
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Aug 28, 2022

Variational Autoencoders with Riemannian Brownian Motion Priors

Kalatzis, Dimitris; Eklund, David; Arvanitidis, Georgios; Hauberg, Søren

Published in:
Proceedings of the 37<sup>th</sup> International Conference on Machine Learning

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Kalatzis, D., Eklund, D., Arvanitidis, G., & Hauberg, S. (2020). Variational Autoencoders with Riemannian
Brownian Motion Priors. In H. Daume, & A. Singh (Eds.), Proceedings of the 37

th
 International Conference on

Machine Learning (Vol. 119, pp. 5020-5033). International Machine Learning Society (IMLS).

https://orbit.dtu.dk/en/publications/53296d95-f4dd-4c4b-ab3e-257f5ec850f3


Variational Autoencoders with Riemannian Brownian Motion Priors

Dimitris Kalatzis 1 David Eklund 2 Georgios Arvanitidis 3 Søren Hauberg 1

Abstract

Variational Autoencoders (VAEs) represent the

given data in a low-dimensional latent space,

which is generally assumed to be Euclidean. This

assumption naturally leads to the common choice

of a standard Gaussian prior over continuous la-

tent variables. Recent work has, however, shown

that this prior has a detrimental effect on model

capacity, leading to subpar performance. We pro-

pose that the Euclidean assumption lies at the

heart of this failure mode. To counter this, we as-

sume a Riemannian structure over the latent space,

which constitutes a more principled geometric

view of the latent codes, and replace the stan-

dard Gaussian prior with a Riemannian Brownian

motion prior. We propose an efficient inference

scheme that does not rely on the unknown normal-

izing factor of this prior. Finally, we demonstrate

that this prior significantly increases model capac-

ity using only one additional scalar parameter.

1. Introduction

Variational autoencoders (VAEs) (Kingma & Welling, 2014;

Rezende et al., 2014) simultaneously learn a conditional

density p(x|z) of high dimensional observations and low

dimensional representations z giving rise to these observa-

tions. In VAEs, a prior distribution p(z) is assigned to the

latent variables which is typically a standard Gaussian. It

has, unfortunately, turned out that this choice of distribution

is limiting the modelling capacity of VAEs and richer priors

have been proposed instead (Tomczak & Welling, 2017;

van den Oord et al., 2017; Bauer & Mnih, 2018; Klushyn

et al., 2019). In contrast to this popular view, we will ar-

gue that the limitations of the prior are not due to lack of
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Figure 1. The latent space priors of two VAEs trained on the digit

1 from MNIST. Left: Using a unit Gaussian prior. Right: Us-

ing a Riemannian Brownian motion (ours) with trainable (scalar)

variance.

capacity, but rather lack of principle.

Informally, the Gaussian prior has two key problems.

1. The Euclidean representation is arbitrary. Behind

the Gaussian prior lies the assumption that the latent space

Z is Euclidean. However, if the decoder pθ(x|z) is of suf-

ficiently high capacity, then it is always possible to repa-

rameterize the latent space from z to h(z), h : Z → Z , and

then let the decoder invert this reparameterization as part

of its decoding process (Arvanitidis et al., 2018; Hauberg,

2018b). This implies that we cannot assign any meaning

to specific instantiations of the latent variables, and that

Euclidean distances carry limited meaning in Z . This is an

identifiability problem and it is well-known that even the

most elementary latent variable models are subject to such.

For example, Gaussian mixtures can be reparameterized by

permuting cluster indices, and principal components can be

arbitrarily rotated (Bishop, 2006).

2. Latent manifolds are mismapped onto Z . In all but

the simplest cases, the latent manifold M giving rise to data

observations is embedded in Z . An encoder with adequate

capacity will always recover some smoothened form of M,

which will either result in the latent space containing “holes”

of low density or, in M being mapped to the whole of Z
under the influence of the prior. Both cases will lead to

bad samples or convergence problems. This problem is

called manifold mismatch (Davidson et al., 2018; Falorsi

et al., 2018) and is closely related to distribution mismatch

(Hoffman & Johnson, 2016; Bauer & Mnih, 2018; Rosca

et al., 2018) where the prior samples from regions to which

the variational posterior (or encoder) does not assign any

density. A graphical illustration of this situation can be
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seen on the left panel of Fig. 1, where a VAE is trained on

the 1-digits of MNIST under the Gaussian prior. The prior

assigns density where there is none.

In this paper, we consider an alternative prior, which is

shown in the right panel of Fig. 1. This is a Rieman-

nian Brownian motion model defined over the manifold

immersed by the decoder. The Riemannian structure solves

the identifiability problem and gives a meaningful represen-

tation that is invariant to reparametrizations and at the same

time restricts the prior to sample only from the image of M
onto Z . The prior generalizes the Gaussian to the Rieman-

nian setting. It only has a single scalar variance parameter,

yet it is able to capture intrinsic complexities in the data.

