (3.4.15). To minimize computations, a super-element that spans

several elements used for the displacement approximations and in which

the shape function is a constant, is employed in the numerical examples

studied here.
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3.5 PFEM for Transient Analysis of Nonlinear Continua

The transient equations for the finite element model, which account

for both geometrical and material nonlinearities, are:
M a(b,t) + £(d,v,b) = F(b,t) (3.5.1)

where M is the deterministic wmass matrix; £ is the internal force
vector; g, M and a are the displacement, velocity and acceleratioa
vectors, respectively; z is the external force; B is the discretized
random vector and t is the time. Following the same procedures outlined
in the previous sections, the a, z and S vectors are expanded via ‘Taylor
series, however, total derivatives are applied to £. The second-order

formulas for a, E and £ are

q q
- —-— 1 —-—
a=a+ £ a db, ++ ¢ a db,db (3.5.2)
R T I Rt
T : T 1 3§ b (3 )
F=F+ £t F _db, +< F db,db 5.3
ST Tt S I N Tt
and
Te: [, +Cv, +K4d ]
f= + T |f + Cv +Kd db
q
1= 1 o= 17 =
+ I [-f +=Cuv +=Kd
1,i=1 2 bibj 2 bibj 2 ~ ~bibj
+C v. +K ]db, db (3.5.4)
~by~b, T ~by~b 1T
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where the tangential damping matrix and the tangential stiffness matrix

are defined by

C -.; (3.5-5)

]
@
L

and

- (3.5.6)

e
]
I

respectively. Using the above approximations in Eq. (5.1), the q + 2

solutions for d, v and a are:

Zeroth-Order Equation

First-Order Equations
Es.b +E Xb + 5 sb = Ei+2 i = 1, eeo, q (305.8)
i i i
and
a2 ™ Ebi --fbi 1=1, ceen g (3.5.9)
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Second-Order Equations

Ma,+Cy,*kd, =F (3.5.10)
where
T,=L1t T covtb,b) (3.5.11)
a Ll v » . '3
S2 77 g ey Ly
=11 % Cov(b, ,b.) (3.5.12)
v =9 z v v 4 eJde
*2 72 ) ~byby 1°°3
7 -1 Cov(b, ,b.) (3.5.13)
- == I v R . .S.
%272 ) by, 125
and
E, - g {%Eb b, %gb b~ Sy ¥y - K, d JCov(b, b)) (3.5.14)
T4 1,31 173 17 1~° 170y 3

The computational effort in solving Eqs. (3.5.8) through (3.5.14)
can be reduced significantly by transforming the full covariance wmatrix,
Cov(bi,bj), to a diagonal variance matrix, Var(cy). Since Egs. (3.5.8)
through (3.5.14) are linearized equations, the transformation procedures
are parallel to those outlined in Sections 3 and 4. If n (recall n < q)
highest Var(c;) are used, the q + 2 block system becomes an n + 2 block

system. These n + 2 blocks are:

ix
e
+
trn|
'
tm)|

(3.5.15)

62



L{Ec +Sl’.c +§gc .Ei+2 i=1, .., n (3.5.16)
i i i

552+232+522 -EZ (3.5.17)
where

£1+2 - EC -zc i= 1, ese,y, 0 (305.18)

i i

and

p— n 1 — 1— -— — [ —

F,= 1 {5F -=f -C v =K _d_ }]var(c.) (3.5.19)

~2 1=1 2 ~c1ci 2 '«cic1 ~<:1~c1 ~C1~ci i

Equations (3.5.15) through (3.5.19) are similar to those developed for
the probabilistic dynamic response of a truss structure with

uncorrelated random variables [15,16]. Therefore, the numerical

solution algorithms given im [15,16] can be employed directly for the
solutions of the above equations. Once E, E, g, Eci, ;’:'ci' Eci’ ;~2’ zz
and -5-2 are obtained, the mean and autocovariance matrices can be

computed according to:

E[d] =d +d, (3.5.20)
Ely] =¥ + 7, (3.5.21)
Ela] =2 + 3, (3.5.22)
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and
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(3.5.23)

(3.5.24)

(3.5.25)



3.6 Applications

The PFEM formulation developed in Sections 2 to 5 has been tested
by studying two different applications. These are: (1) wave
propagation in a one-dimensional elastic/plastic bar; and (2) static
response of a two-dimensional plane stress elastic/plastic cantilever.
In these numerical examples, the expectation, the spatial
autocorrelation and the coefficient of variation of the random field

b(x) are assumed as follows:

E[b(x,)] = b (1.0 + ex, /L) (3.6.1)
and

R(b(xi),b(xj)) - exp(-lxi—le/l) (3.6.2)

a = 0.10 (3.6.3)

where x4, L, A, and b(xi) denote the location, the length of the
bar/beam, the correlation length and the random function at Xy,
respectively. ¢ and bo are constants. It is to be noted that the
autocorrelation between any two points depends only on the interval
between these points and not on their locations. The material in the
bar/beam 1is assumed to be linear elastic and isotropic hardening, with
the uniaxial yield stress as a Gaussign random field in the axial

direction. As can be seen from Eqs. (3.6.1) and (3.6.2), the yield
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stress 1s a linear function for the mean and an exponential function for
the spatial autocorrelation.

The problem statement for the bar is depicted in Fig. 1. The
random field is discretized so that q = NUMEL = 32. The probabilistic
equations derived earlier are solved by the explicit predictor algorithm
{15] with a slight numerical damping (y = 0.55). A near-critical time
step (At = .000455) is used to keep the number of time steps minimal,
subject to the stability conditionms.

In the case of the beam, the static response is calculated as a
function of steadily increasing loading, by an implicit algorithm. The
random field is discretized with.66 4-node 2D elements so that g = 16
(NUMEL = 64).

The mean and variance of the displacement at the free end of the
bar, the variance and autocorrelation of the stress along the beam are
computed using PFEM. These results are compared with Monte Carlo

simulation (MCS) of 400 realizations with a first-order filter [5,9].

66



3.7 Results and Conclusions

The mean and the variance of the displacement at the free end of
the bar, computed by PFEM and MCS, are compared in Figs. 2 and 3. The
coefficient of variation of the displacement at the free end of the bar
is found to be ~0.13 (the coefficient of variation of the yield stress
is 0.10). The PFEM solutioans compare very well with the MCS solutions.
Although both methods compare very well in accuracy, the PFEM in this
case needs much less computer time than the MCS. The convergence of the
variance of displacement at the free end of the bar is plotted in Fig.
4, against the number of modes used in the PFEM computations. It 1is
observed that only the largest 8 of the 32 eigenvalues (which correspond
to the variance of the uncorrelated variables ci) are sufficient, feor an
error less than 1X.

The variance of the stress at the fixed end of the beam, with
increasing loading, is plotted in Fig. 5. The maximum coefficient of
variation is found to be 0.09, and it occurs when the beam begins to
yield, at the mean configuration. The PFEM variances are in excellent
agreement with those of MCS. The autocorrelation of the stress along
the length of the beam, with respect to the stress at the fixed end, 1is
plotted in Fig. 6. As expected, the autocorrelation near the fixed end
is ~1.0 and beyond that it decreases rapidly. The PFEM autocorrelation
is in fairly good agreement with that of MCS. As in the case of the
bar, only a few eigenvalues are found to be necessary. The largest 4 of
the 16 eigenvalues are sufficient to ;nsure an error less than 5%,

Since the random field is handled by discretization, it is easy to
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incorporate any specified mean, variance and autocorrelation structure
in PFEM. As the stiffness matrix corresponding to the mean value of the
random field appears in all the PFEM equations, the triangulation needs
to be done only once and the computations are thereby reduced. The
transformation of the correlated variables to a set of uncorrelated
variables further reduces the computations as the covariance matrix is
reduced from a full matrix to a diagonal matrix. However, to do this an
eigenvalue problem of the covariance matrix needs to be solved.
Numerical results obtained here suggest that a reduced set of the
uncorrelated variables is sufficient to predict the response moments
accurately. The PFEM essentially involve solution of a set of
deterministic problems, and therefore, they are easily integrable into

any FEM based code.
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CHAPTER 4
PROBABILISTIC FINITE ELEMENT METHODS FROM VARIATIONAL PRINCIPLES

4.1 Introduction

Much research has been done in the recent years to quantify
uncertainties in engineering systems and their combined effect on the
response. Theoretically, these uncertainties are modeled as random
fields or random variables governed by joint probability density or
distribution functions. In practice, the exact joint probability
density functions are not always available; only the first few moments
such as the mean, variance and correlations are known. The effect of
these uncertainties on the system is ideally evaluated by examining the
probabilistic character of the response, such as the probability of the
response exceeding allowable limits. These limits are referred to as
the failure surfaces. Recent research in reliability is focused on
developing efficient techniques for this purpose. 1In general, these
techniques involve much computation and are subject to various
restrictions on the nature of the failure criteria.

At the next level, estimates of response bounds, the level crossing
rate or first passage time may be obtainable in some cases without
extensive computations. At the easiest level of computation, the
response statistics such as the mean, standard deviation and correlation
coefficients are calculated [1,2). These quantities are not only useful
in themselves, but are also useful to calculate measures of reliabilicy,
e.g., the reliability index and reliaBility in terms of probability of

survival []-5]. In the past, the distribution functions for the
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response were assumed and by using the response statistics, the
probability of failure or survival was calculated {2]. Under a
combination of uncertainties, the response distribution functions may be
difficult to obtain.

More recently, second moment reliability techniques have been
formulated in the space of the input uncertainties. Here, the non-
normal uncertainties are transformed to normal variables and the failure
surface is described in terms of the respounse quantities.

Transformation to normal variables is done to make use of ché special
characteristics of normal distributions, such as rotational symmetry and
rapid exponential decay of the density function. If the failure
function is linear in terms of the response, the probability of failure
is expressed in a straightforward manner in terms of the response
statistics [2,3]. If the failure function is nonlinear, approximating
it by a quadratic function yields accurate reliability values [5].

