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Variational Autoencoder for End-to-End Control of Autonomous Driving

with Novelty Detection and Training De-biasing

Alexander Amini1, Wilko Schwarting1, Guy Rosman2, Brandon Araki1, Sertac Karaman3, Daniela Rus1

Abstract— This paper introduces a new method for end-to-
end training of deep neural networks (DNNs) and evaluates
it in the context of autonomous driving. DNN training has
been shown to result in high accuracy for perception to action
learning given sufficient training data. However, the trained
models may fail without warning in situations with insufficient
or biased training data. In this paper, we propose and evaluate
a novel architecture for self-supervised learning of latent
variables to detect the insufficiently trained situations. Our
method also addresses training data imbalance, by learning a
set of underlying latent variables that characterize the training
data and evaluate potential biases. We show how these latent
distributions can be leveraged to adapt and accelerate the
training pipeline by training on only a fraction of the total
dataset. We evaluate our approach on a challenging dataset
for driving. The data is collected from a full-scale autonomous
vehicle. Our method provides qualitative explanation for the
latent variables learned in the model. Finally, we show how
our model can be additionally trained as an end-to-end con-
troller, directly outputting a steering control command for an
autonomous vehicle.

I. INTRODUCTION

Robots operating in human-centered environments have

to perform reliably in unanticipated situations. While deep

neural networks (DNNs) offer great promise in enabling

robots to learn from humans and their environments (as

opposed to hand-coding rules), substantial challenges re-

main [1]. For example, previous work in autonomous driving

has demonstrated the ability to train end-to-end a DNN

capable of generating vehicle steering commands directly

from car-mounted video camera data with high accuracy

so long as sufficient training data is provided [2]. But true

autonomous systems should also gracefully handle scenarios

with insufficient training data. Existing DNNs will likely

produce incorrect decisions without a reliable measure of

confidence when placed in environments for which they were

insufficiently trained.
A society where robots are safely and reliably integrated

into daily life demands agents that are aware of scenarios for

which they are insufficiently trained. Furthermore, subsys-

tems of these agents must effectively convey the confidence

associated their decisions. Finally, robust performance of

these systems necessitates an unbiased, balanced training

dataset. To date, many such systems have been trained with
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Fig. 1: Semi-supervised end-to-end control. An encoder

neural network is trained to learn a supervised control

command as well as various other unsupervised outputs

that qualitatively describe the image. This enables two key

contributions of novelty detection and dataset debiasing.

datasets that are either biased or contain class imbalances,

due to the lack of labeled data. This negatively impacts both

the speed and accuracy of training.

In this paper, we address these limitations by developing

an end-to-end control method capable of novelty detection

and automated debiasing through self-supervised learning of

latent variable representations. In addition to learning a final

control output directly from raw perception data, we also

learn a number of underlying latent variables that qualita-

tively capture the underlying features of the data cf. Fig. 1.

These latent variables, as well as their associated uncertain-

ties, are learned through self-supervision of a network trained

to reconstruct its own input. By estimating the distribution

of latent factors, we can estimate when the network is likely

to fail (thus increasing the robustness of the controller,) and

adapt the training pipeline to cater to the distribution of these

underlying factors, thereby improving training accuracy. Our

approach makes two key contributions:

1) Detection of novel events which the network has been

insufficiently trained for and not trusted to produce

reliable outputs; and

2) Automated debiasing of a neural network training

pipeline, leading to faster training convergence and

increased accuracy.

Our solution uses a Variational Autoencoder (VAE) net-

work architecture comprised of two parts, an encoder and a

decoder. The encoder is responsible for learning a mapping

from raw sensor data directly to a low dimensional latent
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Fig. 2: Novel VAE architecture for end-to-end control. Image features are extracted through convolutional layers to

encode the input image into the variational latent space with one of the latent variables explicitly supervised to learn

steering control. The resulting latent variables are self-supervised by feeding the entire encoding into a decoder network that

learns to reconstruct the original input image. Uncertainty is modeled through the variance of each latent variable (σ2
k).

space encoding that maximally explains as much of the

data as possible. The decoder is responsible for learning the

inverse mapping that takes as input a single sample from

the aforementioned latent space and reconstructs the original

input. As opposed to a standard VAE model, which self-

supervises the entire latent space, we also explicitly supervise

a single dimension of the latent space to represent the robotic

control output.

