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Abstract: Variational Bayesian inference with a Gaussian posterior ap-
proximation provides an alternative to the more commonly employed fac-
torization approach and enlarges the range of tractable distributions. In
this paper, we propose an extension to the Gaussian approach which uses
Gaussian mixtures as approximations. A general problem for variational
inference with mixtures is posed by the calculation of the entropy term
in the Kullback-Leibler distance, which becomes analytically intractable.
We deal with this problem by using a simple lower bound for the entropy
and imposing restrictions on the form of the Gaussian covariance matrix.
In this way, efficient numerical calculations become possible. To illustrate
the method, we discuss its application to an isotropic generalized normal
target density, a non-Gaussian state space model, and the Bayesian lasso.
For heavy-tailed distributions, the examples show that the mixture ap-
proach indeed leads to improved approximations in the sense of a reduced
Kullback-Leibler distance. From a more practical point of view, mixtures
can improve estimates of posterior marginal variances. Furthermore, they
provide an initial estimate of posterior skewness which is not possible with
single Gaussians. We also discuss general sufficient conditions under which
mixtures are guaranteed to provide improvements over single-component
approximations.
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1. Introduction

Recently, the Variational Bayes (VB) method has attracted growing interest
as an alternative to Monte-Carlo integration in computational Bayesian infer-
ence (for reviews from the perspectives of different fields see, e.g., Opper and
Saad (2001), Smidl and Quinn (2005), Bishop (2006), Wainwright and Jordan
(2008), Ormerod and Wand (2010)). Together with the ease of application, the
increasing popularity of this method is mainly due to the significant increase in
computation speed which can be achieved for wide classes of statistical models.
However, a serious impediment to an even more widespread use arises from the
fact that VB is only approximate and that, in general, it is very difficult to assess
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the quality of VB calculations without comparing to exact results. A major task
for research on variational Bayesian techniques is therefore the development of
methodology that allows us to improve VB results in a simple and flexible way.
The purpose of the present paper is to contribute to this objective in the context
of certain types of Variational Bayes calculations.

The basic idea of the VB method consists in approximating a target proba-
bility density p, for example a complicated Bayesian posterior, by a simpler one
for which one can compute inferences more easily. To this end, one defines a set
of functions Q within which one finds the approximation q by minimizing the
Kullback-Leibler (KL) distance or relative entropy between the functions in Q
and the target p, i.e.,

q = argmin
q′∈Q

∫

q′ log
q′

p
. (1)

For simplicity, the members of the set Q will be called trial functions in the
following.

The quality of the approximation crucially depends on the choice of Q. Most
applications of the VB method make use of what we will call the factorized
or “nonparametric” approach. In this case, Q is chosen as the set of all com-
pletely or partially factorized trial functions, e.g., q(x1:n) =

∏n
i=1 qi(xi) with

x1:n shorthand for the parameter vector (x1, . . . , xn), with no restriction on
the form of the factors besides normalization (the fully factorized case is also
known as mean-field VB). In practice, this approach is then mainly applied to
“conjugate-exponential” Bayesian target distributions p, for which the data like-
lihood is in the exponential family and priors are chosen as conjugate. In this
case, the optimized VB factors turn out to belong to the same classes of distri-
butions as the priors, and the minimization problem (1) can be solved efficiently
by means of an iteration scheme that updates a finite vector of parameters. This
method is attractive as it is simple and often computationally very fast. How-
ever, major drawbacks consist in the complete neglect of correlations between
variables in different factors, and the restriction to certain types of probability
models. Furthermore, it requires substantial effort to find tractable sets of trial
functions that improve upon the factorized form.

Alternative to this nonparametric approach, one can also choose the trial
functions to belong to a prespecified class of distributions1, typically the multi-
variate normal family (Opper and Archambeau 2009). The optimization (1) is
then with respect to the mean µ and covariance matrix Σ of the Gaussian and
has to be carried out using multidimensional numerical minimization procedures
such as the conjugate-gradient method. So far this approach has received much
less attention than the nonparametric method. This might be attributable, at
least in part, to the fact that in general, the size of the covariance matrix, and
hence the number of variables to be optimized, grows quadratically with the
length n of the parameter vector x1:n (Opper and Archambeau 2009). However,
as also pointed out in Opper and Archambeau (2009), the target distribution

1One can of course also consider the mixed or “semiparametric” case, where some factors
within a factorization approach are treated parametrically.
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p may impose strong constraints on the optimal form of Σ which considerably
reduce the number of free parameters. In this way, the problem can be alleviated
significantly (alternatively, one can also restrict the form of Σ “by hand”, if a
reasonable guess is available).

