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Abstract

The variational approach to Bayesian inference enables simultaneous estimation of

model parameters and model complexity. An interesting feature of this approach

is that it also leads to an automatic choice of model complexity. Empirical results

from the analysis of hidden Markov models with Gaussian observation densities

illustrate this. If the variational algorithm is initialised with a large number of

hidden states, redundant states are eliminated as the method converges to a solu-

tion, thereby leading to a selection of the number of hidden states. In addition,

through the use of a variational approximation, the Deviance Information Criterion

for Bayesian model selection can be extended to the hidden Markov model frame-

work. Calculation of the Deviance Information Criterion provides a further tool for

model selection which can be used in conjunction with the variational approach.

Keywords: Hidden Markov model, Variational approximation, Deviance Informa-

tion Criterion (DIC), Bayesian analysis
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1 Introduction

Markov models are a valuable tool for modelling data that vary over time and can be

thought of as having been generated by a process that switches between different phases

or states at different time-points. However, in many situations the particular sequence

of states which gave rise to an observation set is unobserved, i.e. the states are ‘hidden’.

We can imagine that there is a missing set of indicator variables that describe which

state gave rise to a particular observation. These missing indicator variables are not

independent, but are governed by a stationary Markov chain. This framework represents

a hidden Markov Model (HMM). HMMs have found application in a wide range of areas.

Examples include speech recognition (the tutorial by Rabiner (1989) provides a good

introduction), biometrics problems such as DNA sequence segmentation (see Boys et

al. (2004), for example), econometrics (see Chib (1996), for instance) and finance (see

Rydén, Teräsvirta & Åsbrink (1998)). For a recent text on the subject of hidden Markov

modelling see MacDonald & Zucchini (1997).

Variational Bayes is a computationally efficient deterministic approach to Bayesian

inference. The speed and efficiency of the variational approach makes it a valuable al-

ternative to Markov chain Monte Carlo. As such it is gaining popularity in the machine-

learning literature but it remains relatively unexplored by the statistics community. In

this paper we describe how the variational approximation method can be used to per-

form Bayesian inference for hidden Markov models (HMMs) with Gaussian observa-

tion densities. The resulting algorithm is a modified version of the well-known forward-

backward/Baum-Welch algorithm (Baum et al. (1970)). This extends previous research

(McGrory & Titterington (2006)) in which we considered how variational methods can

be used to perform model-selection automatically for mixtures of Gaussians. Empiri-

cal results indicate that using variational methods for model selection in the case of an

HMM with Gaussian observation densities also leads to an automatic choice of model

complexity. The reader is also referred to MacKay (2001), Attias (1999) and Corduneanu

& Bishop (2001) for a discussion of the component or state removal effect connected with

using variational Bayes for mixture and HMM analysis.

The variational approximation can also be used to extend the Deviance Information

3



Criterion (DIC) model selection criterion (Spiegelhalter et al. (2002)) to latent variable

models. We show how the DIC can be approximated for an HMM and we use it as a

model selection tool together with variational Bayes in our applications.

This paper focuses on performing variational Bayesian inference for HMMs when the

number of hidden states is unknown and has to be estimated along with the model param-

eters. Other approaches to this problem include the computationally intensive classical

approach of Rydén, Teräsvirta & Åsbrink (1998) which uses a parametric bootstrap ap-

proximation to the limiting distribution of the likelihood ratio. There are also Bayesian

approaches such as those presented in Robert, Rydén, & Titterington (2000) and Boys

& Henderson (2004) that are based on the Reversible Jump Markov Chain Monte Carlo

(RJMCMC) technique (see Green (1995) and Green & Richardson (2002)) for assessing

the number of hidden states.

MacKay (1997) was the first to propose applying variational methods to HMMs,

considering only the case where the observations are discrete. Despite the lack of un-

derstanding of the state-removal phenomenon, variational methods are beginning to be

applied to HMMs in the machine learning community. For instance, Lee, Attias & Deng

(2003) propose a variational learning algorithm for HMMs applied to continuous speech

processing. Variational methods have been shown to be successful in other areas but

their full potential in HMM analysis is yet to be explored.