We use end-to-end autonomous driving as the robotic con-

trol use case. Here a steering control command is predicted

from only a single input image. As a safety-critical task, au-

tonomous driving is particularly well-suited for our approach.

Control systems for autonomous vehicles, when deployed in

the real world, face enormous amounts of uncertainty and

possibly even environments that they have never encountered

before. Additionally, autonomous driving is a safety critical

application of robotics; such control systems must possess

reliable ways of assessing their own confidence.

We evaluate our VAE-based approach on a challenging

real driving dataset of time synchronized image, control data

samples collected with a full scale autonomous vehicle and

demonstrate both novelty detection and automated debiasing

of the dataset. Our algorithm includes a VAE-based indicator

to detect novel images that were not contained in the training

distribution. We demonstrate our algorithm’s ability to detect

over 97% of novel image frames that were trained during

a different time of day and detect 100% of camera sensor

malfunctions in our dataset.

We address training set data imbalance by introducing

unsupervised latent variables into the VAE model. These

latent variables qualitatively represent many of the high level

semantic features of the scene. Moreover, we show that we

can estimate the distributions of the latent variables over

the training data, enabling automated debiasing of newly

collected datasets against the learned latent variables. This

results in accelerated and sample efficient training.

The remainder of the paper is structured as follows: we

summarize the related work in Sec. II, formulate the model

in Sec. III, describe our experimental setup and dataset in

Sec. IV, and provide an overview of our results in Sec. V.

II. RELATED WORKS

Traditional methods for autonomous driving first decom-

pose the problem into smaller components, with an individual

algorithm applied to each component. These submodules can

range from mapping and localization [3], [4], to perception

[5]–[7], planning [8], [9], and control [10], [11]. On the

other hand, end-to-end systems attempt to collapse the entire

problem (from raw sensory data to control outputs) into a

single learned model. The ALVINN system [12] originally

demonstrated this idea by training a multilayer perceptron to

learn the direction a vehicle travel from pixel image inputs.

Advancements in deep learning have caused a revival of end-

to-end methods for self-driving cars [2], [13]–[15]. These

systems have shown enormous promise by outputting a single

steering command and controlling a full-scale autonomous

vehicle through residential and highway streets [2]. The

system in [13] learns a discrete probability distribution over

possible control commands while [15] applies the output

of their convolutional feature extractor to a long short-term

memory (LSTM) recurrent neural network for generating

a driving policy. However, all of these these models are

still largely trained as black-boxes and lack a measure

of associated confidence in their output and method for

interpreting the learned features.

Understanding and estimating confidence of the output of

machine learning models has been investigated in different

ways: One can formulate training of DNNs as a maximum

likelihood problem using a softmax activation layer on the

output to estimate probabilities of discrete classes [16] as

well as discrete probability distributions [17]. Introspective

capacity has been used to evaluate model performance for a

variety of commonly used classification and detection tasks

[18] by estimating an algorithm’s uncertainty by the distance

from train to test distribution in feature space. Bayesian deep

learning has even been applied to end-to-end autonomous

vehicle control pipelines [19] and offers an additional way

to estimate confidence through Monte Carlo dropout sam-

pling of weights in recurrent [20] and convolutional neural

networks [21]. However, Monte Carlo dropout sampling is

not always feasible in real-time on many hardware platforms



due to its repetitive inference calls. Additionally, there is no

explanation or interpretation of the resulting control actions

available, as well as no confidence metric of whether the

model was trained on similar data as the current input data.