For analysis purposes, time-invariant and time-varlaat
uncertainties need to be‘distinguished. In the latter the probabilistic
features, such as density functions and statistics, vary with time. For
example, in a static analysis of structures, only time-invariant
uncertainties, such as experimentally determined material properties,
may be present. Coanversely, in the dynamic analysis of structures, the
forces such as earthquake excitations, wind and wave forces, and jet
noise excitation of aircraft panels are often treated as time-variant
uncertainties. Compared to time~invariant uncertainties, these are very

difficult to quantify exactly, and assumptions such as Gaussian density
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functions, stationarity, ergodicity and white noise characteristics are
common [6,7]}. In structural mechanics, the characterization of time-
variant uncertainties in excitations, particularly seismic loadings, is
an area of active research [8-10,14,15]. Expressed mathematically,
these are differential equations with stochastic excitations. For
linear systems the problem is tractable because of the applicability of
spectral decomposition and superposition techniques [6,7,11]. For
nonlinear systems, techniques such as equivalent linearization have been
adopted with success [6,12,13]. A concurrent, albeit less extensive,
area of research in structural mechanics is the one that deals with
stochastic coefficients of both types. Problems with time-variant,
stochastic coefficients have proven to be the toughest to analyze and
still are an active research area.

Apart from simulation techniques (2,16,17], a few non-statistical
approaches are also currently available for solving problems with
stochastic coefficients. These include numerical quadrature [18,19],
second-moment analysis [20,21], the truncated hierarchy method {22], the
method of moments [23]), stochastic Green's function method [22],
numerical solution of random integral equations [30,31] and the
stochastic finite element method [29]. Merits and drawbacks of these
and other methods are discussed in Refs. [24,26,29].

Recently, probabilistic finite element methods (PFEM) based on
second-order perturbations have been formulated by the authors, for
treating time-invariant, stochastic céefficients and excitations. These

methods are based on second-moment techniques, so they are applicable
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when the uncertainties are not too large and when the probabilistic
density functions have decaying tails. Numerical results for various
applications in trusses, bars, beams and plates have demonstrated the
accuracy of PFEM, as compared with Monte Carlo simulation results [24-
27]. These include both static and transient analyses of both linear
and nonlinear structures, with random fields. Sample results for an
elastoplastic cantilever beam with the uniaxial yield stress as a random
- field are given in Figs. la-1d [26]. The most appealing features about
PFEM are its conceptual simplicity, ease of computer implementation, and
computational efficiency. The special structure of the finite element
equations, with features such as the symmetric stiffness matrices and
the linear nature of the higher order equations, can be utilized to
enhance the computational efficiency of the method for large-scale
systems with many random variables. Compared to Moaute Carlo
simulations, computational requirements are often an order of magnitude
smaller.

This paper focuses on the development of efficient and accurate
methods for calculating the response statistics in structural mechanics,
making use of finite element modeling and solution techniques. By
developing the PFEM equations from a variational prianciple, the
randomness in the shape of the domain and boundary conditions can be
treated. The PFEM equations are derived for linear coatinua from the
potential energy variational principle in the next section. 1In Section
4.3, the PFEM equations for nonlineaf continua with large deformations

are derived. 1t 1is shown that the final equations are similar to those
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derived for the linear equations. Uncertainties arising from material
and loads are accounted for in both formulations; randomness in the
geometric properties such as shape is also included in the latter
formulation. The PFEM equations are solved efficiently by numerical
methods described in Section 4.4. The emphasis in this section is on
numerical algorithms for computing the first and second order statistics
of the displacement and stress and internal force. In Section 4.5,
applications of PFEM to an elastoplastic plate with arhole and a turbine
blade modeled by shell elements are studied. Results are summarized and

discussed in section 4.6.
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4.2 Development of PFEM for Linear Continua from the Potential Eneryy
Variational Principle

The weak form which is obtained from the potential energy

variational principle is:

/ 6“(1,1)Dijkz“(k,z)d9 - 6uiFidﬂ - 6u1hidr =0 (4.2.1)
Q Q aah
where the strain components are
du du
- def 1 i i
eij u(i,j) 3{3;—-+ axi) in @ (4.2.2)

and the stress components are given by the linear stress—-strain law

aij = Dijklekz in Q (4.2.3)

The traction and prescribed displacement boundary conditions are given

by

o,.n, =h on anh (4.2.4)

and

" g on ang (4.2.5)

respectively. sui is an arbitrary test function which satisfies
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Su, = 0 on an (4.2.6)

1 is the domain, 3Q, and ang are the traction and prescribed

h
displacement surfaces, respectively, which satisfy

3Qh n ang = ¢ (4.2.7)

In the above equations: wuy are the componeats of the displacement, xy.
are the spatial coordinates, ny are the components of the normal vector;

D are the components of the material response teusor; Fy, hy and g4

11k _
are the components of the body force, the prescribed traction and the
prescribed displacement, respectively. Repeated indices denote sums and
a comma denotes partial differentiation.

The probabilistic potential energy variational principle (PPEVP),
which 1s a combination of the potential energy variational principle and
the second-order perturbation method (i.e., the second moment analysis),
embeds the probabilistic distributions, as reflected in the meaé and
covariance of the material properties, domain, boundary conditions and
loading, to yield the corresponding means and covariances of the
response in the variational statemeant. The basic idea of the second-
order perturbation method in PPEVP is to expand each random function
about the mean value of the random field b(f), denoted by E(f), and
retain at most second order terms. That is, for a given small
parameter £, representing the scale of randomness in b(i)’ the random

function u; 1s expanded about b via a second-order perturbation at a

79



given point x by

"] 2
u, = Uy +tEu +Eu ‘ (4.2.8)
' -
where "2’ u, and u, are the zeroth, first and second order functions,

respectively. Similar expansions are done for Dijkz’ Fiy hy, 4 and gy.
To simplify the subsequent development, the following abstract

notations are introduced:

<w,D,u> = £ "(1,j)°1jkz“(k,z) dn (4.2.9)
(w,F) = f wiFi do (4.2.10)

Q
(w,h) = [ wh dr (4.2.11)

i1

~~a

Bﬂh

Substituting the expanded functions into Eq. (4.2.1) and equating equal
order terms, the zeroth, first and second order potential energy

variational principles can be shown to be

Zeroth Order

<8u,0°,u°> = (6u,E") + (6u,b°), (4.2.12)

First Order (£ terms)
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o 1 ' ] . o
<64,07,u > = (6u,F ) + (8u,h )y = <8y,D ,u > (4.2.13)

~

Second Order (52 terms)

” " L L t
(53,20,2 > = (ag,g ) + (52,5 )3 = <8u,D ,g°> - <62,2 8 > (4.2.148)

Remark 2.1 The arbitrary test function §u satisfies Su = 0 on the
boundary aRE.

Remark 2.2 All the functions with a superscript "o" are deterministic
w g

functions (i.2., evaluated at b) whereas functions with superscripts

and '"' are random functions characterized by the random field b(x).

Remark 2.3 Equation (4.2.12) is the standard deterministic variational
statement and therefore, the usual Galerkin finite element procedure can
be employed directly. Once 20 is determined from Eq. (4.2.12), the
random functions 3' and 2- can be determined using Eqs. (4.2.13) and
(4.2.14), sequentially.

It should be noted that the random functions 2', E', h' and Q' and
the functions with the superscript '"' are, in general, described
through spatial expectation and autocovariance functions. Therefore, in
addition to the usual finite element approximation of the displacement
field, the random field is also discretized with q shape functions. To

incorporate the gpatial expectation and autocovariance functions into

the formulation, the discretized random variables by are expanded
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about Ek via second moment methods. The first order variation at each
point EK is denoted by de = gAbK - E(bK;Ek)'

For consistency with the finite element approximation and to assure
the accuracy of the approximation of the random field, the random
functions E, E, B and g; which are, in general, functions of 2(5) and
x, are Sizgg_discretizgd with the same q shape functions. For example,
the finite element approximation of D, (the coefficient 1/2 has been

added to the quadratic term (Eq. (4.2.18)) so that it is consistent with

conventional descriptions of second moment analysis) is given by:

[} L]
D= D’ +¢gp + 522 (4.2.15)
or
q o ' 2 =
D= £ @ (x){D, +&D; +¢&°D;] (4.2.16)

where D; denotes the I'M nodal value of D evaluated at b, D; denotes the

~
1

first order variatiom of D(xI,G) due to variations AbK, DI denotes the

second order variation and 01(5) are the q shape functions. The random

J

variables D, are then expanded in terms of the random variables bK by

I
\ ] q '
Dy = T (D) aby (4.2.17)
K=1
- l q ( -) ’
177 P A%t
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A "
respectively. The nodal values of (DI) and (DI)KL can be obtained by

K
partial differentiation or by a least-square fit. Similar definitions
hold for E, E and g-

The displacement is discretized similarly, however, with ﬁUMEL
elements and NUMNP nodes with each node having NDOF degrees of freedom,

via (c.f. Eq. (4.2.8)), where
o N o
w= I N(d, (4.2.19)
1 4
u = I NA(E)QA (4.2.20)

and N, are the displacement shape functions. The first and second order

[ "
variations of dA and dA are defined by

] q 1
EA = 1 (QA)K AbK . (4.2.22)
K=1
and
" 1 q -
d, =5 T (d,) abab, (4.2.23)
K,L=1
respectively.

Substituting the above Galerkin/finite element approximations into

the zeroth, first and second order variational statements, the finite
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element matrix equations can be obtained using Eqs. (4.2.19-21) and the

arbitrariness of &d,

T

62 = (6d1 ,Gdzg L A ’GdNEQ)

(4.2.24)

It should be noted that only NEQ test functions are required since no

test function is needed on the parametrized boundary aRg; NEQ is the

number of finite element equations to be solved.

Zeroth Order

=

in.
]
h

where

o o o] o
£7={f) = (N, E7) + (N, b)),
(¢] o]
- <NA’ D, Nc>gC
o o
d = {dy}

(4.2.25)

(4.2.26)

(4.2.27)

(4.2.28)

where the subscript A takes the values of 1 to NEQ, B is summed from 1

to NEQ and C i{s summed from NEQ + 1 to NED; NED is equal to NDOF times
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NUMNP.

