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Abstract 

The phonon Boltzmann transport equation (BTE) is widely utilized to study non-diffusive 

thermal transport. We find a solution of the BTE in the thin film transient thermal grating (TTG) 

experimental geometry by using a recently developed variational approach with a trial solution 

supplied by the Fourier heat conduction equation. We obtain an analytical expression for the 

thermal decay rate that shows excellent agreement with Monte Carlo simulations. We also obtain 

a closed form expression for the effective thermal conductivity that demonstrates the full 

material property and heat transfer geometry dependence, and recovers the limits of the one-

dimensional TTG expression for very thick films and the Fuchs-Sondheimer expression for very 

large grating spacings.  The results demonstrate the utility of the variational technique for 

analyzing non-diffusive phonon-mediated heat transport for nanostructures in multi-dimensional 

transport geometries, and will assist the probing of the mean free path (MFP) distribution of 

materials via transient grating experiments. 
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I. INTRODUCTION 

Recent years have witnessed intensifying research of phonon-mediated thermal transport on 

the micro- and nano-scale
1–13

 stimulated by diverse technology drivers such as thermal 

management of microelectronic devices
14,15

  and nanostructured thermoelectric materials
16–18

. It 

has been realized that the heat diffusion equation, which has been the workhorse of thermal 

transport science and engineering, becomes inadequate at distances comparable to the mean free 

path (MFP) of heat-carrying phonons. Recently, non-diffusive heat conduction has been 

observed experimentally with optical-based techniques such as time-domain 

thermoreflectance
4,5,19–23

 (TDTR), frequency-domain thermoreflectance
2,24

(FDTR), and transient 

thermal grating
10–12,25

(TTG). These experiments typically report effective thermal conductivities, 

extracted by applying the Fourier heat conduction equation to the experimental configuration, 

that are lower than those of the bulk materials.  These effective thermal conductivities vary as a 

function of experimental variables such as the laser heating modulation frequency
1,2

, the heat 

source diameter
23

, the grating spacing
10,11

, etc.  Theoretical analysis of non-diffusive transport is 

typically performed using the Boltzmann transport equation (BTE), with the frequency 

dependent mean free path (MFP) distribution as an input to the equation.  Inversely, one can use 

these experimental data to reconstruct the MFP distribution
12,23

 in the form of a thermal 

conductivity accumulation function using a suppression function obtained through solving the 

BTE.  Unlike the Fourier heat conduction equation, however, the BTE is notoriously difficult to 

solve, especially when heat conduction involves multiple dimensions.  Numerical techniques for 

direct solution of the BTE or via Monte Carlo simulation have been developed
1,5–7,9,25–30

, but 

they are difficult to apply to existing experimental geometries.  We recently developed a 

variational approach to solve the BTE using the temperature distribution obtained from the 
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Fourier heat conduction as the trial function and demonstrated the effectiveness of this method 

by applying it to the one-dimensional thermal grating relaxation in bulk material
3
.  Here, we 

demonstrate the utility of this approach for analyzing heat transport for nanostructures in multi-

dimensional geometries and in the presence of phonon scattering at boundaries, which is more 

relevant to realistic experimental conditions.  Specifically, we analyze the relaxation of a thermal 

grating in a suspended thin membrane
11

. The consideration of size effects from the thin film is 

critical to explain the experimentally obtained thermal decay profiles, especially for very thin 

films
12

 and can reveal the suppression of thermal conductivity and deviation from the Fourier 

heat conduction solution both from the size effects of the grating spacing and the film thickness.  

This is a nontrivial extension since the spectral BTE in a multi-dimensional geometry is 

notoriously difficult to solve. 

In the TTG experiment, two pulsed laser beams are crossed in order to generate a sinusoidal 

heating profile of spatial period ! . As the thermal grating relaxes, the diffraction of a probe laser 

from the sample captures the thermal decay dynamics. The TTG technique has been used to 

observe non-diffusive thermal transport in silicon membranes
11,12

 and gallium arsenide
10

 at room 

temperature, and can enable the extraction of the MFP distribution
23

. The simplicity of the 

experimental geometry (including, above all, the absence of interfaces between different 

materials) makes it an important system to study theoretically. The TTG geometry has been well 

studied in the one-dimensional bulk limit of a very large membrane thickness. In this case, the 

transport is purely one-dimensional and occurs only in the in-plane direction of the film between 

hot and cold spots generated by the laser intensity profile. Various approaches to solving this 

case include the two-fluid framework
25

 with simplifying assumptions about the scattering of high 

and low frequency phonons, an exact numerical solution with finite differences
13

, a temporal 
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Fourier transform approach for which the temperature in the frequency domain was obtained 

analytically
9
. More recently, we developed a variational method

3
 with which the thermal decay 

rate, effective thermal conductivity, and corresponding suppression function were calculated 

analytically. This closed form expression was the first to show the full material property 

dependence of the suppression function and addresses the non-universality of the suppression 

function. 