An obvious advantage of the parametric method over the factorization ap-
proach lies in the fact that the former is able to describe correlations between
variables. Furthermore, it is also applicable to statistical models outside the
conjugate-exponential class. However, these advantages come at the cost of re-
stricting the functional form of the marginals.

In order to improve the quality of VB results, the use of mixture distributions
as trial functions might suggest itself as a natural strategy. A wide variety of
probability distributions can efficiently be approximated by mixture distribu-
tions, and it is typically straightforward to compute inferences for them. Un-
fortunately, for mixtures the analytical calculation of the (differential) entropy
S = −

∫

q ln q, and thus of the KL distance, is intractable, in general. The
solution of the optimization problem (1) therefore becomes more demanding.
Jaakkola and Jordan (1998) have derived a variational lower bound for the en-
tropy based on a factorization approach, but on the whole, the study of mixture
trial distributions has not received much attention in the literature so far.

In the present paper, we consider the use of normal mixture distributions
within a parametric VB approach. Our work is thus complementary to the
proposal of Jaakkola and Jordan (1998). The computation of the entropy is
dealt with by making use of an alternative lower-bound approximation and
restricting the choice of covariance matrices for the mixture components. In
this way, efficient numerical calculations become feasible. As this treatment is
only concerned with the entropy term S in the KL distance, the procedure
can be applied whenever the VB problem can be solved for a single-component
Gaussian, and it requires an only modestly increased effort. Furthermore, while
the method cannot be guaranteed to always lead to an improved solution, we
expect it to do so in a large number of cases. In the paper, we discuss the
application of this approach to a non-Gaussian state-space model and to the
Bayesian lasso as examples of a “realistic” use of the method, and show that
it can provide appreciable improvements under appropriate conditions. Note
that “improvement” is to be understood in this context as a reduction in KL
distance, in agreement with the overall VB strategy.

The paper is organized as follows. In Sec. 2 we first discuss some general
qualitative considerations regarding the use of mixture distributions in varia-
tional Bayesian calculations. We then give a representation of the entropy S in
terms of overlap contributions from mixture components, somewhat reminiscent
of the inclusion-exclusion formulas of set and probability theory. The mathemat-
ical form of this representation motivates a simple lower bound to the mixture
entropy S which allows for an approximate calculation of the KL divergence.
Section 3 describes the implementation of this framework using mixtures of nor-
mal distributions with suitable restrictions on the choice of covariance matrices.
In order to illustrate some aspects of the general qualitative behavior of the ap-
proach, we discuss a simple model problem with an isotropic target probability
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density. Section 4 derives two simple criteria that allow us to check whether a
mixture is guaranteed to improve upon a single-component approximation. The
criteria are obtained by performing stability analyses of the single-component
minimum in the KL divergence with respect to mixture trial functions. In Sec. 5,
mixture VB is applied to the non-Gaussian state-space model mentioned above.
The posterior distribution of the hidden variables is approximated with single-
and multi-component Gaussian trial functions. Comparisons to Markov chain
Monte-Carlo results show appreciable improvements in the calculation of the
variances, thus justifying the use of mixture trial distributions. We also show
that mixtures allow us to approximately calculate posterior skewness, which is
not possible with single Gaussians. Section 6 provides an example with realistic
data by applying the method to the Bayesian lasso. Finally, Sec. 7 gives a brief
summary and some concluding remarks.

2. Variational approximations with mixtures

In this section, we first discuss some general aspects of VB approximations with
mixture distributions. We then consider the representation of the entropy in
terms of overlap contributions of mixture components. This motivates a simple
lower-bound approximation of the mixture entropy which forms the basis of the
subsequent developments. First of all, however, we return to the general formu-
lation (1) of the VB optimization problem and recall two basic consequences
that we will refer to later on.

2.1. General considerations

(i) We can think of the optimal VB solution as being determined by a compe-
tition between the negative-entropy part S̄ := −S =

∫

q ln q and the “energy
term” E = −

∫

q ln p in the KL divergence. The minimization of the energy E
alone would localize q as a Dirac delta function at the global maximum of the
target distribution p. However, this contraction is counteracted by the influence
of the entropy which tries to spread out the distribution q as much as possible.
The actual minimum of the KL distance strikes a balance between these two
opposing tendencies. Figure 1 shows a schematic graphical illustration of this
principle. The horizontal coordinate of the graph represents a generic measure
of the dispersion of the trial functions; for example it could stand for the width
of a trial distribution centered at the maximum of p, or it might indicate the
distance between two mixture components which are otherwise kept fixed.