2. Background

2.1. Variational autoencoders

VAEs learn a generative model pθ(x, z) by specifying

a likelihood of observations conditioned on latent vari-

ables pθ(x|z) and a prior over the latent variables p(z).
The marginal likelihood of the observations pθ(x) =
∫

pθ(x|z)p(z)dz is intractable. As such, VAEs are trained

by maximizing the variational Evidence Lower Bound

(ELBO) on the marginal likelihood :

Eq(z|x)[log pθ(x|z)]− KL(qφ(z|x)||p(z)), (2.1)

where qφ(z|x) denotes the variational family. Kingma &

Welling (2014); Rezende et al. (2014) proposed a low vari-

ance estimator of stochastic gradients of the ELBO, known

as reparameterization trick.

In the VAE framework, both the variational family qφ(z|x)
and the conditional likelihood pθ(x|z) are parameterized by

neural networks with variational parameters φ and genera-

tive parameters θ. In the language of autoencoders, these

networks are often called encoder and decoder parame-

terizing the variational family and the generative model

respectively. From an autoencoder perspective, Eq. 2.1 can

be seen as a loss function involving a data reconstruction

term (the generative model) and a regularization term (the

KL divergence between the variational family and the prior

distribution over the latent variables).

2.2. A primer on Riemannian geometry

The standard Gaussian prior relies on the usual Lebesgue

measure which in turn, assumes a Euclidean structure over

the latent space Z . Recently, it has been noted (Arvan-

itidis et al., 2018; Hauberg, 2018b) that this assumption

is mathematically questionable, and that, empirically, Eu-

clidean latent space distances carry little information about

the relationship between data points. Rather, a Riemannian

interpretation of the latent space appears more promising.

Hence we give a short review of Riemannian geometry.

A smooth manifold M is a topological manifold endowed

with a smooth structure. That is to say M is locally homeo-

morphic to Euclidean space and we are able to do calculus

on it. For a point p ∈ M, the tangent space TpM is a vector

space centered on p which contains all tangent vectors to M
passing through point p. With this we can give a formal def-

inition of the Riemannian metric tensor which is of central

importance to any analysis involving Riemannian geometry.

Definition 1. (Riemannian metric) (do Carmo, 1992)

Given a smooth manifold M, a Riemannian metric on M
assigns on each point p ∈ M an inner product (i.e. a sym-

metric, positive definite, bilinear form) 〈·, ·〉p in the tangent

space TpM which varies smoothly in the following sense:

if x : Rn ⊃ U → M is a local coordinate chart centered

at p and ∂
∂xi

(q) = dxq(0, . . . , 1, . . . , 0) for q ∈ U , then

〈 ∂
∂xi

(q), ∂
∂xj

(q)〉x(q) = gij(q) is a smooth function on U .

By generalizing the inner product to Riemannian manifolds,

the metric tensor gives meaning to length, angle and volume

on manifolds. Central to distributions defined on a Rieman-

nian manifold, the volume measure over an infinitesimal re-

gion centered at point p is defined as dMp =
√

detGpdp,

where Gp is the matrix representation of the metric ten-

sor evaluated at point p. Shortest paths on manifolds are

represented by geodesic curves, which generalize straight

lines in Euclidean space. A geodesic is a constant speed

curve and its length can be computed by integrating the

norm of its velocity vector under the metric, in other words

L =
∫ 1

0
||dγdt ||gdt. For p ∈ M there is a useful map de-

fined on a neighborhood of the origin of TpM called the

exponential map. More precisely, the exponential map is

a diffeomorphism, i.e. a bijection with a smooth inverse,

between an open subset U ⊂ TpM and an open subset

U ′ ⊂ M. Given p ∈ M and v ∈ U , there is a unique

geodesic γ : [0, 1] → M with γ(0) = p and dγ
dt (0) = v.

The exponential map is given by expp(v) = γ(1). Note

that expp(0) = p. The inverse map (from U ′ to U)

exp−1
p = logp is called the logarithmic map.

Let M ⊆ R
M be an embedded n-dimensional manifold

and consider local coordinates φ : U → M with U ⊆
R
N an open subset. The Euclidean metric on R

M induces

a Riemannian metric on M. Expressed in terms of the

coordinates given by φ, this metric is known as the pull-

back metric on U under φ. For u ∈ U , the pull-back metric

Gu at u is given by

Gu = J⊤
φ (u)Jφ(u), (2.2)

where Jφ denotes the Jacobian matrix of φ.

2.3. VAE decoders as immersions

We will dedicate this subsection to showing that, under cer-

tain architectural choices, VAE decoders induce Riemannian
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metrics in the latent space. That is to say, they belong to

a certain class of maps, called smooth immersions, which

give rise to immersed submanifolds. In other words, we

will formally describe our intuition about VAEs mapping

the latent space back to data space, using the language of

smooth manifolds and Riemannian geometry.

