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Abstract. In this paper, a variational technique derived from optimal control theory is used
in order to realize a dynamically consistent motion estimation of a whole fluid image sequence.
The estimation is conducted through an iterative process involving a forward integration of a given
dynamical model followed by a backward integration of an adjoint evolution law. By combining
physical conservation laws and image observations, a physically grounded temporal consistency is
imposed and the quality of the motion estimation is significantly improved. The method is validated
on two synthetic image sequences provided by numerical simulation of fluid flows and on real world
meteorological examples.
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1. Introduction. The analysis of complex fluid flows is a very challenging issue
in numerous scientific domains. In that prospect, flow visualization and extraction
of accurate kinetic or dynamical measurements are of the utmost importance. Since
several years, the study of dynamic structures and the estimation of dense velocity
fields from fluid image sequences have received a great attention from the computer
vision community [7, 11, 12, 19, 25, 38, 39]. Application domains range from experi-
mental visualization in fluid mechanics to geophysical flow analysis in environmental
sciences (meteorology, climatology, oceanography, ...). In particular, accurate mea-
surements of atmospheric flow dynamics is a very important piece of information for
weather forecasting, climate prediction or climate evolution analysis, etc... Such an
interest can be extended to the analysis of very complex situation involving unknown
boundary conditions, multi-phase fluids or fluid structures interactions, in which infor-
mation brought by image data may be a very interesting alternative to the numerical
simulation of pure physical modeling.

As a matter of fact, even though it is generally possible to provide an accurate
modeling of the large scales of an experimental flow, the small motion scales are much
more difficult to reproduce accurately. In this regard, image observation have the
advantage to represent inherently a large range of the motion scales of the observed
flow. The coupling of fluid dynamical models, simulation techniques and image data
measurements appears consequently to be a very appealing approach for the recon-
struction, or the accurate measurement of fluid flows. In this paper we introduce a
generic technique allowing such coupling between image data and a dynamical model.

The analysis of fluid motion through image sequences is particularly challenging
in several application contexts due to the low contrast of the luminance function and
its variations generated by the fluid motion. For these reasons, motion analysis tech-
niques designed for computer vision applications and quasi-rigid motions are generally
not well adapted in this context. Methods for fluid-dedicated dense estimation have
been proposed to estimate fluid motion [7, 8, 17, 38] or to characterize the principal
structures of the flow [9]. However, these motion estimators are still using only a
small set of images and thus may suffer from a temporal inconsistency from frame
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to frame. The design of appropriate methods enabling to take into account the un-
derlying physics of the observed flow constitutes a widely open domain of research.
Even if some spatio-temporal estimators have been proposed [2,4,26,37] in computer
vision, they all relies on simple stationary assumption and none of them enable to
enforce a global coherency of the estimates with respect to the dynamics of the ob-
served phenomena. Imposing such a dynamical constraint is particularly attractive
for the accurate velocity measurement of complex flows and to guarantee a temporal
consistency of the velocity fields trajectory.

Recently, new approaches relying on the vorticity-velocity formulation of Navier-
Stokes equations have been proposed [16, 33]. These estimators include a prediction
term based on this conservation law that enables to impose a goodness fit between
the current estimation and a predicted one [16,33]. Even if these techniques enforces
a temporal coherency, the set of final estimates provided along the sequence does not
however necessarily respect the considered fluid conservation laws. They just impose
from time to time a clever initialization for the motion estimation process. If for
any reasons, at a given time, the estimator fails to supply an estimate that is close
enough to the actual solution, this current estimate will be propagated from time to
time and an increasing drift of the estimated trajectory will observed. This is due to
the fact that those predictive estimators do not correspond to the settling of a global
spatio-temporal optimal strategy.

In this work, we propose to define the motion estimation problem through vari-
ational assimilation principles related to optimal control theory [20, 22] and used in
geophysical sciences [1,20,36]. These techniques enable, in the same spirit as a Kalman
filter, a temporal smoothing along the whole image sequence. As a Bayesian smoother,
they combine a dynamical evolution law of the flow state variables of interest with
the whole set of available related noisy measurements. Nevertheless, unlike known
stochastic filtering implementation, variational assimilation techniques allows to cope
naturally with state spaces of very large dimension. As opposed for instance to the
stochastic filter proposed in [10] which aims at describing and tracking only the main
structures of the flow, the objective is here to measure and track an extended range
of the flow scales.

The approach we propose is expressed as the minimization of a global spatio-
temporal functional modeling the integrated discrepancy along time between the fea-
tures trajectory and photometric measurements. The associated optimization process
is led through the introduction of adjoint techniques borrowed to optimal control the-
ory [22, 23]. This method has the advantage to provide an efficient expression of the
functional gradient. This is particularly interesting when the functional gradients can
hardly be numerically computed through finite differences.

Thanks to the dynamics introduced to describe the motion fields evolution, the
functionals we will consider do not incorporate any additional smoothing functions to
discard ambiguities or to recover the motion of low photometric gradient areas. These
kinds of regularizers used in any variational dense motion schemes and that remains
always questionable from the point of view of the physics of the observed phenomenon
are not required here.

This paper is organized as follows. The principle of the optimal control theory
used in this work is introduced in section 2. The process is applied to the recovery of
fluid motion in section 3. The discretization schemes used are detailed in section 4.1
and finally, numerical experiments are presented in section 5. This work corresponds
to a detailed version of two conference papers [29, 30]. It also follows a work pro-
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posed for the filtering of noisy motion fields [31]. We will however give here another
presentation of the adjoint optimization technique.

