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Abstract

The framework of variational autoencoders al-
lows us to efficiently learn deep latent-variable
models, such that the model’s marginal distri-
bution over observed variables fits the data.
Often, we’re interested in going a step further,
and want to approximate the true joint dis-
tribution over observed and latent variables,
including the true prior and posterior distri-
butions over latent variables. This is known
to be generally impossible due to unidentifia-
bility of the model. We address this issue by
showing that for a broad family of deep latent-
variable models, identification of the true joint
distribution over observed and latent variables
is actually possible up to very simple trans-
formations, thus achieving a principled and
powerful form of disentanglement. Our re-
sult requires a factorized prior distribution
over the latent variables that is conditioned
on an additionally observed variable, such as
a class label or almost any other observation.
We build on recent developments in nonlinear
ICA, which we extend to the case with noisy,
undercomplete or discrete observations, inte-
grated in a maximum likelihood framework.
The result also trivially contains identifiable
flow-based generative models as a special case.

1 INTRODUCTION

The framework of variational autoencoders (Kingma
and Welling, 2013; Rezende et al., 2014) (VAEs) and
its extensions (e.g. Burda et al. (2015); Kingma et al.
(2016); Tucker et al. (2018); Maaløe et al. (2019)) offers
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a scalable set of techniques for learning deep latent-
variable models and corresponding inference models.
With VAEs, we can in principle learn flexible models
of data such that, after optimization, the model’s im-
plicit marginal distribution over the observed variables
approximates their true (but unknown) distribution.
With VAEs we can also efficiently synthesize pseudo-
data from the model.

However, we’re often interested in going a step further
and want to learn the true joint distribution over both
observed and latent variables. This is generally a very
difficult task, since by definition we only ever observe
the observed variables, never the latent variables, there-
fore we cannot directly estimate their joint distribution.
If we could however somehow achieve this task and
learn the true joint distribution, this would imply that
we have also learned to approximate the true prior and
posterior distributions over latent variables. Learning
about these distributions can be very interesting for
various purposes, for example in order to learn about
latent structure behind the data, or in order to infer
the latent variables from which the data originated.

Learning the true joint distribution is only possible
when the model is identifiable, as we will explain. The
original VAE theory doesn’t tell us when this is the case;
it only tells us how to optimize the model’s parameters
such that its (marginal) distribution over the observed
variables matches the data. The original theory doesn’t
tell us if or when we learn the correct joint distribution
over observed and latent variables.

Almost no literature exists on achieving this goal. A
pocket of the VAE literature works towards the related
goal of disentanglement, but offers no proofs or theo-
retic guarantees of identifiability of the model or its
latent variables. The most prominent of such mod-
els are β-VAEs and their extensions (Burgess et al.,
2018; Higgins et al., 2016, 2018; Esmaeili et al., 2018;
Kim and Mnih, 2018; Chen et al., 2018), in which the
authors introduce adjustable hyperparameters in the
VAE objective to encourage disentanglement. Other
work attempts to find maximally independent compo-
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nents through the GAN framework (Brakel and Bengio,
2017). However, models in these earlier works are ac-
tually non-identifiable due to non-conditional latent
priors, as has been seen empirically (Locatello et al.,
2018), and we will show formally below.

Recent work in nonlinear Independent Component
Analysis (ICA) theory (Hyvärinen and Morioka, 2016,
2017; Hyvärinen et al., 2019) provided the first identifi-
ability results for deep latent-variable models. Nonlin-
ear ICA provides a rigorous framework for recovering
independent latents that were transformed by some in-
vertible nonlinear transformation into the data. Some
special but not very restrictive conditions are necessary,
since it is known that when the function from latent
to observed variables is nonlinear, the general problem
is ill-posed, and one cannot recover the independent
latents (Hyvärinen and Pajunen, 1999). However, ex-
isting nonlinear ICA methods do not learn to model
the data distribution (pdf), nor do they allow us to
synthesize pseudo-data.