First Order (for each AbK) K=1, «e0, q

Kde = £, (4.2.29)

where

L t L} ] ] o
fg = (adg = Ny E + (N, By = N B 22
) ]
- <N,, D7, NO()y (4.2.30) -
and
[} 1 ]
SK - {dB}K (4.2.31)
Second Order (K and L are summed from ! to q)
where
£ - {fA}KL AbKAbL
1 "y L1 - 1 "0
{7 N Egd +7 M By =7 o Rgv 272
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o
» No>(8o )y by aby (4.2.33)

) [}
1
= <Nps» Dpo 42 =5 <N D

and

l ”»
- - eds "
d =7 (dghyy abgab, (4.2.34)

The mean and autocovariance matrices for the nodal displacement are
defined by
-

E[d] = [ d(b)f(g,b)db (4.2.35)

—

and

Cov(diA,ij) =[ (4

-—

- diA)(d -d B) f(g,g)dk (4.2.36)

1A B 3

respectively. f 1is the joint probability density function which is

dependent on £. b is the random-variable vector

T
B - (bl, b 9 esey bq) (4.2-37)

2

With Eq. (4.2.35), the second order accurate mean value of d {s shown to

be

E{d] =d® +d (4.2.38)
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where d 1s given by
q
i- d Cov(bK,bL) (4.2.39)

From Eq. (4.2.36) the first-order autocovariance of the displacement can
be shown to be

q
)= ¢ (dm)x(d ) Cov(bK,bL) (4.2.40)

Cov{(d
K,L=1 JB°L

14938

To simplify the computational procedure of Eqs. (4.2.32-34),
integrate Eq: (4.2.32) over the range of the random variables so that it

is replaced by

Kd -f (4o2041)

where E' is given 1in Eqs. (4.2.39) and z' is given by the right-hand

side of Fq. (4.2.33) with AbKAbL replaced by Cov(by,b;).
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4.3 PFEM for Nonlinear Continua with Large Deformations

In this section, the PFEM formulation for large deformations of
hyperelastic materials in bodies of random shape 1is considered. The
simplest form of the weak form for nonlinear elasticity with large

deformations 1is:

[ 6cTgda =] suFda+ [ su'hdn (4.3.1)
Q Q aq,

where ¢, g, E and E are the nonsymmetric measures of the strain,.first

Piola Kirchhoff stress, body force and traction, respectively; { and

30. are the domain and natural boundary, respectively, in the initial

h

configuration. Furthermore, the strain measure is given by
e =Vu=G-1 (4.3.2)

where G 1s the deformation gradient and 5 is the identity matrix., The

stress for a hyperelastic material is given by

g = 3(® (4.3.3)
where
W
2 -—a—-G- . (“0304)

and W is the strain energy density function. Randomness in material,
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geometric properties and loads are represented by the random field
b(x). To incorporate the random domain and boundaries into the

formulation, Eq. (4.3.1) can be rewritten as

[ 8¢’ J dR = [ 6u'FJ dR + [ &u'h J_ da (4.3.5a)
~ A v ~ S
R R R,

employing the following mappings of the original domain Q and boundary

30, onto the reference domain R and boundary A:

h

Q = Jv dR (4.3.5b)
and
dr = Js dA (4.3.5¢)

The displacement is approximated by a second order perturbation about
the mean random field b at a given x:

12 L]

u = 20 +Eu + Ezs (4.3.6a)

where g represents the scale of randomness in b(x). Similarly, g, F,
B, Jv and Js are expressed as second order perturbations. The stress is

expanded as

L L t [ -
Cog ) + gz(g +C¢ + 5°5 ) (4.3.6Db)

~

'
g = ﬂo +e(p +
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where the first elasticity tensor is given by

(4.3.6¢)

The derivatives of nonlinear functions such as y are given in Ref. [28];
however for nonlinear elasticity, the derivatives can be worked out
explicitly. 1In additiomn, since the boundaries are parametrized, it is
necessary to perturb the virtual strain in Eq. (4.3.5a) as this is a
function of the domain geometry. Thus,

+ 526::_ (4.3.6d)

]
sc = 8 * &6g

The randomness in domain and boundary geometry is taken care of by the
Jacobians J, and Jg, respectively, in Eq. (4.3.5a).

Substituting Eqs. (4.3.6a) through (4.3.6d) in Eq. (4.3.5a), the

PFEM equations are obtained:

Zeroth Order

5£o’r oJo dR = 5 T oo

[
R aR_

e
i
(&)
A.
-]
+

Sy h'J da (4.3.7)
First Order

'T o.0 oT, ' o'..o - oTo.
Jlog g3y +ec(y + Ce ), + gy 1R
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g ''o To.'
- {{[Gu FJ,+6uF JJdR+ [ [6a'h J_+ 6uhJ ]da (4.3.8)

Second Order

o ',.0 'To,'
€N, +oe pd,

b

- 1] .
[log Tg%9y +6c TGy + €
R 4

» [ o [ ] v 1 "
voe”y v e v eIy v sy + Ceay v Ty Jar

L] [ ] »
« [[6u'F & + 6u'F I+ suF°J ]dR
~ v ~ v ~ o~ v
R
T," 0 T, '.' T,o,”
+ [[suhJ +8uhJ +8suh I ]dA ) (4.3.9)

Ry
It {s noted that the test function su satisfies 6u = 9 on the
parametrized prescribed displacement boundary aRg and the intersection
of the boundaries aRh and aR.g is a null set.

Since Eq. (4.3.7) is the deterministic virtual work principle,
standard techniques such as Newton Raphson iteration can be employed for
its solution. After determining 30, 50 and io from Eq. (4.3.7), the
random functions 2', 5', 2' and 2", 5“’ En can be determined from Egs.
(4.3.8) and (4.3.9), sequentially. It should be noted that the random

. t 1 ) '

)
functions y , C , F,h, Js and Jv and the functions with the
superscript '"' are, in general, given and described through the spatial
expectation and autocovariance functions. Similar to the previous

section, the random functions are discretized with q shape functions.

For example, the finite element approximation of the first
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elasticity tensor, C, is given by:

C=C +gC +£° C (4.3.10a)
or
q ° ' 2 "
C= 151 01(5){51 +ECI +E EI} (4.3.10b)

where C; denotes the 1th nodal value of C evaluated at b,

Coa
Cr = I (C)y by (4.3.10¢)
M=1
and
-l T () aboab (4.3.10d)
Ll I AD A «3.
ST 77 gy pay ST THN

respectively. Similar definitions hold for E, E, ¥ J, and Jge

Similarly, the displacement field is discretized, however with
NUMEL elements and NUMNP nodes with each node having NDOF degrees of
freedom (see Eqs. (4.2.8) and (4.2.19-23)).

The elemental strain is expressed as

(4.3.11)

im

[ |
tw
a.

where E is the discretized gradient operator. The strain perturbation
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is:

e =’ +ge +ele (4.3.12)
or

g =3%° + 58 + %) + 2B L +8d +8d) (4.3.13a)
and from Eq. (4.4.3.6d)

sc = Bo6d” + EE'GSO + 523-63° (4.3.13b).

Substituting Eqs. (4.3.10) through (4.3.13) in Egqs. (4.3.7), (4.3.8) and
(4.3.9) and using the arbitrariness of ado the zeroth, first and second

order equilibrium conditions are obtained, respectively.

Zeroth Order

[ BT ar = [ NP dr + [ NTROUC aa (4.3.14)

R R BRh

First Order (for each hM’ M=1, «ce, q)

5 -

4y = £y (4.3.15a)

where
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' T, ..'.0 o, ' T..'.o o, '
£M = I E [EHJV + E (JV)M]dR * f E [EM‘JS + E (JS)M]dA
R 3Rh
'T o0 oT, ' o.'o0,.0 oT o,.'
-/ B yJ,dR=-[ B (y +CBd ) dR - [ By (J ), dR(4.3.15b)
R R R
with
> =0+ 1 (4.3.15¢)
resulting in
5 =K + EG (4.3.15d)
where
Kp =/ 3°T0°8°s° ar (4.3.15e)
~ R ~ ~ o~ v
and
k. = [ 3°T1°8°0° dr (6.3.15£)

where 20 and zo represent the material response and initial stress
matrices respectively. Explicit expressions of these matrices for a QBI

element are given in Ref. [38].
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Second Order (M and N are summed from 1 to q)

d =£ (4.3.16a)

tx

where

5. = {/ ﬁr[% f;m": + EM(J;)N % U, L
R

+f N[En g% +n (), + 10000, Jda

f ~ [2 ~MNJ5 ~M*“8’N 2 ~ { s°MN

%Ry

' 1 ! 1 .