Let us note that a related work using optimal control has been proposed for the
estimation of dense motion fields in image sequences [3]. However, the method is
dedicated to the recovering of stationary rigid motion and involved a simple obser-
vation model. In addition, unlike the approach we propose, this technique includes,
in the same way as traditional motion estimator, explicit spatial a priori smoothing
functional. Such regularization terms have the drawback to introduce smoothness
constraints which are not physically grounded and leads to biased solutions in areas
of low photometric contrasts. Another technique relying on optimal control has been
proposed in [32]. This technique operates on two consecutive images and relies on a
Stokes flow conservation law model – in which the effect of the non linear advection
term of the Navier-Stokes equation is neglected.

2. Data assimilation. In this section we will first describe the general frame-
work proposed for a dynamically consistent estimation issues. It relies on variational
data assimilation concepts [1, 20,36] proposed for the analysis of geophysical flows.

2.1. Definition. Data assimilation is a technique based on optimal control the-
ory [23] that enables to perform the estimation over time of state variables representing
a system of interest. A smoothing is done according to an initial state, a dynamic law
and noisy measurements. This setting shares the same aim as a Bayesian smoother
such as the Kalman filter used within a forward-backward filtering (i.e batch mode).
Nevertheless, this framework allows to handle very large scale systems and is thus
intensively used in environmental sciences [1, 20, 36] for atmospheric flows or oceanic
simulations. We rely on this technique to estimate in batch mode the complete tra-
jectories along an image sequence of curves and motion fields. The data assimilation
setting is basically composed of an ideal dynamical model of the target system, an ini-
tialization of the system’s state and an observation equation which relates the system
variables to some measurements:







∂tX + M(X) = ν(x, t)
X(x, t0) = X0(x) + η(x)
Y (x, t) = H(X(x, t)) + ǫ(x, t).

(2.1)

The right hand side of the first equation describes, through a differential operator M,
the evolution of the state function X defined over the image plane Ω and the whole
image sequence time range [t0; tf ]. In our case, the components of this vectorial func-
tion will include a motion field representations. This will be further detailed in the
next section, but for sake of generality, let us first consider a general state function.
The second equation sets up an initial condition for the state function through a
given initialization X0(x). The last equation links an observation function Y (x, t),
constituted by noisy measurements of the state function components, to the state
function . This relation is formalized through a differential operator H. The obser-
vation function is usually composed of discrete and sparse measurements. In these
three equations ν, η and ǫ are time varying control functions defined on the whole
image plane. They are respectively associated to covariance matrices Q(x, t, x′, t′),
B(x, x′) and R(x, t, x′, t′). These functions represent the errors involved in the differ-
ent components of the system (i.e dynamical model errors, initialization errors and
measurement errors).

2.2. Penalty function. The system of equations (2.1) could be as well specified
through three Gaussian conditional probability densities p(X|X(0)), p(X(0)|X0) and
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p(Y |X) related respectively to the state trajectory X along time to the initial state
value X(0), the initial state value to the initial condition X0 and Y , the complete
set of measurements to the state X. As in any stochastic filtering problem, we aim
here at estimating the conditional expectation of the state trajectory given the whole
set of available observations (here the complete sequence of observations). As all the
pdf involved here are Gaussian, this comes to seeking for the mode of the a posteriori
distribution p(X|Y, X0). Such a maximum a posteriori estimation leads then to the
minimization of a quadratic functional defined as:

J(X) =
1

2

∫

Ω

∫

Ω

(X(x, t0) − X0(x))
T

B
−1(x, x

′)
(
X(x′

, t0) − X0(x
′)

)
dx

′
dx

+
1

2

∫

Ω,t

∫

Ω,t

(∂tX + M(X))
T

(x, t)Q−1(x, t, x
′
, t

′)(∂tX + M(X)) (x′
, t

′)dt
′
dx

′
dtdx

+
1

2

∫

Ω,t

∫

Ω,t

(Y − H(X))
T

(x, t)R−1(x, t, x
′
, t

′) (Y − H(X)) (x′
, t

′)dt
′
dx

′
dtdx,

(2.2)

where

∫

Ω,t

=

∫

Ω

∫ tf

t0

.

Few remarks can be done here. The covariance functions Q and R which appear in
the functional above may link any point of the spatio-temporal domain. Nevertheless,
if any two points are uncorrelated the double space-time integral involved simplifies
in a single integral (i.e. functions Q and R are only function of x and t, and B is
only a function of x). Their associated discretization corresponds then to diagonal
matrices. Even if at the end, we will rely on such assumption, we wish to stay first in
the most general case. This functional and the covariance functions involved in the
previous functional ensue from the assumption of an inexact dynamical law together
with noisy measurements and inaccurate initial conditions. Let us also remark that
in the most usual cases, the variational data assimilation techniques used in environ-
mental sciences relies on an exact version of the state evolution law (i.e. without any
model error). In this latter case the second line of the functional (the model part)
disappears. The functional then depends only on the initial condition, and comes
to an initial value control problem. Interested readers may found a presentation of
this setup for image processing problems in [31]. A perfect modeling seems to us
irrelevant in image analysis since the different models on which we can rely on are
usually inaccurate due for instance to 3D-2D projections, varying lighting conditions,
completely unknown boundary conditions, etc ... Considering an incertitude term on
the dynamical model, we therefore somewhat move apart from the traditional setting.
Despite this difference, we will nevertheless rely on the same adjoint optimization
principles [20,36] to minimize the functional.In the following we give a presentation of
this principle that is slightly different from the one given in [31]. It relies here on the
direct computation of the Euler-Lagrange optimality condition through an additional
adjoint variable.