(ii) The VB approximation q tends to be localized within the support of the
target distribution as far as possible, i.e., typically q is small wherever p is, but
not necessarily vice versa (Minka 2005). This is simply because otherwise the
energy term E = −

∫

q ln p would impart a huge penalty on the KL divergence.
As the trial functions cannot reproduce the shape of the target perfectly, this
behavior results in the underestimation of variances as a typical feature of VB
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Fig 1. Schematic showing typical dependence of negative entropy S̄, energy E, and KL dis-
tance S̄ + E on some generic coordinate z representing dispersion of trial functions (see
text).

approximations. For factorized VB, this problem increases with the strength of
correlations between variables in the target (Bishop 2006).

We now turn to the discussion of VB approximations with mixture distri-
butions, i.e., we assume the set Q to consist of trial functions of the form
q̃ =

∑k
i=1 wiq̃i with wi ≥ 0,

∑k
i=1 wi = 1. The mixture components q̃i are taken

from some prespecified set Q0 of distributions. As schematically illustrated in
Fig. 2, we expect there to be two main ways of how mixture distributions can
improve the VB approximation. First of all, consider target distributions with
multiple well-separated modes [Fig. 2(a)]. A single-component VB solution will
typically be localized within one of the pieces of p, whereas an approximation
with a mixture distribution may be able to describe the whole target. How-
ever, such situations can easily be handled with the help of a straightforward
generalization of the one-component approach. Typically, the various parts of
p will each give rise to a local minimum of the optimization problem, and the
trial functions qi corresponding to these minima will also be well-separated, i.e.,
have very small overlap. Under this crucial condition of negligible overlap, the
qi’s are readily combined to a global approximation

q ∝
∑

i

exp(−Ki)qi (2)

of the target. In (2), Ki denotes the KL distance between qi and p. An expla-
nation and further discussion of this relation are given in Zobay (2009). Here
we only emphasize that (2) shows how a careful analysis of the local solutions
of the VB optimization problem (1) may already lead to efficient improvements
of VB approximations in terms of mixtures. In such cases, one does not have to
deal with complications arising from calculating the mixture’s entropy.

Figure 2(b) shows the second and more interesting way of how mixtures can
enhance VB approximations, which we will focus on in the rest of the paper. In
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(b)(a)

Fig 2. Uses of mixture distributions in VB calculations. (a) Approximation of a multimodal
target (black). Each mixture component (red) approximates a distinct piece of the target. (b)
Mixture distribution providing improved description of shape of (unimodal) target.

this situation, the mixture directly provides an improvement to the description
of the form and shape of the (potentially unimodal) target distribution. In such
cases, the single-component VB optimization problem may only have a unique
solution, so that simple procedures in the spirit of (2) are not possible. The
mixture approximation is thus genuinely different from the one-component case.
The appropriate calculation of mixture entropies now becomes crucial, so that
practical computations will be more complicated. It is difficult to predict a
priori, without a detailed knowledge of the shape of the target, the extent of
improvement that use of mixtures will provide. It is therefore important to
develop methods that allow us to carry out such calculations with limited added
effort, so that numerical results can be obtained quickly and easily.

Of course, one can imagine many situations which combine aspects of the two
scenarios discussed above. One can consider, for example, a multimodal target as
in Fig. 2(a) where each part is approximated by a mixture. The global solution
is then obtained from (2) with the qi representing the individual mixtures.

One may argue that a general drawback of the use of mixture distributions
in VB is given by the fact that the potential improvement, as measured by the
reduction of the KL distance, is strictly limited a priori. A k-component mixture
can decrease the KL distance to the target distribution by an amount of at most
log k compared to the optimal single-component approximation in Q0 (Jaakkola
and Jordan 1998). However, one should keep in mind that the reduction in the
KL distance gives only a very restricted view of the actual enhancement in
the description of the target distribution. For example, in the case of a target
distribution with two well-separated modes as shown schematically in Fig. 2(a),
a single-component VB approximation is usually localized around one of the
two modes, whereas a two-component VB solution will be able to represent the
entire target. In this way, the description is improved substantially although
the gain in the KL distance is at most log 2. The example of Sec. 3.2 will also
show that the approximation of the variance of a unimodal distribution can
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be enhanced significantly although the change in the KL distance is relatively
small, and similar conclusions may be drawn from the results of Sec. 5.

2.2. Entropy of a mixture distribution

For a mixture distribution q =
∑k

i=1 wiqi with non-overlapping components
(i.e., wiqi(x) > 0 for given x implies wjqj(x) = 0, j 6= i), the entropy S =
−
∫

q ln q can be decomposed into the individual contributions of all mixture
components, i.e.,

S = −
k
∑

i=1

∫

wiqi ln(wiqi) =
k
∑

i=1

S1[wiqi]. (3)

with S1[q] = −
∫

q ln q.