Variational Autoencoders (VAEs) [22], [23] are gaining

importance as an unsupervised method to learn hidden rep-

resentations. Such latent representations have been shown

to qualitatively provide semantic structure underlying raw

image data [24]. Previous works have leveraged VAEs for

novelty detection [25], but did not directly use the pre-

dicted distributions of the sensor for a model fit criterion.

Conversely, our work presents an indicator to detect novel

images that were not contained in the training distribution by

weighting the reconstructed image by the latent uncertainty

propagated through the network. High loss indicates that the

model has not been trained on that type of image and thus re-

flects lower confidence in the network’s ability to generalize

to that scenario. Operating over input distributions diverging

from the training distribution is potentially dangerous, since

the model cannot sufficiently reason about the input data.

Additionally, learning in the presence of class imbalance

is one of the key challenges underlying all machine learning

systems. When the classes are explicitly defined and labeled

it is possible to resample the dataset [26], [27] or even

reweight the loss function [28], [29] to avoid training bias.

However, these techniques are not immediately applicable

if the underlying class bias is not explicitly labeled (as is

the case in many real world training problems). While [30]

demonstrates how K-means can be used to find clusters

within the data before training to provide a loss reweighting

scheme, this method does not adapt to the model during

training. Additionally, running K-means on high dimensional

image data can be extremely computational and destroys

all spatial information between nearby pixels. This paper

provides an algorithm for adaptive dataset debiasing during

training by learning the latent space distribution and sam-

pling from the most representative regions of this space.

III. MODEL

In this section, we start by formulating the end-to-end

control problem and then describe our model architecture

for estimating steering control of an autonomous vehicle (in

an end-to-end manner). We explain how our model allows us

to self-supervise on a number of other latent variables which

qualitatively describe the driving dataset. All models in this

paper were trained on a NVIDIA Volta V100 GPU.

A. End-to-End Model Formulation

We start from the end-to-end model framework. In

this framework we observe n training images, X =
{x1, . . . , xn}, which are collections of raw pixels from a

front-facing video camera. We aim to build a model that can

directly map our input images, X , to output steering com-

mands based on the curvature of the road Y = {y1, . . . , yn}.
To train a single image model we optimized the mean

squared error (MSE) or L2 loss function between the human

actuated control, yi, and the predicted control, ŷi:

Ly(y, ŷ) =
1

n

n
∑

i=1

(yi − ŷi)
2 (1)

Note that only a single image is used as input at every

time instant. This follows from original observations where

models that were trained end-to-end with a temporal infor-

mation (CNN+LSTM) are unable to decouple the underlying

spatial information from the temporal control aspect. While

these models perform well on test datasets, they face control

feedback issues when placed on a physical vehicle and

consistently drift off the road.

B. VAE Architecture

We extend the end-to-end control model from Sec. III-

A into a variational autoencoding (VAE) model. Unlike the

classical VAE model [22], [23], one particular latent vari-

able is explicitly supervised to predict steering control, and

combined with the remaining latent variables to reconstruct

the input image. Our model is shown in Fig. 2. The model

accepts as input a 66× 200× 3 RGB image in mini-batches

of size n = 50. We use a convolutional network encoder,

comprised of convolutional (Conv) and fully connected (FC)

layers, to compute Q(z|X), the distribution of the latent

variables given a data point. The encoder has a similar

architecture as a standard end-to-end regression model and

is detailed in Table I, with 5 convolutional layers and

two fully connected layers with dropout. The latent space

section of Fig. 2 shows the encoder outputting 2k activations

corresponding to µ ∈ R
k,Σ = Diag[σ] ≻ 0 used to define

the distribution of z. Next, there is a decoder network that

mirrors the encoder (two FC layers with dropout and then 5

de-convolutional layers) to reconstruct the image back from

the latent space sample z.

In order to differentiate the outputs through the sampling

phase, VAEs use a reparameterization “trick”, sampling ǫ ∼
N (0, I) and compute z = µ(X) + Σ

1/2(X) × ǫ. This

allows us to train the encoder and decoder, end-to-end, using

backpropagation.