A minimizer X of functional J is also a minimizer of a cost function J(X +
βθ(x, t)), where θ(x, t)) belongs to a space of admissible function and β is a positive
parameter. In other words, X must cancel out the directional derivative:

∂XJ(θ) = lim
β→0

dJ(X + βθ(x, t))

dβ
= 0.
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J(X + βθ(x, t)) may be written as:

J =
1

2

∫

Ω

∫

Ω

(X + βθ − X0)
T

B
−1(X + βθ − X0)dx

′
dx

+
1

2

∫

Ω,t

(∂tX + β∂tθ + M(X + βθ))
T
∫

Ω,t

Q
−1(∂tX + β∂tθ + M(X + βθ)) dt

′
dx

′
dtdx

+
1

2

∫

Ω,t

∫

Ω,t

(Y − H(X + βθ))
T

R
−1(Y − H(X + βθ))dt

′
dx

′
dtdx.

(2.3)

2.3. Adjoint variable. In order to perform an integration by part – to factorize
this expression by θ– we introduce an ”adjoint variable” λ defined by:

λ(x, t) =

∫

Ω,t

Q−1 (∂tX + M(X)) dt′dx′, (2.4)

as well as linear tangent operators ∂XM and ∂XH defined by:

lim
β→0

dM(X + βθ)

dβ
= ∂XMθ. (2.5)

Such linear operators corresponds to the Gâteaux derivative at point X of the oper-
ators M and H. Let us note that the derivative of a linear operator is the operator
itself. By taking the limit β → 0, the derivative of expression (2.3) then reads

lim
β→0

dJ

dβ
=

∫

Ω

∫

Ω

θ
T

(x, t0)B
−1(X(x′

, t0) − X0(x
′))dx

′
dx

+

∫

Ω,t

(∂tθ + ∂XMθ)
T

(x, t)λ(x, t)dtdx

−
∫

Ω,t

∫

Ω,t

(∂XHθ)
T

(x′
, t

′)R−1(Y − H(X))dt
′
dx

′
dtdx

= 0.

(2.6)

Considering the three following integrations by parts, we can get rid of the partial
derivatives of the admissible function θ in expression (2.6), i.e.

∫

Ω,t

∂tθ
T

λ(x, t)dtdx =

∫

Ω

θ
T

(x, tf )λ(x, tf )dx −
∫

Ω

θ
T

(x, t0)λ(x, t0)dx −
∫

Ω,t

θ
T

(x, t)∂tλdtdx,

(2.7)

∫

Ω,t

(∂XMθ)
T

λ(x, t)dtdx =

∫

Ω,t

θ
T

∂XM
∗
λ(x, t)dtdx, (2.8)

∫

Ω,t

∫

Ω,t

(∂XHθ)
T

R
−1(Y − H(X))dt

′
dx

′
dtdx =

∫

Ω,t

∫

Ω,t

θ
T

∂XH
∗
R

−1 (Y − H(X)) dt
′
dx

′
dtdx.

(2.9)
In the two last equations, we have introduced adjoint operators ∂XM

∗ and ∂XH
∗

as compact notations of the integration by parts of the associated linear tangent
operators. Writing 〈X, Y 〉 the scalar product in L2(Ω), this reads more compactly as:

〈∂XMX1, X2〉X = 〈X1, ∂XM
∗
X2〉X 〈∂XHX, Y 〉Y = 〈X, ∂XH

∗
Y 〉X . (2.10)
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Gathering all the elements we have so far, equation (2.6) can be rewritten as:

lim
β→0

dJ

dβ
=

∫

Ω

θ
T

(x, tf )λ(x, tf )dx +

∫

Ω

θ
T

(x, t0)

[∫

Ω

(
B

−1(X(x′
, t0) − X0(x

′)) − λ(x, t0)
)
dx

′

]

dx

+

∫

Ω,t

θ
T

[

(−∂tλ + ∂XM
∗
λ) −

∫

Ω,t

∂XH
∗
R

−1(Y − H(X))dt
′
dx

′

]

dtdx

= 0.

(2.11)

2.4. Forward/backward equations. Since the functional derivative must be
null for any arbitrary independent admissible functions in the three integrals of ex-
pression (2.11), all the other members appearing in the three integral terms must be
identically null. It follows a coupled system of forward and backward PDE’s with
initial and final conditions:

λ(x, tf ) = 0, (2.12)

−∂tλ + ∂XM
∗
λ =

∫

Ω,t

∂XH
∗
R

−1(x, t, x
′
, t

′)(Y − H(X))dt
′
dx

′
, (2.13)

λ(x, t0) =

∫

Ω

(
B

−1(x, x
′)(X(x′

, t0) − X0(x
′)

)
dx

′
, (2.14)

∂tX(x, t) + M(X(x, t)) =

∫

Ω,t

Q(x, t, x
′
, t

′)λ(x′
, t

′)dt
′
dx

′
. (2.15)

The forward equation (2.15) corresponds to the definition of the adjoint variable (2.4)
and has been obtained introducing Q, the pseudo-inverse of Q−1, defined as [1]:

∫

Ω,t

Q(x, t, x′, t′)Q−1(x′, t′, x′′, t′′)dt′dx′ = δ(x − x′′)δ(t − t′′).