For the general case of overlapping mixture components, an extension of this
representation can be derived. In addition to the contributions S1[wiqi] of the
individual components, it also contains corrections due to the overlap between
component distributions. These corrections are expressed as an expansion in
terms of all possible combinations of two, three, or more components. For k = 2,
a straightforward calculation shows that S can be written as

S = −
∫

(w1q1 + w2q2) ln (w1q1 + w2q2) = −
∫

w1q1 ln (w1q1)

−
∫

w2q2 ln (w2q2)−
∫

w1q1 ln

(

1 +
w2q2
w1q1

)

−
∫

w2q2 ln

(

1 +
w1q1
w2q2

)

= S1[w1q1] + S1[w2q2] + S2[w1q1, w2q2] (4)

with S2 given by the last two terms in the second line of (4). We can in fact
interpret S2 as describing the correction to the total entropy arising from the
overlap of the two components, since the relevant integrands in the second line of
(4) vanish at any argument x for which either w1q1(x) or w2q2(x) vanishes

2. We
also see that S2 is always less than or equal to zero. Qualitatively, this is because
an overlap between the mixture components reduces the overall uncertainty and
hence the total entropy. Regarding the VB approximation, this implies that the
entropic part of the KL divergence will give the mixture components a tendency
to repel each other, as this will increase the entropy and hence lower the KL
divergence.

For a three-component mixture, direct computation shows that the entropy
is given by

S =

3
∑

i=1

S1[ri] + S2[r1, r2] + S2[r1, r3] + S2[r2, r3] + S3[r1, r2, r3] (5)

2In the sense of limx→0 x log(1 + 1/x) = 0.
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with ri = wiqi and

S3[r1, r2, r3] = −
∫

r1 ln

(

1− r2
r1 + r3

r3
r1 + r2

)

−
∫

r2 ln

(

1− r1
r2 + r3

r3
r1 + r2

)

−
∫

r3 ln

(

1− r1
r2 + r3

r2
r1 + r3

)

(6)

Similar to S2, the term S3 can be interpreted as giving the entropy contribution
due to the common overlap of all three mixture components: the integrands in
(6) vanish at any x for which any of the ri(x) vanishes. In this sense, (5) provides
a decomposition of the total entropy into the contributions of the individual
components, the overlaps of all pairs of components, and the common overlap
of all three components. Relation (6) shows that S3 is always positive. This can
be explained by the fact that the addition of all pair overlaps S2 overcounts the
contribution of the three-component overlap which is subsequently corrected by
S3. In this way, (5) is already reminiscent of the well-known inclusion-exclusion
formulas of set and probability theory.

Analogous behavior is found for the entropy expansion of four-component
mixtures, suggesting the conjecture that it also holds in the general case. For
k = 4, the total entropy is obtained as sum of the individual contributions,
all possible two- and three-component overlap contributions as described above
and the four-component overlap S4[r1, r2, r3, r4] given by the sum of

−
∫

r1 ln

[

1 +
r2r3r4

(r1 + r2 + r3)(r1 + r2 + r4)(r1 + r3 + r4)

(2r1 + r2 + r3 + r4)

r1

]

and the terms resulting from the cyclic permutations of the ri’s in the above
expression. Due to the appearance of products such as r2r3r4, the interpretation
as overlap contribution is justified. In agreement with the inclusion-exclusion
principle, S4 is negative. However, as complete entropy expansions for k ≥ 4
will not be needed in the following, the general case will not be investigated
further here.

The above discussion suggests that a simple approximation to the total en-
tropy of the mixture can be obtained by retaining only the individual and pair-
wise contributions S1 and S2 in the expansion. In fact, this provides a lower
bound to S.

Proposition. For a mixture distribution q =
∑k

i=1 wiqi,

S[q] ≥
k
∑

i=1

S1[wiqi] +
∑

i<j

S2[wiqi, wjqj ] =: −W [q] (7)

with S[q] = S1[q] = −
∫

q ln q and S2[q1, q2] as defined in (4).

Proof. By induction. For k = 3, the statement follows directly from (5) and (6).
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Equivalently, we can write

ln(r1 + r2 + r3) = ln r1 + ln

(

1 +
r2
r1

)

+ ln

(

1 +
r3
r1

)

+ ln

(

1− r2
r1 + r3

r3
r1 + r2

)

≤ ln r1 + ln

(

1 +
r2
r1

)

+ ln

(

1 +
r3
r1

)

. (8)

Multiplying (8) by −r1, deriving corresponding inequalities for r2 and r3, and
adding them up also provides the statement for k = 3. The induction step
follows in a similar way from

ln(r1 + r2 + · · ·+ rk) ≤ ln r1 + ln

(

1 +
r2 + · · ·+ rk−1

r1

)

+ ln

(

1 +
rk
r1

)

= ln(r1 + r2 + · · ·+ rk−1) + ln

(

1 +
rk
r1

)

≤ ln r1 + ln

(

1 +
r2
r1

)

+ · · ·+ ln

(

1 +
rk
r1

)

.