oGy + C°Bd® + c%B% 000 dr - [ B, Ty°( ), ar
R

W‘—\

~~~N

oT 1 ' o ' 1 o "o Lo ' ' o
- £ 3 EMN + CM§N5 * OB Ayt 78 Bpd T CBAI, 4R

oT, ! o, '.0 o,0,' '
- £ B (£M +CB +CBd )(Jv)N dR

-~y ~M
1 _.oT .o 1 "T o,0
LA (I, Dy 4R {{75@3 30 dr}abyab (4.3.16b)
and
- 1 [ )
d = 2 SMNAbHAbN (4.3.16c)

Eqs. (4.3.14) through (4.3.16) are solved in sequence.

The second order accurate mean value of d 1is
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v

Eld] =d° +d (4.3.17a)

where g' is given by (c.f. the previous section)

1

q -
~ zuu-x

dMN Cov(bu,b ) (4.3.17b)

and the first order accurate autocovariance of the displacement 1is

q
)= I (q, wnd

Cov(d j
M,N=]

iA’ij B)NCov(b bN) - (4.3.17¢)

The mean and autocovariance matrices for the element strains can be

obtained from the following:

Ele] =’ +¢ (4.3.18a)
where
¢’ =B (4.3.18b)
and E' i{s defined by
T - f Lad® e+ 2 8%4,0] Coviby,by) (4.3.18¢)
2 27508 * BNt 7B 4l GV «3.18¢
M,N=]
Thus,
q
CO"(Si’SJ) = " fi-l (ei)M(Ej)N Cov(b,,by) (4.3.18d)
»
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with the definition

ees, NUMEL, no sum on 1 (4.3.18e)

] ) o o L
(g3)y = Bpwds * Bildy)y 1=1,
M=1, e, q

where subscript "i" denotes the ith element and NUMEL is the total

number of elements. Similarly, the mean first Piola-Kirchoff stress is:

Elgl =¢° +g (4.3.19a)
where
20 - 20 (4.3.19b)
and
- - g [l " + C' [} 0o + c' d + l COB“ do
4 70t o8 TOE At 7S Bad
M,N=1
+ Cra +3 B ] cov(b,,b) (4.3.19¢)
~ ~M~N 2 ~ ~ ~MN M*ON to

and the stress autocovariance 1is defined by
q ] 1 T
Covigysgy) = I (gy)y(gy)y Coviby,by) (4.3.19d)

M,N=1

with the definition
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' ' o, " o oo, " i=1, ..., NUMEL, no sum on i
(Gl = @iy * S8 * S8y a1, ..., g

(4.3.19%e)
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4,4 Computational Aspects of PFEM

4.4.1 Transformation of the Covariance Matrix

In linear problems, it can be observed from Eqs. (4.2.25), (4.2.29)

' —
and (4.2.41) that the determination of d°, d. and d involve one

~K
factorization of K and q + 2 forward-reductions and back-substitutions.
The latter operations consist of evaluation of go in Eq. (4.2.25), q
evaluations of S; in Eq. (4.2.29) and one more evaluation of gr in Eq.
(4.2.41). Even though the above computations are compatible with the
elemental discretization and nodal assembly procedures that characterize
finite element theory and software, the number of matrix multiplications
is proportional to q(q + 1)/2. This would be unaccgptably expensive.
The large number of computations arise from the double summations in {1
and j in Eq. (4.2.33). To remedy this situation, the covariance matrix

Cov(bi,bj) is transformed to a diagonal variance matrix Var(ci,cj) such

that

Var(ci,cj) =0 for 1 & j (4.4.1a)

and

Var(ci,c ) = Var(ci) for 1L = j (4.4.1b)

]

Therefore, the number of matrix multiplications is now proportional to

q. The above involves the solution of the eigenproblem
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Gy = yh (4.4.1.2)

where Gij and Aij denote Cov(bi,bj) and Var(ci,cj), respectively,

and y is a constant transformation matrix with the following properties:

~

2T£ - u’ =1 (4.4.1.3a)
T
A=yGy (4.4.1.3Db)
and
T
b =yc or c=yb (4.4.1.4)

1l 1s the q x q identity matrix and ¢ is the transformed q x 1 random

variables vector. The mean and variance are
Elc] = yTE[b] (424.1.5)
and
Var(s) = diagonal terms of A (4.4.1.6)
With Eqs. (4.4.1.3b) and (4.6.1.4?, the mixed derivatives appearing

in Eq. (4.2.40) reduce to second derivatives, and the covariance matrix

1s replaced by the diagonal variance matrix in Eqs. (4.2.33) and

100



(4.2.40).

Analogous to modal analysis in structural dynamics problems, only a
few modes n(n < q) (i.e., Var(cy)) are required to capture the major
characteristics of the probabilistic distribution. However, the highest
eigenvalues have to be employed. This is in coutrast to the modal
structural dynamics problem, wherein the lowest eigenvalues are used.

As PFEM involves, essentially, a set of sensitivity equations with
respect to c, recent techniques in design sensitivity analysis can be
adapted easily. Ome such technique 1is the adjoint method in mechanical
design [32-35]. In this method, the first and second order derivatives
of the objective functions and constraints are calculated w.r.t. the
design parameters, with minimal computations of the first and second

order equations.

4.4.2 Adjoint Method in PFEM

Consider a typical function ¢(¢:2) involving the displacements d

and the random variables c. Chain differentiation yields

]
- wc + wz s i = 1. ee ey n (4-&02-18.)

1 1 ¢4

(y]

c

where the subscript denotes the derivative with respect to Cy» and

) (4.4.2.1b)

T
*d - (‘pd » ey "’d Q

? oo.,w
~ 1 k dNE

Substituting Eq. (4.2.29) in Eq. (4.4.2.1b), the explicit equation
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-y +¢§1~< £ L=1, voe, n (4.4.2.2)

is obtained. Usually, in the direct method, the above equation is
evaluated for each random Qariable Sy involving 'n' solutions of the

linear equatfion (4.4.2.2). In the adjoint method, Ais selected to

satisfy

KA = "2 (4.4.2.3)
Then, Eq. (4.4.2.2) can be rewri;ten as

vl, =9, +,§T £ 1=1, «ee, 0 (4.4.2.4)

The adjoint problem, Eq. (4.4.2.3), is solved only once in this
method. In the direct method, 'n' solutions of Eq. (4.2.29) are
required. This is the advantage of the adjoint method over the direct

1
method. Both methods require 'n' inner products with £c , in Egs.

(4.4.2.1) and (4.4.2.4), respectively. However, it has ieen shown that
when the number of functions y is more than the number of random
variables, the computational advantage of the adjoint method is lost
[33,34]. By solving 'n' adjoint problems, the second order sensitivites
can also be evaluated [33,34]. It should be noted that the adjoint

method is applicable to nonlinear problems as well, as the first and

second order equations are still linear.
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4.4.3 Displacement Derivatives in PFEM

In mechanics, one is often interested in the response in only a
portion of the entire domain. Stress concentrations, plastic flow and
strain localization effects are some examples. Similarly, in
probabilistic analysis, one is interested in the probability of failure,
which usually initiates in a small domain. This translates into a few
nodal displacements and element strains and stresses. In such cases,
the adjoint methodology can be used to reduce the computations in PFEM
equations for the evaluation of derivatives.

The adjoint method can be used to calculate the displacement
derivatives of the kth component of the displacement vector 2, denoted

by d(k). This 1is done by substituting

LY (4.4.3.1)

in Eq. (4.4.2.4)., Thus,

RS I L S (6.4.3.2)
1 1 €4

where A is obtained from the adjoint problem

L a{ . (4.4.3.3)

Interestingly, the right hand side of Eq. (4.4.3.3) is a Boolean vector,

with unit value at the k! component. Therefore, the adjoint problem
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for displacement derivatives can be interpreted as a linear structural
problem with the same tangent stiffness and a unit load at the Kth
position of the external force vector. The displacement covariance is
then obtained from Eq. (4.2.39), where the derivatives are with respect
to ¢ and the covariance wmatrix is replaced by the diagonal variance
matrix (Eq. (4.4.1.6)).

In the direct method, the second-order term Er in Eq. (4.2.41) is
obtained by a single solution, irrespective of the number of random
variables cy. This 1s because of the summation of the second-order
displacement derivatives in Eq. (4.2.39).

In comparison, the adjoint method may require more computations to

compute the second-order term d ., This term requires the first

derivatives of the displacements, over the entire domain. In such a

scenario, the adjoint problem (cf. Eq. (4.4.3.3) has to be solved for
each component of the displacement vector E, resulting in more
computations. If the size of the vector S is small when compared with
the number of random variables cy, the adjoint method will require fewer
computations than the direct method. Thus, the selection of the adjoint
method over the direct method depends on (i) the number of displacement
components considered, (ii) the number of random variables ¢y, 1 =1,
esey, n and (111) the size of the displacement vector d.

It {s to be noted that the adjoint problem is always linear,
irrespective of the primary problem. It has been noticed that the
second-order term contributes very little to the mean displacement

calculations [24-26]. 1If the second-order term is neglected, then the
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adjoint method for the first~order mean and covariance would involve
solutions of only two equations viz., Eqs. (4.2.29) and (4.4.3.3) and
'n' inner products with 2;1 in Eq. (4.4.3.2). The adjoint PFEM method
for displacements is applicable to linear and nonlinear materials, with
the use of stiffuess and tangent stiffness matrices, respectively. The
first order mean and covariance of displacements d(k), k=1, ¢eo, N
where N is the number of displacements of interest, are

d(k)] - d0(1<=) k=1,

E[ eeey N (4.4.3.4a)

q
cov(a™® ,a®)y = [ 1 (@™ (@) var(e))) (4.4.3.4b)
=] r r

4.46.4 Stress Derivatives in PFEM

The first derivative of the stresses with respect to the
probabilistic variables, in any element, can be expressed in terms of
the displacement derivatives in this element which are first calculated
by the adjoint method. For a'four node, 2D continuum element this
requires the solution of eight adjoint problems. For linear materials,
the stress derivatives with respect to the transformed vector c, in a

given element are:

d (4eb.6.1a)

resulting in
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gl =g +¢°Bd (4.4.4.1b)

In the absence of random material properties, the first term in Eq.
(4.4.4.1b) drops out and in the absence of random geometric properties,
the second term drops out. In the case where only loads are random,
both terms drop out. .

For nonlinear materials, Eq. (4.4.4.1a) cannot be easily
evaluated. One strategy is to replace these derivatives by their

finite~-difference counterparts [24]

' + _
g‘c 0 = ZA(I: (go - go ) o (404.“.28)
tlgng® % 44

with the definitions

o+ o

g =g(c +ag) (beb0b.2b)

g% = g(c® - agp) (44.4.2c)
and

T
Asi - (0, seey Aci, e0ay 0) . (4.4.4¢2d)

The derivatives of the tangent constitutive matrix in Eqs. (4.3.16b) can
also be approximated similarly. For a general nonlinear material, Eqs.

(4.4.6.2b) and (4.4.4.2c) have to be evaluated by solution of the zeroth

106



order equation, with the appropriate values of Ce However, for
elastoplastic materials with random material properties, these
quantities can be evaluated in the course of the zeroth order solution
by the radial return algorithm [36]. Additional arrays to store the
stresses in Eqs. (4.4.4.2) are all that is needed to achieve this.

Essentially, the functional relationships

ot o+ o
Teaar = 202 » dp» 8S) (4.4.4.3a)
and
o~ o~ (o}
Zeeat g, » 4 ac,) (4.4.4.3Db)

hold, for each c; [37]. The subscripts 't' and 't+at' refer to two