In this paper we show that under relatively mild con-
ditions the joint distribution over observed and latent
variables in VAEs is identifiable and learnable, thus
bridging the gap between VAEs and nonlinear ICA. To
this end, we establish a principled connection between
VAEs and an identifiable nonlinear ICA model, provid-
ing a unified view of two complementary methods in
unsupervised representation learning. This integration
is achieved by using a latent prior that has a factor-
ized distribution that is conditioned on additionally
observed variables, such as a class label, time index, or
almost any other further observation. Our theoretical
results trivially apply to any consistent parameter esti-
mation method for deep latent-variable models, not just
the VAE framework. We found the VAE a logical choice
since it allows for efficient latent-variable inference and
scales to large datasets and models. Finally, we put
our theoretical results to a test in experiments. Per-
haps most notably, we find that on a synthetic dataset
with known ground-truth model, our method with an
identifiable VAE indeed learns to closely approximate
the true joint distribution over observed and latent
variables, in contrast with a baseline non-identifiable
model.

2 UNIDENTIFIABILITY OF DEEP

LATENT VARIABLE MODELS

2.1 Deep latent variable models

Consider an observed data variable (random vector)
x ∈ R

d, and a latent random vector z ∈ R
n. A common

deep latent variable model has the following structure:

pθ(x, z) = pθ(x|z)pθ(z) (1)

where θ ∈ Θ is a vector of parameters, pθ(z) is called
a prior distribution over the latent variables. The
distribution pθ(x|z), often parameterized with a neural
network called the decoder, tells us how the distribution
on x depends on the values of z. The model then gives
rise to the observed distribution of the data as:

pθ(x) =

∫

pθ(x, z)dz (2)

Assuming pθ(x|z) is modelled by a deep neural network,
this can model a rich class of data distributions pθ(x).

We assume that we observe data which is gener-
ated from an underlying joint distribution pθ∗(x, z) =
pθ∗(x|z)pθ∗(z) where θ∗ are its true but unknown pa-
rameters. We then collect a dataset of observations of
x:

D = {x(1), . . . ,x(N)} where z∗(i) ∼ pθ∗(z)

x(i) ∼ pθ∗(x|z∗(i))

Note that the original values z∗(i) of the latent variables
z are by definition not observed and unknown. The ICA
literature, including this work, uses the term sources
to refer to z∗(i). Also note that we could just as well
have written: x(i) ∼ pθ∗(x).

The VAE framework (Kingma and Welling, 2013;
Rezende et al., 2014) allows us to efficiently optimize
the parameters θ of such models towards the (approx-
imate) maximum marginal likelihood objective, such
that after optimization:

pθ(x) ≈ pθ∗(x) (3)

In other words, after optimization we have then esti-
mated the marginal density of x.

2.2 Parameter Space vs Function Space

In this work we use slightly non-standard notation and
nomenclature: we use θ ∈ Θ to refer to the model
parameters in function space. In contrast, let w ∈ W

refer to the space of original neural network parameters
(weights, biases, etc.) in which we usually perform
gradient ascent.

2.3 Identifiability

The VAE model actually learns a full generative model
pθ(x, z) = pθ(x|z)pθ(z) and an inference model qφ(z|x)
that approximates its posterior pθ(z|x). The problem is
that we generally have no guarantees about what these
learned distributions actually are: all we know is that
the marginal distribution over x is meaningful (Eq. 3).
The rest of the learned distributions are, generally,
quite meaningless.
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What we are looking for is models for which the follow-
ing implication holds for all (x, z):

∀(θ,θ′) : pθ(x) = pθ′(x) =⇒ θ = θ′ (4)

That is: if any two different choices of model parameter
θ and θ′ lead to the same marginal density pθ(x), then
this would imply that they are equal and thus have
matching joint distributions pθ(x, z). This means that
if we learn a parameter θ that fits the data perfectly:
pθ(x) = pθ∗(x) (the ideal case of Eq. 3), then its joint
density also matches perfectly: pθ(x, z) = pθ∗(x, z).
If the joint density matches, this also means that we
found the correct prior pθ(z) = pθ∗(z) and correct
posteriors pθ(z|x) = pθ∗(z|x). In case of VAEs, we can
then also use the inference model qφ(z|x) to efficiently
perform inference over the sources z∗ from which the
data originates.