The generative and variational distributions can be seen

as families of parameterized mappings gφ : X → Z and

fθ : Z → R
M , Z ⊂ R

N and M > N and parameters φ

and θ respectively. The family defined by the generative

model is of particular interest. To make the subsequent

exposition clearer we will assume a Gaussian generative

model and rewrite it in the following form:

fθ(z) = µθ(z) + σθ(z)⊙ ǫ, ǫ ∼ N (0, IM ) (2.3)

with µθ : Z → R
M , σθ : Z → R

M
+ , denoting the mean and

standard deviation of the generative model parameterized

by neural networks with parameters θ and ⊙ denoting the

Hadamard or element-wise product.

Definition 2. (Smooth immersions) Given smooth mani-

folds M and M′ with dim(M) < dim(M′), a mapping

f : M → M′, a point p ∈ M and its image f(p) ∈ M′,

the mapping f is called an immersion if its differential

dfp : TpM → Tf(p)M
′ is injective for all p ∈ M.

We will consider a particular Riemannian metric on Z in-

duced by µθ and σθ. The architectures of µθ and σθ are

such that these maps are immersions. Consider now the

diagonal immersion

f : Z → R
M × R

M
+ : z 7→ (µθ(z), σθ(z)), (2.4)

whose geometry encodes both mean and variance. The ran-

dom map fθ is a random projection given by ǫ of the diago-

nal immersion. Sampling using the decoder can therefore

be seen as first sampling the image of this immersion and

then randomly projecting down to X (Eklund & Hauberg,

2019). Taking the pull-back metric Gz of f to Z we obtain

Gz = Jµ(z)
⊤Jµ(z) + Jσ(z)

⊤Jσ(z), (2.5)

where Jµ and Jσ are the Jacobian matrices of µθ and σθ.

The metric Gz was studied by Arvanitidis et al. (2018) and

is known to yield geodesics that follow high density regions

in latent space. As an example, Fig. 2 shows geodesics of

a VAE trained on 1-digits from MNIST, which follow the

data due to the variance term of the metric, which penalizes

geodesics going through low density regions of the latent

space.

3. Geometric latent priors

It is evident that the geometric structure over the latent space

carries significant information about data density that the

Figure 2. Example geodesics under the pull-back metric (2.5). The

associated VAE is the same as in Fig. 1.

traditional Euclidean interpretation foregoes. With this in

mind, we propose that the prior should be defined with

respect to the geometric structure. We could opt for a Rie-

mannian normal distribution, which is well-studied (Oller,

1993; Mardia & Jupp, 2000; Pennec, 2006; Arvanitidis et al.,

2016; Hauberg, 2018a). Unfortunately, computing its nor-

malization constant is expensive and involves Monte Carlo

integration. Furthermore, it is equally hard to sample from

this distribution, since it generally requires rejection sam-

pling with non-trivial proposal distributions.

Instead we consider a cheap and flexible alternative, namely

the heat kernel of a Brownian motion process (Hsu, 2002). A

Brownian motion Xt on an immersed Riemannian manifold

M ⊆ R
M can be defined through a stochastic differential

equation on Stratonovich form:

dXt =
M
∑

α=1

Pα(Xt) ◦ dW
α
t . (3.1)

Here Wt = (W 1
t , . . . ,W

M
t ) is a Brownian motion in R

M

and P1(Xt), . . . , PM (Xt) denotes the projection of the stan-

dard basis of RM onto the tangent space of M at Xt. This

way, a Brownian motion on M is driven by a Euclidean

Brownian motion Wt projected to the tangent space. Fix-

ing an initial point µ ∈ M and a time t > 0, Brownian

motion starting at µ running for time t gives rise to a ran-

dom variable on M. Its density function is the transition

density p(x). An alternative description of Brownian mo-

tion on M is that p(x) is the heat kernel associated to the

Laplace-Beltrami operator of a scalar function h on M:

∆h = dM−1∂i
(

dMgij∂jh
)

(3.2)

where dM is the volume measure of the immersed sub-

manifold M, gij are the components of the inverse metric

tensor and ∂i :=
∂
∂xi , ∂j :=

∂
∂xj are the basis vectors at the

tangent space TpM. We will express the transition density

in terms of local coordinates Z → M on M. Conveniently,

we may approximate the transition density by a so-called

Parametrix expansion in a power series (Hsu, 2002). In this

paper we will use the zeroth order approximation which
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Figure 3. Inferred latent space for a toy data set, embedded via a non-linear function in R
100. The background color, with blue representing

lower and red representing higher values, from left to right, show: the (log) standard deviation estimated by a typical neural network; the

associated (log) volume measure; the RBF (log) standard deviation estimate; and the associated (log) volume measure. Best viewed in

color.

gives rise to the following expression for p(z) with z ∈ Z:

p(z) ≈ (2πt)−
d/2H0 exp

(

−
l2(z,µ)

2t

)

, (3.3)

where:

• t ∈ R, denotes the duration of the Brownian motion,

and corresponds to variance on Euclidean manifolds.

• d is the dimensionality of z.

• µ ∈ Z is the center of the Brownian motion.

• l(·, ·) is the geodesic distance on the manifold.

• H0 = ( detGz

detGµ

)1/2 is the ratio of the Riemannian vol-

ume measure evaluated at points z and µ respectively.