In our VAE model we additionally supervise one of the

latent variables to take on the value of the curvature of

the vehicle’s path. We represent this modified variable as

z0 = zŷ = ŷ. It is visible in Fig. 2 as the steering wheel

graphic. The loss function of our VAE has three parts –

a reconstruction loss, a latent loss, and a supervised latent

loss. The reconstruction loss is the L1 norm between the

input image and the output image, and serves the purpose of

TABLE I: Architecture of the encoder neural network.

“Conv” and “FC” refer to convolutional and fully connected

layers, while k denotes the number of latent variables.

Layer Output Activation Kernel Stride

1. Input 66x200x3 Identity - -
2. Conv1 31x98x24 ReLU 5x5 2x2
3. Conv2 14x47x36 ReLU 5x5 2x2
4. Conv3 5x22x48 ReLU 5x5 1x1
5. Conv4 3x20x64 ReLU 3x3 1x1
6. Conv5 1x18x64 ReLU+Flatten 3x3 1x1
7. FC1 1000 ReLU - -
8. FC2 100 ReLU - -
9. FC3 2 k Identity - -
10. Latent Sample k Identity - -



training the decoder. We define this loss function as follows:

Lx(x, x̂) =
1

n

n
∑

i=1

|xi − x̂i| (2)

The latent loss is the Kullback-Liebler divergence between

the latent variables and a unit Gaussian, providing regulariza-

tion for the latent space [22], [23]. For Gaussian distributions,

the KL divergence has the closed form

LKL(µ, σ) = −
1

2

k−1
∑

j=0

(

1− µ2
j − σ2

j + log (σj + ρ)2
)

(3)

where ρ = 10−8 is added for numerical stability.

Lastly, the supervised latent loss is a new addition to the

loss function, and it is defined as the MSE between the

predicted and actual curvature of the vehicle’s path. It is

the same as Eq. 1 from Sec. III-A.

These three losses are summed to compute the total loss:

LTOTAL(·) = c1Ly(y, ŷ)+ c2Lx(x, x̂)+ c3LKL(µ, σ) (4)

where c1, c2, and c3 are used weight the importance of

each loss function. We found that c1 = 0.033, c2 = 0.1,

c3 = 0.001 yielded a nice trade off in importance between

steering control, reconstruction, and KL loss, wherein no

one individual loss component overpowers the others during

training.

C. Novelty Detection

A crucial aspect underlying many deep learning systems

is their ability to reliably compute uncertainty measurements

and thus determine when they have low confidence in the

given environment. Many standard end-to-end networks are

seen as black-boxes, producing only a single control output

number at the final layer. In this section, we explore a

novel method for using the architecture to detect driving

environments with insufficient training that cannot be trusted

to produce a reliable decision.

We note the VAE architecture provides uncertainty es-

timates for every variable in the latent space via their

parameters {µi, σi}
k−1
i=0 . However, what we really desire

are uncertainty estimates in the input image space since

these observations are available at test time. We therefore

propagate the uncertainties through the remainder of the

network by sampling in the latent layer space and computing

empirical uncertainty estimates in any of the future layers

(including the final reconstructed image space).

This can be explained by treating the VAE encoder net-

work as a posterior model inference of the parameters θ,

z as samples from the posterior distribution inferred from

θ. Propagation of z into x̂ results in a posterior predictive

sample. A common model fit measure for θ would be

logP (x|θ); θ = {σi, µi}
k−1
i=0 (5)

Using a common pixel-wise independence approximation

allows us to get a model rejection criteria based on the

images, using a weighted L2 error. As commonly done in

image processing, we use instead the L1 norm due to its

robustness. Averaging over image pixels yields the error

term:

D(x, x̂) =

〈

∣

∣x(p) − E
[

x̂(p)|θ
]∣

∣

√

Var
[

x̂(p)|θ
]

〉

(6)

where E
[

x̂(p)|θ
]

,Var
[

x̂(p)|θ
]

are computed by sampling

values of z and computing statistics for the resulting decoded

images x̂. Additionally, x(p) denotes the value of pixel p in

image x. The approach for pixelwise uncertainty estimates

is similar to the unscented transform [31], and is captured

in Algorithm 1. Using these statistics indicates whether

an observed image is well captured by our trained model.