In Section 2 we outline the variational approach to Bayesian inference. Section 3

describes the DIC and how it can be approximated using variational Bayes. In Section 4

we apply the variational Bayes algorithm to an HMM with Gaussian observation densities,

Section 5 considers synthetic and real-data applications and Section 6 gives concluding

remarks.

2 The Variational Approach to Approximate Bayesian

Inference

In this section we review how variational methods can be applied to approximate quan-

tities required for Bayesian inference. We assume a parametric model with parameters
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θ, where z denotes latent or unobserved values in the model. In this paper the z will

be discrete variables. Given observed data y, Bayesian inference focuses on the poste-

rior distribution p(θ|y) of θ given y. The posterior distribution p(θ|y) is the appropriate

marginal of p(θ, z|y). The variational Bayes approach allows us to approximate the com-

plex quantity p(θ, z|y) by a simpler density, q(θ, z). The approximating density q that we

introduce is obtained by constructing and maximising a lower bound on the observed-data

log-likelihood using variational calculus:

log p(y) = log

∫ ∑

{z}
q(θ, z)

p(y, z, θ)

q(θ, z)
dθ

≥
∫ ∑

{z}
q(θ, z) log

p(y, z, θ)

q(θ, z)
dθ, (1)

by Jensen’s Inequality.

As a result of the relationship

log p(y) =

∫ ∑

{z}
q(θ, z) log

p(y, z, θ)

q(θ, z)
dθ +

∫ ∑

{z}
q(θ, z) log

q(θ, z)

p(θ, z|y)
dθ

=

∫ ∑

{z}
q(θ, z) log

p(y, z, θ)

q(θ, z)
dθ + KL(q|p),

any q which maximises the lower bound, (1), also minimises the Kullback-Leibler(KL)

divergence between q and p(θ, z|y). The KL divergence is zero when q(θ, z) = p(θ, z|y),

but to make calculation feasible q(θ, z) is restricted to have the factorised form q(θ, z) =

qθ(θ)qz(z). The lower bound, (1), can then be maximised with respect to the variational

distributions, resulting in a set of coupled equations for qθ(θ) and qz(z). The hyperpa-

rameters can then be found using an EM-like algorithm.

For an introductory tutorial on variational methods see Jordan et al. (1999) or

Jaakkola (2000), for example, and for discussion of some theoretical aspects of the vari-

ational Bayes algorithm see Wang & Titterington (2006), who explore its convergence
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properties in the context of mixture models.

An engine called VIBES (Variational Inference for BayEsian networkS) has recently

been developed for performing variational inference for certain types of model such as

mixtures of factor analysers and bayesian state space models. It allows users to input

their Bayesian network model in the form of a directed acyclic graph, and it derives

and solves the corresponding variational equations. See Winn & Bishop (2005) for a

description of the software. A recent addition to the software is code for implementing the

variational analysis of HMMs described in the report by MacKay (1997). The framework

used in the report deals with discrete observations and does not involve inference for

hyperparameters, these are fixed.

3 The Deviance Information Criterion (DIC)

The Deviance Information Criterion, or DIC (Spiegelhalter et al. (2002)), is a model-

selection criterion that is based on the premise of trading off Bayesian measures of model

complexity and fit. For complex hierarchical models, the DIC provides an useful alter-

native to the widely used Bayes factor approach as the computation is comparatively

straightforward and the number of unknown parameters in the model does not have to

be known in advance. As modern applications become more complex these issues are

increasingly relevant in statistical inference as is the availability of a selection criterion

which is straightforward to calculate.

The initial derivation of the DIC focused on exponential-family models. It has since

been extended to deal with incomplete data models by Celeux et al. (2006), using MCMC

methods, and also by McGrory & Titterington (2006) using the variational approximation

in a mixture model setting. Here, using the variational approximation in conjunction with

the forward algorithm, we can extend the criterion further by approximating it within

the HMM framework.

The DIC is defined as

DIC = D(θ) + pD,
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where D(θ) measures the fit of the model and pD is the model complexity measure. The

above definition is based on the deviance

D(θ) = −2 log p(y|θ),

and D(θ) corresponds to the expectation with respect to p(θ|y). The complexity measure

is defined as

pD = D(θ)−D(θ̃)

= Eθ|y(−2 log p(y|θ)) + 2 log p(y|θ̃), (2)

where θ̃ is the posterior mean of the parameters of interest.