Equation 3.3 can be evaluated reasonably fast as no Monte

Carlo integration is required. The most expensive compu-

tation is the evaluation of the geodesic distance for which

several efficient algorithms exist (Hennig & Hauberg, 2014;

Arvanitidis et al., 2019). Here we parameterize the geodesic

as a cubic spline and perform direct energy minimization.

3.1. Inference

Since we use the heat kernel density function for the prior

p(z), we need the variational family qφ(z|x) to be defined

with respect to the same Riemannian measure. We therefore

also use the heat kernel density function for the variational

family, which is parameterized by the encoder network with

variational parameters φ. The parameter t of the prior is

learned through optimization. The ELBO can be derived

with respect to the volume measure dM:

logp(x) ≥ LM(x; θ, φ)

,

∫

M

log

(

pθ(x|z)p(z)

qφ(z|x)

)

qφ(z|x)dMz

= Eq(z|x)[log pθ(x|z)]− KL(qφ(z|x)||p(z)). (3.4)

This ELBO can be estimated using Monte Carlo samples

from the variational posterior. With no analytical solution

to the KL divergence we resort to Monte Carlo integration:

KL(q||p) =

∫

M

log
qφ(z|x)

p(z)
qφ(z|x)dMz

= Eq(z|x)[log q(z|x)− log p(z)]

≈
1

N

N
∑

i=1

(log q(zi|x)− log p(zi)) (3.5)

with:

log qφ(z|x) = −
d

2
log(2πtq) + logH0,q −

l2q

2tq
(3.6)

log p(z) = −
d

2
log(2πtp) + logH0,p −

l2p

2tp
(3.7)

where l2q = l2(z,µq), l
2
p = l2(z,µp).

Thus, the final form of the Monte Carlo evaluation of the

KL divergence is:

KL(q||p) ≈
1

2

[

1

N

N
∑

i=1

(

log detGµp
(zi)−

log detGµq
(zi) +

l2(zi,µp)

tp
−

l2(zi,µq)

tq

)

+ d(log tp − log tq)

]

(3.8)

3.2. Sampling

In the previous section we mentioned that a Brownian mo-

tion (BM) on the manifold can be derived by projecting

each BM step Xt on the tangent space at t. However we

will take each step directly in the latent space and avoid

having to evaluate the exponential map. Given a manifold

M with dimension N , the immersion f : M → R
M , a

point a ∈ M and its image under f , A ∈ R
M we take a

random step from A:

∆ ∼ N (0,ΣM ) . (3.9)
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Figure 4. Latent space of an R-VAE, plotted against the Rieman-

nian volume measure dM. Once again note the “borders” created

by the metric roughly demarcating the latent code support. The

latent codes are colored according to label. Best viewed in color.

Applying a Taylor expansion we have:

f(a+ ǫ) = f(a) + Jaǫ+O
(

ǫ2
)

. (3.10)

With ∆ = f(a+ ǫ)− f(a) we have:

∆ = Jaǫ+O
(

ǫ2
)

. (3.11)

For small ǫ an approximation to taking a step directly in

the latent space is then b = a + ǫ with ǫ ≈ J+
a ∆ and

J+
a =

(

J⊤
a Ja

)−1
J⊤
a ∈ R

N×M the pseudoinverse of Ja.

Since ∆ ∼ N (0,ΣM ) the step ǫ can be written:

ǫ ∼ N
(

0,J+
a ΣM

(

J+
a

)⊤
)

. (3.12)

We consider an isotropic heat kernel so in our case ΣM =
σ2I. Furthermore:

J+
a ΣM

(

J+
a

)⊤
=

(

J⊤
a Ja

)−1
J⊤
a ΣMJa

(

J⊤
a Ja

)−⊤

= σ2
(

J⊤
a Ja

)−1
J⊤
a Ja

(

J⊤
a Ja

)−⊤

= σ2
(

J⊤
a Ja

)−⊤
= σ2

(

J⊤
a Ja

)−1
. (3.13)

This implies that

ǫ ∼ N
(

0, σ2
(

J⊤
a Ja

)−1
)

. (3.14)

Thus, to sample from the prior we simply need to run Brow-

nian motion for t = 1, . . . , T :

zt ∼ N

(

zt−1,
σ2

T

(

J⊤
zt−1

Jzt−1

)−1
)

(3.15)

An obvious concern regarding the computational cost of

sampling is the inverting of the metric tensor. While this is

Table 1. Results on MNIST (mean & std deviation over 10 runs).