In practice, we implemented a real-time version of this

algorithm using 20 samples on each time iteration.

Algorithm 1 Compute pixel-wise expectation and variance

Require: Input image x, Encoder NN, & Decoder NN

1: {σi, µi}
k
i=1 ← Encoder(x)

2: θ ← {σi, µi}
k
i=1

3:

4: for j = 1 to T do

5: for i = 1 to k do

6: Sample zi ∼ N (µi, σ
2
i )

7: end for

8: x̂j = Decoder(z)
9: end for

10:

11: E[x̂(p)|θ] = 1
T

∑T
j=1 x̂

(p)
j

12: Var[x̂(p)|θ] = 1
T

∑T
j=1

(

x̂
(p)
j − E[x̂(p)|θ]

)2

13:

14: return E[x̂|θ], Var[x̂|θ]

D. Increased Training on Rare Events

A majority of driving data consists of straight road driving,

while turns and curves are vastly underrepresented. End-to-

end networks training often [2] handles this by resampling

the training set to place more emphasis on the rarer events

(i.e., turns). We generalize this notion to the latent space

of our VAE model, better exploring the space of both

control events and nuisance factors, for not only the steering

command but all other underlying features. By feeding the

original training data through the learned model we estimate

the training data distribution Q(z|X) in the latent space.

Subsequently, it is possible to increase the proportion of rarer

datapoints by dropping overrepresented regions of the latent

space. We approximate Q(z|X) as a histogram Q̂(z|X),
where z is the output of the Encoder NN corresponding to the

input images x ∈ X . To avoid data-hungry high-dimensional

(in our case 25 dimensions) histograms, we further simplify

and utilize independent histograms Q̂i(zi|X) for each la-

tent variable zi and approximate Q̂(z|X) ∝
∏

i Q̂i(zi|X).
Naturally, we would like to train on a higher number of

unlikely training examples and drop many samples over-

represented in the dataset. We therefore train on a subsam-

pled training set Xsub including datapoints x with probability

W (z(x)|X) ∝
∏

i 1/(Q̂i(zi(x)|X) + α). For small α the



subsampled training distribution is close to uniform over z,

whereas large α keep the subsampled training distribution

closer to the original training distribution. At every epoch all

images x from the original dataset X are propagated through

the (learned) model to evaluate the corresponding latent

variables z(x). The histograms Q̂i(zi(x)|X) are updated

accordingly. A new subsampled training set Xsub is drawn by

keeping images x from the original dataset X with likelihood

W (z(x)|X). Training on the subsampled data Xsub now

forces the classifier into a choice of parameters that work

better in rare cases without strong deterioration of perfor-

mance for common training examples. Most importantly, the

debiasing is not manually specified beforehand but based on

learned latent variables.

IV. DATASET

The vehicle base platform employed to collect the dataset

is a Toyota Prius 2015 V used in collaboration with the MIT-

Toyota partnership. A forward facing Leopard Imaging LI-

AR0231-GMSL camera, which has a field-of-view of 120

degrees and captures 1080p RGB images at approximately

30Hz, is the vision data source for this study. Sensors also

collected the human actuated steering wheel angle (rad) as

well as vehicle speed (m/sec). A Xsens MTi 100-series

Inertial Measurement Unit (IMU) was used to collect ac-

celeration, rotation, and orientation data from the rigid body

frame and thus compute the curvature of the vehicle’s path.