The general problem here is a lack of identifiability guar-
antees of the deep latent-variable model. We illustrate
this by showing that any model with unconditional
latent distribution pθ(z) is unidentifiable, i.e. that
Eq. (4) does not hold. In this case, we can always find
transformations of z that changes its value but does
not change its distribution. For a spherical Gaussian
distribution pθ(z), for example, applying a rotation
keeps its distribution the same. We can then incor-
porate this transformation as the first operation in
pθ(x|z). This will not change pθ(x), but it will change
pθ(z|x), since now the values of x come from different
values of z. This is an example of a broad class of
commonly used models that are non-identifiable. We
show rigorously in Supplementary Material D that, in
fact, models with any form of unconditional prior pθ(z)
are unidentifiable.

3 AN IDENTIFIABLE MODEL

BASED ON CONDITIONALLY

FACTORIAL PRIORS

In this section, we define a broad family of deep latent-
variable models which is identifiable, and we show how
to estimate the model and its posterior through the
VAE framework. We call this family of models, together
with its estimation method, Identifiable VAE, or iVAE
for short.

3.1 Definition of proposed model

The primary assumption leading to identifiability is
a conditionally factorized prior distribution over the
latent variables pθ(z|u), where u is an additionally
observed variable (Hyvärinen et al., 2019). The variable
u could be, for example, the time index in a time series
(Hyvärinen and Morioka, 2016), previous data points

in a time series, some kind of (possibly noisy) class
label, or another concurrently observed variable.

Formally, let x ∈ R
d, and u ∈ R

m be two observed ran-
dom variables, and z ∈ R

n (lower-dimensional, n ≤ d)
a latent variable. Let θ = (f ,T,λ) be the parameters
of the following conditional generative model:

pθ(x, z|u) = pf (x|z)pT,λ(z|u) (5)

where we first define:

pf (x|z) = pε(x− f(z)) (6)

which means that the value of x can be decomposed
as x = f(z) + ε where ε is an independent noise vari-
able with probability density function pε(ε), i.e. ε is
independent of z or f . We assume that the function
f : Rn → R

d is injective; but apart from injectivity it
can be an arbitrarily complicated nonlinear function.
For the sake of analysis we treat the function f itself
as a parameter of the model; however in practice we
can use flexible function approximators such as neural
networks.

We describe the model above with noisy and continuous-
valued observations x = f(z) + ε. However, our iden-
tifiability results also apply to non-noisy and discrete
observations. Non-noisy observations x = f(z) are a
special case of Eq. (6) where pε(ε) is Gaussian with
infinitesimal variance. Likewise, discrete random vari-
ables can be viewed as a special case of continuous
random variables in the infinitesimal-temperature limit
(Maddison et al., 2016; Jang et al., 2016). This case
is explained in Supplementary Material C. For these
reasons, we can use discrete observations or flow-based
generative models (Dinh et al., 2014) for pθ(x|z), while
maintaining identifiability.

The prior on the latent variables pθ(z|u) is assumed
to be conditionally factorial, where each element of
zi ∈ z has a univariate exponential family distribution
given conditioning variable u. The conditioning on u is
through an arbitrary function λ(u) (such as a look-up
table or neural network) that outputs the individual
exponential family parameters λi,j . The probability
density function is thus given by:

pT,λ(z|u) =
∏

i

Qi(zi)

Zi(u)
exp





k
∑

j=1

Ti,j(zi)λi,j(u)



 (7)

where Qi is the base measure, Zi(u) is the normaliz-
ing constant and Ti = (Ti,1, . . . , Ti,k) are the sufficient
statistics and λi(u) = (λi,1(u), . . . , λi,k(u)) the corre-
sponding parameters, crucially depending on u. Finally,
k, the dimension of each sufficient statistic, is fixed (not
estimated). Note that exponential families have uni-
versal approximation capabilities, so this assumption
is not very restrictive (Sriperumbudur et al., 2017).
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3.2 Estimation by VAE

Next we propose a practical estimation method for the
model introduced above. Consider we have a dataset
D =

{(

x(1),u(1)
)

, . . . ,
(

x(N),u(N)
)}

of observations
generated according to the generative model defined in
Eq. (5). We propose to use a VAE as a means of learn-
ing the true generating parameters θ∗ := (f∗,T∗,λ∗),
up to the indeterminacies discussed below.