Here, the first line follows with the help of (8), whereas in the third line the
induction hypothesis was used.

In the following, we will find the VB solution under the approximation (8)
or, more formally, we will solve the minimization problem

q = argmin
q′∈Q

{

W [q′]−
∫

q′ ln p

}

(9)

withW [q] defined in (7). Several reasons motivate the study of this modification.
(i) As W [q] ≥ −S[q], W [q] −

∫

q ln p provides an upper bound to the exact
KL divergence. We can therefore expect the minimization problem (9) to have
well-defined solutions.

(ii) Calculating the two-component overlap contributions may, under certain
conditions, be easier than computing the full mixture entropy. In our case, we
will consider multivariate normal distributions with certain restrictions on the
choice of the covariance matrices. The overlap contributions can then be calcu-
lated efficiently with the help of two-dimensional Gaussian integrations.

(iii) The most important motivation is based on the following consideration.
The approximation of S̄ = −S by W is worst (i.e., ∆ := W − S̄ is largest)
if all mixture components overlap strongly, i.e., have similar locations, shapes,
and scales. However, it will become progressively better when the components
move away from each other or start to differ in form or extension, since in these
cases the higher-order overlap contributions will become small. Now, unless
a single-component solution already provides a very good description of the
target, one would indeed expect the components of a mixture solution of (1)
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to vary in location and/or scale, as only in this way a closer approximation of
the target can be achieved. It is therefore reasonable to expect that in many
cases the solutions of the two minimization problems (1) and (9) will not be too
dissimilar.

This expectation is indeed confirmed by the numerical example at the end
of Sec. 3 (see Fig. 4). There, very good agreement agreement between the so-
lutions for (1) and (9) is found for the case of three mixture components, even
though it is not obvious a priori that higher-order overlap contributions should
be negligible.

3. VB with normal mixtures

3.1. General approach

As explained in the Introduction, multivariate normal distributions are an ob-
vious choice for parametric variational Bayesian calculations. It is straightfor-
ward to incorporate and analyze correlations between variables, the entropy has
a closed form, and the energy term in the KL distance is often amenable to
analytic or efficient numerical calculation. More specifically, for a trial func-
tion q̃ ∼ N (µ,Σ) [with N (µ,Σ) denoting a k-dimensional multivariate normal
distribution with mean µ and covariance matrix Σ], the KL distance is given by

∫

q̃ ln q̃ −
∫

q̃ ln p = − ln
√

(2πe)k detΣ + E(µ,Σ).

The minimization of the KL distance as a function of µ and Σ can usually be
accomplished with the help of standard numerical techniques, such as conjugate
gradient methods. The (local) minima are characterized by the equations (Opper
and Archambeau 2009)

∇µE(µ,Σ) = 0, (10)

Σ−1 + 2∇ΣE(µ,Σ) = 0. (11)

An important consequence of (11) consists in the fact that it may impose strong
restrictions on the form of the optimized precision matrix Σ−1 (Opper and Ar-
chambeau 2009). Assume, for example, that ln p ∼ ∑

i fi(xi, xi+1). The preci-
sion matrix Σ−1 will then be tridiagonal. Opper and Archambeau (2009) also
give another example which concerns Gaussian processes. These restrictions
can significantly reduce the dimension of the search space for the optimization
problem. However, even if such strict limitations do not exist, one is still free to
“manually” impose restrictions on the form of the covariance matrix if they are
suggested by the nature of the problem.

We now turn to the discussion of VB approximations with Gaussian mix-
tures

∑k
i=1 wiN (µi,Σi). The evaluation of the energy term in the KL distance

does not impose any additional difficulties compared to the single-component
case; the entropy term, however, becomes analytically intractable and therefore
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presents the major challenge for practical calculations. In fact, the computation
of entropies for Gaussian mixtures is a problem of considerable current interest
and practical significance (see, e.g., Goldberger, Gordon and Greenspan (2003),
Hershey and Olsen (2007), Huber, Bailey, Durrant-Whyte and Hanebeck (2008),
Chen, Hershey, Olsen and Yashchin (2008)). Various approaches have been
proposed, for example Monte-Carlo integration and Taylor-expansion schemes.
However, for the present purposes, these methods did not appear suitable af-
ter an initial evaluation. Monte-Carlo calculations of sufficient accuracy are
expected to be too slow for practical applications. Proposed deterministic ap-
proximations do not lead to an upper bound for the KL divergence, or their
accuracy is difficult to judge.