Specifically, given a yaw rate γi (rad/sec), and the speed of

the vehicle, vi (m/sec), we compute the curvature (or inverse

radius) of the path as yi = γi

vi
. Note that we can model a

simple relationship between steering wheel angle and road

curvature given the vehicle slip angle by approximating the

vehicle according to the Bicycle Model. While we employ

curvature (yi) to model our networks, for the remainder

of this paper we will use the terms “steering control” and

“curvature” interchangeably, since we can compute one given

the other by estimating slip angle directly from IMU data.

All communication and data logging was done directly

on an NVIDIA PX2, which is an in-car supercomputer

specifically developed for autonomous driving. As part of

data collection for this project we setup the PX2 to con-

nect, communicate, and control a full-scale Toyota Prius

with drive-by-wire. Additionally, we developed the software

infrastructure to read the video stream and synchronize with

the other data streams (inertial and steering data) on the PX2.

We drove the vehicle in the Boston metropolitan area and

collected data for approximately 4 hours (which was split

3/1 into training and test sets). In the following subsection,

we outline the data processing and augmentation techniques

that were performed prior to training our models.

A. Processing and Augmentation

A number of preprocessing steps were taken to clean and

prepare the data for training. First, we annotated each frame

of collected video according to the time of day, road type,

weather, and maneuver (lane-stable, turn, lane change, junk).

This labeling process allowed us to segment out the pieces

of our data which we wanted to train with. Note the labels

were not used as part of the training process, but only for

data filtering and preprocessing. Following previous work [2]
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Fig. 3: Loss evolution. Convergence of our four loss

functions (defined in Eqs. [1]-[4]) on the train (blue) and

validation (red) data.

we used only “lane-stable” in our dataset, which corresponds

to sections of driving where the vehicle is stable in its lane.

To inject domain knowledge into our network we aug-

mented the dataset with images collected from cameras

placed approximately 2 feet to the left and right of the main

center camera. We correspondingly changed the supervised

control value to teach the model how to recover from off-

center positions. For example, an image collected from the

right camera we perturb the steering control with a negative

number to steer slightly left, and vice versa. We add images

from all three cameras (center, left, and right) to our dataset

for training.

B. Optimization

We trained our models with the Adam optimizer [32]

with α = 10−4, β1 = 0.9, β2 = 0.999, and ǫ = 10−8.

We considered the number of latent variables, k, to be a

hyperparameter and trained models with 400, 100, 50, 25,

and 15 latent variables. By analyzing the validation error

upon convergence, we were able to identify that the model

with 25 latent variables provided the best fit of our dataset

while providing realistic reconstructions. Therefore, we use

k = 25 for the rest of our analysis. Fig. 3 shows the evolution

of all four losses (as defined in Eqs. 1-4) for the training and

validation sets over 2.6× 104 steps. The MSE steering loss

converges to nearly 0 for training but decreases more slowly

for the validation set. Meanwhile, the KL divergence loss

of Eq. 3 increases rapidly before plateauing at a relatively

low value for both training and validation data. This is to be

expected, since the latent variable distributions are initialized

as N (0, 1) and are then perturbed to find approximations

of the Gaussian that allow the distributions to best reduce

the overall loss. Since we use 25 latent variables to model

an image with 66 × 200 × 3 = 39, 600 dimensions, it is

expected that the decoder cannot exactly reproduce the input

image (i.e. Lx(x, x̂) > 0).

V. RESULTS

A. Steering Control Accuracy

To evaluate the performance of our model for the task of

end-to-end autonomous vehicle control of steering we start

by training a standard regression network which takes as

input a single image and outputs steering curvature [2]. The
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architecture of this model is almost identical to the first nine

layers of our encoder neural network with the exception

of the final layer being only one neuron (as opposed to

2k neurons). We found that the training loss of both the

regression and our VAE network were almost exactly the

same. The steering validation loss for the VAE was roughly

4.4, versus a value of 3.8 for the regression model loss.