 The BTE is considerably harder to solve in a multi-dimensional geometry
4,5

 and in the 

presence of boundary scattering.  The thin film TTG geometry has been studied previously with 

the Monte Carlo approach
6
. In this work, we demonstrate the ability of the variational approach 

to provide an analytical form for the temperature profile and the associated thermal decay rate. 

This provides the ability to study the full material and geometry dependence of the thermal 

transport in the TTG configuration. We demonstrate that results from this variational approach 

are in excellent agreement with Monte Carlo simulation on Si and PbSe.  The variational 

approach offers the ability to accurately solve the BTE and study a wide range of materials in the 

non-diffusive regime with a closed form expression, and computationally a much faster way to 

study non-diffusive transport over a broad range of length scales for the film thickness and the 

thermal grating period.  

 

II. THE SPECTRAL BTE AND TEMPERATURE EQUATION  

 We begin with the spectral Boltzmann transport equation under the relaxation time 

approximation for the spectral energy density
13,31,32

 

!g!

!t
+
!
v! "
!
#g! =

g
0
$ g!

"!
         (1) 
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where g!  is the phonon energy density per unit frequency interval per unit solid angle above the 

reference background energy, related to the distribution function as g! =
!!D !( )
4!

f! ! f0 T0( )( ) . 

v!  is the group velocity, !"  is the relaxation time, and g
0

 is the equilibrium energy density, 

given by g
0
!
1

4!
C! T "T

0( )  in the linear response regime.  In the TTG experiment, the 

temperature initially has a sinusoidal periodic profile as T x, t = 0( ) = T0 +Tme
iqx  in complex form 

where T
m  

is the initial amplitude of the spatial variation and q = 2! / "  is the wavevector for the 

grating sinusoidal profile.  We assume that the initial temperature profile is uniform across the 

thickness of the film (depicted in Fig. 1) as is often the case in experiment
25

. We require 

T
m
<< T

0
 to ensure the linear response regime. We expect the temperature profile to obey 

T x, z, t( ) = T0 +Tme
iqx
h z, t( )  where h z, t( )  is the non-dimensional temperature that satisfies 

0 ! h z, t( ) !1 , h z, t = 0( ) =1  and h z, t!"( ) = 0 .  

 

 

FIG 1: Schematic showing the geometry and coordinate system for the thin film. The thickness of the film 

d is depicted separating the adiabatic top and bottom surfaces. The grating period !  shows the separation 
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between hot spots (red) and cold spots (blue), which are uniform vertically across the membrane thickness 

initially (t = 0). 

 

Similarly, the distribution function will be given by g! = e
iqx
!g!  and the equilibrium distribution 

by !g
0
=
C!Tm

4!
h z, t( ) .  The BTE now takes the form:  

! !g!
!t

+ v! iqµ
x
!g! +µz

! !g!
!z

"

#
$

%

&
'=
!g
0
( !g!
"!

       (2) 

where we have removed the y-dependence due to the translational symmetry, and define µ
x
,µ

z  

as the direction cosines in the x (in-plane) and z (cross-plane) directions, respectively. If one 

measures a polar angle !  and azimuthal angle !  from the z-axis, then in that case the direction 

cosines are simply µ
z
= cos !( )  and µ

x
= sin !( )cos !( ) , but we will keep the form general. We 

utilize the Laplace transform in time and the initial condition of the temperature profile to reduce 

this partial differential equation to an ordinary differential equation: 

 

! !̂g!

!u
+
1+ s"! + i#!µx

2Kn!µz

!̂g! =

!̂g
0
+!"