successive time steps, in the evolution of the stress history. The

first order mean stress and covariance of stress are expressed as

Elg] = ¢° (bobobh.ba)

Q

and

q
cov(ol,od) = {z

r

i ] .
1[c lt{aJ]r var(c )} (bob.4.4b)

3

i
where ¢ and ¢” are any two components of the elemental stress

vector ¢g.
~
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4.5 Applications

The usefulness of PFEM is demonstrated here by three
applications. In the first two cases, the problem studied is an
elastic-plastic plane continuum with a circular hole. In the first
application (Fig. 2), the uniaxial yield stress and the uniform
compressive load are assumed to be two independent statiomary ran&om
fields, with an exponentially decaying correlation function. The load
is discretized into 12 components, applied at the nodes, both for
deterministic and random analyses. The yield stress is assumed to be
radially correlated in an exponential manner (Fig. 2). The domain of
the plate 1s divided into 15 ring-like bands and in these bands the mean
yileld stress is assumed constant in time and space. This results in 15
discretized random variables for the yield stress. The load is quasi-
static and linearly increasing with time, with 8 load steps. The
displacement and stress statistics are studied in each of these load
steps.

The mean and variance of the compressive stress at load step 8,
along the x-axis, are plotted in Figs. 3a and 3b, respectively. The
elements near the hole are plastic at this load, as can be seen from
Fig. 3a. The variance of the stress is maximum, therefore, near the
hole and this is seen in Fig. 3b. These results compare very well with
the Monte Carlo simulation (MCS) results. The coefficient of variance
is 10Z for the stress. The mean and variance of the stress near the
hole (Point B) are plotted in Figs. 4a and 4b, respectively. The mean

stress is plastic after the second load step. Thereafter, the mean
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stress is almost constant and is equal to the unlaxial yield stress
value, except for a slight hardening effect. The variance of stress
rises rapidly when the yielding occurs (i.e., elastoplastic state of
stress) and thereafter it rises gradually. The maximum coefficient of
variation for the stress at Point B is 10Z. The stress correlation
along the x-axis, w.r.t. the stress at Point C, is plotted in Fig. é4c.
Interestingly, the correlation is almost zero near the hole and there is
inverse correlation near the fixed end of the plate (cf. Fig. 2). This
suggests that the stresses in the plastic state are not correlated with
the stress near Point C. This can be explained by the fact that beyond
yielding the stress remains practically comnstant for this material
because E/Ep = 100. Near the fixed end, the stress is almost zero and
the negative correlation implies that this stress will statistically
increase when the stress near point C decreases. By studying the
effects of the two random fields separately, it is noticed that the
random load effect in terms of the variance, 1s spread wider over the
elements along the x-axls than the random material effect, and the
effect is mainly near the hole. As is to be expected, the variance of
the stress under the combined effect of the random material and random
load is additive. Similarly, for the mean values of stress, the second
order effect is additive.

The second example concerns the cyclic loading of the same plate
with only the yield stress as the random field. Mechanical and
aerospace components are usually subjected to thousands of cycles of

stress, resulting in fatigue, The material properties usually show some
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degradation with time in these components. A modest attempt is made
here to see if there is a large variation of the response statistics
after 3 cycies of loading and unloadi;g. The mean and variance of the
displacement at node A is plotted as functions of the load step in Fig.
Sa. The mean displacement is sinusoidal, resembling closely the forcing
function. The variance of the displacement is zero until the plate
begins to yield in compression. After this, the variance jumps to a
higher value and remains steady until the yielding in tension begins.
At this point, there is a sharp drop in the displacement variance and
after that the variance stays at a constant level, This phenomenon
repeats every cycle. There seems to be a gradual buildup of the value
of the displacement variance during every cycle, particularly under
compression. The maximum coefficient of variation in these cycles is
2%.

The mean and variance of the stress at Point B are plotted in Fig.
5b. The mean stress is periodic, with a slight flattening at the top
and bottom. This flat region corresponds to the plate yilelding, in the
mean sense. The variance of stress at Point B is periodic, and behaves
similar to the displacement variance. The coefficient of variation is
10Z.

The stress variance exhibits spikes whenever yielding 1is about to
commence., The variance drops to a near zero level in these downward
spikes. This phenomenon can be explained from the elastic-plastic
behavior of the plate under stress reversal. To do this, three

deterministic solutions of the stress in the plate are shown in Figs. 6a
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and 6b at various loadsteps, under cyclic loading. These correspond to
yield stress (oy) values of 26,000, 25,000 and 24,000 psi, respectively.
During the first yielding, in compression, the magnitude of the stress
for ay = 26,000 is maximum and this stress plot, in Fig. 6a, lies
outermost. Before the next yielding in tension commences, there is a
crossover of the three curves. This crossover 1is necessary because the
magnitude of the stress at yleld, for the highest yield stress value, is
always the highest. The crossover repeats twice for each cycle of
loading. This translates into a very small variance of stress near the
crossover regions because the variation of stress w.r.t. the yileld
stress is near zero. The spikes in the displacement variance can also
be explained similarly.

The third application studied is a turbine blade with random load
along the edge, random yield stress and random length of the blade. The
problem statement, along with the details of the random fields, are
given in Fig. 7. The load 1s quasi-static and linearly increasing, with
15 load steps. The expectation and deviation of the displacement are
plotted in Fig. B8a; the coefficient of variation 1s plotted in Fig.
8b. It is noticed that the first two steps are elastic and beyond that
the blade starts yielding. Due to this ylelding, the expectation is
nearly flat beyond the second load step. In the elastic region, the
maximum contribuctlon for the deviation comes from the random load
followed by the random length. 1In the elastoplastic region and beyond,
the random yleld stress affects the deviation most. The combined

deviation has a maximum coefficient of variationm of 13% and this occurs
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just after the initiation of the yielding.

The stress statistics are plotted in Figs. 9a and 9b. The stress
deviation 1s largely due to the random load in the elastic region, as in
the case of displacement deviation; the effect of the random length 1is
very small in both the elastic and plastic regions; the random yield
stress causes the most deviation in the plastic region. The maximum

coefficient of variation is 8%, at the last load step.
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4.6 Conclusions

The PFEM techniques for linear and nonlinear materials, including
elastoplastic materials, yield efficient and reliable statistics of the
responge quantities of interest. The direct solution of PFEM equations
may require a substantial number of computations for large systems. By
making use of features such as the eigenvalue orthogonalization and
selection of only a few highest eigenvalues, the adjoint methodology,
and superposition of random fields, these computations can be
drastically'reduced. The results obtained here show that the first and
second order variances in response which are obtained by this form of
the moment method agree well with Monte Carlo simulations when material
properties such as the yield stress are random variables. The results
also seem to suggest an increase in the response variance even with a
small but steady degradation of material properties after several
cycles. However, this needs to be Investigated further. As discussed
in the introduction, based on the response statistics, reliability
measures can be calculated. In addition, the response gradieats with
respect to the random variables are calculated in the course of PFEM
calculations. These are also useful in reliability calculations and

probabilistic design.
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Elastic/Plastic Plate with a Hole
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E =30.Xx10° 4 Node 2D Cont. Element
E =30.X10* (Plane Stress)
oy =25000.0 784 Nodes, 720 Elements
(Isotropic Hardening) Node 400  Point A
v =03 Element 15 Point B
L =6.0,R =3.0 Element 8 Point C

Rondom Load Characteristics

Size of Random Load Vector (q)= 12
Coefficient of Vorigtion= 0.10
Correlation Length (\)= 18.0

Load Stepe 0001 0002 0003 0004 000S 0008 0007 0008
Moanénod 2000 4000 4100 4200 4300 4400 4500 4800

Random Material Charaocteristics

Size of Random Material Vector (q) = 15
Coefficient of Variation= 0.10

Correlation Length (A\)= 8.0

Mean Yield Stress= 25000.0

Spatial Correlation of Random Load and Yield Stress

R(x,x)=exp(~ABS(x—x))/N)
Problem Statement

Figure 2
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Rondom Moterial Charocteristics
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Spatial Correlation of Random Load and Yle!ld Stress
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Figure 7
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CHAPTER 5

APPLICATIONS OF PROBABILISTIC FINITE ELEMENT METHODS
IN ELASTIC/PLASTIC DYNAMICS

S.1 Iatroduction

Design methods for engineering problems are, in general, based on
deterministic parameters. In practice there are often uncertainties
associated with parameters such as: material and geometric properties,
forces, and boundary conditious. Although, in most situations the
uncertainties may be small, the combination of these can lead to large
and unexpected excursions of the response, particularly in multi-
component systems. In the context of failure and reliability analysis,
this phenomenon is of obvious significance. In the past, problems with
uncertainties have been studied to provide an insight of the statistical
response variations, with methods like sampling [1-4], numerical
integration [5,6), second-moment analysis [6,8] and stochastic finite
element methods [6,9-12]). The choice of the appropriate method depends
on the nature of the problem and this was briefly discussed by the
authors in Refs. [12,13]. Typically, the uncertainties are modelled as
random quantities governed by probability density functious, and that is
also the case here.

