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M
ilestones in sparse 

signal reconstruction 

and compressive sens-

ing can be understood 

in a probabilistic 

Bayesian context, fusing underdeter-

mined measurements with knowledge 

about low-level signal properties in the 

posterior distribution, which is maxi-

mized for point estimation. We review 

recent progress to advance beyond this 

setting. If the posterior is used as a dis-

tribution to be integrated over instead 

of merely an optimization criterion, 

sparse estimators with better properties may be obtained, and 

applications beyond point reconstruction from fixed data can be 

served. We describe novel variational relaxations of Bayesian 

integration, characterized as well as posterior maximization, 

which can be solved robustly for very large models by 

 algorithms unifying convex reconstruction and Bayesian 

 graphical model technology. They excel in difficult real-world 

imaging problems where posterior maximization performance 

is often unsatisfactory.

INTRODUCTION

Signal reconstruction from noisy measurements is a core 

problem in signal processing and computational mathematics. 

At its heart lies ambiguity resolution 

between alternative data explanations, 

based on uncertain knowledge about 

signal properties. A general approach is 

to model such knowledge probabilisti-

cally and then to invert this causal 

description for inference about the sig-

nal, given the data.

In this section, we phrase sparsity-

penalized least squares reconstruction 

in a probabilistic Bayesian context, as 

maximization of the posterior distribu-

tion over signals conditioned on 

observed data. We motivate recent 

progress to advance beyond this setting, by embracing a dif-

ferent inference principle: Bayesian integration over the pos-

terior, rather than its maximization. We review variational 

relaxations of Bayesian integration that not only result in 

estimators with provably better properties than posterior 

maximization, but also further applications beyond point 

reconstruction from fixed data. These relaxations are solved 

by convex reconstruction and Bayesian graphical model algo-

rithms coming together, drawing a novel bridge between 

these concepts. In subsequent sections, we discuss large-scale 

algorithms, theoretical and empirical advancements, and 

demonstrate real-world improvements for magnetoencepha-

lography (MEG) and electroencephalography (EEG) source 

localization and new applications to magnetic resonance 

imaging (MRI).

[Improving and broadening 

the scope of compressive sensing]
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SPARSE SIGNAL RECONSTRUCTION

Consider the linear reconstruction problem. Given measure-

ments y [ R
m and design matrix X [ R

m3n, we seek u [ R
n, 

which minimizes the squared error || y2 Xu ||2. In MRI recon-

struction, u is an image slice (n pixels), y are noisy Fourier 

coefficients, and X a partial discrete Fourier transform. With 

less measurements than pixels (m , n), this problem is ill 

posed: many different u give zero error. Ideally, estimation 

should be biased towards known properties of the signal class.

If we apply derivative or wavelet filters B to an image bit-

map, the responses s5 Bu [ R
q exhibit statistical sparsity: 

most values are tiny, however, some can be large [1]. We 

assume that q $ n in the sequel. An important special case is 

B5 I . A remarkably robust low-level property of natural imag-

es, sparsity is what drives modern image compression and 

denoising methods. As sparsity of s is encouraged by way of 

the ,p penalty ||s||p
p 5 g i|si|

p for p # 1 [2], the ,p sparse 

reconstruction problem is biased towards images 

 min
u
s22||y2 Xu||21 2R,p

1u2,  R,p
1u2 5 ||Bu||p

p
Ja

q

i51

|si|
p, 

  p [ 10, 14,  s2 . 0, s5 Bu. (1)

A particularly important instance is ,1 reconstruction 1 p5 12 , a 

convex optimization problem whose unique solution û,1
 is a 

tradeoff between data fit and signal sparsity. In general, Bû,p
 is 

exactly sparse for p # 1, many of its  coefficients are equal to 

zero. The strongest ,0 penalty R,0
1u2 5 ||s||0 J g i I5si206 (which 

counts the number of  nonzeros in s) leads to maximally sparse 

solutions, meaning a maximal number of elements equal to 

exactly zero. 

With the advent of compressive sensing [2], [3], there has 

been growing interest in closely approximating maximally 

sparse reconstruction. However, problem (1) is nonconvex for 

any p [ 30, 1 2 , featuring many local minima. For p near zero, 

it becomes a combinatorial search, prohibitively expensive 

even for modest m, n, and q. For B5 I, celebrated results 

establish that û,1
 has the same sparsity profile (location of 

nonzeros) as û,0
 whenever the design X satisfies a restricted 

isometry property (RIP) [2], [3]: roughly, each 2|| û,0
||0 col-

umns of X  are close to orthonormal. While for randomly 

drawn X, RIPs hold with as little as m5O 1|| û,0
||0log n2  mea-

surements, they are not even remotely satisfied in many prac-

tical situations, where û,1
 tends to be much less sparse than û,0

 

(see the section “Properties of Automatic Relevance 

Determination”).

We can view ,p reconstruction as a decision procedure 

based on a probabilistic sparse linear model (SLM). If 

y5 Xu1 e, where e is white Gaussian noise with variance 

s2, the data likelihood is P 1y |u2 5N 1Xu, s2I 2 . Since 22log 

P 1y |u2 5s22|| y2 Xu ||2 up to a constant, it matches the 

squared error term in (1), while the penalizer R 1u 2  corre-

sponds to a prior distribution P 1u 2  over signals: R 1u 2  
~ 2log P 1u 2 . Statistical sparsity of s5 Bu is well captured by 

a Laplace prior distribution: P 1u 2 ~ w i
 ti 1si 2  with 

 ti 1si 2 5 e2ti |si |,  ti . 0, (2)

which corresponds to R,1
1u 2  in (1). Another example is given 

by Student’s t sparsity potentials 

 ti 1si 2 5 111 1ti /n2si
2 221n112 /2,    ti, n . 0, (3)

where n controls the degree of sparsity enforced. Combining 

P 1 y |u2  and P 1u 2  by rules of probability, we obtain the posterior 

distribution P 1u|y 2 ~ P 1 y|u 2P 1u2 , the general solution to our 

inference problem: 

 P 1u | y2 5 Z21N 1 y |Xu, s2I 2q
q

i51

ti 1si 2 ,  s5 Bu, (4)

where Z5 eN 1 y | Xu, s2I 2 w i
 ti 1si 2  du is known as the partition 

function. Bayesian inference amounts to computing posterior 

moments, such as the mean and (parts of the) covariance, which 

requires integration over (4). Sparse Bayesian inference is infer-

ence in SLMs. 