C"Tm

4#
2Kn"µz

       (3) 

where we have replaced z by a non-dimensional variable u = 2z / d  where d is the thickness of 

the thin film so that !1< u <1 . Furthermore, we have defined the following non-dimensional 

quantities utilizing the mean free path !! = v!"!  to characterize the size effect of the grating 

spacing, !" = q!"  
, and the film thickness, Kn! = !! / d  

, given by the Knudsen number. To 

simplify the notation, we will utilize the term V !
1+ s!" + i#"µx

2Kn"µz

 to group the variables in a 
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compact form. We impose adiabatic, diffuse boundary conditions at the top and bottom of the 

thin film,  

!̂g! u = !1, s,µ
x
,µ

z
> 0( ) =!1

!̂g! u =1, s,µ
x
,µ

z
< 0( ) =! 2

        (4) 

where we define the following solid angle integrals:  

!
1
!

1

"
d" # µ

z( )µz
!̂g# u = $1, s,µ

x
,$µ

z( )%

!
2
!

1

"
d" # µ

z( )µz
!̂g# u =1, s,µ

x
,µ

z( )%
       (5) 

which are proportional to the spectral energy flux approaching the bottom and top walls of the 

thin films, respectively. Note the integrations are only over hemispheres representing flux 

towards the corresponding surface and not the entire solid angle. We have utilized the Heaviside 

step functions ! x( )  to restrict the integration region appropriately. 

Solving Eq. (3) and applying the boundary conditions of Eq. (4) yields:  

!̂g! u, s,µx,µz( ) =! µz( ) !1 exp "V u+1( )( )+ d #u exp "V u" #u( )( )
!̂g0 #u , s( )+!"

C"Tm

4#
2Kn"µz

"1

u

$

%

&
'

(
'

)

*
'

+
'

! "µz( ) ! 2 exp "V u"1( )( )+ d #u exp "V u" #u( )( )
!̂g0 #u , s( )+!"

C"Tm

4#
2Kn"µz

1

u

$

%

&
'

(
'

)

*
'

+
'

  (6) 

where the first term describes phonons flowing towards the positive z-direction (top boundary) 

and the second term describes phonons flowing towards the negative z-direction (bottom 

boundary). Integrating the solution of Eq. (6) over the solid angle hemispheres at the walls from 

Eq. (5) yields coupled equations for the energy approaching the walls of the thin film, !
1
,!

2
. 
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Solving this coupled equation, and utilizing the even symmetry of the system about the center 

line u = 0 of the thin film yields:  

!
1
=!

2
=

2

1! 2F
3
2( )

d "u
!̂g
0

"u , s( )+"#
C#Tm

4$
2Kn#

F
2
1+ "u( )

!1

1

#      (7) 

where we have defined the following integral function for convenience:  

F
n
u( ) !

1

2!
d"# µ

z( )µz

n$2
exp $Vu( )%         (8) 

The symmetry of the coordinate system we have chosen requires that the temperature, and thus 

the equilibrium energy density, be even in the spatial variable u.

 

Thus this completes the solution 

for the spectral energy density in terms of the equilibrium energy density (and thus the 

temperature) when combining the results of Eqs. (6-8). 

 

Integrating Eq. (1) with respect to the solid angle and all phonon modes yields the 

equilibrium condition in the spectral case
31

. The equilibrium condition in this case can be 

expressed as:  

2 d!
1

"!
!̂g
0
u, s( )! = d!

1

"!

1

2#
d" !̂g! u, s,µx,µz( )!!       (9) 

Note that the integral over !  is a compact notation we use for simplicity where it implies a sum 

over all phonon polarizations and corresponding frequencies of those branches
33

. Inputting the 

solution of Eq. (6) into Eq. (9), and inputting the expression for the non-dimensional temperature 

!̂g
0
u, s( ) =

C!Tm

4!
ĥ u, s( ) , we obtain the integral equation governing the temperature distribution:  

ĥ u, s( ) d!
C!

"!
! = d!

C!

"!
d "u

ĥ "u , s( )+!"
4Kn"

F
1
u# "u( )+

2F
2
1+ "u( )

1# 2F
3
2( )

F
2
1+u( )+F2 1#u( )$% &'

(
)
*

+*

,
-
*

.*
#1

1

!!  (10) 
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Notice that this is an integral equation in the spatial variable u, which, after solving, would 

require an inverse Laplace transform to obtain the temporal decay of the temperature profile.  