VAEs are a framework that simultaneously learns a
deep latent generative model and a variational approx-
imation qφ(z|x,u) of its true posterior pθ(z|x,u), the
latter being often intractable. Denote by pθ(x|u) =
∫

pθ(x, z, |u)dz the conditional marginal distribution
of the observations, and with qD(x,u) we denote the
empirical data distribution given by dataset D. VAEs
learn the vector of parameters (θ,φ) by maximizing
L(θ,φ), a lower bound on the data log-likelihood de-
fined by:

EqD [log pθ(x|u)] ≥ L(θ,φ) :=

EqD

[

Eqφ(z|x,u) [log pθ(x, z|u)− log qφ(z|x,u)]
]

(8)

We use the reparameterization trick (Kingma and
Welling, 2013) to sample from qφ(z|x,u). This trick
provides a low-variance stochastic estimator for gradi-
ents of the lower bound with respect to φ. The training
algorithm is the same as in a regular VAE. Estimates
of the latent variables can be obtained by sampling
from the variational posterior.

VAEs, like any maximum likelihood estimation method,
requires the densities to be normalized. To this end, in
practice we choose the prior pθ(z|u) to be a Gaussian
location-scale family, which is widely used with VAEs.1

3.3 Identifiability and consistency results

As discussed in section 2.3, identifiability as defined
by equation (4) is very hard to achieve in deep latent
variable models. As a first step towards an identifiable
model, we seek to recover the model parameters or the
latent variables up to trivial transformations. Here,
we state informally our results on this weaker form of
identifiability of the model —a rigorous treatment is
given in Section 4. Consider for simplicity the case
of no noise and sufficient statistics of size k = 1, and
define Ti := Ti,1. Then we can recover z which are

1As mentioned in section 3.1, our model contains normal-
izing flows as a special case when Var(ε) = 0 and the mixing
function f is parameterized as an invertible flow (Rezende
and Mohamed, 2015). Thus, as an alternative estimation
method, we could then optimize the log-likelihood directly:
EqD(x,u)[log pθ(x|u)] = log pθ(f

−1(z)|u) + log |Jf−1(x)|
where Jf−1 is easily computable. The conclusion on consis-
tency given in section 4.3 still holds in this case.

related to the original z∗ as follows:

(T ∗
1 (z

∗
1), . . . , T

∗
n(z

∗
n)) = A(T1(z1), . . . , Tn(zn)) (9)

for an invertible matrix A. That is, we can recover the
original latent variables up to a component-wise (point-
wise) transformations T ∗

i , Ti, which are defined as the
sufficient statistics of exponential families, and up to a
subsequent linear transformation A. Importantly, the
linear transformation A can often be resolved by exclud-
ing families where, roughly speaking, only the location
(mean) is changing. Then A is simply a permutation
matrix, and equation (9) becomes

T ∗
i (z

∗
i ) = Ti′(zi′) (10)

for a permuted index i′. Thus, the only real indeter-
minacy is often the component-wise transformations
of the latents, which may be inconsequential in many
applications.

3.4 Interpretation as nonlinear ICA

Now we show how the model above is closely related
to previous work on nonlinear ICA. In nonlinear ICA,
we assume observations x ∈ R

d, which are the result of
an unknown (but invertible) transformation f of latent
variables z ∈ R

d:
x = f(z) (11)

where z are assumed to follow a factorized (but typically

unknown) distribution p(z) =
∏d

i=1 pi(zi). This model
is essentially a deep generative model. The difference
to the definition above is mainly in the lack of noise
and the equality of the dimensions: The transformation
f is deterministic and invertible. Thus, any posteriors
would be degenerate.

The goal is then to recover (identify) f−1, which gives
the independent components as z = f−1(x), based on
a dataset of observations of x alone. Thus, the goal
of nonlinear ICA was always identifiability, which is in
general not attained by deep latent variable models, as
was discussed in Section 2 above.

To obtain identifiability, we either have to restrict f (for
instance make it linear) and/or we have to introduce
some additional constraints on the distribution of the
sources z. Recently, three new nonlinear ICA frame-
works (Hyvärinen and Morioka, 2016, 2017; Hyvärinen
et al., 2019) exploring the latter direction were pro-
posed, in which it is possible to recover identifiable
sources, up to some trivial transformations.