Rather, to make the problem tractable, we have adopted the following strat-
egy. First of all, we consider the approximate VB problem (9) which has been
motivated in Sec. 2.2 and which amounts to replacing the exact entropy by
single-component and pairwise contributions. However, even with this replace-
ment the problem remains analytically intractable. We therefore stipulate that
all covariance matrices Σi are multiples of a “base matrix” Σ0, i.e., Σi = λ2

iΣ0.
In other words, we consider mixtures of “shape- and orientation-locked” nor-
mal distributions.3 The calculation of the pairwise entropy then only requires
a two-dimensional numerical integration which can be carried out efficiently by
Gaussian quadrature. Before outlining the corresponding computations, how-
ever, we first give some comments on this strategy.

(i) In the single-component case, we have to calculate the mean µ1 and the
covariance matrix Σ1 of the Gaussian. For a k-component mixture, we need k−1
additional mean vectors µi, k− 1 weights wi, and k− 1 parameters λi. A single
computation of the approximate KL distance requires k−1 additional energy and
single-component entropy computations, as well as k(k− 1)/2 pairwise entropy
calculations. Since VB calculations are often significantly faster than MCMC,
the increase in computational burden should be acceptable in most cases, as
long as k does not become too large. As shown in the numerical examples,
considerable improvements to single-component VB can be already be obtained
for k as small as 2 or 3.

(ii) For mixtures of Gaussians, the limitations on the form of the covariance
matrix implied by (11) no longer apply. In the example of Sec. 5, however, it
was found that the base matrix Σ0 still obeyed the restrictions of the single-
component case to a very good degree of approximation. For practical purposes
it might therefore be a reasonable strategy to first start with a restricted Σ0

and then gradually relax the restrictions to see how much the results change.
(iii) Regarding the general approximation (9) to the VB problem we note

that for a two-component mixture (k = 2), the approach still coincides with
the exact VB optimization. For k > 2, W + E provides an upper bound to the
exact KL distance. Thus, any trial mixture with k > 2 for which W + E is less
than the minimum found for k = 2 is guaranteed to provide an improvement

3Note that if the normal mixture components separate into clusters such that normals in
different cluster have negligible overlap [for example with a target as in Fig. 2(a)] we need
locking only within clusters.
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compared to the two-component case, even in terms of the exact KL distance.
Note, however, that when we compare optimized trial functions with more than
two components, we can of course no longer decide which one provides the
best approximation in the sense of minimum KL divergence. For the numerical
example of Sec. 5 we therefore focus on k = 3, although mixtures with more
components could have been studied as well. Mixtures with k > 2 contain two-
component distributions as a special case (wi = 0 for i > 2) for which W + E
still provides the exact KL distance. It is therefore not unreasonable to assume
that the solution of (9) for k > 2 can indeed improve upon the two-component
case, and this has been observed in the example of Sec. 5.

(iv) The locking condition on the covariance matrices is of course a severe
restriction which has only been imposed to make the problem tractable. One
can easily imagine situations in which mixtures constructed in this way will not
enhance the approximation significantly. In other cases, however, appreciable
improvements may be obtained. Nevertheless, as argued above, the additional
computational burden is modest and the result will, in any case, be at least as
good as a single-component approximation. We therefore expect that the sug-
gested approach should in many cases provide a viable option to improve upon
standard VB results in a simple way. It should also be noted that in actual com-
putations for concrete models one essentially only needs the calculation of the
energy term as a plugin, as the entropy part is independent of the specific prob-
lem. In this sense, there is no additional effort compared to single-component
calculations.

(v) We also note that mixtures allow us to estimate higher-order standardized
moments, such as the skewness, which are inaccessible within a single-component
approximation.