Let us remark that if the model is assumed to be perfect, we would have Q = 0
and retrieve the case of a perfect dynamical state model. Otherwise, equation (2.12)
constitutes an explicit end condition for the adjoint evolution model equation (2.13).
This adjoint evolution model can be integrated backward from the end condition
assuming the knowledge of an initial guess for X to compute the discrepancy Y −H(X).
To perform this integration, we also need to have an expression of the adjoint evolution
operator. Let us recall that this operator is defined from an integration by part of
the linear tangent operator associated to the evolution law operator. The analytic
expression of such an operator is obviously not accessible in general. Nevertheless, it
can be noticed that a discrete expression of this operator can be easily obtained from
the discretization of the linear tangent operator. As a matter of fact, the adjoint of the
linear tangent operator discretized as a matrix simply consists of the transpose of that
matrix. Knowing a first solution of the adjoint variable, an initial update condition
for the state variable can be obtained from (2.14) and a pseudo-inverse expression of
the covariance matrix B. From this initial condition, equation (2.15) can be finally
integrated forward.

It can also be noticed that equation (2.15) provides at convergence an expression
of the model error:

ν(x, t) =

∫

Ω,t

Q(x, t, x′, t′)λ(x′, t′)dt′dx′. (2.16)
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Thus, the knowledge of the adjoint variable enables to estimate the error associated
to the state variable evolution law. This may be sometimes useful to validate or
invalidate a tracking result, or at least to infer some confidence measures on the
result obtained.

2.5. Incremental state function. The previous system can be slightly mod-
ified to rely on an adequate initial guess for the state function. Considering a func-
tion of state increments linking the state function and an initial condition function,
δX = X − X0, and linearizing the operator M around the initial condition function
X0

1:

M(X) = M(X0) + ∂X0
M(δX)

enables to split equation (2.15) into two pde’s with an explicit initial condition:

X(x, t0) = X0(x), (2.17)

∂tX0 + M(X0) = 0, (2.18)

∂tδX + ∂X0
MδX =

∫

Ω,t

Q(x, t, x′, t′)λ(x′, t′)dt′dx′. (2.19)

Combining equations (2.12-2.14) and (2.17-2.19) leads to the final tracking algorithm.
The method first consists of a forward integration of the initial condition X0 with the
system’s dynamical model equation (2.18). The current solution is then corrected by
performing a backward integration (2.12, 2.13) of the adjoint variable. The evolution
of λ is guided by a discrepancy measure between the observation and the estimate:
Y − H(X). The initial condition is then updated through equation (2.14) and a
forward integration of the increment δX is realized through the equation (2.19). The
overall process is iteratively repeated until convergence. A sketch of the whole process
is summarized in Algorithm (2.1).

Algorithm 2.1. Let X(t0) = X0.
(i) From X(t0), compute X(t), ∀t ∈]t0, tf [ with a forward integration of system

(2.18).
(ii) X(t) being given, realize a backward integration of the adjoint variable with

the system (2.13).
(iii) Compute the initial value of the incremental function(2.14).
(iv) From dX(t0), compute dX(t), ∀t ∈]t0, tf [ with a forward integration of sys-

tem (2.19).
(v) Update X = X + dX.
(vi) Return to (ii) and repeat until convergence.

3. Application to fluid motion tracking. We aim here at applying the previ-
ous framework for a consistent tracking along time of fluid motion velocity fields. For
fluid flows, the Navier-Stokes equation provides a universal general law for predicting
the evolution of the flow. The purpose will be thus to incorporate into a data assim-
ilation process such a dynamical model together with noisy velocity measurements.

1The linearized operator includes as second member the Gâteaux derivative defined in (2.5)
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3.1. Basic definitions. In this work, the formulation of the Navier-Stokes equa-
tion on which we will rely on uses the vorticity ξ and the divergence ζ of a 2D motion
field w = [u, v]T defined on the image domain Ω:

ξ = ∇⊥ · w = vx − uy,

ζ = ∇ · w = ux + vy.

The vorticity is related to the presence of a rotating motion, whereas the divergence is
related to the presence of sinks and sources in a flow. Assuming w vanishes at infinity2,
the vector field is decomposed using the orthogonal Helmholtz decomposition, as a
sum of two potential functions gradient: w = ∇⊥Ψ+∇Φ. The stream function Ψ and
the velocity potential Φ respectively correspond to the solenoidal and the irrotational
part of the vector field w. They are linked to the divergence and vorticity maps
through two Poisson Equations: ξ = ∆Ψ and ζ = ∆Φ. Expressing the solution
of both equations as a convolution product with the Green kernel G(x) = 1

2π
ln(|x|)

associated to the 2D Laplacian operator:

Ψ = G ∗ ξ

Φ = G ∗ ζ,
(3.1)

the whole velocity field can be recovered knowing its divergence and vorticity:

w = ∇⊥
G ∗ ξ + ∇G ∗ ζ. (3.2)

As this relation involves convolution products, the computation can be efficiently
implemented in the Fourier domain.