A model which better fits the data will have a larger likelihood and hence a smaller

deviance. Model complexity is penalised by the complexity term, pD, which measures

the effective number of parameters in the model. Intuitively then, the model of choice

would be the one with the lowest DIC value.

The DIC can easily be re-expressed as

DIC = −2 log p(y|θ̃) + 2pD. (3)

In the HMM setting, Eθ|y{−2 log p(y|θ)}, required in the calculation of pD, has to be

approximated. The variational approach leads to the approximation

p(y|θ) =
∑

{z}
p(y, z|θ) =

∑

{z}

p(θ, z|y)p(y)

p(θ)
≈ qθ(θ)p(y)

p(θ)
.

Substituting this approximation into the formula (2) for pD gives us the form

pD ≈ −2

∫
qθ(θ) log

(
qθ(θ)

p(θ)

)
dθ + 2 log

(
qθ(θ̃)

p(θ̃)

)
, (4)

where θ̃ is the posterior mean. Then p(y|θ̃) can be obtained using the forward algorithm
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for HMMs for substitution into (3).

4 Variational Bayesian Inference for Gaussian Hid-

den Markov Models with an Unknown Number of

States

A Markov model assumes that a system can be in one of K states at a given time-point

i, and at each time-point the system either changes to a different state or stays in the

same state. An HMM is a stochastic process generated by a stationary Markov chain

whose state sequence cannot be directly observed. Instead, what we actually observe is

a distorted version of the state sequence. A discrete first-order Markov model has the

property that the probability of occupying a state, zi, at time i, given all previous states,

depends only on the state occupied at the immediately previous time-point. Here we

fix the first state in the sequence by setting z1 = 1. The remaining states are not fixed

and the probability of moving from one state to another is characterised by a transition

matrix

π = {πj1j2}, 1 ≤ j1, j2 ≤ K,

where πj1j2 = p(zi+1 = j2|zi = j1), πj1j2 ≥ 0 and
∑K

j2=1 πj1j2 = 1, for each j1. Suppose we

have n observations, corresponding to n time-points, i.e. data yi : i = 1, . . . , n generated

by such a Markov process. The probability density for yi at time-point i, given that the

system is in state j, is given by

p(yi|zi = j) = pj(yi|φj),

where the {φj} are the parameters within the jth observation density. These densities

are often called the emission densities. We shall assume that the yi are univariate, and

in fact Gaussian, but other cases can be easily dealt with. The model parameters are

given by θ = (π, φ) with φ = {φj}. The prior densities are assumed to satisfy
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p(π, φ) = p(π)p(φ).

Then the joint density of all of the variables is

p(y, z, θ) =
n∏

i=1

K∏
j=1

(pj(yi|φj))
zij

n−1∏
i=1

∏
j1

∏
j2

(πj1j2)
zij1

zi+1j2p(φ)p(π),

where zij indicates which state the chain is in for a given observation and is equal to the

Kronecker delta, i.e. zij = 1, if zi = j, and zij = 0, if zi 6= j. The φjs are distinct and we

assume prior independence, so that

p(φ) =
K∏

j=1

pj(φj).

As mentioned in Section 2, we assume that our variational posterior is of the form

q(z, θ) = qz(z)qθ(θ). We also assume prior independence among the rows of the transition

matrix, and therefore qθ(θ) takes the form

qθ(θ) =
K∏

j=1

qφj
(φj)

∏
j1

qj1(πj1),

where

πj1 = {πj1j2 : j2 = 1, . . . , K}.

If pj(yi|φj) represents an exponential family model and pj(φj) is taken to be from an

appropriate conjugate family then the optimal variational posterior for φj will also belong

to the conjugate family.