 

III. VARIATIONAL APPROACH 

We seek an approximate solution of Eq. (10) by using a trial function obtained using the 

heat diffusion equation. In the thin film TTG geometry, the latter yields a very simple 

exponentially decaying solution of T
!
r, t( ) = T0 +Tme

iqx
e
!!q2t

, where ! is the thermal diffusivity. 

Following the approach previously utilized for the one-dimensional TTG
3
, we take a trial 

solution h u, t( ) = exp !!t( )  where the decay rate  ! = q2"eff  is determined by the “effective” 

thermal diffusivity !eff . By treating the latter as a parameter, we seek to optimize the chosen 

simple trial function to get the best approximate solution of Eq. (10).  

As was demonstrated previously
3
, one can take both a mathematical approach, seeking to 

reduce the least squares error of the error residual of the temperature equation from Eq. (10), or 

one can impose physical constraints that the trial function should satisfy. Since our trial function 

has only one variational parameter, it would suffice to impose a single condition to optimize the 

solution. The physical condition we pick is to demand energy conservation to hold over the thin 

film control volume considering the whole time decay. In this geometry, we take a control 

volume over the thickness of the film, and for convenience of a width equal to half of the grating 

period, centered at a peak in the temperature, where the temperature is above the average 

background in order to observe heat flux outwards laterally towards the troughs in the 

temperature spatial profile. By considering the entire decay time, energy conservation demands 

that the total energy initially deposited by the heating laser pulse into the control volume must be 

equal to the total energy that flows out of the control volume over the entire decay time. As the 
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top and bottom surfaces of the thin film are adiabatic, we need not consider the flux in the z 

(cross plane) direction, q
z
, and thus energy only flows out due to in-plane flux out of the control 

volume. Integrating over all time, and over the thickness of the thin film in the z direction, and 

over the width of the control volume in the x direction yields in complex form:  

CTm
!d

"
= 2i dz

!d
2

d
2" dt  !qx z, t( )

0

#

"         (11) 

where q
x

 is the heat flux in the x (in-plane) direction, given by q
x
x, z, t( ) = eiqx !qx z, t( )  due to the 

periodicity of the heating profile. Eq. (11) simply says that the total initial energy must be equal 

to the total flux away in the in-plane direction from peak to trough integrated over time.  

Beyond a physical demand for energy conservation, Eq. (11) has also a mathematical 

benefit. In the 1D TTG model, it can be shown that imposing this physical constraint as 

demonstrated previously
3
, makes it such that the area under the temperature decay curve from 

the trial exponential solution matches the area under the exact temperature decay. While this 

cannot be strictly proven in the thin film TTG problem due to the z dependence in the problem, 

the benefit of this is that a function that starts at unity will be constrained to match the area of the 

actual decay and for the monotonically decaying temperature profile, this will yield an excellent 

approximation, as will be seen in Fig. 2. 

 The heat flux is obtained by integrating the spectral energy density over the solid angle and 

phonon frequencies in the form !̂qx u, s( ) = d!v! d!µx
!̂g! u, s,µx,µz( )"" . Inputting the spectral 

energy density expression of Eq. (6) and integrating, we obtain:   

!̂qx u, s( ) = Tm d!C!v! d !u
ĥ !u , s( )+!"
4Kn"

G
1
u" !u( )+

2F
2
1+ !u( )

1" 2F
3
2( )

G
2
1+u( )+G2

1"u( )#$ %&
'
(
)

*)

+
,
)

-)
"1

1

..   (12) 

where the following solid angle functions have been introduced for convenience:  
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F
n
u( ) =

1

2!
d!" µ

z( )µz

n#2
e
#Vu$

G
n
u( ) =

1

2!
d!" µ

z( )µx
µ
z

n#2
e
#Vu$

        (13) 

The in-plane heat flux can be integrated over the thickness of the film and after inputting the trial 

exponential function, whose Laplace transform is given by ĥ u, s( ) =
1

s+!
, and taking s to be zero 

to integrate over all time, the conservation equation of Eq. (11) can be solved to yield the thermal 

decay rate: 

 

! =

d"
C"

#"
1!

1

$"
arctan $"( )+" !",Kn"( )

#
$
%

&
'
(

)

d!C!