Details of the numerical calculation of the pairwise negative entropy S̄2 =
−S2[w1q1, w2q2] are given in Appendix A. There it is shown that S̄2 effectively
depends only on λ, the Mahalanobis distance r2 = (µ1 − µ2)

TΣ−1
1 (µ1 − µ2),

and (up to a scaling factor) the ratio of the weights w2/w1. The behavior of S̄2

is depicted in Fig. 3. The curves illustrate the repulsion effect between mixture
components which is due to the overlap entropy and which was mentioned in
the discussion of (4). This can be seen as follows. Suppose the one-component
VB problem is solved by a normal distribtion q0. In the absence of S̄2, the two-
component problem would then be solved by the “mixture” q̄ = 1

2q0 +
1
2q0 with

λ = 1 and r = 0. However, as can be seen from Fig. 3, S̄2 is maximum for this
mixture. The presence of S̄2 in the full two-component problem will thus tend
to destabilize q̄ as minimum of the KL divergence and to make the mixture
components different from each other (however, in some cases q̄ may still be the
minimum of the full problem, depending on the shape of the KL landscape).
Very importantly, Fig. 3(a) also shows that for growing k, S̄2 becomes more
localized around λ = 1 (similar behavior is also found in the r dependence). This
indicates that, in general, the differences between single- and multi-component
VB solutions will be most pronounced (and hence our approach most useful)
when the dimensionality of the problem is not too large.
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Fig 3. Behavior of negative pairwise entropy S̄2 = −S2 [equation (A.5)]. (a) Dependence on
λ for r = 0, w1 = w2 = 0.5, and various k. Dashed line shows S̄2 for w1 = 0.15, w2 = 0.85.
(b) Dependence on r for w1 = w2 = 0.5, k = 10, and various λ. Curve for λ = 1 is valid for
all k.

3.2. Example: Multivariate generalized normal distribution

To give a first illustration of the use of mixtures in VB, we now discuss a simple
model problem. More elaborate and realistic applications will be studied in
Secs. 5 and 6. In the present example, we consider the isotropic d-dimensional
target density

p(x) =
βΓ(d/2)

2πd/2Γ(d/β)
exp

(

−|x|β
)

, (12)

i.e., a multivariate generalized normal distribution with shape parameter (ex-
ponent) β. The exact expression for the variance of p is given by

σ2
ex =

Γ
(

d+2
β

)

dΓ(d/β)
.

Due to the rotational symmetry of the target, it is a natural choice to use
isotropic normal distributions N (0, σ2

i I) with variances σ2
i , 1 ≤ i ≤ k, in our

k-component mixtures. In this way, the locking condition on the covariance
matrices is fulfilled automatically. As an additional advantage, for any k we
can compute the entropy of the mixture exactly in terms of one-dimensional
quadratures. One can therefore easily study the effect of the approximation (9)
to the original VB problem (1).

For the target (12), Fig. 4 shows the results of VB calculations with single
normal distributions (black curves), two-component mixtures (red), and three-
component mixtures with the entropy treated exactly (green) and approximately
(blue). We focus on the VB variances (i.e., the variances of the solutions to the
VB optimization problems) which might be considered the most interesting
quantities in this context from the point of view of Bayesian inference. Figure 4
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Fig 4. Variational approximation of isotropic generalized normal density (12). (a) Ratio
of variationally approximated variances to exact variance as a function of exponent β for
d = 5−dimensional distribution. VB approximations use k-component normal mixtures with
k = 1 (black curve), k = 2 (red), k = 3 (green), k = 3 and approximation (9) (blue). Inset
shows results for a larger range of β. (b) Ratio of VB variances for two- and three-component
mixtures to VB variance with single Gaussian. (c) Kullback-Leibler divergences. (d) Ratio of
VB variances to exact variance for d = 20-dimensional distribution. Color coding of curves
in (b)-(d) corresponds to (a).

illustrates their dependence on the shape parameter β and the dimension d of
the target. In addition, the KL distance is shown which can be computed exactly
as the normalization constant of p is known explicitly.

For the single Gaussian, the VB problem can be solved analytically, yielding
the variance

σ2
1 =





dΓ(d/2)

2β/2Γ
(

d+β
2

)

β





2/β

. (13)

In the other cases, the optimization has to be performed numerically. The overall
behavior of the VB approximation is illustrated in the inset of Fig. 4(a) which
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shows the ratio σ2
1/σ

2
ex as a function of β for a d = 5-dimensional target. For

β = 2 (Gaussian target), VB is exact, but becomes less accurate the more β
deviates from this value. For β > 2, i.e., for a target with light tails, it turns out
that the VB approximations with two- and three-component mixtures coincide
with the result from the single Gaussian.

However, for β < 2, i.e., heavy-tailed targets, a very different behavior is ob-
served. Figures 4(a) and (b), respectively, show the ratio of the various VB vari-
ances to the true value σ2

ex, and the ratio of the variances for the two- and three-
component mixtures to σ2

1 . We see that the use of mixture trial functions can
significantly improve the variance estimates. This enhancement is particularly
pronounced for smaller values of β, where the single-Gaussian approximation
becomes less and less accurate (of course, for β close to 2, single Gaussian VB
becomes better so that there is less scope for improvements by using mixtures).
The KL divergences shown in Fig. 4(c) behave as expected from Fig. 4(a),(b)
[blue curve shows W + E of (9)]. The different types of behavior for β < 2 and
β > 2, respectively, will be discussed further in Sec. 4 to exemplify the general
stability criteria for single-component approximations derived there.