3.2. Fluid motion evolution equation. In order to consider a tractable ex-
pression of the Navier-Stokes equation for the tracking problem, we rely in this work
on the 2D vorticity-velocity formulation of the 3D incompressible Navier-Stokes equa-
tion, as obtained in the shallow water model:

∂tξ + w · ∇ξ + ξζ − νξ∆ξ = 0. (3.3)

This formulation states roughly that the vorticity is transported by the velocity field
and is diffused along time with a diffusion coefficient given by νξ. Compared to the
usual 2D vorticity equation, this model includes an additional interaction term be-
tween vorticity and divergence. For null divergence, this model comes to the standard
vorticity transport equation. Modeling the vorticity divergence product as a zero
mean Gaussian random variable, we end up with an imperfect 2D incompressible
vorticity-velocity formulation.

Concerning the divergence map, it is more involved to exhibit any conservation
law. We will assume here that it behaves like a noise. More precisely we will assume
that the divergence map is a function of a Gaussian random variable, Xt, with station-
ary increments (a Brownian motion) starting at points, x. It can be shown through
Ito formula and Kolmogorov’s backward equation that the expectation at time t of
such a function, u(t, x) = E[ζ(Xt)] obeys to a heat equation [28]:

∂tu − νζ∆u = 0,

u(0, x) = ζ(x).
(3.4)

2A divergence and curl free global transportation component is removed from the vector field.
This field is estimated on the basis of a Horn and Schunck estimator associated to a high smoothing
penalty [7].
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According to this equation, we indeed make the assumption that the divergence at
any time of the sequence is a solution of a heat equation (i.e. it can be recovered from
a smoothing of the initial motion field divergence map with a Gaussian function of
standard deviation 2

√
νζ).

As the curl and divergence maps completely determine the underlying velocity
field, equations (3.3) and (3.4) allow us to write the following imperfect dynamical
model for the fluid motion field:

∂t

[
ξ

ζ

]

(t) +

[
w(t) · ∇ξ(t) + ξ(t)ζ(t) − νξ∆ξ(t)

−νζ∆ζ(t)

]

︸ ︷︷ ︸

M(ξ,ζ,t)

= ν(t), (3.5)

for the state variable (ξ, ζ). The control function ν(t) is a vector modeling the errors
of our evolution law.

3.3. Adjoint model. We now give the adjoint model corresponding to the sys-
tem of equation (3.5). To obtain this model, we shall first compute the linear tangent
operator ∂χM, where χ = [ξ, ζ]T denotes the div-curl components of the 2D motion
field w. Introducing the operator K, relation (3.2) can be rewritten as:

w = [∇⊥G∗,∇G∗]χ
△

= K ∗ χ. (3.6)

The derivation of the system of equation (3.5) with respect to χ then gives the
linear tangent operator ∂χM at point χ′ = [ξ′, ζ′]T :

∂χMχ
′ =

[
w · ∇ξ′ + ∇ξ · (K ∗ χ′) + ζξ′ + ζ′ξ − νξ∆ξ′

−νζ∆ζ′

]

. (3.7)

We can now get ∂χM
∗, the adjoint operator guiding the adjoint variable λ = [λξ, λζ ]

T .
Following the definition (2.10), we have:

〈∂χMχ′, λ〉 = 〈χ′, ∂χM
∗λ〉 ,

the adjoint operator then reads:

∂χM
∗
λ =

[
∇ · (wλξ) + (∇ξ · K∗)∗λξ + ζλξ − νξ∆λξ

ξλξ − νζ∆λζ

]

. (3.8)

However, as some convolution products are involved through the operator K, the
formulation of the adjoint member (∇ξ · K∗)∗λξ is not trivial. We know that:

〈∇ξ · (K ∗ χ′), λξ〉 = 〈K ∗ χ′,∇ξλ〉 .

Following appendix A, we get:

〈K ∗ χ′,∇ξλ〉 = −〈χ′, K ∗ (∇ξλ)〉 ,

so we finally obtain:

∂χM
∗
λ =

[
∇ · (wλξ) −∇⊥G ∗ (ξxλξ) + ζλξ − νξ∆λξ

−∇G ∗ (ξyλξ) + ξλξ − νζ∆λζ

]

. (3.9)
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3.4. Fluid motion observations.

3.4.1. Motion observation model. As a first simple case, we will assume
that observation motion fields wobs(t) are available at each image t. This motion
field can be provided by any dense motion estimator. In this work, a dense motion
field estimator dedicated to fluid flows is used [7]. Referring to equation (3.6), the
observation equation is defined as

Y (t) = wobs(t)

H1(χ, t) = K ∗ χ(t).
(3.10)

This operator links the motion measurements wobs to the state variable χ = [ζ, ξ]
T

.
This observation operator is linear w.r.t χ, so its linear tangent operator is itself:

∂χH1(χ
′
, t) = H1(χ

′
, t), (3.11)

for a small perturbation χ′. Nevertheless, as this operator is expressed through a con-
volution product, the expression of its adjoint ∂χH

∗
1 is not trivial. It is demonstrated

in the Appendix A that, under Dirichlet boundaries conditions, it can be expressed
as:

∂χH
∗
1(·, t) = −H1(·, t). (3.12)

This first application consists in an oriented smoothing process along a given dynam-
ical law of a sequence of motion fields. As we are only indirectly observing the image
data by the way of motion measurements obtained through an external estimation
process, we are here dealing with pseudo-observations. This situation corresponds to
the technique described in [31]. To go further, we now aim at defining a direct relation
between the motion fields and the image data.