Finding qz(z) in our variational scheme involves the forward and backward variables

from the Baum-Welch procedure (Baum et al. (1970)). The Baum-Welch algorithm

removes the computational difficulties attached to likelihood calculation and parameter

estimation for HMMs and leads to an expectation-maximization algorithm. The Baum-

Welch algorithm has two steps: based on some initial estimates, the first involves calcu-
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lating the so-called forward probability and the backward probability for each state (see

the Appendix for a description of the forward and backward algortihms), and the second

determines the expected frequencies of the paired transitions and emissions. These are

obtained by weighting the observed transitions and emissions by the probabilities spec-

ified in the current model. These expected frequencies then provide the new estimates,

and iterations continue until there is no improvement. The method is guaranteed to

converge to at least a local maximum, and estimates of the transition probabilities and

parameter values can be obtained. Note that evaluation of the likelihood only involves

the forward part of the algorithm. See Rabiner (1989) for a detailed description.

The variational Bayes algorithm for HMMs is in fact a modification of this algorithm.

The forward-backward algorithm of the Baum-Welch procedure is used to obtain the

variational posterior transition probabilities and estimates of the indicator variables for

the states. These estimates can then be used to update the variational posterior estimates

for the model parameters. The variational Bayes algorithm is also guaranteed to converge

to at least a local maximum.

4.1 Model Specification

Assigning the Prior Distributions

For each state j1, we assign an independent Dirichlet prior for the transition proba-

bilities {πj1j2 : j2 = 1, . . . , K}, so that

p(π) =
∏
j1

Dir(πj1|{αj1j2
(0)}),

for given hyperparameters {αj1j2
(0)}. We assign univariate Gaussians with unknown

means and variances to represent the emission densities pj(yi|φj). Therefore,

pj(yi|φj) = N(yi|µj, τj
−1),

where µj is the mean, τj is the precision and φj = (µj, τj).

10



The means are assigned independent univariate Gaussian conjugate priors, conditional

on the precisions. The precisions themselves are assigned independent Gamma prior

distributions so that

p(µ|τ) =
K∏

j=1

N(µj|mj
(0), (βj

(0)τj)
−1

)

and

p(τ) =
K∏

j=1

γ(τj|1
2
ηj

(0),
1

2
δj

(0)),

where µ = (µ1, . . . , µK) and τ = (τ1, . . . , τK) for given hyperparameters {m(0)
j , β

(0)
j , η

(0)
j , δ

(0)
j }.

Form of the Variational Posterior Distributions

The variational posteriors for the model parameters turn out to have the following forms:

qj1(πj1) = Dir(πj1|{αj1j2}),

where

αj1j2 = αj1j2
(0) +

n−1∑
i=1

qz(zi = j1, zi+1 = j2);

q(µj|τj) = N(µj|mj, (βjτj)
−1)

and

q(τj) = γ(τj|1
2
ηj,

1

2
δj),

with hyperparameters given by

βj = βj
(0) +

n∑
i=1

qij
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ηj = η(0) +
n∑

i=1

qij

δj = δ(0) +
n∑

i=1

qijyi
2 + βj

(0)mj
(0)2 − βjm

2
j

mj =
βj

(0)mj
(0) +

∑n
i=1 qijyi

βj

,

where qij = qz(zi = j). For each of the j states,
∑n

i=1 qij provides a ‘weighting’ in the

form of a ‘pseudo’ number of observations associated with that state.

The variational posterior for qz(z) will have the form

qz(z) ∝
∏

i

∏
j

b∗ij
zij

∏
i

∏
j1

∏
j2

a∗j1j2
zij1

zi+1j2 ,

for certain {a∗j1j2
} and {b∗ij}. This is the form of a conditional distribution of the states

of a hidden Markov chain, given the observed data. From this we need the marginal

probabilities

qz(zi = j),

qz(zi = j1, zi+1 = j2).

These can be obtained by the forward-backward algorithm (see the Appendix for details),

based on a∗ and b∗ quantities given by

a∗j1j2
= exp (Eq(log πj1j2)) = exp

(
Ψ(αj1j2)−Ψ(

K∑
j=1

αj1j)

)
,

b∗ij = exp (Eq(log pj(yi|φj))) ,

where Ψ is the digamma function and
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Eq (log pj(yi|φj)) =
1

2
Ψ(

1

2
ηj)− 1

2
log

δj

2
− 1

2
(
ηj

δj

)(yi −mj)
2 − 1

2βj

.