The posterior is a distribution over signals, representing our 

uncertainty in what u should be. We can decide for a single point 

by maximum a posteriori (MAP) estimation: argmaxu P 1u | y2 , or 

equivalently argminu2 logP 1y |u2 2 logP 1u2 . Note that MAP 

estimation does not require integration over the posterior. For a 

Laplace sparsity prior (2) with ti5 1, we recover ,1 sparse recon-

struction, and ,p variants are obtained for ti 1si 2 ~ e2ti|si |
p

. The 

Bayesian viewpoint provides a statistical context for linear recon-

struction, within which a particular way of point  reconstruction, 

MAP estimation, is equivalent to sparse reconstruction by penal-

ized least squares (1).

SPARSITY PRIORS

Both statistical and computational properties of SLM inference 

methods are determined by the choice of positive potentials 

ti 1si 2  in the prior P 1u2 ~ w i ti 1si2 . They allow us to enforce 

sparsity, a combinatorial property, within computationally trac-

table algorithms.

The statistical role of sparsity potentials is understood by 

inspecting the prior and posterior distributions they give rise 

to (Figure 1). For a high-dimensional Gaussian, which does 

not encourage sparsity, all coefficients si of typical samples are 

smallish, none are large or very small. In contrast, sparsity 

priors concentrate much more probability mass close to coor-

dinate axes, and typical samples have many tiny and a few 

dominant |si | [1], [4]. Conditioning on the same measure-

ments, we obtain posterior distributions with markedly differ-

ent properties [Figure 1(b)]. With sparsity priors, posterior 

mass is skewed towards coordinate axes, sparsity is enforced 

probabilistically, while Gaussian priors enforce nothing beyond 

uniformly small size. Note that sparsity priors have a distinct 

effect on the posterior mode: it is exactly sparse (see 

Figure 1(b), middle and right and the section “Sparse Signal 

Reconstruction”), a property not shared by its samples almost 

surely. For sparsity priors discussed in this article, posterior 
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distributions concentrate mass on sparse points (thus promote 

sparsity exactly rather than  statistically) only in limit cases, a 

notion we expand upon in the section “Benefits of Sparse 

Bayesian Inference.”

Most sparsity potentials are super Gaussian [5]: they can 

be represented as maximum of Gaussian functions 

(see Figure 2 and the section “Variational Sparse Bayesian 

Inference”). Sparsity is enforced by  non-Gaussian priors, yet 

their representations in terms of Gaussians allow for efficient 

algorithms. Among sparsity potentials, Laplacians stand out 

by being log-concave: siA log ti 1si 2  is concave. For such 

potentials, the posterior is unimodal with convex contours 

(Figure 1(b), left and middle), and MAP estimation (1) is a 

convex optimization problem. With non-log-concave priors, 

such as the Student’s t (3), the posterior has multiple local 

modes in general (Figure 1(b), right). We will see in the sec-

tion “Algorithms for Variational Sparse Bayesian Inference” 

that log-concavity can play much the same role for approxi-

mate Bayesian inference.

BENEFITS OF SPARSE BAYESIAN INFERENCE

Can sparse estimators with better properties than MAP estima-

tion (1) be obtained from P 1u| y2? Moreover, sparse point recon-

struction from given data being a means to an end, how can 

real-world applications be furthered by posterior information 

beyond its mode? In this section, we motivate advancements in 

sparse reconstruction and beyond, by using P 1u| y2  as a distri-

bution to be integrated over, rather than a criterion to be maxi-

mized. Computational aspects are discussed in the section 

“Variational Sparse Bayesian Inference.”

Shortcomings of MAP become evident for neuronal current 

source localization (see the section “Source Localization and 

Group Sparsity Penalization”), a typical real-world signal pro-

cessing estimation problem. A smooth nonlinear model f 1 # 2  is 

densely sampled at n locations ui, and sources are reconstruct-

ed from sensor readings y by sparse estimation with 

X5 3f 1ui24. Convex ,1 reconstruction tends to perform poorly. 

Measurements are noisy and RIPs (see the section “Sparse 

Signal Reconstruction”) are violated: columns of X are strong-

ly correlated, a rule rather than an exception in real-world 

imaging applications. Nonconvex MAP reconstruction does 

not do well either: 2logP 1u| y2  has many shallow local mini-

ma, which efficient optimizers tend to get stuck in. 

A Bayesian approach can alleviate these problems in many 

situations, computing the posterior mean E 3u | y45 euP 1u| y2  du 

instead of its mode, integrating instead of maximizing over 

P 1u| y2 . While the mean is not exactly sparse (see the section 

“Sparsity Priors”), this is enforced by taking a zero temperature 

limit, for example by computing E 3u| y4 for the Student’s t 

potentials (3), then letting n S 0. An approximation to this pro-

cedure, detailed in the section “Variational Sparse Bayesian 

Reconstruction,” performs substantially better in source local-

ization practice than ,p sparse reconstruction for any 

p [ 10, 1 4. The terminology “zero temperature limit” comes 

from statistical physics [6]. With decreasing temperature, the 

posterior concentrates on the “ground states,” which are the ,0 

solutions in our case (see the section “Properties of Automatic 

Relevance Determination”). 