Rec denotes the negative conditional likelihood.
Model Neg. ELBO Rec KL

VAE

d = 2 -1030.38±5.34 -1033.06±5.48 2.68±.14
d = 5 -1076.64±4.48 -1078.91±4.44 2.27±.04

d = 10 -1110.79±1.17 -1113.01±1.13 2.22±.03
VAE-VampPrior

d = 2 -1045.03±5.22 -1047.34±5.20 2.30±.03
d = 5 -1109.74±4.87 -1111.63±4.87 1.88±.01

d = 10 -1116.58±4.23 -1118.27±4.20 1.69±.02
R-VAE

d = 2 -1047.29±2.77 -1053.70±2.75 14.33±.01

d = 5 -1141.06±7.09 -1177.86±3.39 28.00±.2

d = 10 -1170.03±18.52 -1280.94±14.67 57.76±3.85

a valid concern for large latent dimensionalities, in practice

and for the typical number of latent dimensions found in

generative modelling literature the sampling cost is bearable,

considering that the operation can be parallelized for K

samples. We further note that from a practical standpoint

for small diffusion times the number of discretized steps can

be small. The time complexity of the sampling operation is

O(KHM +KMN2 +N3) (3.16)

where K is the number of samples, N is the latent space

dimensionality, M is the input space dimensionality and H

is the decoder hidden layer size.

4. Meaningful variance estimation

We now turn to the problem of restricting our prior to sample

from the image of our manifold in Z . Since typically the

geometry of the data is not known a priori, we adopt the

Bayesian approach and relate uncertainty estimation in the

generative model to the geometry of the latent manifold.

Specifically, since the generative model parameterizes fθ :
Z → X we construct it such that the pull-back metric will

acquire high values away from the data support and thereby

restrict prior samples to high density regions of the latent

manifold.

In Sec. 2.3 we described the metric tensor arising from the

diagonal immersion f . By the form of the metric, it is clear

that both µθ(z) and σθ(z) contribute to the manifold ge-

ometry. In recent works (Arvanitidis et al., 2018; Hauberg,

2018b; Detlefsen et al., 2019) it was shown that neural net-

work variance estimates are typically poor in regions away

from the training data, due to poor extrapolation properties.

Thus, neural networks cannot be trusted to properly esti-

mate the variance of the generative model “off-the-shelf”

when the functional form of the immersion (and thus the

geometry of the data) is not known a priori. By extension,

this leads to poor estimates of latent manifold geometry and

latent densities. Arvanitidis et al. (2018) propose to use a
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Table 2. Results on FashionMNIST (mean & std deviation over 10

runs). Rec denotes the negative conditional likelihood.
Model Neg. ELBO Rec KL

VAE

d = 2 -443.13±10.67 -447.44±10.8 4.31±.14
d = 5 -511.65±3.70 -517.41±3.84 5.76±.21

d = 10 -525.05±5.87 -530.86±5.9 5.81±.05
VAE-VampPrior

d = 2 -705.90±17.3 -708.45±17.29 2.54±.01
d = 5 -769.27±5. -770.1±5.02 0.83±.09

d = 10 -774.17±10.83 -777.75 ±10.78 3.57±.06
R-VAE

d = 2 -708.77±6.93 -722.41±5.736 13.64±1.51

d = 5 -889.62±3.44 -913.61±3.38 23.83±.8

d = 10 -959.2±5.37 -1001.4±4.08 40.35±.8

radial basis function (RBF) network (Que & Belkin, 2016)

to estimate precision, rather than variance. We adopt this

approach due to its simplicity and relative numerical stabil-

ity, however we note that similar approaches for principled

variance estimation exist (Detlefsen et al., 2019; ?).

The influence of the RBF network can be seen in Fig. 3,

where it is compared with a usual neural network variance

estimate. Note that the metric creates “borders” demarcating

the regions to which the latent codes have been mapped by

the encoder. This makes interpolations and random walks

generally follow the trend of the latent points instead of won-

dering off the support. Thus, this regularization scheme re-

stricts prior sampling to such high density regions. A similar

effect is not observed in the usual Gaussian VAE, where the

prior samples from regions to which the variational posterior

has not necessarily placed probability density (Hoffman &

Johnson, 2016; Rosca et al., 2018).

5. Experiments

5.1. Generative modelling

For our first experiment we train a VAE with a Rieman-

nian Brownian motion prior (R-VAE) for different latent

dimensions and compare it to a VAE with a standard Normal

prior and a VAE with a VampPrior. Tables 1 & 2 show the

results. R-VAE achieves a better lower bound than both its

Euclidean counterparts. The Brownian motion prior adapts

to the latent code support and as such yields more expres-

sive representations. On the other hand, with only a single

parameter it results in a model that generalizes better than

VAEs with a VampPrior.

5.2. Classification

We next assess the usefulness of the latent representations of

R-VAE. Fig. 4 shows the latent code clusters. R-VAE has

produced more separable clusters in the latent space due to

the prior adapting to the latent codes, which results in a less

regularized clustering. We quantitatively measured the util-

ity of the R-VAE latent codes in different dimensionalities

by training a classifier to predict digit labels and measuring

the average overall and per-digit F1 score. Table 3 shows the

results when comparing against the same classifier trained

on latent codes derived by a VAE. R-VAE has a significant

advantage in low dimensions. As dimensionality increases

this advantage becomes non-existent. An explanation for

this is that due to the KL annealing of the Euclidean VAE,

its representations have become more informative.