The framework in Hyvärinen et al. (2019) is particularly
close to what we proposed above. However, there are
several important differences. First, here we define a
generative model where posteriors are non-degenerate,
which allows us to show an explicit connection to VAE.
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We are thus also able to perform maximum likelihood
estimation, in terms of evidence lower bound, while pre-
vious nonlinear ICA used more heuristic self-supervised
schemes. Computing a lower bound on the likelihood is
useful, for example, for model selection and validation.
In addition, we can in fact prove a tight link between
maximum likelihood estimation and maximization of
independence of latents, as discussed in Supplemen-
tary Material F. We also learn both the forward and
backward models, which allows for recovering indepen-
dent latents from data, but also generating new data.
The forward model is also likely to help investigate the
meaning of the latents. At the same time, we are able
to provide stronger identifiability results which apply
for more general models than earlier theory, and in par-
ticular considers the case where the number of latent
variables is smaller than the number of observed vari-
ables and is corrupted by noise. Given the popularity
of VAEs, our current framework should thus be of inter-
est. Further discussion can be found in Supplementary
Material G.

4 IDENTIFIABILITY THEORY

Now we give our main technical results. The proofs
are in Supplementary Material B.

Notations Let Z ⊂ R
n and X ⊂ R

d be the domain
and the image of f in (6), respectively, and U ⊂ R

m

the support of the distribution of u. We denote by
f−1 the inverse defined from X → Z. We suppose that
Z, X and U are open sets. We denote by T(z) :=
(T1(z1), . . . ,Tn(zn)) = (T1,1(z1) . . . , Tn,k(zn)) ∈ R

nk

the vector of sufficient statistics of (7), λ(u) =
(λ1(u), . . . ,λn(u)) = (λ1,1(u), . . . , λn,k(u)) ∈ R

nk the
vector of its parameters. Finally Θ = {θ := (f ,T,λ)}
is the domain of parameters describing (5).

4.1 General results

In practice, we are often interested in models that are
identifiable up to a class of transformation. Thus, we
introduce the following definition:

Definition 1 Let ∼ be an equivalence relation on
Θ. We say that (1) is identifiable up to ∼ (or ∼-
identifiable) if

pθ(x) = pθ̃(x) =⇒ θ̃ ∼ θ (12)

The elements of the quotient space Θ/∼ are called the
identifiability classes.

We now define two equivalence relations on the set of
parameters Θ.

Definition 2 Let ∼ be the equivalence relation on Θ
defined as follows:

(f ,T,λ) ∼ (f̃ , T̃, λ̃) ⇔

∃A, c | T(f−1(x)) = AT̃(f̃−1(x)) + c, ∀x ∈ X (13)

where A is an nk × nk matrix and c is a vector

If A is invertible, we denote this relation by ∼A. If A
is a block permutation2 matrix, we denote it by ∼P .

Our main result is the following Theorem3:

Theorem 1 Assume that we observe data sampled
from a generative model defined according to (5)-(7),
with parameters (f ,T,λ). Assume the following holds:

(i) The set {x ∈ X |ϕε(x) = 0} has measure zero,
where ϕε is the characteristic function of the den-
sity pε defined in (6).

(ii) The mixing function f in (6) is injective.

(iii) The sufficient statistics Ti,j in (7) are differen-
tiable almost everywhere, and (Ti,j)1≤j≤k are lin-
early independent on any subset of X of measure
greater than zero.

(iv) There exist nk+1 distinct points u0, . . . ,unk such
that the matrix

L = (λ(u1)− λ(u0), . . . ,λ(unk)− λ(u0)) (14)

of size nk × nk is invertible.4

then the parameters (f ,T,λ) are ∼A-identifiable.

This Theorem guarantees a basic form of identifiabil-
ity of the generative model (5). In fact, suppose the
data was generated according to the set of parameters
(f ,T,λ). And let (f̃ , T̃, λ̃) be the parameters obtained
from some learning algorithm (supposed consistent in
the limit of infinite data) that perfectly approximates
the marginal distribution of the observations. Then the
Theorem says that necessarily (f̃ , T̃, λ̃) ∼A (f ,T,λ). If
there were no noise, this would mean that the learned
transformation f̃ transforms the observations into la-
tents z̃ = f̃−1(x) that are equal to the true generative
latents z = f−1(x), up to a linear invertible transfor-
mation (the matrix A) and point-wise nonlinearities
(in the form of T and T̃). With noise, we obtain the
posteriors of the latents up to an analogous indetermi-
nacy.