To motivate these advancements, note that P 1u| y2  is a prob-

ability density function, ranking u not by its height but by the 

mass surrounding it. For non-log-concave SLMs, mass tends to 

concentrate at deep optima, but many more shallow local opti-

ma stand for less sparse data explanations supported by very lit-

tle posterior mass (Figure 1(b); right). MAP estimation is blind 

to mass and easily trapped in any shallow optimum, while such 

are mainly averaged out by Bayesian integration. Moreover, the 

posterior P 1u| y2  encodes dependencies between different signal 

hypotheses, which shape its moments more than its modes, and 

perfect reconstruction can be established under weaker condi-

tions on X than RIPs for the ,1 relaxation [7]. 

The posterior for a sparse linear model is useful far 

beyond point reconstruction. For example, prediction confi-

dences are naturally provided by the posterior covariance 

matrix Cov 3u|y 4. Posterior covariance represents the struc-

ture of remaining uncertainty in u, information different 

from any single best guess the like mode or mean, which 

allows to optimize data acquisition as such. Optimizing X by 

Bayesian experimental design can strongly improve subse-

quent sparse reconstruction [8], and is used to shorten scan 

time in MRI (see the section “Sampling Optimization of 

Magnetic Resonance Imaging”). 

VARIATIONAL SPARSE BAYESIAN INFERENCE

The advantages of Bayesian inference could well be offset by its 

computational difficulty. In general, given a high-dimensional 

function of the known structure, it can be much more difficult 

to accurately evaluate integrals over it than to find its mode. 

Gaussian Laplace

(a)

Very Sparse

(b)

[FIG1] (a) Different prior distributions with the same variance 
(Gaussian, Laplace (2), and t(s)~e2t|s |0.4

 ), together with 
placement of one measurement (same for all). (b) Corresponding 
posteriors for same measurement. Mass is skewed towards the 
coordinate axes for sparsity priors, the mode is exactly sparse. 
Posteriors for Gaussian, Laplace are log-concave. (Figure courtesy 
of F. Steinke.)
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While there is a large and diverse body of approximate 

Bayesian inference technology, until recently none of these 

methods, applied to sparse linear models, could match the 

computational efficiency and theoretical characterization of 

MAP. In this section, we motivate a variational approximation 

to sparse Bayesian inference, which can be solved efficiently 

and reliably for very large SLMs and for which several advan-

tages over MAP estimation can be established. 

Bayesian inference in SLMs, integrating over the posterior 

(4), is intractable for two reasons coming together: P 1u | y2  is 

highly coupled (X is not block diagonal) and non-Gaussian. 

Two major classes of inference approximations are Markov 

chain Monte Carlo (MCMC) and variational relaxations [6]. In 

MCMC, P 1u| y2  is represented by samples, which are generated 

by random walks. While unbiased results are obtained in the 

infinite time limit, there are no realizable convergence diag-

nostics, making MCMC hard to use in practice. Moreover, stan-

dard MCMC samplers tend to converge very slowly for highly 

coupled models such as SLMs. While MCMC has recently been 

applied to sparse reconstruction [7], [9], it will play no further 

role in this article. 

In variational approximations, Bayesian inference is relaxed 

to feasible optimization problems. While many different meth-

ods fall under this umbrella term (see [6] and [10] for a 

detailed overview), the particular approximation of interest 

here illustrates the main issues. Our goal is to fit P 1u | y2  by a 

Gaussian distribution Q 1u | y; g2  parameterized by g, minimiz-

ing a  divergence measure between P 1u|y 2  and Q 1u| y2  (sup-

pressing g-dependence for lighter notation), which we 

construct in the following way. We exploit super-Gaussianity of 

the prior potentials (see Figure 2 and the section “Sparsity 

Priors”), meaning that ti 1si 2 5maxgi$0 e
2si

2/ 12gi
22hi

1gi
2/2 [5]. For 

example, for Laplace potentials (2), we have hi 1gi 2 5t i
2gi. 

P lugging these  into  the  log  part i t ion funct ion 

log Z5 logeN 1 y| Xu, s2I 2 w i ti 1si 2  du of the posterior (4), we 

obtain a representation purely in Gaussian terms. While still 

intractable, we note that the integral can easily be evaluated for 

any fixed g, as the log partition function of the Gaussian dis-

tribution Q 1u| y2 ~ N 1y| Xu, s2I 2e2sTG21s/2. Each of these trac-

table Gaussian integrals lower bound log Z, so that

 log Z $ max
gf0  

log3N 1 y | Xu, s2I 2e2sT G21s/22h1g2/2 du,

 s5Bu,  G J diag g, (5)

where h 1g2 J g q
i51hi 1gi2 . The variational inference problem 

constitutes in optimizing this lower bound: we fit Q 1u| y2  to 

P 1u| y2  by maximizing the right-hand side of (5) or equiva-

lently by minimizing the divergence criterion 22log 

eN 1 y| Xu, s2I 2e2sTG21s/2 du1 h 1g2 . Note how both the approx-

imation family 5Q 1u|y 2 6 and divergence are implied by lower 

bounding log Z in a particular way. While this relaxation has 

been known for some time [5], [11], most properties dis-

cussed in this article are recent. Its application to SLMs is 

algorithmically and theoretically far better understood than 

for other approximations, and it can be solved for much 

 larger models. 

We can relate the variational inference problem (5) to MAP 

estimation directly: the latter is obtained from the former by 

replacing ecdu (integration over u) with maxu (optimization 

over u). Advantages of variational Bayesian inference over MAP 

are ultimately due to this difference. A zero temperature limit 

case of our variational inference problem (the Student’s t poten-

tials, n S 0; see the section “Benefits of Sparse Bayesian 

Inference”) gives rise to a sparse point reconstruction method 

known as automatic relevance determination (ARD), (see the 

section “Variational Sparse Bayesian Reconstruction”), while 

instantiating (5) with proper priors (e.g., ,p-based potentials with 

p [ 10, 1 4 or the Student’s t with n . 0) allows for Bayesian 

inference applications beyond sparse point estimation. The fol-

lowing points are discussed in the remainder of the article. 