Here a∗j1j2
is an estimate of the probability of transition from state j1 to j2 and b∗ij is an

estimate of the emission probability density given that the system is in state j at time

point i.

One can obtain qz(zi = j) and qz(zi = j1, zi+1 = j2) from the following formulae based

on the forward and backward variables, which we denote by fvar and bvar, respectively,

and which are defined in the Appendix:

qz(zi = j) = p(zi = j1|y1, . . . , yn) ∝ fvari(j1)bvari(j1)

=
fvari(j1)bvari(j1)∑
j2

fvari(j2)bvari(j2)

qz(zi = j1, zi+1 = j2) ∝ fvari(j1)a
∗
j1j2

b∗i+1j2
bvari+1(j2)

=
fvari(j1)a

∗
j1j2

b∗i+1j2
bvari+1(j2)∑

j1

∑
j2

fvari(j1)a∗j1j2
b∗i+1j2

bvari+1(j2)
.

Variational approximation to pD and the DIC

Our variational approximation to pD is

pD ≈ −2

∫
qθ(θ) log

(
qθ(θ)

p(θ)

)
dθ + 2 log

(
qθ(θ̃)

p(θ̃)

)
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= − 2

(∑
j1

∑
j2

(
n−1∑
i=1

qz(zi = j1, zi+1 = j2)

)
(Ψ (αj1,j2)−Ψ (αj1·))

+
K∑

j=1

n∑
i=1

qij

(
1

2

(
Ψ(

1

2
ηj)− log

δj

2

)
− 1

2βj

))

+ 2

(∑
j1

∑
j2

(
n−1∑
i=1

qz(zi = j1, zi+1 = j2)

)
log

(
αj1j2∑
j2

αj1j2

)
+

1

2

K∑
j=1

n∑
i=1

qij log

(
ηj

δj

))
.

The DIC value can then be found via the usual formula,

DIC = 2pD − 2 log p(y|θ̃),

in which p(y|θ̃) is found by summing over the final forward variable in the forward

algorithm:

p(y|θ̃) =
K∑

j=1

fvarn(j).

5 Application to Simulated and Real Data Sets

The variational Bayes algorithm is initialised with a larger number of hidden states

than one would reasonably expect to find in each of our applications. To initialise the

algorithm, the missing indicators z are randomly allocated to correspond one of the initial

states. We set all of the {αj1j2
(0)}s to be 1 in the Dirichlet prior. This is equivalent to

a multivariate uniform prior for the mixing weights. The remaining hyperparameters

were also chosen to correspond to non-informative prior distributions. In some cases, as

the algorithm progresses, the weighting of one state will dominate those of others whose

noise models are similar, causing the latter’s weightings to tend towards zero. When a

state’s weighting becomes sufficiently small, we consider less than 1 observation assigned

to the state as sufficient, it is removed from consideration and the algorithm continues
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with the remaining states. The algorithm converges to a solution involving a number

of states smaller than or equal to the initial number. The DIC and pD values are also

computed at each iteration.

Using variational methods to make inference about an HMM with Gaussian noise

leads to an automatic choice of model complexity since a feature of the algorithm is that

superfluous states are removed during convergence to the solution. It is also possible to

force the algorithm to converge to a solution with fewer states than the number selected

automatically by initialising the algorithm with a smaller number of states. In these

situations one might use the DIC value to select a suitable model.

5.1 Application to a Simulated Example

We simulated 3 datasets comprising 150, 500 and 1000 observations, respectively from a

3-state HMM with transition matrix

π =




0.15 0.8 0.05

0.5 0.1 0.4

0.3 0.4 0.3


 .

The Gaussian noise distributions had means of 1, 2 and 3, and standard deviations of

0.25, 0.1 and 0.7, respectively.

We explored the results of a variational analysis with several different numbers of

initial states. We also considered how our results changed with the number of observations

available. Tables 1-3 report the variational estimates of the posterior means and standard

deviations obtained in this way. These tables also show the corresponding estimated DIC

and pD values.

For the 150 and 500-observation datasets we were successfully able to recover a 3-state

solution with good posterior estimates of model parameters and transition probabilities

for every number of initial states. For the largest dataset (1000 observations), this was

the case in all but one of the initial number of states chosen.