Therefore the loss is 14% higher, corresponding to a mean

error in steering wheel angle of only 1.4 degrees. Therefore,

we use the VAE model to predict both a steering control

and uncertainty measure with roughly equal accuracy as the

baseline regression model but simultaneously gain all of the

additional advantages from the learned latent encodings.

Fig. 4 shows the images associated with the best and

worst steering predictions. The mean uncertainty of the best

predictions was 9.3 × 10−4 vs 1.7 × 10−2 for the worst

predictions, indicating that our model can indeed predict

when its estimated steering angle is uncertain. The images

associated with the worst steering position are mostly from

when the car is at a high angle of incidence towards the

center of the road, representing a small portion of our training

dataset. On the other hand, the images with the best steering

prediction are mostly straight roads with strongly defined

lanes, probably because our dataset has many examples of

straight roads (despite debiasing) and because lane markers

are a key feature for predicting steering angle.

Fig. 5 corroborates these results. The first chart shows

that there is a strong correlation between the true steering

and the estimated steering. Interestingly, the values of the

estimated steering fan out at the extreme values, showing that

1) our dataset is sparse at extreme steering values and 2) that

the uncertainty of the prediction should increase at extreme

steering values. The second chart shows the relationship

between true steering and the estimated uncertainty, and it

indeed shows that uncertainty increases as the absolute value

of the steering increases. Although this shows a weak point

of a dataset – that it is sparse in images associated with large

steering angle – it shows a strong point of the VAE model,

which is that it is able to predict that there is high uncertainty

for large values of the steering angle. Additionally, such

uncertainty at greater turns makes intuitive sense since larger

road curvatures imply less future road is visible in the image.

For example, on extreme turns it is common for less than

10m to be visible in image, whereas straight road images

present can present visible far more into the future closer

to 100m. The fact that we can see less of the future road

supports the increased uncertainty in such scenarios.
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Fig. 5: Precision and uncertainty estimation. Plots of true

vs. estimated steering (left) and true steering vs. estimated

uncertainty (right). Both show that the model variance tends

to increase on larger turns (i.e., greater steering magnitude).

B. Latent Variables

In this subsection, we analyze the resulting latent space

that our encoder learned. We start by gauging the underlying

meaning of each of the latent variables. We synthesize

images using our decoder, starting with a vector in the

latent space, and perturb a single latent variable as we

reconstruct output images. By varying the perturbation we

can understand how that specific latent variable effects the

image. The results for an examplary set of latent variables

is shown in Fig. 6. We observe that the network is able

to generate intuitive representations for lane markings and

additional environmental structure such as other surrounding

vehicles and weather without ever actively being told to

do so. By identifying latent variable representations we can

immediately observe what the network sees and explain how

the corresponding steering control is derived.

Intuitively, we know that the network will be penalized

for having redundant latent variables due to the fact that the

reconstruction loss penalizes reconstructed images that do

not resemble the input image. This means that the encoder

should learn a latent representation of the input such that as

much distinct information is explained away as possible. This

causes the variables learned to be the most important under-

lying variables in the dataset so the decoder can reconstruct

the image from such a low dimensional space.

C. Detecting out of sample environments

Next, we examined ways to interpret if our network

is confident in its end-to-end control prediction. Figure 7

shows sample pixel-wise uncertainties (red) obtained from

this method overlaid on top of the respective input images.

As one might expect, details around adjacent vehicles, the

distant horizon and the presence of snow next to the road

highlight the greatest uncertainty. This make sense since the

model is constrained to only 25 latent variables and doesnot

have capacity to hold any of these less meaningful details.

We can now plot the distribution of this distance over

datasets on which the network received sufficient and insuf-

ficient training data. To be very explicit, we train a network

on daytime driving and detect novel nighttime driving. Since

the network has not been trained with night data, we should

not trust the output and therefore want to understand, as

best as possible, when nighttime data is being fed into the

network. We set a simple threshold γ95 at the 95th percentile

of D(x, x̂) for every x in the entire training set. For any



Fig. 6: Latent variable perturbation. A selection of six learned latent variables with associated interpretable descriptors

(left labels). Images along the x-axis (from left to right) were generated by linearly perturbing the latent vector encoding

along that single latent dimension. While steering command (top) was a supervised latent variable, all others (bottom five)

were entirely unsupervised and learned by the model from the dataset.