For sparse reconstruction, ARD is an attractive alternative  ■

to convex or nonconvex MAP estimation (1). In the zero 
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(b)

6 8
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4
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γ

[FIG2] Super-Gaussian potentials t(s) admit tight 
  Gaussian-form lower bounds of any width g. Formally, 
t(s) 5 maxg$0e2s2/ (2g)2h(g)/2. (a) Laplace (2). (b) Student’s t (3). 
(Figure courtesy of H. Nickisch.)
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noise limit s2
S 0, ARD’s global minimum points are those 

of ,0 reconstruction, yet it comes with far fewer local mini-

mum points in general than strongly nonconvex MAP relax-

ations. Empirically, it can substantially outperform both ,1 

and nonconvex ,p reconstruction in brain imaging applica-

tions, where columns of X are strongly correlated (see the 

section “Source Localization and Group Sparsity 

Penalization”). ARD, as opposed to MAP reconstruction, 

exploits nonuniform coefficient scaling of the ,0 solution, a 

stable feature of real-world signals such as natural images 

(see the section “Properties of Automatic Relevance 

Determination”). 

Variational sparse Bayesian inference (5) is a convex opti- ■

mization problem if and only if MAP estimation is convex for 

the same model (see the section “Algorithms for Variational 

Sparse Bayesian Inference”). It is instrumental in driving 

nonlinear Bayesian experimental design, which can be used 

to optimize measurement designs X in real-world medical 

imaging settings (see the section “Sampling Optimization of 

Magnetic Resonance Imaging”). 

The variational inference relaxation (5) is solved by dou- ■

ble-loop algorithms, scaled up to very large models by reduc-

tions to convex reconstruction and Bayesian graphical model 

technology. Solving the ARD problem (locally) with these 

algorithms comes at the cost of a small number of reweight-

ed ,1 MAP problems (see the section “Properties of Automatic 

Relevance Determination”).

GAUSSIAN BAYESIAN GRAPHICAL MODELS

What does it take to solve the variational problem (5)? Can we 

use MAP estimation technology, or do we need computations of 

a different kind? At the least, we will need gradients w.r.t. g21 

=g21log3N 1y|Xu, s2I 2e2sTG21s/2 du521EQ 3si|y421VarQ 3si|y4 2 /2.

We require means and variances of the marginal distributions 

Q 1si | y2 , Bayesian inference in Gaussian models. While com-

mon MAP algorithms (such as iteratively reweighted least 

squares) reduce to Gaussian mean computations equivalent to 

1EQ 3si |y4 2 , variances are not part of them. Fortunately, we can 

approximate both means and variances by Bayesian graphical 

model algorithms. 

An (undirected) graphical model describes structure in a 

family of multivariate probability distributions by way of an 

undirected graph G, with nodes representing random variables 

(say, x1, c, xn) and the absence of edges indicating conditional 

independence relationships. The latter can be used to dramati-

cally simplify the computation of marginal posterior distribu-

tions P 1xi 2 , which by brute force scales exponentially in n. The 

formalism unifies ideas scattered across many disciplines: 

prominent examples are hidden Markov models, Kalman filter-

ing, and low-density parity-check decoding [6]. Model distribu-

tions factorize into nonnegative potential functions defined 

on the cliques (fully connected node subsets) of G: 

P 1x1, c, xn 2 5 Z21wC[C cC 11xi 2 i[C 2 ,  a representation in 

terms of local functions. In Figure 3, x1, x3, x4 are separated by 

x2, a structure that simplifies computations: P 1x1 2 ~g x2, x3, x4
C12 1 x1, x2 2C23 1 x2, x3 2C24 1 x2, x4 2  5 g x2

C12 1x1, x2 21g x3C23 1x2, x3 22 1g x4C24 1x2, x4 22 . The basic elements of these 

computations are messages miS j 1xj 2  passed along edges of G: 

P 1x1 2 ~ m2S1 1x1 2  is obtained from m3S2 1x2 2 ~ g x3C23 1x2, x3 2  
and m4S2 1x2 2 ~ g x4C24 1x2, x4 2  through the local sum-product 

message passing rule. For tree (singly connected) graphs G, the 

message passing (or belief propagation) algorithm  computes all 

marginals P 1xi 2  with 2 1n2 1 2  sum-product operations [6].

For graphs with cycles, message passing becomes loopy 

belief propagation, an iterative algorithm for approximate 

inference, whose convergence and marginal error properties 

are subject to intense ongoing research [6]. The junction tree 

algorithm speeds up marginal computations even for loopy 

sparse G, but remains generally intractable. Exact inference 

for discrete variable models is NP-hard [6]. For Gaussian 

models, exact inference requires O 1n3 2  time and O 1n2 2  space, 

which for very large n is practically prohibitive. G is deter-

mined by the sparsity pattern of the inverse covariance matrix 

A5 Cov 3x 421: 1 ij 2  is an edge iff aij 2 0 [Figure 3(b)], and the 

sum-product rule coincides with Kalman filtering equations. 

Whenever Gaussian loopy message passing converges (suffi-

cient conditions for convergence are well understood), mar-

ginal means are correct, while variances are approximate in 

general [12]. Nevertheless, Gaussian message passing forms 

an integral part of today’s most successful large scale variance 

approximations (see the section “Double-Loop Algorithms”).

Gaussian inference fails to capture statistical sparsity (see 

the section “Sparsity Priors”), while sparse MAP estimation does 

not quantify prediction uncertainty and falls short of Bayesian 

averaging. However, we will see that their combination is suffi-

cient to drive variational sparse Bayesian inference.