2each block linearly transforms Ti into T̃i′ .
3an alternative version is in Supplementary Material E.
4the intuition and feasibility of this assumption are dis-

cussed in Supplementary Material B.2.3.
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4.2 Characterization of the linear
indeterminacy

The equivalence relation ∼A provides a useful form of
identifiability, but it is very desirable to remove the
linear indeterminacy A, and reduce the equivalence
relation to ∼P by analogy with linear ICA where such
matrix is resolved up to a permutation and signed
scaling. We present in this section sufficient conditions
for such reduction, and special cases to avoid.

We will start by giving two Theorems that provide
sufficient conditions. Theorem 2 deals with the more
general case k ≥ 2, while Theorem 3 deals with the
special case k = 1.

Theorem 2 (k ≥ 2) Assume the hypotheses of Theo-
rem 1 hold, and that k ≥ 2. Further assume:

(2.i) The sufficient statistics Ti,j in (7) are twice dif-
ferentiable.

(2.ii) The mixing function f has all second order cross
derivatives.

then the parameters (f ,T,λ) are ∼P -identifiable.

Theorem 3 (k = 1) Assume the hypotheses of Theo-
rem 1 hold, and that k = 1. Further assume:

(3.i) The sufficient statistics Ti,1 are not monotonic5.

(3.ii) All partial derivatives of f are continuous.

then the parameters (f ,T,λ) are ∼P -identifiable.

These two Theorems imply that in most cases f̃−1 ◦ f :
Z → Z is a pointwise 6 nonlinearity, which essentially
means that the estimated latent variables z̃ are equal
to a permutation and a pointwise nonlinearity of the
original latents z.

This kind of identifiability is stronger than any previous
results in the literature, and considered sufficient in
many applications. On the other hand, there are very
special cases where a linear indeterminacy cannot be
resolved, as shown by the following:

Proposition 1 Assume that k = 1, and that

(i) Ti,1(zi) = zi for all i.

(ii) Qi(zi) = 1 or Qi(zi) = e−z2

i for all i.

Then A can not be reduced to a permutation matrix.

5monotonic means it is strictly increasing or decreasing.
6each of its component is a function of only one zi.

This Proposition stipulates that if the components are
Gaussian (or exponential in the case of non-negative
components) and only the location is changing, we can’t
hope to reduce the matrix A in ∼A to a permutation.
In fact, to prove this in the Gaussian case, we sim-
ply consider orthogonal transformations of the latent
variables, which all give rise to the same observational
distribution with a simple adjustment of parameters.

4.3 Consistency of Estimation

The theory above further implies a consistency result
on the VAE. If the variational distribution qφ is a broad
parametric family that includes the true posterior, then
we have the following result.

Theorem 4 Assume the following:

(i) The family of distributions qφ(z|x,u) contains
pf ,T,λ(z|x,u).

(ii) We maximize L(θ,φ) with respect to both θ and φ.

then in the limit of infinite data, the VAE learns the
true parameters θ∗ := (f∗,T∗,λ∗) up to the equivalence
class defined by ∼ in (13).

5 EXPERIMENTS

5.1 Simulations on artifical data

Dataset We run simulations on data used previously
in the nonlinear ICA literature (Hyvärinen and Morioka,
2016; Hyvärinen et al., 2019). We generate synthetic
datasets where the sources are non-stationary Gaussian
time-series: we divide the sources into M segments of
L samples each. The conditioning variable u is the
segment label, and its distribution is uniform on the
integer set [[1,M ]]. Within each segment, the condi-
tional prior distribution is chosen from the family (7)
for small k. When k = 2, we used mean and variance
modulated Gaussian distribution. When k = 1, we
used variance modulated Gaussian or Laplace (to fall
within the hypotheses of Theorem 3). The true param-
eters λi were randomly and independently generated
across the segments and the components from a non
degenerate distributions to satisfy assumption (iv) of
Theorem 1. Following Hyvärinen et al. (2019), we mix
the sources using a multi-layer perceptron (MLP) and
add small Gaussian noise.