A survey of the existing literature shows that, with the exception
of the methods based on sampling, the other methods are limited to
linear problems. Morecever, techniques for handling random fields,
where the randomness is spaced over the continua, are even scarcer. The
authors have recently extended probabilistic finite element methods PFEM

[13] to linear and nonlinear continua in both static and transient
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settings.

A schematic of the PFEM is presented in Fig. la. In the PFEM [13],
the random fields, characterized by the mean, variance and
autocorrelation functions, are discretized fo obtain the mean vector and
the covariance matrix. For a correlated random field, the covariance
matrix will be a full matrix and therefore it will require too many
computations. To remedy this, the correlated vector is transformed to
an uncorrelated vector by an eigenvalue orthogonalization procedure
resulting in a diagonal covariance matrix, and therefore, fewer
computations. This transformation procedure gives rise to a set of
modes and corresponding eigenvalues. It is shown that only a few of
these modes are sufficient to obtain a converged PFEM solution.

Finally, the PFEM involves solution of a set of deterministic FEM
equations to obtain the mean, variance and autocorrelation of the
response.

In this paper, two applications of the PFEM in elastic/plastic
dynamics with random material properties are studied in detail. The
discretization of the random field depends on factors such as the
inhomogeneity of the randomness and the extent of the spatial
correlation. The necessary guidelines for the discretization are
discussed in the next section. In Section 5.3, the choice of the number
of modes necessary for a converged PFEM solution is discussed. The
computational efficiency and accuracy of this method are compared with
those of Monte Carlo simulation with a first-order filter [(6,7] in

Section 5.4, along with the conclusioas.
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5.2 Random Field Discretization

Let b(x) represent the random field. In PFEM, b(x) is approximated

by discretization as

q
b(x) = & N, (x)b, (5.2.1)
i=]

where Ni(x) represent the shape functions and b, the discretized values

of b(x) at x4, { =1, ..., q. It follows from Eq. (5.2.1) that

q
db(x) = £ N, (x)db (5.2.2)
~ qa PR

q
db3(x) = N, (ON, (x)db, db (5.2.3)
X 2N (27 by dby
{,§=1
where

and'gi represent the mean values of by (also denoted by the expectation
operator E[+]). Proam Eq. (2.1) the expectation and the covariance of

b(x) are, by definition,

+w
E(b(x)] = [ b(x)E(b)db (5.2.5)
: ()‘[1
= ¥ N,(x)E[b (5.2.6)
(=g 1~ i
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and
h - —
Cov(b(gk).b(gl)) = {n (b(x,) - b(gk))(b(gz)-b(fz))f(g)dg (5.2.7)

- 1’2.1 Ni(fk)Nj(fz)cov(bi'bj) (5.2.8)
where E(B) is the multivariate probability density function; X and X,
are any two points in the domain of X.

From second-moment analysis [6,8], the mean of any function
s(b(ﬁ)’f) at any point X and the covariance of the function between

any two points X and xz can be written as

2—
(5,153 +1 § 2k (b, ,b,) ( )
E[S,] =S, ++  ——=— Cov(b,,b 5.2.9
k k 72 g 3by3by ]
and
. 9
Covlsinsy) F ( )( )Cov(b ) (5.2.10)
»J=1
where
Sk - S(b(f),xk) (5.2.11)

and the superposed bar implies evaluation at b. The error in Egs.
(5.2.9) and (5.2.10) arises from: (1) the truncation of higher order

moments and (2) the discretization of the random field b(x) by the
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finite vector b. If the randomness in b(f) is small, then the first
error will be small for a smooth function and the second-moment analyis
is applicable. The error due to discretization in Eqs. (5.2.6) and
(5.2.8) can first be studied to provide an insight of the discretization
accuracy.

The discretization error of the covariance field is defined by the

Lz norm
E2 = [ [Covg(blx,),blx,)) = Cov(blx,),b(x,) ] dn (5.2.12)
Q

where Covp and Covp represent the exact and discretized covariaaces.
The exact covarlance is calculated from the given function for the mean

E[b], coefficient of variation a and the autocorrelation R as follows:

Cov(b(x,),b(x,)) = [Var(b(gk))Var(b(gz))]1/2

R(b(fk).b(gl)) (5.2.13)
where

Var(b(x,)) = (a(blx,)Elb(x, )] (5.2.14)

The discretized covariance between any two points x, and xz is obtained

from:

q
Covu(b(fk)’b(ig)) = 1’§-1 Ni(ik)Nj(fz)cov(bi’bj) (5.2.15)
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and

1/2

Cov(b, ,b ) = [Var(bi)Var(bJ)] R(b,,b.) (5.2.16)

3 3

where b1 are the discretized points of b(f), corregponding to X i=1,
vee, q. FPFor a beam with a random fleld along the x-axis (Fig. 1b), the
logarithmic plot of E against q is given in Fig. 2a, and the rate of
convergence is found to be 1.325 for nearly all q between 4 and 64.

When the random field discretization is coupled with an FEM
discretization, as ian PFEM [13], q need not be equal to the number of
finite elements NUMEL and the shape functious Ni(f) need not be the same

as the finite element interpolants for the displacement fileld.
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5.3 Transformation Procedure for Computational Efficiency

The mean and covariance can be obtained from Egs. (5.2.11) and
{(5.2.12). However, the number of derivatives to be evaluated 1is
proportional to q(q+l)/2. This arises from the double summations in 1
and j. To reduce the number of computatious, the.full covariance matrix
Cov(bi,bj) is transformed to a diagonal variance matrix Var(ci,cj) such

that

Var(ci,cj) =0 for L 4 § (5.3.1)

and

Var(ci,c ) = Vat(ci) for { = j (5.3.2)

b

Therefore, the number of derivative evaluations is proportional to q.

The above is achieved through the eigeanproblem:
where the G and Q matrices denote Cov(bi,bj) and Var(ci,cj),
respectively; ¢y is a constant q x q fundamental matrix with the

following properties:

IT;'Q - !&T =1 (5.3.4)

~
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= ET.% (5.3.5)

>

and

=yc or c=y'b (5.3.6)

~

o

1 {8 the q x q identity matrix and c is the transformed q x 1 vector of

random variables.
with Eqs. (5.3.5) and (5.3.6), the mixed derivatives appearing in

Eq. (5.2.11) reduce to second derivatives and Cov(bi,bj) reduces to

Var(ci):
- 1 % ;3%
E[S] =S += T == var(e,) (5.3.7)
2 2 i
i=] 3¢
i
and
q a§k §§2
Cov(Sk,sz) - iEI(SE:Q(EEIjVar(ci) (5.3.8)

Thus, the discretized random vector E is transformed to an uncorrelated
random vector C, with the variance of c as the eigenvalues of E in Eq.
(5.3.3).

In the numerical examples, an exponentially decaying
autocorrelation in one—dimension is assumed with various correlation
lengths 'A' (i.e., the length at which the autocorrelation drops to

0.37, see Fig. 1b). It 1is observed that for one-dimensional random
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fields, as A increases from zero to a large value, the number of largest
eigenvalues N, N < q necessary to evaluate the mean and covariance in
Eqs. (5.3.7) and (5.3.8) to a specified accuracy, decreases from q to
1. When )\ is zero the random field is uacorrelated and all q
eigenvalues are dominant. When the field is uncorrelated, all q random
variables are necessary to represent the randomness of the field.

As A increases the number of dominant eigenvalues decreases.
Eventually, for a very large A the random field is closely correlated
and there is just one dominant eigenvalue. When the field is closely
correlated, only one random variable, corresponding to the largest
eigenvalue, i{s sufficient to represent the randomness of the field.

This feature, when present, can easily be exploited to reduce the
number of computations. The value of N can be chosen based on the
distribution of the eigenvalues before solving the PFEM equatious. The
eigenvalues here can be interpreted as weighting factors for the
corresponding mode shapes necessary to represent the covarilance
structure; a large eigenvalue means a dominant mode and vice versa. The
eigenvalue distribution and the mode shapes are depicted in Figs. 2b, 3a
and 3b, for a numerical example. Results of the eigenvalue distribution
and selection of N, for a beam problem and a bar problem, are discussed

in the next section.
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S.4 Results and Discussion

(1) Elastic/Plastic Beam with Yield Stress as a Random Field

The problem statement is depictéd in Fig. lb. The yield stress is
assumed to be a function of the position along the length of the beam
only. The Gaussian random field, which is the yileld stress, is
discretized so that q = 16 (NUMEL = 64). 4-node continuum elemenfs are
employed. The coefficient of variation of the yield stress is assumed
to be 0.10. The static response, as a function of the loading, is
calculated by an implicit algorithm.

The mean displacement, the variance of the displacement, the meah
bending stress and the variance of the bending stress are shown in Figs.
4a to 4d. The coefficient of variation of the displacement at the free
end 1is found to be 0.069 and that of the stress at the fixed end is
0.087. The results are compared with those of a Monte Carlo simulation
with 400 realizations and they are in excellent agreement.

The convergence of the random field discretization error, as
defined in Eq. (5.2.13), is plotted in Fig. 2a. The rate of convergence
is found to be 1.325. The eigenvalues of the covariance matrix are
plotted in Fig. 2b. Based on the distribution, 4 out of the 16 largest
eigenvalues were chosen. The mode-shapes, corresponding to these 4
largest and 4 smallest eigenvalues, are shown in Figs. 3a and 3b,
respectively. The latter, clearly, play no role in representing a
smooth autocorrelation, as is assumed here; if the field is highly
uncorrelated these modes will be necessary. This resulted in a 95%

accuracy in the variance of the stress at the wall (Fig. 2d).
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The exact autocorrelation and the discretized autocorrelation for
the Monte Carlo simulation of 400 realizatiouns are compared in Fig. 2c;
the autocorrelation is along the length of the beam, w.r.t. the yleld
stress at the wall. This amply demonstrates that this sample size would
be sufficient to bring out the response correlation characteristics, and
that the first-order filter captures the correlation characteristics
quite well.

The spatial autocorrelation of the displacements at two different
loads, along the length of the beam, are depicted in Pigs. 5a and 5b.
The spatial autocorrelation of the stresses along the length of the
bean, at these loads, are depicted in Figs. 5¢ and 5d. The displacement
autocorrelation is w.r.t. the free end displacement and the stress
autocorrelation is w.r.t. the wall stress. In the first loading, 4
element layers (16 elements) near the fixed end are yielded and in the
second loading 10 element layers (64 elements) are yielded. The
displacements along the length of the beam show almost complete
correlation with one another, irrespective of the correlation
characteristics of the yleld stress. The stresses, because of their
direct dependence on the material properties, exhibit a varying