ALGORITHMS FOR VARIATIONAL 

SPARSE BAYESIAN INFERENCE

In this section, we describe efficient double-loop algorithms for 

solving the variational relaxation (5) at large scales and charac-

terize its convexity. Full details are found in [13]–[15].

m
2

→
1
(x

1
)

m 3→
2
(x 2

) m
4→

2 (x
2 )

1

2

3 4

A =

(a) (b)

[FIG3] (a) Tree-structured graphical model. Messages miS j 
(xj), 

computed by the sum-product rule, are passed along edges. (b) 
Inverse covariance matrix structure for Gaussian model on the 
left (black squares indicating potential nonzero elements).
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Off-the-shelf optimization of (5) is not a viable option for 

very large models. Recall the form of the Gaussian posterior 

approximation Q 1u | y2 , parameterized by g f 0. In particular, 

i t s  covar iance  matr i x  i s  CovQ 3u | y45 A21,  where 

A J s22XTX1 BTG21B. As the integration is over a Gaussian, 

we can convert it into an optimization [13], obtaining the fol-

lowing reformulation of (5):

min
gf0

 min
u
5f 1u, g2 J log| A|1s22|| y2Xu ||21 sTG21s1 h1g26. 

 (6)

Recalling our comments in the section “Variational Sparse 

Bayesian Inference,” the precise relationship between variation-

al inference (5) and the MAP problem is clear now: their criteria 

differ solely in the log| A| term. Gaussian integration over u 

introduces dependencies between variables according to the 

posterior covariance (see the section “Benefits of Sparse 

Bayesian Inference”), giving rise to the coupling term log|A| not 

present in MAP. While the variational inference problem can be 

phrased as penalized least squares problem (1) with 

RVB 1u2 5min gf0 log| A|1 h 1g2 1 sTG21s, this term does not 

come with the separable structure of MAP penalties (it cannot 

be expressed in the form f 1u2 5g i fi 1si22 .
The reformulation (6) is essential for constructing efficient 

solvers. It is a jointly convex problem iff h 1g 2  is convex, equiv-

alent to all ti 1si 2  being log-concave [14], [16]. Recalling the 

role of log-concavity for MAP (see the section “Sparsity 

Priors”), the variational inference problem is convex if and 

only if MAP estimation is convex for the same model. This 

property sets (5) apart from all other continuous-variable 

inference approximations we are aware of. Popular techniques 

like structured mean field [10] are nonconvex in general, oth-

ers like expectation propagation [6] are not even provably con-

vergent algorithms.

DOUBLE-LOOP ALGORITHMS 

The joint minimization of (6) is difficult due to the coupled 

term log| A|, but a concept known as concave-convex or 

majorize-minimize applies. The critical term is a concave func-

tion of g21. By Legendre duality, we have that log| A|5  

min zf0 zT 1g212 2 g1
* 1z 2  for some function g1

* 1z 2 ,  and as 

detailed in [13] and [14], (6) can be converted into

   min
zf 0

amin
u
s22i y2Xui 22 2a

q

i51

 logti"zi1 s2
i 2 g1

* 1z 2 . (7)

For any fixed z, we have a separably penalized least squares 

problem w.r.t. u of the same form (1) as MAP estimation (in fact, 

MAP estimation would be obtained precisely by setting all zi5 0). 

For Laplace potentials (2), this inner problem is (1) with 

R 1u 2 5 g i
 ti "zi1 s2

i .

Our double-loop algorithm [13], [15] iterates between inner 

loop minimizations of (7) over u (which involve posterior mean 

calculations 1EQ 3si |y42  as commonly used for MAP estimation), 

and outer loop updates of z (see Figure 4). The latter are given 

by z d =g21log| A|5 diag21 1BA21BT 2 5 1VarQ 3si | y4 2 , they re -

quire computing Gaussian variances. The variational relaxation 

(5) is solved at large scales by penalized least squares recon-

struction and Gaussian model inference joining forces. The 

algorithm is guaranteed to converge to a stationary point [15], 

whether (5) is convex or not. It converges orders of magnitude 

faster on large SLMs than other approximate inference methods 

we are aware of. For non-log-concave prior potentials, a simple 

variant of (7) ensures that merely convex inner loop problems 

have to be solved [16].

While in Gaussian models, posterior means 1EQ 3si | y42  are 

obtained solving a single linear system by the conjugate gradi-

ents algorithm, no similarly general and efficient method is 

known for the variances 1VarQ 3si | y4 2 . Today’s most promising 

variance approximations use graphical model message passing 

(see the section “Gaussian Bayesian Graphical Models”) or fit A 

by a low rank matrix [17], for example, by using the Lanczos 

algorithm [13], [18]. Message passing is used as subroutine in 

methods that approximate Q 1u| y2  by tree-like graphs [17], [19] 

or in Gauss-Seidel algorithms [20]. Distributed message passing 

computations can be used together with Lanczos methods to 

address very large models (see the section “Sampling 

Optimization of Magnetic Resonance Imaging”). Effects of low 

rank variance approximation errors on the problem (7) are ana-

lyzed in [21]. 

VARIATIONAL SPARSE BAYESIAN RECONSTRUCTION

Bayesian inference can be used for sparse point reconstruction by 

computing the posterior mean euP 1u| y2  du in a zero tempera-

ture limit (see the section “Benefits of Sparse Bayesian Inference”), 

where posterior mass is concentrated on exactly sparse points. A 

variational approximation thereof, known as ARD [15], is obtained 

from (5) with Student’s t potentials (3), letting n S 0, which ren-

ders h 1g2 5g i loggi [14]. The role of this concave function, 

unbounded below as gi S 0, is to drive components of g to zero. 