Model specification Our estimates of the latent
variables are generated from the variational poste-
rior qφ(z|u,x), for which we chose the following form:
qφ(z|x,u) = N

(

z|g(x,u;φg),diagσ2(x,u;φσ)
)

, a
multivariate Gaussian with a diagonal covariance. The
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(a) pθ∗(z|u) (b) pθ∗(x|u) (c) pθ(z|x,u) (d) pVAE(z|x)

Figure 1: Visualization of both observation and latent
spaces in the case n = d = 2 and where the number
of segments is M = 5 (segments are colour coded).
First, data is generated in (a)-(b) as follows: (a) sam-
ples from the true distribution of the sources pθ∗(z|u):
Gaussian with non stationary mean and variance, (b)
are observations sampled from pθ∗(x|z). Second, af-
ter learning both a vanilla VAE and an iVAE models,
we plot in (c) the latent variables sampled from the
posterior qφ(z|x,u) of the iVAE and in (d) the latent
variables sampled from the posterior of the vanilla VAE.

noise distribution pε is Gaussian with small variance.
The functional parameters of the decoder and the infer-
ence model, as well as the conditional prior are chosen
to be MLPs. We use an Adam optimizer (Kingma and
Ba, 2014) to update the parameters of the network by
maximizing L(θ,φ) in equation (8). The data gener-
ation process as well as hyperparameter choices are
detailed in Supplementary Material H.1.

Performance metric To evaluate the performance
of the method, we compute the mean correlation co-
efficient (MCC) between the original sources and the
corresponding latents sampled from the learned pos-
terior. To compute this performance metric, we first
calculate all pairs of correlation coefficients between
source and latent components. We then solve a linear
sum assignment problem to assign each latent compo-
nent to the source component that best correlates with
it, thus reversing any permutations in the latent space.
A high MCC means that we successfully identified the
true parameters and recovered the true sources, up to
point-wise transformations. This is a standard measure
used in ICA.

Results: 2D example First, we show a visualiza-
tion of identifiability of iVAE in a 2D case in Figure
1, where we plot the original sources, observed data
and the posterior distributions learned by our model,
compared to a vanilla VAE. Our method recovers the
original sources up to trivial indeterminacies (rotation
and sign flip), whereas the VAE fails to do a good
separation of the latent variables.

Results: Comparison to VAE variants We com-
pared the performance of iVAE to a vanilla VAE. We
used the same network architecture for both models,
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Figure 2: Performance of iVAE in recovering the true
sources, compared to VAE, β-VAE and β-TC-VAE, for
M = 40, L = 1000 and d = 5 (and n = 5 for (a)).

with the sole exception of the addition of the condi-
tional prior in iVAE . When the data is centered, the
VAE prior is Gaussian or Laplace. We also compared
the performance to two models from the disentangle-
ment literature, namely a β-VAE (Higgins et al., 2016)
and a β-TC-VAE (Chen et al., 2018). The parameter
β of the β-VAE and the parameters α, β and γ for
β-TC-VAE were chosen by following the instructions of
their respective authors. We trained these 4 models on
the dataset described above, with M = 40, L = 1000,
d = 5 and n ∈ [2, 5]. Figure 2a compares performances
obtained from an optimal choice of parameters achieved
by iVAE and the three models discussed above, when
the dimension of the latent space equals the dimension
of the data (n = d = 5). iVAE achieved an MCC score
of above 95%, whereas the other three models fail at
finding a good estimation of the true parameters. We
further investigated the impact of the latent dimen-
sion on the performance in Figure 2b. iVAE has much
higher correlations than the three other models, espe-
cially as the dimension increases. Further visualization
are in Supplementary Material I.4.

Results: Comparison to TCL Next, we compared
our method to previous nonlinear ICA methods, namely
TCL by Hyvärinen and Morioka (2016), which is based
on a self supervised classification task (see Supplemen-
tary Material G.1). We run simulations on the same
dataset as Figure 2a, where we varied the number of
segments from 10 to 50. Our method slightly out-
performed TCL in our experiments. The results are
reported in Figure 3a. Note that according to Hyväri-
nen et al. (2019), TCL performs best among previously
proposed methods for this kind of data.