autocorrelation along the length of the beam just like the random yield
stress. Interestingly, the results of stress autocorrelation by PFEM
and MCS are smooth and in good agreement in those elements that have
yielded (in the mean sense) (Figs. 5c and 5d). In other elements the
results show disagreement and oscillations in both PFEM and MCS

results., In many of these elements, the mean stress is well below the
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mean yield stress and so the randomness of the yield stress has a very
insignificant effect on the stress values, as measured by the stress
variances. Figs. 5c¢c and 5d show that the stresses in the unyielded

portion of the beam are highly uncorrelated to those in the yielded

position. It is interesting to note that although the material law is
highly nonlinear, the second order moment method which underlies PFEM

agrees very well with Monte Carlo simulations.

(2) Elastic/Plastic Bar with Plastic Modulus as a Random Field

The problem statement is depicted in Fig. 6a. The plastic modulus
ET is assumed to be a Gaussian random field along the length of the
bar. The material is assumed to be elastic-plastic with isotropic
hardening. As can be seen from Fig. 6a, the yield stress is spatially a
linear function for the mean and an exponential function for the
autocorrelation. The coefficient of variation is assumed to be 0.10 and
the random field 1is discretized so that q = NUMEL = 32. The
probabilistic equations are solved by the explicit predicto? algorithm
[12] with a slight numerical damping (y = 0.55). A near-critical time
step (At = 0,000455) is used to keep the number of time steps minimal,
subject to the stability conditions.

The mean and the variance of the displacement at the free end are
shown in Figs. 6b and 6¢c. The coefficient of variation of the
displacement at the free end is found to be ~0.05. The results are
compared with those of a Monte Carlo simulation with 400 realizatioms

and they are in excellent agreement. For both examples, the PFEM needed
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much less computer time than the MCS. Also, only the largest 8 of the
32 eigenvalues are found to be sufficient to predict the displacement
nmean and covariance with a 99% accuracy.

In second moment PFEM, the superposition of the covariances of the
response for two different, uncorrelated (to each other) random fields
in a structure is the same as when both the random fields are present
simultaneously. For example, the results of a bar with only the yield
stress as the random field and those of the bar with only the plastic
modulus as the random field can be superposed. The summed results will
be the same as that of the bar with both the random fields present.
When 'N' random fields are present, they are divided into 'n' groups (n
< N) such that the fields within a group are correlated to one another
and uncorrelated to those in the other groups. The PFEM results for
each of these groups can then be simply summed, as in the case of 2
uncorrelated random fields. This is, of course, not possible in
simulation where the entire calculations have to be repeated. For the
purpose of probabilistic analysis in multi-component systems, this 1is an

added advantage of PFEM over the simulation methods.
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CHAPTER 6
SUMMARY AND CONCLUSIONS
The theme of this study was to develop and apply efficient
probabilistic finite element methods for various classes of problems in
structural and solid mechanics. In nonlinear problems the main 1issue
addressed was the evaluation of the higher order derivatives of the
stresses and the internal nodal forces with respect to the random
variables (Chapter 2). It was shown that finite~differencing was a
fairly accurate way of approximating these derivatives. Applications in
truss structures were studied and the results agree with those of Monte
Carlo simulation and Hermite-Gaussian quadrature. It was also
discovered that the higher-order equations involve secular terms which
caused the solutions to deteriorate with time. Damping did not wmitigate
the problem and other remedies were suggested to eliminate secular
terms. Secular terms, however, do not arise when only the extermal
forces are random. The spatial discretization procedure of the random
field resulting in the mean vector and the covariance matrix was
outlined in Chapter 3, along with a simple check on the discretization
accuracy. The popular eigenvalue transformation technique to obtain a
vector of uncorrelated variables has also been implemented in PFEM.
This reduced the computations from a quadratic to a linear dependence on
the number of random variables. Furthermore, it was observed that a
reduced set of the uncorrelated variables was sufficient to model the
randomness. Each variable represented a mode of correlation and

depending on the strength of correlation adequate number of modes had to
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be included. In general, the higher the correlation the lesser was the
number of modes that were required. The eigenvalues of the
transformation were weizhting factors in the superposition of modes.
Whereas in Chapters 2 and 3 the PFEM equations were derived from the
equations of motion, it was demonstrated in Chapter 4 that they can be
quite as easily derived from variational principles. For linear
continua, the equations were derived from the potential energy
variational principle and for nonlinear continua undergoing large
deformation the corresponding equations were derived from the principle
of virtual work with appropriate stress and strain measures. Also, for
elastoplastic materials, a direct method of evaluating the stress
derivatives was outlined. An important advantage in deriving the PFEM
equations from variational principles 1s the ease of incorporating the
random geometry.

Various applications were studied in truss structures, bar, beans
and plates and the results compare favorably with those of Monte Carlo
simulation. It was noticed that the second order terms have negligible
contribution to the mean response. It was also noticed that the
strength of correlation did not affect the magnitude of the response
moments appreciably. However, this may not be the case when the
structural reliability has to be calculated. With the use of adjoint
method it was demonstrated that the response moments can be selectively
computed in a desired portion of the structure. Some applications in
elastic—-plastic dynamics were studied in detail in Chapter 5. Most

uncertainties seem to linearly affect the response (i.e., a 10% c.o.v.
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of a random property gives to not more than 10% c.o.v. of the

displacement or stress). It was also noticed the displacements in any

structure were always perfectly correlated regardless of the correlation

level among the random variables. This was not the case for stresses,

however. Unlike stress, which can exhibit sudden variation in a

structure as io stress concentration, the displacement field in a

structure is a smooth function by mature. Alternatively, from the

finite element context, the external force is obtained by integrating

the stresses over the domain and then the displacements are obtained.

This integration process results in a smooth displacement field.

Based on the work in this research, the following suggestions are

made for further work:

I.

Methodologies for modeling mixed random boundary conditions, with
PFEM. Direchlet and Neumann boundary conditioms, with random
magnitudes, can be easily incorporated in PFEM as random extermnal
forces. However, mixed boundary conditions are not so easily
modeled. Example: A beam may not be fully clamped or fixed.
Second-moment based reliability techniques are avallable for mostly
linear systems. The major issue in nonlinear systems is the
computation of the response gradients. By incorporating some of the
techniques outlined in this report, this computation may be done,
accurately and efficiently. 1In limited situations, the response
moments themselves may be used to calculate reliability,

As PFEM involves solution of a set of independent first-order

equations, in addition to the zeroth and the second-order equations,
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the first order equations can be processed in parallel. The
solution sequence would be: solution of the zeroth-order equation
first, parallel solution of the first-order equations next and
finally the solution of a single second-order equation. In solving
the higher order equations, the already decomposed stiffness matrix

can be made use of.
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APPENDIX A: REVIEW OF MONTE CARLO SIMULATIUN METHODS
AND HERMITE-~GAUSS QUADRATURE SCHEMES

A.l Monte Carlo Simulation Methods

Various Monte Carlo Simulation techniques are now available. In
our analysis, the “simple” Monte Carlo method is used. The important
feature about the Monte Carlo method is its flexibility. 1In other
words, the computational procedures are the same irrespective of whether
the model is linear or nonlinear so long as the solution can be obtained
from the governing equation.

The main idea behind Monte Carlo simulation methods is to randomly
generate values of the random variables subject to the probability
density function and to calculate the output corresponding to these
values. From this set of output, the probabilistic distribution
properties, such as the mean and variance, are statistically estimated.

In the analysis of the two degrees of freedom probabilistic system,
a normal random generator is used. This normal random number generator,
RANF, 1s available on the Northwestern University CDC system. It has
been well tested and for large sample size, the distribution is close to
normal. This “"closeness” can also be estimated by the so called Central
Limit Theorem, which states as follows: "if a population has a finite
variance gz and mean value ,, then the distribution of the sample mean
approaches the normal distribution with variance qzln and mean y as the
sample size n increases.” The sample size used in this analysis 1is

400. Both the spring constants Kl and K, are randomly generated and the

2

corresponding displacement solutions are calculated using the exact
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deterministic solutions.

A.2 Implicit Time Integration with Hermite Gauss Quadrature Scheme

Let us consider a linear two degrees of freedom probabilistic

system
+
~ ~n+l 5 gn+l £u+1
where

(A.2.1)

K, ~ F(t)

(A.2.2)

n is the time step number and the initial conditions d , v and a_ are
~’ ~o ~0

given.

At each time step n, Eq. (A.l) 1s solved by the Newmark-3

algorithm with g8 = 0.25, y = 0.5 and At = 0.02 T n where Tmin is the

smallest fundamental period.

be shown to be

eff eff
~a+l ~

e
o
’
)

where

mi

The finite difference matrix equation can
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eff

in
[l

eff

]
]

~n+l

and

v
~a+l

Once ~n+l

-1

eff) E

eff

and v

~n+l ~n+l

n(d 2

a
~n+l

20+ = 4oy /808

and

=y + yAt a

v
~n+] n+l

1