It is easy to see that 5gi5 06 implies the elimination of si: the 

Gaussian Q 1u | y2  is a degenerate distribution, fixing components 

of s to zero. In contrast, degenerate Q 1u | y2  cannot arise in 

φ∩ φ∪φ∪

φ∩ + φ∪
φ/ + φ∪

γt γt+1

φ/

(a) (b)

[FIG4] (a) Illustration of double-loop algorithm to minimize 
f(g) 5 f"(g) 1 f:(g), f" concave, f: convex. (b) Outer loop 
iteration starting at gt : (1) bound f" by affine f/, tangent at gt, 
then (2) minimize convex upper bound f/ (g) 1 f:(g) to obtain 
g 

t11. While the algorithm in the section “Double-Loop 
Algorithms” exploits concavity in g21, the same principle 
applies. (Figure courtesy of H. Nickisch.)
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 variational inference for normalizable potentials ti 1si 2 , where 

gs0 throughout.

REWEIGHTED ,1 ALGORITHM

In the ARD zero temperature limit, we can use an alternative to 

the double-loop algorithm above, enjoying the same global con-

vergence property but some additional benefits [15]. Since 

gAlog|A|1g iloggi is concave for g f 0 [14], Legendre duality 

provides its representation as min zf0 zTg2 g2
* 1z2  (see Figure 4) 

g*
2 1z 2 , and as detailed in [15], (6) is converted into 

 min
zf0

amin
u
s22|| y2 Xu||21 2a

q

i51

zi
1/2|si |b 2 g2

* 1z2. (8)

In this case, the inner loop problem is a reweighted form of ,1 

reconstruction (1), whose minimizer is exactly sparse. Running 

this double-loop algorithm often requires many less outer loop 

iterations than the method of the “Double-Loop Algorithms” sec-

tion applied to ARD, since the bound on log|A| used here is tighter 

for gi < 0. Moreover, it is easier to add additional convex con-

straints on u [22]. Outer loop updates are given by 

zi d 112 VarQ 3si |y4 /gi 2 /gi. If ||g ||0 V q, these values can be 

computed efficiently by low-rank formulae [22], [23].

PROPERTIES OF AUTOMATIC 

RELEVANCE DETERMINATION

In this section, we show that ARD can offer substantial advantages 

over separable (convex or nonconvex) MAP estimation when 

searching for maximally sparse solutions. These improvements 

have to be offset against an increase in running time, since ,1 

reconstruction has to be run a few times (see the section 

“Reweighted ,1 Algorithm.”) Detailed accounts of these results, 

including all proofs, are found in [22] and [23]. We will assume 

that m , n (less observations than signal components), and that 

each subset of m columns of X is linearly independent. Moreover, 

B5 I in this section, and s5 u. For simplicity, we restrict our-

selves to the zero noise limit (s2
S 0), for which ,0 reconstruc-

tion becomes

 min
u
e||u||05a

n

i51

I5ui206f  such that y5 Xu, (9)

while ARD becomes

 min
u
RVB 1u2 such that y5 Xu, (10)

where 

 RVB1u25min 
gf0

log|XGX T|1uTG21u5min
zf0

2 a
n

i51

zi
1/2|ui|2g2

* 1z2

(which holds up to an additive constant [14]).

Since the ,1 MAP relaxation of maximally sparse ,0 recon-

struction is exact when RIPs hold true (see the section “Sparse 

Signal Reconstruction”), we focus on practically relevant situ-

ations where such conditions for X are violated (see the sec-

tion “Source Localization and Group Sparsity Penalization”). 

There is growing empirical evidence that the variational ARD 

method can substantially outperform separable MAP-like 

relaxations in many such cases (for example, Figure 5), and 

our aim is to provide sound explanations for these findings. 

Our results do not necessarily imply that ARD improves upon 

MAP reconstruction uniformly over all sufficiently sparse 

instances, but rather that it exploits additional structure in 

the signal beyond exact sparsity, thus is in general much less 

reliant on X obeying RIPs to work well. 

Separable MAP-like relaxations often fail to closely 

approximate (9) for one of the following reasons. For a con-

vex MAP relaxation (e.g., ,1 reconstruction), the global solu-

tion is not sufficiently sparse, thus biased away from 

maximally sparse solutions of (9). One way to decrease such 

bias is to employ MAP with stronger, non-log-concave poten-

tials (e.g., minimizing ,p with p < 0, or running MAP with 

the Student’s t in the n S 0 limit). However, such criteria 

are notoriously hard to optimize, and many algorithms get 

1

0.8

0.6

Highly Scaled Nonzeros

Unit Nonzeros

0.4

0.2

0

0

10 15 20 25 30

E
rr

o
r 

R
a
te

1

0.8

0.6

0.4

0.2

E
rr

o
r 

R
a
te

OMP

BP

ARD

||u ||0

10 15 20

(a)

(b)

25 30
||u ||0

OMP

BP

ARD

[FIG5] Comparison of ARD sparse Bayesian reconstruction (10), 
using the algorithm from the section “Double-Loop Algorithms,” 
with basis pursuit (BP), solving the <1 problem (1) for s2 5 0, 
and orthogonal matching pursuit (OMP), a greedy method for 
solving (9) locally. Data generation: m 5 50, n 5 100, columns of 
X drawn uniformly of unit norm, true vectors u r with support 
size d [ [10, 30], nonzeros either from (a) highly scaled 
distribution or (b) set to one, y 5 Xu r ( m, n, d guarantee that u r 
maximally sparse in general). Error rates (fraction of failure to 
find sparsity pattern of u r) were estimated by running 1,000 
repeats each. (a) As expected, BP performs identical in both 
settings, while OMP and especially ARD benefit from 
nonuniform scaling. (b) Even in the worst case of identical 
nonzeros, ARD outperforms the other methods. 
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stuck in poor local solutions. Another option is to employ a 

nonseparable penalizer R 1u2 . This is the route taken by ARD, 

whereby the penalizer RVB 1u2  is obtained in a principled 

manner through Bayesian integration. In the zero noise 

limit, ARD (10) has precisely the same global maximum 

points as the ,0 problem (9). However, while nonconvex MAP 

relaxations sharing this global minima condition are plagued 

by a provably large number of local minima, Bayesian averag-

ing serves to smooth away many (and typically most) subop-

timal local solutions in the variational ARD criterion.