Fig. 7: Propagating uncertainty into pixel-space. Sample

images from the dataset along with pixel-wise uncertainty

estimates. Uncertain pixels are highlighted red.

subsequent datasample xtest, we classify it as novel if

D(xtest, x̂test) > γ95 (7)

Figure 8 illustrates the training set distribution (day-

time driving) in blue as well as the extracted threshold

γ95. When image frames collected at night are fed through

network we observe the orange distribution and are able to

correctly classify 97% of these frames as novel. Furthermore,

we experiment with frames collected during image sensor

malfunctions. These malfunctions are a realistic and common

failure mode for the AR0231 sensor caused from incorrect

white balance estimation. Feeding such images through the

network can be catastrophic and yield unpredictable control

responses. Using our metric D(x, x̂) we see that the distri-

bution of these images (green) fall far from the training set

and we can successfully detect 100% of these frames.

D. Debiasing the model

To evaluate the effect of debiasing during training we train

two models, one without debiasing the dataset for inherent la-

tent imbalances and once again now subsampling our dataset

to reduce these over-represented (i.e., biased) samples. On

every epoch we sample only 50% of the dataset for training

while the remaining data is discarded. Figure 9 illustrates the

loss evolution throughout both training schemes. Note that

the loss is computed on the original data distribution (and
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Fig. 8: Novelty Detection. Feeding training distribution data

(day time) through the network as well as a novel data

distribution (night time). A third peak forms when the camera

sensor malfunctions from poor illumination.
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Fig. 9: Accelerated training with debiasing. Comparison

of training loss evolution with/without automated debiasing.

not the subsampled distribution), since we ultimately only

care about our performance on the original data. Debiasing

the training pipeline allows the model to focus on events that

are typically more rare (and inherently more difficult since

they occur less frequently). This results in training that is

more data efficient (using only 50% of the data), and also



faster than standard training. Figure 9 shows a minimum loss

of 20 achieved after roughly half as many training iterations

compared to training on the original data distribution.

VI. CONCLUSION

This paper presents a novel deep learning-based algo-

rithm for end-to-end autonomous driving that also captures

uncertainty through an intermediate latent representation.

Specifically, we built a learning pipeline that computes a

steering control command directly from raw pixel inputs of

a front facing camera. Compared to previous research on

end-to-end driving, our model also captures uncertainty of

the final control prediction. We treat our input image data as

being modeled by a set of underlying latent variables (one of

which is the steering command taken by a human driver) with

a VAE architecture. Additionally, we propose novel method

for detecting novel inputs which have not been sufficiently

trained for by propogating the VAE’s latent uncertainty

through the decoder. Finally, we provide an algorithm for

debiasing against learned biases based on the unsupervised

latent space. By adaptively subsampling half of the dataset

throughout training, we remove the over-represented latent

regions and empirically observe 2× training speedups.

While the steering command latent variable is explicitly

supervised by ground truth human data and can be used to

control the vehicle, we also learn many other latent variables

in an unsupervised manner. We show that these unsupervised

latent variables represent concrete and interpretable features

in the driving scene, such as presence of different lane

markers, surrounding vehicles, and even the weather.

Our approach is scalable to massive driving datasets since

it does not require any manual data-labeling of the supervised

signals. While previous work in end-to-end learning presents

a form of reactionary control, lane following, and object

avoidance, this technique encodes a much richer set of

information in a probability distribution. Furthermore, since

autonomous driving is an extremely safety critical application

of AI, the uncertainty measurements that we provide are

absolutely crucial for end-to-end techniques to be deployed

onto real-world roads.
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