3.4.2. Image observation model. Starting on the well-known optical flow
constraint equation, one can assume, to cope with the aperture problem, that the
unknown optic flow vector at a location x is constant within, some neighborhood of
size n [24]:

gn ∗ ∂tI(x, t) + gn ∗ ∇I(x, t) · w(x, t) ≈ 0, (3.13)

where I stands for the luminance function and gn is a Gaussian window kernel of size
n. The system’s state χ is still connected to w through relation (3.6). Hence, our
observation system is composed of :

Y (t) = gn ∗ It(t),

H2(χ, t) = −gn ∗ ∇I(t) · (K ∗ χ(t)).
(3.14)

This observation operator, H2 , is also linear w.r.t the state’s variable χ = [ζ, ξ]
T

.
Therefore, its linear tangent operator is itself. Following Appendix A, the expression
of its adjoint ∂χH

∗
2, for a small perturbation Y ′, is given by:

∂χH
∗
2(Y

′
, t) = H1([gn ∗ Ix(t)Y ′

, gn ∗ Iy(t)Y ′]T , t).

4. Numerical schemes.

4.1. Discretization of the dynamics. The discretization of the vorticity-
velocity equation 3.3 must be done cautiously. In particular, the advective term
∇ξ · w must be treated specifically. A lot of non-oscillatory schemes for conservation
laws have been developed to solve this problem [15, 18, 27]. Such schemes consider a
polynomial reconstruction of the sought function on cells (here the pixels) and dis-
cretize the intermediate value of this function at the cell’s boundaries. The involved
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derivatives of the transported quantity are computed with high orders accurate differ-
ence scheme. The value of these derivatives are attenuated through limiting function
(so called slope limiters). This prevents from inappropriate numerical error amplifica-
tions. The ENO (Essentially non-oscillatory) or WENO (Weighted ENO) constitute
the most used schemes of such family [21,34].

To achieve an accurate and stable discretization of the advective term, one must
use conservative numerical scheme. Such schemes exactly respect the conservation
law within the cell by integrating the flux value at cell boundaries. Total Variation
Diminishing (TVD) scheme (which are monotonicity preserving flux) prevents from an
increase of oscillations over time and enables to transport shocks. All these methods
are well detailed in [34].

The time integration is realized with a third-order Runge Kutta scheme, which
also respect the TVD property [34]. The divergence is integrated with a stable implicit
discretization. The motion field is updated at each time step in the Fourier domain
with equation (3.2). With this whole non-oscillatory scheme, the vorticity-velocity
and divergence equations can be integrated in the image area. More details about the
numerical discretization schemes used in this work can be found in [30].

4.2. Adjoint discretization. Variational data assimilation assumes that the
adjoint operator is the exact numerical adjoint of the direct operator [35]. Thus, the
adjoint computation must be done according to the previously described vorticity sim-
ulation method. For large scale applications involving several coupled state variables
of huge dimension and where for each of them a specific dynamical model is dis-
cretized accordingly, automatic differentiation programs [13] are used to compute the
adjoint model. In our case, as only two variables are involved, it is possible to derive
an explicit version of the discretized adjoint operator and a backward Runge-Kutta
integration can be realized [14].

5. Results. In this section, we show some experimental results and describe the
values we chose for the different parameters. The only parameters of the method are
constituted by the covariance matrices associated to the initialization B, the observa-
tions R(t) and the dynamical model Q(t). In our applications, we have defined them
as diagonals matrices. For the initialization, we systematically imposed B = 0.1,
the initial condition being provided by an optical flow estimation. Concerning the
dynamical model covariance matrix, we fixed it to Q(t) = 0.01 for the synthetic se-
quences, as in this case the dynamic is quasi respected and to Q(t) = 0.1 for real world
applications with larger dynamical incertitude. The observation covariance matrices
are defined with respect to the observation model. In the case of pseudo-observations
model (given through dense motion fields provided by optical flow techniques), we
fixed the covariance matrix to R(t) = 0.1. When observing directly the images, a
robust function is introduced to take into account the small gradients of the images:

R(x, t) = α(1 − exp(−||∇I(x, t)||)), ∀x ∈ Ω,

with α = 0.1. For low photometric gradient, the uncertainty value corresponding to
the covariance value is automatically set to infinity and as a consequence the associ-
ated observation are not taken into account in the estimation. For such points the
motion is recovered only through the dynamics.

In order to experimentally assess the benefits of our technique, we first applied it
to a synthetic sequence of particles images of a 2D divergence free turbulence obtained
by means of a Direct Numerical Simulation (DNS) of the Navier-Stokes equation [5].
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For this 52 frames image sequence, we compare in figure 5.1 the actual vorticity maps
(line b), the vorticity maps computed by a dedicated optical flow estimator [6,7](line
c), the vorticity maps obtained after assimilating the sequence of motion fields (line
d) and the vorticity maps obtained from a direct assimilation (line e).

(a)

(b)

(c)

(d)

(e)
t=10 t=30 t=50

Fig. 5.1. 2D Direct Numerical Simulation, particle sequence. Motion observations.
a) Particle images sequence. b) True vorticity. c) Vorticity of motion fields provided though the
dense technique [6, 7]. d) Recovered vorticity after assimilating the sequence of motion fields [31].
e) Vorticity estimated by direct assimilation of the image sequence.