5.3. Qualitative results

Finally we explore the geometric properties of a R-VAE

with a 2-dimensional latent space. Fig 4 shows the learned

manifold. As in Fig. 3, the influence of the variance network

on the metric can be seen in the “borders” surrounding the

latent code support.

We begin by investigating the behavior of distances on the

induced manifold. Fig. 5 shows the geodesic curves be-

tween two pairs of random points on the manifold, compared

against their Euclidean counterpart. The geodesic interpo-

lation is influenced by the metric tensor, which makes sure

that shortest paths will generally avoid areas of low den-

sity. This can easily be seen in top left Fig. 5, where the

geodesic curve follows a path along a high density region.

Contrast this to the Euclidean straight line between the two

points traversing a lower density region. Reconstructed im-

ages along the curves can be seen in the middle and bottom

rows. Even in less apparent cases (top right Fig. 5), recon-

structions of latent codes along geodesic curves generally

provide smoother transitions between the curve endpoints

as can be seen by comparing the middle right and bottom

right sections of the figure.

Next, we investigate sampling from R-VAE. In Sec. 4 we

claimed that a Brownian motion prior coupled with the RBF

regularization of the decoder variance network would yield

samples that mostly avoid low density regions of the latent

space. To empirically prove this, we executed two sets of

multiple sampling runs on the latent manifold. In the first

set we ran Brownian motion with the learned prior param-

eters. These runs and the resulting images are displayed

in Fig. 6. The random walks generally stay within high

density regions of the manifold. Cases where they explore

low density regions do exist but they are rare. The samples

generally seem clear although sometimes their quality drops,

especially when the sampler is transitioning between classes,

where variance estimates are higher. This could potentially

be rectified with a less aggressive deterministic warm-up

scheme, which would result in more concentrated densities

with thinner tails, although between-class variance estimates

would likely still be higher compared to within-class ones.

For the second set of the sampling runs, we increased the
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Table 3. Per digit and average F1 score for a classifier trained on the learned latent codes of VAE and R-VAE. Results are averaged over 5

classifier training runs.

Digits 0 1 2 3 4 5 6 7 8 9 Avg

VAE

d = 2 0.94 0.95 0.88 0.67 0.55 0.42 0.86 0.68 0.61 0.53 0.72±.002
d = 5 0.95 0.97 0.94 0.90 0.90 0.89 0.95 0.93 0.88 0.87 0.92±.001

d = 10 0.98 0.99 0.97 0.94 0.96 0.95 0.98 0.97 0.93 0.94 0.96±.001
R-VAE

d = 2 0.95 0.97 0.89 0.68 0.64 0.56 0.88 0.85 0.71 0.64 0.78±.002
d = 5 0.95 0.98 0.94 0.91 0.94 0.88 0.95 0.93 0.90 0.89 0.93±.0008

d = 10 0.98 0.98 0.96 0.95 0.96 0.95 0.97 0.97 0.93 0.94 0.96±.001

Figure 5. Top: Interpolations plotted in the latent space of R-VAE. Black indicates a geodesic interpolant, red indicates a Euclidean

interpolant. Middle: Images reconstructed along the geodesic interpolation. Bottom: Images reconstructed along the Euclidean

interpolation. The latent codes are color-coded according to label. Best viewed in color.

duration of the Brownian motion. These runs are displayed

along with the sampled images in Fig. 7. The influence of

the variance estimates on the metric tensor is clearly shown

here. As the sampler is moving farther away from the la-

tent code support, evaluations of the metric tensor increase

making these regions harder to traverse. As a result the ran-

dom walk either oscillates with decreased speed and stops

close to the boundary (as in Figures 7a and 7b) or returns to

higher density regions of the manifold. This clearly shows

that R-VAE mostly avoids the manifold mismatch problem.

6. Related work

Learned priors. In recent literature many works have

identified the adverse effects of the KL divergence regular-

ization when the prior is chosen to be a standard Gaussian.

As such, there have been many approaches of learning a

more flexible prior. Chen et al. (2016) propose learning

an autoregressive prior by applying an Inverse Autoregres-

sive transformation (Kingma et al., 2016) to a simple prior.

Nalisnick & Smyth (2016) propose a non-parametric stick-

breaking prior. (Tomczak & Welling, 2017) propose learn-

ing the prior as a mixture of variational posteriors. More

recently, Bauer & Mnih (2018) present a rejection sam-

pling approach with a learned acceptance function, while

Klushyn et al. (2019) proposed a hierarchical prior through

an alternative formulation of the objective.

Non-Euclidean latent space. Arvanitidis et al. (2018)

was one of the first to analyze the latent space of a VAE



Variational Autoencoders with Riemannian Brownian Motion Priors

Figure 6. Top: Brownian motion runs on the learned latent manifold. Bottom: Corresponding sampled images. The sampler mostly stays

in high density regions of the latent manifold. Best viewed in color.