It is understood in great detail by now how the difficulty of 

sparse reconstruction grows with the number of nonzeros in 

the optimal ,0 solution û,0
. However, the size distribution of 

nonzeros in û,0
 can play a substantial role as well. This fact has 

largely been overlooked so far [2], quite possibly because the 

recovery performance of the ,1 MAP relaxation is invariant to 

rescaling the nonzeros in û,0
. Nonuniform coefficient scaling is 

a property of most real-world signal classes of interest (for 

example, distributions of natural image wavelet coefficients are 

scale-free and vary over a large dynamic range [1]). In contrast 

to ,1 reconstruction, such scaling is successfully exploited by 

ARD whenever present (see Figure 5). The following result con-

firms these observations: whenever the coefficient scaling of û,0
 

is sufficiently nonuniform, the ,0 solution is the only local mini-

mum point of the ARD criterion. Say that u r with ||u r ||0 # k 

obeys scaling constraints 1wi2 [ 10, 14k21  of order k if 

|ur1i112 | # wi|ur1i2 | for i5 1, c, k2 1, where 1ur1i22  is a permu-

tation of u r in nonincreasing (absolute) coefficient ordering: 

|ur1i112 | $ |ur1i2 |. Then, for any X, there exists scaling constraints 

of order m2 2, so that for any signal u r, ||ur||0 , m obeying 

these constraints and y5 Xu r, ARD has no local minimum 

point apart from u r, and u r will necessarily equal the unique, 

maximally sparse solution.

Finally, as the reweighted ,1 double-loop algorithm from the 

section “Reweighted ,1 Algorithm” is typically started with 

straight ,1 reconstruction (z5 1 for the first outer loop step), it 

is important to stress that apart from increased running time, 

there is no risk involved in running further iterations and 

 progressing beyond convex MAP estimation. The sparsity ||u* ||0 

for successive inner loop minimizers u* is nonincreasing, so 

that ARD’s recovery performance cannot be worse than that of 

,1 MAP estimation. Moreover, given any X and sparsity profile 

S ( 51, c, n6  [location of nonzeros; |S| # 1m1 12 /2] for 

which ,1 reconstruction fails to recover some û,0
, running sub-

sequent ARD iterations can always lead to successful recovery. 

Precisely, there are sets 5y5 Xu r6 of nonzero Lebesgue mea-

sure, u r with sparsity profile S, for which the ARD reweighted 

,1 algorithm always succeeds in solving (9), yet ,1 reconstruc-

tion (1), the tightest convex relaxation of the ,0 problem, always 

fails. This statement in particular covers instances for which 

RIPs do not hold.

APPLICATIONS

Bayesian methods for sparse linear models are useful for 

sparse point reconstruction, and beyond for decision making 

based on uncertain, highly underdetermined knowledge. In 

this section, we provide examples for sparse Bayesian inference 

and point reconstruction of particular interest to signal and 

image processing.

SAMPLING OPTIMIZATION OF 

MAGNETIC RESONANCE IMAGING

In MRI [24], image slices are reconstructed from coefficients 

sampled along smooth trajectories in Fourier space (phase 

encodes). In Cartesian MRI, phase encodes are dense columns 

(or rows) in discrete Fourier space. The most serious limiting 

factor is long scan time. MRI is a prime candidate for compres-

sive sensing in practice [25], [26]: if quality images can be 

reconstructed from an undersampling, time is saved at no 

additional costs. The success of sparse reconstruction on real-

istic images is mainly determined by the choice of the design 

X [8], [26]. This empirically well-established fact, not captured 

by current compressive sensing theory, motivates the optimi-

zation of X, which can be done with Bayesian experimental 

design. A good explanation for the apparent mismatch between 

theory and real imaging practice is that assumptions made by 

the theory do not come close to capturing real-world image 

structure [8].

Bayesian experimental design makes use of posterior cova-

riance Cov 3u | y4, quantifying the dependency structure of 

remaining uncertainty in u, in that subsequent phase encodes 

are aligned with directions of maximum uncertainty, optimiz-

ing X in a greedy sequential manner. Our algorithm iterates 

between scoring phase encodes X* based on the posterior 

approximation Q 1u| y2  for the current data 1X, y 2 , extending 

X by the winner X* and y by corresponding new data y*, and 

refitting Q 1u| y2  [Figure 6(a)]. The scoring criterion to be 

maximized is IQ1u | y2 1X*
2 5 11/22 log| I1 X*

T A21X*|, an approxi-

mation to the information gain [27], [4]. Computing 

5IQ1u | y2 1X*
26 for a large set of candidate encodes X* is closely 

related to computing Gaussian variances 1VarQ 3sj | y4 2  for all 

components sj, and essentially the same technology can be 

applied (see the sections “Gaussian Bayesian Graphical 

Models” and “Double-Loop Algorithms”). This procedure was 

implemented for a study with Cartesian MRI scans of the 

human brain [13], [26], driven by the convex variational 

relaxation (5) with Laplace prior potentials (here, 

n5 131,072, q < 3n, m up to 13/4 2n, and u are complex-val-

ued). Optimized designs X clearly outperform setups drawn at 

random from engineered variable-density ensembles [25], 

when either are applied to a wide variety of test data 

(Figure 6(b); note that all reconstructions for given designs X 

are done by conventional ,1 MAP estimation). This framework 

is not specific to MRI and applies to other image acquisition 

modalities as well. It is an instance of adaptive compressive 

sensing, choosing X actively based on representative real-

world data using concepts from machine learning. Adaptive 

compressive sensing schemes have to maintain some repre-

sentation of uncertainty over all coefficients beyond single 

best estimates, such as the measurement budget distribution 
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in distilled sensing [28], a recent adaptive  reconstruction 