It can be seen from the results that, in general, increasing the number of observations

in the sample leads to posterior estimates that are closer to the true parameters of
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the HMM from which they were simulated. This is to be expected from any inference

algorithm. Correspondingly, the better estimates obtained from the larger datasets lead

to lower DIC values for the model. This suggests that the DIC is a useful comparison

criterion in this setting.

For the smallest data set (150 observations), the number of initial states chosen did

not affect the resulting posterior. However, for the 500-observation dataset, the resulting

estimates were closer to the true parameters when the initial number of states used was 5

than when it was higher than this. The solution obtained by starting with only 5 initial

states also led to a smaller DIC value. This lends support to the assertion that this was

a better fit.

These results suggest to us that the initial number of states can affect how observations

are classified as the the algorithm converges. Interestingly, in our results this effect was

more pronounced when the number of observations was higher. Initialising the analysis

of the 1000-observation dataset with 20 states lead to a 4-state solution. However, one of

these four states only had 5 observations assigned to it. This suggests that if the initial

number of states is too large, some of the observations can become ‘stuck’ in their initial

allocation. Intuitively, we would expect that the larger the dataset, the more opportunity

there is for that to happen as there are more observations available to lend support to

a superfluous state in the model. It also takes longer for any superfluous states to be

removed. With this in mind, it seems that perhaps some caution has be exercised when

using an excessively large number of initial states, particularly if the observation set is

reasonably large.

5.2 Application to Real Datasets

The two datasets used in this section were analysed by Robert, Rydén, & Titterington

(2000) using RJMCMC and have also previously been analysed by other authors. We

analyse these datasets using our variational approach and compare our results with other

treatments of the data. We used uninformative priors here as we did in the simulation

study. We initialised the variational algorithm with 7 states for each application as it

did not seem feasible that the number of states would be any larger than this.
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Geomagnetic Data

The first dataset is made up of 2700 residuals from a fit of an autoregressive moving

average model to a planetary geomagnetic activity index. This dataset is analysed in

the paper by Francq & Roussignol (1997) using maximum likelihood techniques. In the

context of geomagnetic data, the pattern changes in the residuals of a time series analysis

often have useful interpretations.

Daily Returns Data

The second dataset is an extract from the Standard and Poors 500 stock index con-

sisting of 1700 observations of daily returns from the 1950s. It was previously analysed

using a computationally intensive classical approach by Rydén, Teräsvirta & Åsbrink

(1998) and was the dataset referred to as subseries E in their paper.

For the geomagnetic data, the variational algorithm fitted a 2-state model. The

estimated DIC value decreased as the algorithm converged. Here we describe the 2-state

model fitted by the variational algorithm. The variational posterior transition matrix is

[
0.982 0.018

0.187 0.813

]

and the variational posterior estimates are given in Table 4. The fitted density is plotted

in Figure 1.

The analysis by Robert, Rydén, & Titterington (2000) resulted in a 3-state model for

these data while Francq & Roussignol’s (1997) analysis selected a 2-state model as we did.

With this dataset the posterior estimates we obtain for the transition probabilities and

the state density standard deviations for our 2-state model are similar to those found by

Francq & Roussignol (1997) whose estimated parameters were π12 = 0.014, π21 = 0.16,

σ1 = 2.034 and σ2 = 5.840. Francq & Roussignol (1997) suggest that this two-state

model corresponds to tumultuous and quiet states, the tumultuous state being the one

with the higher variability. Since their model visits tumultuous states less frequently than

it does quiet states, and spends less time in them, they propose that these tumultuous

states might correspond to geomagnetic storms. As we obtained a fit similar to this,
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the variational solution can be interpreted similarly in this application. Therefore, our

variational posterior solution seems plausible in this context.

For the daily returns data, the variational algorithm fitted a 2-state solution which

had a variational posterior transition matrix given by

[
0.96 0.04

0.07 0.93

]

and variational posterior estimates given in Table 4. The fitted density is plotted in

Figure 2.