Finally, we wanted to show that our method is robust
to some failure modes which occur in the context of self-
supervised methods. The theory of TCL is premised on
the notion that in order to accurately classify observa-
tions into their relative segments, the model must learn
the true log-densities of sources within each segment.
While such theory will hold in the limit of infinite data,
we considered here a special case where accurate classi-
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Figure 3: (a) Performance of iVAE in comparison to
TCL in recovering the true sources on normal data
(b) Performance of iVAE in comparison to TCL in
recovering the true sources on easy to classify data.

fication did not require learning the log-densities very
precisely. This was achieved by generating synthetic
data where x2 alone contained sufficient information
to perform classification, by making the mean of x2

significantly modulated across segments; further details
in Supplementary Material H.2. In such a setting, TCL
is able to obtain high classification accuracy without
unmixing observations, resulting in its failure to recover
latent variables as reflected in Figure 3b. In contrast,
the proposed iVAE, by virtue of optimizing a maxi-
mum likelihood objective, does not suffer from such
degenerate behaviour.

Further simulations on hyperparameter selection
and discrete data are in Supplementary Material I.

5.2 Nonlinear causal discovery in fMRI

An important application of ICA methods is within the
domain of causal discovery (Peters et al., 2017). The
use of ICA methods in this domain is premised on the
equivalence between a (nonlinear) ICA model and the
corresponding structural equation model (SEM). Such
a connection was initially exploited in the linear case
(Shimizu et al., 2006) and extended to the nonlinear
case by Monti et al. (2019) who employed TCL.

Briefly, consider data x = (x1, x2). The goal is to es-
tablish if the causal direction is x1 → x2, or x2 → x1,
or conclude that no (acyclic) causal relationship exists.
Assuming x1 → x2, then the problem can be described
by the following SEM: x1 = f1(n1), x2 = f2(x1, n2)
where f = (f1, f2) is a (possibly nonlinear) mapping
and n = (n1, n2) are latent disturbances that are as-
sumed to be independent. The above SEM can be seen
as a nonlinear ICA model where latent disturbances, n,
are the sources. As such, we may perform causal discov-
ery by first recovering latent disturbances (using TCL
or iVAE) and then running a series of independence
tests. Formally, if x1 → x2 then, denoting statistical
independence by ⊥⊥, it suffices to verify that x1 ⊥⊥ n2

whereas x1 6⊥⊥ n1, x2 6⊥⊥ n1 and x2 6⊥⊥ n2. Such an
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Figure 4: Estimated causal graph on hippocampal
fMRI data unmixing of sources is achieved via iVAE
(left) or TCL (right). Blue edges are feasible given
anatomical connectivity, red edges are not.

approach can be extended beyond two-dimensional ob-
servations as described in Monti et al. (2019).

To demonstrate the benefits of iVAE as compared to
TCL, both algorithms were employed to learn causal
structure from fMRI data (details in Supplementary
Material I.3). The recovered causal graphs are shown
in Figure 4. Blue edges are anatomically feasible whilst
red edges are not. There is significant overlap between
the estimated causal networks, but in the case of iVAE
both anatomically incorrect edges correspond to indi-
rect causal effects. This is in contrast with TCL where
incorrect edges are incompatible with anatomical struc-
ture and cannot be explained as indirect effects.

6 CONCLUSION

Unsupervised learning can have many different goals,
such as: (i) approximate the data distribution, (ii)
generate new samples, (iii) learn useful features, and
above all (iv) learn the original latent code that gen-
erated the data (identifiability). Deep latent-variable
models typically implemented by VAEs are an excellent
framework to achieve (i), and are thus our first building
block. The nonlinear ICA model discussed in section
3.4 is the only existing framework to provably achieve
(iv). We bring these two pieces together to create our
new model termed iVAE . In particular, this is the first
rigorous proof of identifiability in the context of VAEs.
Our model in fact checks all the four boxes above that
are desired in unsupervised learning.

The advantage of the new framework over typical deep
latent-variable models used with VAEs is that we ac-
tually recover the original latents, thus providing prin-
cipled disentanglement. On the other hand, the ad-
vantages of this algorithm for solving nonlinear ICA
over Hyvärinen et al. (2019) are several; briefly, we
significantly strengthen the identifiability results, we
obtain the likelihood and can use MLE, we learn a
forward model as well and can generate new data, and
we consider the more general cases of noisy data with
fewer components, and even discrete data.
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