The filtering technique relying on the assimilation of dense motion fields corre-
sponds to the work presented in [31]. It can be observed that this technique (line d)
not only denoises the observations, but also enables to recover small scales structures
that were smoothed out in the original velocity fields (line c). These motion fields
which constitutes pseudo-observation have been supplied by an external optic flow
estimator dedicated to the analysis of fluid flows [6,7]. As can be seen, a direct assim-
ilation of images (line e) performs better than the one based on pseudo-observations.
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For this direct assimilation, the quality of the recovered motion field is improved of
nearly 30%. To give further quantitative evaluation results, we present the root mean
square errors in figures 5.2. In this figure we plotted error measurements correspond-
ing to the motion field supplied by the dense fluid flow dedicated technique [7], the
results obtained after assimilating these motion fields and the results provided by a
direct assimilation of the image data.

It can also immediately be observed that small motion scales are much better
recovered though direct image assimilation. In order to demonstrate this ability more
precisely we pictured in figure 5.3, a spectral analysis of the energy of the row average
vorticity. This curves show the behavior of the different methods with respect to
different frequencies of the flow. We can observe that optical flow measurements are
not good for the large and the small motion scales. The assimilation process allows
clearly to correct these deficiencies. The direct assimilation fits much accurately the
actual curves in the middle scales and in the finest scales.

Fig. 5.2. Particle sequence, Comparison of errors. The root mean square error
of the motion fields estimated on the sequence are compared for the three methods: fluid
dedicated optical flow (in blue) [6, 7], assimilation of optical flow observation (in red) [31]
and direct assimilation of image data (in green).

Fig. 5.3. Particle sequence, spectral analysis A spectral analysis of the energy of
the row average vorticity is represented in the log-log scale. The actual vorticity (black) is
compared to the optical flow vorticity (blue) [6, 7], the vorticity obtained by assimilation of
optical flow observation (red) [31] and the one provided by assimilation of image data (green).

The differences between methods results are even more striking when applying
these techniques to a synthetic image sequence representing the diffusion of a passive
scalar for the same flow than the previous synthetic example. This sequence is pre-
sented in figure 5.4. As can be seen, the images are very smooth (line a), and there
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is only few areas with significant photometric gradient. Dense motion estimators and
correlation techniques provide in this case only very poor results (see line c). The as-
similation relying on these observations are consequently not satisfying (line d). The
direct assimilation based on image observations (line e) are of much better quality
and much closer to the actual values (line b).

(a)

(b)

(c)

(d)

(e)
t=10 t=30 t=50

Fig. 5.4. 2D Direct Numerical Simulation, scalar sequence. a) Scalar image sequence.
b) Actual vorticity. c) Vorticity observed by optic flow estimator provided through [6,7]. d) Vorticity
recovered with pseudo-observations. e) Vorticity recovered with image observations.

A quantitative representation of the errors are plotted in figure 5.5 and the cor-
responding spectral analysis is shown in figure 5.6. It can be check from this latter
figure that the results are much better at all scales. The largest structures of the flow
and the finest one are nicely reconstructed with the direct assimilation of image data.

Compared to particles images, these images are obviously much closer to the
kind of images we have to deal with in environmental sciences. In such domain, the
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Fig. 5.5. Scalar sequence, Comparison of errors. The root mean square error of
the motion fields estimated on the sequence are compared for the three methods: motion fields
provided by a fluid flow dedicated optical flow (in blue) [6,7], the assimilation of optical flow
motion fields (in red) [31] and direct assimilation of image data (in green).

Fig. 5.6. Scalar sequence, spectral analysis A spectral analysis of the energy of
the row average vorticity is represented in the log-log scale.The actual vorticity (black) is
compared to vorticity of motion field provided by a fluid flow dedicated optical flow estimator
(blue) [6,7], the vorticity obtained after assimilating these noisy motion fields (red) [31] and
the one provided by the direct assimilation of image data (green).

observed scalar consists for instance in plankton concentration in oceanography or
temperature in meteorology and oceanography.

To demonstrate the good performances of the direct assimilation technique for
environmental sciences applications, we have applied the proposed method on a Mete-
ors satellite meteorological sequence of the Infra-red channel. This sequence describes
the evolution of the Vince cyclone over the Atlantic Ocean. This is a 20 frames image
sequence shot the 10th of October 2005 from 00H00 to 5H00 by the Meteors Sec-
ond Generation (MS) satellite. The complete results in terms of vorticity maps are
presented in figure 5.7. The use of pseudo-observations (line b ) leads to the results
presented on line c. When directly considering the images as observations, the re-
sulting vorticity maps are quite different (line d) from the previous ones. We can
note however that the cyclone’s center and the velocity range are better estimated
with the direct method. The method based on pseudo-observation stays more closely
to the observed motion field. We can remark that a second counter rotating vortex
(blue colored in the top right corner), that was invisible on the motion fields data
and which is as a result also missing on the pseudo-observation assimilation results is
correctly estimated by the direct assimilation method. This vortex is indeed coherent
with respect to cyclone dynamic. For this method we show on figure 5.8, superim-
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posed on the original image data, the motion fields recovered. We can checked from
these images that the motion of the cyclone’s eye is very well recovered. This last
results illustrate the fact that the estimations provided are coherent with respect to
the visualized phenomenon.

(a)

(b)

(c)

(d)
0H00 1H30 3H00 4H30

Fig. 5.7. Vince cyclone. (a) Infra-red image sequence. (b) Vorticity maps of the motion
fields provided by a fluid flow dedicated technique [6, 7]. (c) Vorticity maps obtained after the
assimilation of these motion fields [31]. (d) Vorticity maps obtained through the direct assimilation
of the infra-red channel image sequence.