This solution shows similarities to that of Robert, Rydén, & Titterington (2000),

whose analysis favoured 2 or 3 states, as well as that of Rydén, Teräsvirta & Åsbrink

(1998), who fitted a 2-state model. Therefore, the variational 2-state posterior is consis-

tent with previous analyses. In the analysis by Robert, Rydén, & Titterington (2000), the

estimated transition probabilities for the 2-state model were π12 = 0.044 and π21 = 0.083,

and the estimated posterior standard deviations were σ1 = 0.0046 and σ2 = 0.0093.

These were similar to the estimates found by Rydén, Teräsvirta & Åsbrink (1998); their

estimates for the transition probabilities were π12 = 0.037 and π21 = 0.069, and their

estimated posterior standard deviations were σ1 = 0.0046 and σ2 = 0.0092. For this ap-

plication, the variational, RJMCMC and classical analyses have all produced comparable

results.

These applications have demonstrated that a variational scheme can produce posterior

estimates that are similar to those obtained through RJMCMC and computationally

demanding classical techniques. In addition, variational Bayes has the advantage of being

fast to implement. Since this is a highly desirable feature for many practical applications,

it would be a useful alternative to existing methods in many contexts.

6 Conclusions

We have seen that applying variational methods in the case of a hidden Markov model

with Gaussian noise leads to the automatic removal of components and therefore leads to
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an automatic choice of model complexity. Solutions with fewer states than the number

automatically selected can be obtained by initialising the algorithm with a number of

states smaller than the number obtained automatically. The variational approximation

also makes the calculation of the DIC possible and this can be used to choose between

competing models.

We have shown that the Variational Bayes approach for HMMs produces good pos-

terior estimates of parameters and can be used when the number of hidden states in

the model is unknown. The algorithm is also very fast, making it an attractive option

for complex applications. Variational methods have considerable potential for the anal-

ysis of HMMs, but there is much scope for further investigation into the state-removal

phenomenon which occurs in the implementation.
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RYDÉN, T., TERÄSVIRTA, T. & ÅSBRINK, S. (1998). Stylized facts of daily return

series and the hidden Markov model. J. Appl. Econometr. 13, 217-244.

SPIEGELHALTER, D.J., BEST, N.G., CARLIN, B.P. and VAN DER LINDE, A. (2002).

Bayesian measures of model complexity and fit (with discussion). J. Roy. Statist. Soc.

Ser. B, 64, 583-639.

WANG, B. & TITTERINGTON, D.M. (2006). Convergence properties of a general

algorithm for calculating variational Bayesian estimates for a normal mixture model.

Bayesian Anal., 1, 625-650.

WINN, J. & BISHOP, C.M. (2005). Variational message passing. J. Mach. Learn. Res.,

6, 661-694.

21



Appendix

The Forward-Backward Algorithm

The forward algorithm calculates the probability of being in state j at time i and the

partial observation sequence up until time i, given the model. The forward variable is

given by fvari(j1) = p(y1, y2, . . . , yi, zi = j1) and the algorithm proceeds as follows.

1. Calculate fvar1(j1) = πj1p(y1|z1 = j1) for j1 such that 1 ≤ j1 ≤ K, and then

normalise such that
∑K

j1=1 fvar1(j1) = 1, i.e. define

f̃var1(j1) =
fvar1(j1)∑K

j1=1 fvar1(j1)
.

2. For i = 1, . . . , n− 1 and each j2, calculate

fvar∗i+1(j2) = {
K∑

j1=1

f̃vari(j1)p(zi+1 = j2|zi = j1)}p(yi+1|zi+1 = j2).

We then normalise once again, giving

f̃vari(j1) =
fvar∗i (j1)∑K

j1=1 fvar∗i (j1)
.

3. We finally have

p(y1, . . . , yn) =
∑
j1

fvarn(j1) =
1

cn

K∑
j1=1

f̃varn(j1) =
1

cn

,

since
∑K

j1=1 f̃varn(j1) = 1, and where cn is the normalising constant fvar is multi-

plied by at the nth iteration.