(a) (b) (c)

Figure 7. Brownian motion runs with artificially increased t (diffusion) parameter beyond the learned value. Note that the borders created

by the metric tensor stop the sampler from exploring low density regions any further - the sampler either stops (a and b) or returns to

regions of higher density (c). This effect is observed in the sampled images. Best viewed in color.
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from a non-Euclidean perspective. This work was inspired

by Tosi et al. (2014) that studied the Riemannian geometry

of the Gaussian process latent variable model (Lawrence,

2005). Arvanitidis et al. (2018) train a Euclidean VAE and

fit a latent Riemannian LAND distribution (Arvanitidis et al.,

2016) and show that this view of the latent space leads to

more accurate statistical estimates, as well as better sample

quality.

Since then, a number of other works have appeared in litera-

ture that propose learning non-Euclidean latent manifolds.

Xu & Durrett (2018) and Davidson et al. (2018) learn a VAE

with a von Mises-Fisher latent distribution, which samples

codes on the unit hypersphere. Similarly, Mathieu et al.

(2019) and Nagano et al. (2019) extend VAEs to hyper-

bolic spaces. Mathieu et al. (2019) assume a Poincaré ball

model as a latent space and present 2 generalizations of

the Euclidean Gaussian distribution - a wrapped Normal

and the Riemannian Normal distributions, of which only

the latter is a maximum entropy generalization. In prac-

tice, they perform similarly. Nagano et al. (2019) assume a

Lorentz hyperbolic model as a latent space and also present

a wrapped Normal generalization of the Gaussian. While

these works have correctly identified the problem of the

standard Gaussian not being a truly uninformative prior,

due to the Euclidean assumption, they have proposed ap-

proaches which are designed for observations with known

geometries. Most of the time, however, this information

is not available and a more general framework for learn-

ing geometrically informed VAEs is needed. In response

to this, Skopek et al. (2019) propose VAEs with the latent

space modelled as a product of constant cuvature manifolds,

where each component curvature is learned. While more

general than a model with a fixed curvature latent manifold,

this framework still requires the specification of number of

component manifolds along with the sign of their respective

curvature. Finally, similar to our approach, Li et al. (2019)

and Rey et al. (2019) both propose the heat kernel as a vari-

ational family representing a Brownian motion process on

a Riemannian manifold. They test their approaches on a

priori chosen manifolds.

7. Conclusion

In this paper we presented VAEs with Riemannian mani-

folds as latent spaces and proposed a Riemannian gener-

alization of the Gaussian along with an efficient sampling

scheme. We show that the pull-back metric informs dis-

tances in the latent space, remaining invariant to reparam-

eterizations. We further make explicit the relationship be-

tween uncertainty estimation and proper latent geometry

and qualitatively show that geometrically informed priors

avoid manifold mismatch by drawing samples from the im-

age of the manifold in the latent space. Quantitatively, we

show that our approach outperforms Euclidean VAEs both

in an unsupervised learning task and a classification task,

especially in low latent space dimensions.
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A. On neural network-based immersions

For the decoder map 2.3 to be a valid immersion, its differential df needs to be injective for all p ∈ M as stated in definition

2. The differential of f is represented by its Jacobian matrix Jf and for it to be injective for all p ∈ M, it needs to be full

rank. This is ensured if for the MLPs representing the decoder µθ and σψ the following are true:

• Each hidden layer in the network has an equal or greater number of units to the previous layer (nL−1 ≤ nL).

• All weight matrices in the network are full rank.

• The activation functions are at least twice differentiable and strictly monotone.

In our experiments, we opt for the same number of units in each hidden layer of the network and ELU non-linearities. In

theory, the ELU activation function could present problems since it has a point of discontinuity at 0, however we did not

experience any numerical instability that would arise in such case. All weight matrices are initialized uniformly (He et al.,

2015) which practically has zero probability of yielding low rank weight matrices. While theoretically this could change via

the gradient updates of the weights, this would once again immediately break experiments because of numerical instabilities,

which we did not observe.

B. Geodesic estimation

We estimate geodesic distances by minimizing curve energy. In detail, we represent the geodesic curve with a cubic spline

with parameters initialized to form a straight line. These parameters are then optimized via gradient descent by minimizing

the curve energy:

E(γ) =
1

2

∫ 1

0

||γ̇(t)||2g dt

=
1

2

∫ 1

0

γ̇T (t)Gγ γ̇(t) dt (B.1)

where γ is the geodesic curve, γ̇ is the first derivative of the curve, i.e. its velocity vector and Gγ is the matrix representation

of the metric tensor evaluated at the curve points. The integral B.1 is computed by numerical approximation, where the

partition of the interval can be chosen as a hyperparameter.

C. Experimental setup

The architectures of all model variants are shown below in Tables 4 and 5. The encoder mean and variance, as well as the

decoder mean are modelled by 2-layer MLPs as shown below. The decoder mean mirrors the encoder mean, while the

precision β is estimated by the RBF network. The number of the RBF centers is set to 350 and the bandwidth is set to 0.01

in all cases. For a fair comparison, all models share the same underlying architecture for the encoder and decoder. Tables 4

and 5 summarize the architectures, listing the activation function for each layer with the units corresponding to each layer in

parentheses.