In order to demonstrate the validity of the dynamics we used and also the ro-
bustness the method, we now consider the visible channel image sequence of the MS
satellite depicting at the same moment the Vince cyclone. This sequence corresponds
to 24 hours cyclone’s evolution. Observations are only available during the day and
are missing from the 9th of October 19H00 to the 10th of October 8H00. During this
time interval, the corresponding covariance matrices R(t) are automatically set to
infinity as no photometric contrast are observed. The assimilation results are plotted
in terms of velocity fields and are superimposed on the infra-red images in the figure
A.1 in order to assess the quality of the measurements. We can evaluate visually
the quality of the estimations. As the cyclone increased its speed during the night,
the estimation is not perfect. It nevertheless demonstrates that the approximate mo-
tion dynamics used in the previous example reveals to be quite good as it allows to
reconstructed the cyclone dynamics despite a very large occlusion.

6. Conclusion. In this work, a variational framework for the tracking of fluid
flows has been introduced. This approach relies on variational data assimilation prin-
ciples. The proposed method allows to recover the state of an unknown function on
the basis of an imperfect dynamical model and noisy measurement of this function.
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00H00 1H00 2H00

4H00 3H00 5H00

Fig. 5.8. Cyclone Vince. Motion fields recovered from the direct assimilation of the Infra-red
channel image sequence.

These basic ingredients of the technique have been tested on synthetic sequence and
applied to the tracking of fluid motion on real image sequences. Thanks to the dy-
namics, such an approach allows estimating dense motion field without introducing
spatial regularization constraints.

To go further, it could be interesting to introduce accurate dynamic laws more
precisely related to the observed phenomenon and to couple eventually direct assim-
ilation of image data and pseudo-observation. The tuning and the balance of the
corresponding covariance matrices is however an intricate issue and we wished in this
paper to focus explicitly on the methodology and on the differences brought by these
two different assimilation strategies. We have applied these techniques to fluid motion,
nevertheless we believe that considering sound adaptations, it could be considered for
various applications of computer vision. Such framework could certainly be consid-
ered with great benefits for video restoration, image measurement in noisy contexts
(echographic images for instance), or motion estimation of occluded object.
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Appendix A. Green kernel adjoint operator. The analytic form of the ad-
joint observation operator involved in equation 3.12 is here demonstrated. In order to
have more compact notations, let Z(x) = [Ψ(x), Φ(x)]T denotes the potential coordi-
nates. These coordinates are linked to the div-curl coordinates, χ(x) = [ξ(x), ζ(x)]T

through the relations (3.1):
Z = G ∗ χ. (A.1)
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Besides, relation (3.2) reads immediately:

u = ∇⊥ · Z and v = ∇ · Z . (A.2)

As previously, the vector field Z may be written on the basis of the Helmholtz decom-
position as the sum of the gradient of two scalar functions. Relation (A.2) allows us
to write both motion components as solutions of two Poisson equations. Expressing
these solutions through Green kernel enables to write the vector field Z as:

Z = ∇⊥
G ∗ u + ∇G ∗ v = K ∗ w. (A.3)

It can be can noticed that the same operator is involved in (3.2) and (A.3), indeed:

w = ∇⊥
G ∗ ξ + ∇G ∗ ζ = K ∗ χ. (A.4)

These last notations, which link the stream function and the velocity potential to the
vector field, will be useful in the following.

Proposition A.1. Let wA and wB be two vector fields belonging to C2(Ω) ∩
L2(Ω), where Ω is a bounded set of R

2 with border ∂Ω. Assuming that the components
of both vector fields admit Dirichlet boundaries conditions, i.e uA,B |∂Ω = vA,B |∂Ω = 0,
then

〈
wA, wB

〉
= −

〈
ZA, χB

〉
= −

〈
χA, ZB

〉
.

Proof.
〈
wA, wB

〉 (A.2)
=

[
uA

vA

]

·

[
∇⊥ · ZB

∇ · ZB

]

= uA(ΦB
x − ΨB

y ) + vA(ΦB
y + ΨB

x )

= −ΨB(vA
x − uA

y ) − ΦB(uA
x + vA

y ) + Boudary terms
︸ ︷︷ ︸

=0

= −
〈

χA, ZB
〉

.

We thus proved that
〈
wA,K ∗ χB

〉
= −

〈
K ∗ wA, χB

〉
, so:

(K∗)∗ = −K ∗ .
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[7] T. Corpetti, É. Mémin, and P. Pérez, Dense estimation of fluid flows, IEEE Trans. Pat.
Anal. Mach. Intell., 24 (2002), pp. 365–380.



VARIATIONAL ASSIMILATION OF FLUID MOTION FROM IMAGE SEQUENCE 19

14H00 09/10/05

20H00 09/10/05

2H00 10/10/05

8H00 10/10/05

14H00 10/10/05

(a) (b)

Fig. A.1. Vince cyclone tracked by night. The motion fields obtained from the assimilation
of the pseudo-observations computed with the visible images are superimposed: (a) on these visible
images, (b) on the infra-red images. There is a data occlusion from the 9th of October at 19H00 to
the 10th of October at 8H00. As there is no observations on the three central images on the visible
channel, the velocities estimations of the cyclone eye are not perfect.

[8] , Extraction of singular points from dense motion fields: an analytic approach, J. Math.
Imaging and Vision, 19 (2003), pp. 175–198.
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