We can calculate the nth normalising constant, cn, since one can obtain ci+1 from ci in

the following way:
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f̃vari+1(j2) =
{∑K

j1=1 f̃vari(j1)p(zi+1 = j2|zi = j1)}p(yi+1|zi+1 = j2)∑K
j2=1{

∑K
j1=1 f̃vari(j1)p(zi+1 = j2|zi = j1)}p(yi+1|zi+1 = j2)

=
ci{

∑K
j1=1 fvari(j1)p(zi+1 = j2|zi = j1)}p(yi+1|zi+1 = j2)∑K

j2=1{
∑K

j1=1 f̃vari(j1)p(zi+1 = j2|zi = j1)}p(yi+1|zi+1 = j2)

=
ci

di

fvari+1(j2),

where

di =
K∑

j2=1

{
K∑

j1=1

f̃vari(j1)p(zi+1 = j2|zi = j1)}p(yi+1|zi+1 = j2).

Thus,

ci+1 =
ci

di

.

The backward algorithm works back from the final time-point, n. The backward vari-

able is given by bvari(j1) = p(yi+1, yi+2, . . . , yn|zi = j1), i.e. the probability of generating

the last n− i observations given state j at time i. The recursive algorithm is as follows.

1. Set bvarn(j1) = 1, for all j1, and normalise such that
∑K

j1=1 bvarn(j1) = 1, i.e.

b̃varn(j1) =
bvarn(j1)∑K

j1=1 bvarn(j1)
.

2. For i = n− 1, n− 2, . . . , 1,

bvar∗i (j1) =
∑
j2

p(zi+1 = j2|zi = j1)b̃vari+1(j2)p(yi+1|zi+1 = j2).
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We normalise again, giving

b̃vari(j1) =
bvar∗i (j1)∑K

j1=1 bvar∗i (j1)
.

In the above algorithms, for p(zi+1 = j2|zi = j1) we use the quantity a∗j1j2
and for

p(yi+1|zi+1 = j2) we use the quantity b∗i+1j2
.
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List of Figures

Figure 1 : Kernel plot and fitted density for the geomagnetic dataset

Figure 2 : Kernel plot and fitted density for the daily returns dataset
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Table 1: Results for the simulated 150-observation dataset

No. of No. of Estimated Estimated pD DIC
Initial States Posterior Posterior
States Found Means st. dev.

20 3 1.05, 2.02, 2.86 0.25, 0.12 , 0.52 11.051 -82.67
15 3 1.05, 2.02, 2.86 0.25, 0.12 , 0.52 11.051 -82.67
10 3 1.05, 2.02, 2.86 0.25, 0.12 , 0.52 11.051 -82.67
5 3 1.05, 2.02, 2.86 0.25, 0.12 , 0.52 11.051 -82.67
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Table 2: Results for the simulated 500-observation dataset

No. of No. of Estimated Estimated pD DIC
Initial States Posterior Posterior
States Found Means st. dev.

20 3 1.01, 1.99, 2.83 0.25, 0.09, 0.83 11.01 -162.92
15 3 1.01, 1.99, 2.83 0.25, 0.09, 0.83 11.01 -162.92
10 3 1.01, 1.99, 2.83 0.25, 0.09, 0.83 11.01 -162.92
5 3 1.02, 1.99, 3.10 0.25 , 0.09, 0.69 12.01 -192.33
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Table 3: Results for the simulated 1000-observation dataset

No. of No. of Estimated Estimated pD DIC
Initial States Posterior Posterior
States Found Means st. dev.

20 4 1.00, 2.00, 2.84, 3.21 0.25, 0.11, 0.72, 0.43 18.75 -388.37
15 3 1.00, 2.00, 2.89 0.25, 0.10, 0.69 12.00 -401.00
10 3 1.00, 2.00, 2.89 0.25, 0.10, 0.69 12.00 -401.00
5 3 1.00, 2.00, 2.89 0.25, 0.10, 0.69 12.00 -401.00
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Table 4: Estimated posterior parameters for the geomagnetic and daily returns datasets

Dataset

Geomagnetic Daily Returns

Posterior means -0.209, 1.769 0.00084, -0.00145

Posterior standard deviations 1.997, 5.408 0.00453, 0.00898

Posterior weights 0.911, 0.089 0.63, 0.37
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Daily Returns Data
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