Table 4. Encoder network architectures.
Network Layer 1 Layer 2 Output

µφ(x) ELU (300) ELU (300) Linear (dim(Z))

σ2
φ(x) ELU (300) ELU (300) Softplus (dim(Z))

Table 5. Decoder network architectures. * denotes strictly positive weights.

Network Layer 1 Layer 2 Output

µθ(z) ELU (300) ELU (300) Linear (dim(X ))

βψ(z) RBF (Rdim(Z)×350) Linear* (dim(X )) Identity (dim(X ))
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C.1. Section 5.1 experiment

Detlefsen et al. (2019) highlighted the importance of optimizing the mean and variance components separately, when

training VAEs with Gaussian generative models. Following this paradigm, in all our experiments we first optimize the

encoder components (µφ and σφ) along with the decoder µθ . Then, keeping these fixed, we optimize the decoder σψ . All

models were trained for 300 epochs. More specifically, the R-VAE was trained as an autoencoder (optimizing only the

encoder µφ and σφ and the decoder µθ) for the first 100 epochs and for the remaining 200 epochs the latent prior and the

decoder βψ were optimized. Similarly for a VAE, it was deterministically warmed up for 100 epochs and for the remaining

200 epochs, the decoder βψ was optimized. All experiments were run with the Adam optimizer (Kingma & Ba, 2015) with

default parameter settings and a fixed learning rate of 10−3. The batch size was 100 for all models.

C.2. Section 5.2 experiment

The classifier used on this section was a single, 100-unit layer MLP with ReLU non-linearities, trained for 100 epochs

with the Adam optimizer with default parameter settings and a learning rate of 10−3. The batch size was set at 64. The

architectures of the models giving rise to the latent representations are as in the previous section.

C.3. Runtime comparisons

Below is the wall clock time for every model used in the experiments. The statistics were computed without a fixed seed.

The latent space dimensions are denoted by d. In VAE-VampPrior, n denotes the number of mixture components in the

latent prior.

Table 6. Per epoch training time for each model. Mean and std deviation in seconds, computed over 100 epochs on MNIST.

Model d = 2 d = 5 d = 10
VAE 10.64±.51 11.01±.77 11.10±.60

VAE-VampPrior (n = 128) 10.66±.6 11.22±.9 11.37±.96

VAE-VampPrior (n = 256) 10.72±.3 11.34±1.21 11.52±.77

VAE-VampPrior (n = 512) 10.9±.34 11.38±.93 12.18±1.12

R-VAE 55.73±4.36 59.97±1.33 60.13±1.19

C.4. Complete results for VAE-VampPrior

Tables 1 & 2 show the results of the best performing VampPrior model variant. Here we show the complete results of the

VAE-VampPrior in all settings. Below n denotes the number of mixture components in the latent prior, while d denotes the

latent space dimensions.

Table 7. MNIST results of VAE with VampPrior for varying latent space dimensions and number of mixture components in the latent prior.

Model Neg. ELBO Rec KL

d = 2
VAE-VampPrior (n = 128) -1039.66±2.56 -1042.13±2.56 2.46±.01

VAE-VampPrior (n = 256) -1045.04±5.20 -1047.34±5.22 2.30±.03

VAE-VampPrior (n = 512) -1040.79±9.23 -1043.24±9.25 2.45±.05

d = 5
VAE-VampPrior (n = 128) -1100.77±4.98 -1102.46±4.91 1.69±.06

VAE-VampPrior (n = 256) -1103.29±1.85 -1105.04±1.79 1.75±.12

VAE-VampPrior (n = 512) -1109.74±4.87 -1111.63±4.87 1.88±.01

d = 10
VAE-VampPrior (n = 128) -1110.05±6.10 -1112.23±5.82 1.84±.04

VAE-VampPrior (n = 256) -1116.58±4.23 -1118.28±4.20 1.69±.02

VAE-VampPrior (n = 512) -1100.64±2.93 -1102.42±2.97 1.78±.03
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Table 8. FashionMNIST results of VAE with VampPrior for varying latent space dimensions and number of mixture components in the

latent prior.

Model Neg. ELBO Rec KL

d = 2
VAE-VampPrior (n = 128) -694.63±8.65 -697.14±8.65 2.50±.01

VAE-VampPrior (n = 256) -702.67±17.45 -705.19±17.44 2.52±.04

VAE-VampPrior (n = 512) -705.90±21.29 -708.45±21.29 2.54±.01

d = 5
VAE-VampPrior (n = 128) -755.80±.66 -756.58±.71 0.77±.06

VAE-VampPrior (n = 256) -767.54±3.22 -768.33±3.31 0.78±.09
VAE-VampPrior (n = 512) -769.27±5.0 -770.10±5.02 0.83±.09

d = 10
VAE-VampPrior (n = 128) -754.47±6.78 -758.20±6.72 3.72±.06

VAE-VampPrior (n = 256) -756.13±5.40 -760.49±5.1 3.69±.06

VAE-VampPrior (n = 512) -774.17±10.83 -777.75±10.78 3.58±.06