1

"!
arctan "!( )!" !",Kn"( )

#
$
%

&
'
(

)
      (14) 

where we have defined the following functions given by solid angle integrals:  

! !" ,Kn"( ) "#2 #
#1
2

#0

#
n
!" ,Kn"( ) "

1

2$
d$% µ

z( )
Kn"µz

1+ i!"µx( )
n
1# exp #

1+ i!"µx

Kn"µz

&

'
(

)

*
+

,

-
.
.

/

0
1
1

2

= d% dµ
0

1

2
Kn"µ

1+ i!" 1#µ 2 cos 2$%( )( )
n
1# exp #

1+ i!" 1#µ 2 cos 2$%( )
Kn"µ

&

'

(
(

)

*

+
+

,

-

.

.

/

0

1
10

1

2

  (15)  

which can be viewed as generalizations of the exponential integral functions
34

.  

Using the relation of the thermal conductivity to the thermal decay rate from the Fourier heat 

conduction solution k = !C / q2 , we obtain the effective thermal conductivity for the thin film 

TTG:  

k =

1

3
d!C!v!!!

3

"!
2
1"

1

"!
arctan "!( )+# "!,Kn!( )

$
%
&

'
(
)

*

1

C
d!C!

1

"!
arctan "!( )"# "!,Kn!( )

$
%
&

'
(
)

*
     (16) 
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Note the complex material property dependence of the effective thermal conductivity, in that we 

have two integrals over phonon properties appearing. We take the limits of large membrane 

thickness and large grating spacing and verify the expected limits of the one-dimensional TTG 

expression
3
 and the Fuchs-Sondheimer

35,36
 formula:  

k d >> !!,"( ) =

1

3
d!C!v!!!

3

#!
2
1"

1

#!
arctan #!( )

#
$
%

&
'
(

)
1

C
d!C!

1

#!
arctan #!( ))

k " >> !!,d( ) =
1

3
d!C!v!!! 1"

3

2
Kn!

1

4
"E

3

1

Kn!

*

+
,

-

.
/+E5

1

Kn!

*

+
,

-

.
/

0

1
2

3

4
5

#
$
6

%6

&
'
6

(6
)

    (17) 

 

The suppression function is defined by the relation to the effective thermal conductivity
13,25

 as  

k =
1

3
C!v!!!S! d!" , where again the integral over !  implies a sum over all phonon 

polarizations and frequencies, in compact form
33

. The suppression function characterizes the 

effective reduction of the MFP of phonons due to size effects from the heat transfer geometry, 

which corresponds to a reduction in thermal conductivity. However, only in the large grating 

period limit can a universal suppression function, necessary for MFP reconstruction from the 

previously developed reconstruction algorithm
23

, be obtained. 

 The temperature decay curves for some representative thicknesses of film and grating 

spacings for Si and PbSe are shown in Fig. 2, utilizing the same material property data from the 

previous one-dimensional TTG studies
3,13

. The variational approach is compared against the 

Monte Carlo results obtained for the thin film TTG
6
. The variational approach demonstrates a 

predictive ability to studying the temperature decay over a broad range of grating periods, even 
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into the strongly non-diffusive thermal transport regime, when the thermal decay deviates from 

exponential decay. 

 

FIG 2: Temperature decay dynamics for PbSe (10 nm thick film) and Si (390 nm thick film) for several 

grating spacings, comparing the results of the variational technique (dashed line) and Monte Carlo runs 

(solid line). 

  

 To get a clearer picture of the onset of non-diffusive transport, we plot the thermal decay 

rate against the square of the grating wavevector in Fig. 3. As the slope of this relation is equal to 

the thermal diffusivity, in the diffusive regime the dependence is linear
6,11

. For larger grating 

wavevectors q (i.e., at smaller periods !  ), the solution visually deviates from the Fourier heat 

conduction model, and this deviation occurs at TTG periods on the order of 5 microns and 50 

nanometers for Si and PbSe, at membrane thicknesses of 390 nm and 10 nm, respectively. The 

thermal decay rate gives a quantitative method to determine when the conductivity deviates from 

the bulk value for a given membrane thickness. Note that this thermal conductivity obtained for 
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large grating periods will still experience size effects from the membrane boundary scattering as 

predicted by the Fuchs-Sondheimer model
35,36

. This is a different metric for determining the 

onset of non-diffusive transport than looking at the thermal conductivity accumulation function 

and looking at the value for MFP’s below which contribute to 50% of the thermal conductivity
37

. 