method. Distilled sensing is an online adaptive scheme (X has 

to be re-learned for each reconstruction), while Bayesian 

experimental design aims to find designs that generalize well 

to unseen data. Moreover, distilled sensing has not been 

applied to real-world images. 
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In realistic MRI experiments, a stack of neighboring image 

slices is acquired in an interleaved fashion. Bayesian design 

optimization can be generalized to this setting, representing 

dependencies between slices, if the double-loop algorithm is 

configured with parallel convex reconstruction and approximate 

Kalman smoothing [29]. The Markov structure of this very large 

setup is exploited by graphical model technology to iteratively 

reduce computations to the single slice case (see the section 

“Gaussian Bayesian Graphical Models”). 

SOURCE LOCALIZATION AND 

GROUP SPARSITY PENALIZATION

A basic problem in array processing is source localization [30]. 

Measurements y [ R
m  are modeled as P 1 y |a, Q25 

N Qy |ak

j51
aj f 1u1 j22 , s2I R, where Q5 3u1 j 2 4 [ R

r3k represents 

k  source locations, a [ R
k  signal amplitudes, and 

f 1 # 2  : Rr
S R

m is a fixed nonlinear signal transduction function. 

The number of active sources k must be learned along with 

their locations. Estimating a, Q and k is an intricate nonconvex 

optimization problem, a powerful alternative to which is offered 

by sparse estimation. We densely sample locations at n W m 

points 5ui6 and apply sparse Bayesian reconstruction with 

X5 3f 1ui24. Upon convergence to u*, the nonzeros correspond 

to a, k d ||u*||0, and relevant locations u 1 j2 correspond to 

active columns of X. Due to favorable properties described in 

the section “Properties of Automatic Relevance Determination,” 

estimates are much less dependent on initialization or the local 

minimum profile of the likelihood than in the  traditional non-

linear setup. Sparse Bayesian source localization has been 

applied successfully to tomographic imaging of neuronal cur-

rent sources by MEG and EEG [31]. The ARD double-loop algo-

rithms discussed above scale well to realistic problem sizes, e.g., 

m5 300 sensors and n5 106 voxels, significantly outperform-

ing results for ,1 MAP reconstruction (see Figure 7). As noted in 

the section “Benefits of Sparse Bayesian Inference,” this can be 

explained by RIPs [3] certainly being violated: due to dense sam-

pling and smoothness of f 1 # 2 , columns of X are strongly corre-

lated. Similar to MRI (see the section “Sampling Optimization 

of Magnetic Resonance Imaging”) or most imaging modalities 

in practice, this property of X is not negotiable. Other success-

ful applications of ARD include direction-of-arrival estimation 

for sonar and radar processing [30], [32]. 

Our algorithms are easily extended to incorporate group 

sparsity penalization [33], [34]. If s5 Bu decomposes into 

subvectors si (for example, columns of a matrix), we may 

replace ti 1si 2  (scalar si) by ti 1 ||si ||2 , || # || the Euclidean norm. 

For example, if s is complex-valued (see the section “Sampling 

Optimization of Magnetic Resonance Imaging”), the encoding 

si [ R
2 naturally leads to group penalization. A more general 

example is the simultaneous sparse approximation problem, 

arising in applications such as image coding or source local-

ization [30]: given an overcomplete dictionary and a set of 

response vectors 5yk6, the goal is to jointly encode them using 

the same sparsity profile, allowing for different nonzero 

weights. A group extension of the ,0 problem asks for solu-

tions of maximal group sparsity, where coefficients si are elim-

inated jointly. Extending our reweighted ,1 ARD algorithm 

accordingly, we obtain a method where inner minimizations 

are second-order-cone programs. Once more, empirical perfor-

mance improvements over standard MAP relaxations can be 

substantial [22], and these observations are backed up by theo-

retical results [35]. 

DISCUSSION

Bayesian methods differ from MAP point 

estimation in that the unknown signal is 

averaged over the posterior distribution 

rather than fixed to a single best guess. 

Conceptual advantages of Bayesian aver-

aging over MAP are typically offset by the 

higher running costs and less rigorous 

theoretical characterizations of most 

commonly used approximate inference 

methods. With novel variational Bayesian 

inference techniques reviewed here, the 

efficiency gap relative to convex MAP 

reconstruction can be narrowed consid-

erably. Applied to sparse reconstruction, 

they constitute attractive alternatives to 

convex or nonconvex separable MAP esti-

mation. At the cost of calling reweighted 

,1 problems a few times, they come with 

provable advantages in important appli-

cations, where restricted isometry prop-

erties typically do not hold. Moreover, 

they allow to quantify prediction 

Ground Truth ARD <1 MAP Beamforming

[FIG7] MEG source localization simulation example. A signal y is obtained from MEG 
sensors on the scalp surface, measuring small magnetic fields induced by cortical current 
flow. The design X can be constructed via Maxwell’s equations and a structural MRI scan. 
Note that currents/sources u (in red) are typically confined to compact regions of the 
brain for a given experiment, they are sparse. We compare ARD source localization with 
<1 MAP reconstruction (1) and minimum variance adaptive beamforming [31].
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 confidences and uncertainty structure that can be used for 

advanced decision making problems beyond point reconstruc-

tion, such as automatic acquisition optimization by Bayesian 

experimental design. Their associated optimization problems 

are well characterized and can be solved efficiently even for very 

large models by way of scalable double-loop algorithms, reduc-

ing approximate Bayesian inference to separable point recon-

struction and Gaussian graphical model computations coming 

together. Within the methodology reviewed here, Bayesian 

graphical models gain surprising new relevance to help to 

improve, as well as broaden, the scope of compressive sensing. 
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