=d +aty +(5-8)ac

2
a
~n

- + - -
v, tat (1 -vy) a

is determined from Eq. (A.2.3), i.e.,

can be determined as follows

(A.2.4)

(A.2.5)

(A.2.6)

(A0207)

(A02.8)

(A.2.9)

(A.2.10)

The solution procedures are then repeated with n replaced by n + 1

until nAt greater or equal to a desired time.

random variables, therefore, d

a+l

by Eq. (A.8) 1s “implicitly” a
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function of K1 and Kz. Using the basic definitions of mean and

variance, the expected value of d a+l is

+wo
= ) L .
E{d ] {. oK K £ (R £, (K) dK| dK, (a.2.11)

1 2

1=t

where fK (Kl) and fK (Kz) are the probability density functioas for
1 2

Kl and K2 respectively. In writing Eq. (A.2.11), the assumption that

Kl is uncorrelated to Kz has been employed. Once the expected value {is

evaluated, the variance of d
~n+l

can then be computed according to

2 2
var(d ,,) = E{d,,,] - (E [dy44]) (A.2.12)

The Hermite Gauss Quadrature scheme 1is to approximate the double

integrals which appears in Eq. (A.2.11) by

[4041] gl fz K}, K] ]
El d = w, w, d X, K ) f (K Yy £, (K3) (A.2.13)
S LI R R e K, 2)

where n] and n2 are the number of integration points for Ki and KZ

respectively, W, and wa are their corresponding weights. As might be

figured from above equation, if the number of random variables is m, the

number of simulations N is

N.nl*nz* eees * nm (A.Z.Uo)

and N grows exponentially. Therefore, unless the number of random
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variables is small, this method is not recommended. However, if a
physical situation dictates that some of the random variables can be
excluded in the calculations, N can then be reduced significantly.
Under this circumstance, the Hermite Gauss Quadrature Scheme can be an
efficient and accurate method. An example of this practical situation
has been demonstrated in Chapter 2, Section 4. In the analysis of the
ten-bar structure, it was predetermined that only four of the ten bars
will yield and the yield stresses are chosen as normal random variables.
If 3 points are used in evaluating each nofmally distributed Ki in

Eq. (A.2.13), the weight and quadrature points are
w, = (1/6, 4/6, 1/6) (A.2.15a)

i

and

K, = (=30 ,u ,u+ 30) (A.2.15b)

respectively. And for this "bias” integration procedure, the number of

simulations required (for each time step n) is
N=3%*3%*%3%*3a8] (A.2.16a)

Whereas, if one cannot observe apriori that six of the ten bars will not

yield, the number of simulations required becomes
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N = 310 = 59049 (A.2.16b)

which makes this a handicapped method.
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APPENDIX B: RESONANT EXCITATION OF RESPONSE SENSITIVITIES

The equation of motion and the sensitivity equation for a single-

degree~of-freedom spring-mass-damper system are

Mx+CXx+Kx=F(t) (B.1)
X, 3%,y 3X _ 3
M b + C b + 3b F(t) (B.2)
where
T 3F M _3aC. 3K
F(t) 5 "3 %35 % " 3p X (B.3)

M, C, K are assumed to be dependent on the parameter b; we are

interested in the sensitivity of the response x(t) to this parameter

b. Let F(t) be such that x(t) is stable. Under this condition it is

shown below that the response sensitivity %% is resonantly excited.
The damped natural frequencies of the system Eq. (B.l) and the

sensitivity Eq. (B.2) are the same. The excitation ﬁ(c) involves

> % and ; in Eq. (B.2) and is, therefore, a resonant excitation. Thus

approximations for x(t), such as

2
x(b_+ab, t) = x (b, ©) +(2X) b+ i+ (2%l (B.4)
o o ‘9 2 2
bub_ 3" beb_
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at bo for any small interval Ab, are valid only for a short duration
and the accuracy deteriorates rapidly thereafter.

Since the PFEM equations (2.7) in Chapter 2 use the first and
second-order response sensitivities, they are valid for a short duration
ouly. A similar phenomenon is also observed in the transient response
of nonlinear structures. A possible explanation for this phenomenon is
that the time 't' has a multiplying effect on the interval 'ab' in the
second and third terms in Eq. (B.4) and this results in the
deteriorating accuracy. However, the PFEM equations developed in
Section 2 of Chapter 2 are suitable for application when one is
interested in a short-time history e.g., the response due to an

impulsive load.
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APPENDIX C: NUMERICAL ALGORITHM FOR STRESS
AND DISPLACEMENT DERIVATIVES

For materials with random elastoplastic properties, such as yield
stress or plastic modulus, the finite~difference based derivatives (Eq.
(4.4.15b), Chapter 4) can be evaluated explicitly without recourse to
the solution of the equilibrium equation at each finite-differencing
point; the stiffness matrix, corresponding to the mean coaufiguration of
the random properties, needs to be decomposed only once. This
configuration is represented by the vector ¢ of size q. Subsequently,
the displacement derivatives can be calculated by forward reduction and
back substitution in Eq. (4.3.15a), Chapter 4. These computations are
done in conjunction with the radial return method proposed in Ref. [1]
and as implemented in Ref. [2]. '

For each element integration point, for every equilibrium iteration

'v' in a given load step 'm', the following quantities are stored:

7': stress
—
a : center of the von Mises yileld surface
—
k" : radius of the yield surface
E&: tangent constitutive matrix
where the superposed "—" implies quantities evaluated at c.

FLOWCHART

Part I Radial return for mean stresses and diplacements

Begin loop on load steps, m

Begin loop on iterations, v
161
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a)

b)

c)

d)

e)

£)

g)

Begin loop on elements

Begin loop on integration points

Pick up Ev, ;v' iv,'E

~T
Compute the elastic trial stress increment At° and update the stress
=+l vl Ty -V
to obtain the elastic trial stress Terial® ferial T X + AT
. vl vil v
Compute: 9. rial deviatoric part of Terial ~ 2 ) (C.1l)
Compute: § = 37, - (k) (c.2)
where 35 1s the second invariant of stress and ¢ is the yield
function.
- —v+l - v+l
If $ <0, 1 Terial’ 8° to step h. (C.3)

If ; > 0, compute the plastic strain increment ad?:
adP = ¢ 37, - ¥)/(36 + B) (C.4)
where G and B are the shear modulus and plastic modulus,

respectively. 'B' is further defined as:

EE

B = E:EZ (C.5)

T
where E and Ep are the elastic and tangent moduli, respectively.
compute:
As = 3G AET’VﬁZ (C.6)
aa = (1 - 8)B A’E"/\Jﬁz (C.7)
Correct stresses by radial return:
=+l _ v+l —v+l
1 ltrial 43 9ir1al (c.8)
-+l = —v+l
g Te tle g (c.9)
= k¥ + 8B ad® (C.10)
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h) Compute the tangent constitutive matrix E& and assemble the tangent

stiffness matrix

End loop on integration points

End loop on elements

End loop on iterations until equilibrium is satisfied. The

stresses, strains and displacements, Tt and d are

o+’ S+l ~ar+ 1
obtained from the final iteration.

Part Il Displacement derivatives

The following quantities are also stored for each element
integration point, in a given load step m, for each 'i’' representing a

random variable eyt

-1 -
» I, : Stresses, near the mean ¢

+i -1 -
8a * 2g : yleld surface centers near the mean c
+1 -1 -
km s km : yleld surface radii, near the mean c.

+1 -1 -
ET s ST : tangent constitutive matrices, near the mean c,

where
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et ., act, oo, 0T (C.11)

P C R v b (c.12)
and

act =gt . o0.01 <8 < 0.05 (C.13)

~

Begin loop on 'i' for each random variable

Begin loop on elements

Begin loop on integration points

1)

i1)
114)

iv)

v)

Compute the strain increment AE; as

Asm = Em+1 - Em (C.IA)
+1 +i +1 +i

Pick up Im ’ Sm ’ km ’ (ET )m

Compute the elastic trial stress (T;il)trial

Repeat steps (c) through (h) to finally obtain

+1 +1 +1 +1
Tar1’ St Kae1r C7 dpi)

Pick up I;i, 5;1, k;i, (CT);i and repeat steps (iii) and (iv) to

L
also obtain 1.1, 2ae1e Kprr» (S1 da
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vi) Compute and store the first order finite-difference derivatives:

5; T+i - T-i
~m+]l  ~mt] ~m+1 (C.15)

i
(C.16)

and ac = 2Ac

Compute and assemble the forcing term £1 in Eq. (4.3.15b),

vit)
Chapter 4; note that

.o
mtl (C.17)

! -
aci

in the equation.

End loop on integration points
End loop on elements
Solve Eq. (4.3.15a), Chapter 4 to obtain the displacement

ag 1
derivatives
9c

viii)

and store.

i

Part II1 Stress derivatives

Begin loop on elements

Begin loop on integration points

ix) Compute stress derivatives as:

ot ad
~art 1 (C.18)
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End loop on integration points
End loop on elements

End loop on random variables

End loop on load steps

166




Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704.0188
Public reporting burden for this collection of ink ion is esti d © g |Mwmbﬂaémhmmmmum.lma-m
gathering and dning the dsta ded, and pieting and reviewing the Send -] mwmumm-weﬂu-
collection of irdormadion . for ing this burden uwmm Oi '01“‘ Op Reports, 1215 JeMerson
Davie Highway, Sulis 1204, Adington, VA 22202-4302. and © the Office of Managernent and Budget, Paperwork Reduction Project (0704-0188), Washirgton, OC 20503,
1. AGENCY USE ONLY (Leave tank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 1991 Final Contractor Report

4. TITLE AND SUBTITLE §. FUNDINQ NUMBERS

Variational Approach to Probabilistic Finite Elements

WU-505-63-5B

6. AUTHOR(S) G-NAG3-535

T. Belytschko, W.K. Liu, A. Mani, and G. Besterfield
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

MEPOAT NUMBER

Northwestern University

Evanston, Illinois 60208 None
9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

Nationa] Aeronautics and Space Administration _

Lewis Research Center NASA CR-187179

Cleveland, Ohio 44135-3191

11. SUPPLEMENTARY NOTES
Project Manager, Christos C. Chamis, Structures Division, NASA Lewis Research Center, (216) 433-3252.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 39

13. ABSTRACT (Maximum 200 words)

Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-momeat
techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random
materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments.
Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized.
Preserving the conceptual simplicity, the response momeats are calculated with minimal computations. By incorporating
certain computational techniques, these methods are shown to be capable of handling large systems with many sources of
uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the
probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their
limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simula-
tion and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are ame-
nable to implementation in deterministic FEM based computer codes.

14 SUBJECT TERMS 18. NUMBER OF PAGES
Monte Carlo simulation quadrature; Truss; Bar; Beam; Displacements; Stresses; 176
Elastoplastic; Random fields; Cotrelated variables 16. PRICE c:oc;eo9

17. SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION | 18. S8ECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 208 (Rev. 2-89)