While the thermal conductivity accumulation function would yield a simple estimate at what 

length scales one would expect to observe non-diffusive transport, the utilization of the decay 

rate is a more rigorous method of taking into account the full effect of the geometry and heat 

transfer configuration of the system. 

   

FIG. 3: Thermal decay rate plotted against wavevector squared for Si (a) and PbSe (b). The deviation 

from the Fourier conduction model on the order of roughly 10% occurs at squared wavevector values on 

the order of 2 and 20,000 µm!2
 for Si (390 nm membrane thickness) and PbSe (10 nm membrane 

thickness), respectively, which corresponds to on the order of 5 microns and 50 nm, respectively, to 

observe the onset of suppression of thermal conductivity. 

 

The thermal decay rate from the Fourier heat conduction equation is directly related to the 

thermal conductivity, and utilizing this definition we extract the effective thermal conductivity as 

given by Eq. (16). By normalizing to the bulk thermal conductivity, we compare the effective 
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normalized thermal conductivity as a function of the grating period for various thickness films. 

Fig. 4 shows the effective thermal conductivities of Si and PbSe for various thicknesses of film, 

plotted against the grating period. The material properties are the same as those utilized in our 

previous work
3
  and Collins et al.

13
. There is excellent agreement with the Monte Carlo results 

across a broad range of film thicknesses and grating periods. 

  

FIG 4: Normalized effective thermal conductivity as a function of the grating period for various 

thicknesses (increasing in thickness from bottom line to top line) of the thin film for (a) Si and (b) PbSe. 

The variational approach (lines) yields effective conductivities that show excellent agreement with Monte 

Carlo simulations (symbols) over a broad range of grating periods and film thicknesses. 

 

We can determine the grating period yielding a 5% reduction in the effective thermal 

conductivity compared to the Fuchs-Sondheimer (long grating period) limit. This provides a 

quantitative metric of the onset of non-diffusive transport for a given membrane thickness. From 
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µm , 390 nm, 200 nm, 50 nm, and 20 nm, respectively. Similarly for PbSe, Fig. 4(b) shows that 

the grating periods for which we can deduce the onset of non-diffusive transport occur at 300 
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nm, 120 nm, 90 nm, 60 nm, 50 nm for membrane thicknesses of 100 nm, 10 nm, 5 nm, 2 nm, and 

1 nm, respectively. For both materials we see that the grating period for the onset of non-

diffusive transport is shorter for thinner membranes, and this can be qualitatively explained by 

the reduction of the effective MFP of the systems due to the boundary scattering. 

 The variational approach demonstrates the simplicity of optimizing a trial solution from the 

diffusive temperature profile that the experimentalist fits to, rather than a brute force solution of 

the BTE followed by a fitting to a diffusive profile in order to extract material properties such as 

the effective thermal conductivity. This also provides the opportunity to obtain analytical 

solutions to the BTE for geometries that have never been obtained previously. 

 

 

IV. SUMMARY 

We have demonstrated the ability of the variational method to solve a multi-dimensional, 

transient heat transfer configuration over a broad range of length scales. We solved the BTE to 

yield the spectral energy density as a functional of the temperature in the thin film TTG 

geometry. By utilizing a trial solution obtained from the Fourier heat conduction model with the 

effective thermal conductivity treated as a variational parameter, and imposing an energy 

conservation condition integrated over the membrane thickness and time, the effective thermal 

conductivity was obtained analytically. The variational method was shown to yield the expected 

limits in the large grating period case and large film thickness case, converging to the one-

dimensional TTG result and Fuchs-Sondheimer formula, respectively.  The variational approach 

demonstrates a simple and direct method for obtaining an approximate solution to the BTE 
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resulting in an accurate, analytical formula for the temperature profile, thermal decay rate, and 

the corresponding effective thermal conductivity. 

 The results of this work further enhance the understanding of non-diffusive transport in the 

context of temperature decay within geometries comparable to the MFP of the materials studied. 

Furthermore, it demonstrates the ability of the variational method beyond simple one-

dimensional geometries, and the variational approach can suitably be applied to other problems 

involving non-diffusive phonon-mediated heat transport in nanostructures. We provide a 

complete expression for the thermal conductivity that shows its full dependence on the material 

properties and the geometry of the system. The analytical form provided gives the ability to 

study a wide variety of materials efficiently in order to better understand non-diffusive transport.  
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