Figure 4(d) illustrates some effects of dimensionality. One sees that for in-
creasing d, the single-Gaussian approximation to the variance is improving. This
is because for larger d the probability mass of the target tends to be localized
in a shell further away from the origin, as can be seen from the behavior of
the radial probability density pr(r) ∼ rd−1p(r) with r = |x|. The distribution
can therefore more easily be approximated by a Gaussian. The two- and three-
component mixtures still provide clear improvements to the single Gaussian.
However, the effect is somewhat reduced in the sense that for a given value
of σ2

1/σ
2
ex, the additional improvement from the mixtures becomes smaller for

growing d. We might perhaps attribute this effect to the increasing localization
of the pairwise entropies S̄2 discussed in connection with Fig. 3.

It is also instructive to compare the three-component solutions for the original
and the approximated VB problems (1) and (9). First of all, Fig. 4(c) shows
that the approximate KL divergence W + E (blue curve) is always less than
the two-component KL distance (red). As discussed above, we can therefore be
sure that the approximate three-component solution improves upon the two-
component result in the KL sense. Furthermore, we also find the KL distance
for the exact three-component calculation to be less than the approximate one,
as it should. Nevertheless, all four diagrams show that the differences between
the exact and approximate results are very small. The neglect of the higher-
order overlap contribution to the entropy is thus well justified for this example.
This result is remarkable because all mixture components are centered at 0,
i.e., in the present case any effects of higher-order overlap contributions should
be particularly pronounced. Judging from the mixture compositions, it is also
not obvious that such contributions should be negligible. To give an example,
at β = 0.5, the component have variance ratios σ2

1 : σ2
2 : σ2

3 = 0.2 : 1 : 4
(0.46 : 1 : 2.1 for d = 20) and weights 0.24 : 0.53 : 0.23 (0.23 : 0.54 : 0.23). Based
these considerations and the numerical results, we can expect that (9) will also
be a useful approximation in other cases.
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4. Sufficient conditions for improvement of VB approximations by

mixtures

In this section, we present two simple criteria that allow us to check whether
a mixture VB approximation will be guaranteed to provide an improvement
compared to the single-component case. These criteria are derived from the sta-
bility analysis of the single-component minima in the KL distance with respect
to mixture trial functions.

We assume that the single-component minimizer of the KL divergence is given
by the trial function q(θ0) with parameter vector θ0. There are two ways q(θ0)
can be “perturbed” by extending the space of trial functions to include mixture
distributions: (a) by the addition of an arbitrary second component q(θ1) with
small weight, and (b) by slightly modifying the component parameters θi around
θ0 in a mixture with arbitrary weights. The first possibility corresponds to a
stability analysis with trial functions (1 − δw)q(θ0) + δwq(θ1) and δw ≪ 1,
whereas for the second option trial functions of the form

∑

iwiq(θ0 + δθi) with
small δθi are considered. We will discuss both situations in turn and derive
corresponding criteria for the instability of the single-component solution.

In order to examine the first case, we consider the mixture (1 − w)q(θ0) +
wq(θ1). Its KL divergence is given by

KL(w; θ0, θ1|p) =

∫

[(1− w)q(θ0) + wq(θ1)] log [(1− w)q(θ0) + wq(θ1)]

−
∫

[(1− w)q(θ0) + wq(θ1)] log p

with p the target distribution. Assuming exchangeability of integration and
differentiation, the first two derivatives of the KL divergence with respect to w
read

∂wKL =

∫

[−q(θ0) + q(θ1)] log [(1− w)q(θ0) + wq(θ1)] (14)

−
∫

[−q(θ0) + q(θ1)] log p, (15)

∂wwKL =

∫

[−q(θ0) + q(θ1)]
2

(1 − w)q(θ0) + wq(θ1)
. (16)

Taking the limit w ↓ 0, the (one-sided) derivative of the KL divergence at w = 0
is found as

∂wKL |w=0 = KL(θ1|p)− [KL(θ1|θ0) + KL(θ0|p)] . (17)

The instability of the single-component minimum of the KL divergence with re-
spect to the admixture of component q(θ1) is therefore guaranteed if expression
(17) is negative. This condition can be checked very easily in practical calcula-
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tions4 and thus be used in the search for good starting values for the iterative
optimization of the mixture approximation. Note that if the KL divergence were
to fulfill a triangle inequality, (17) would always be non-positive. However, as
this is not the case, (17) can be both negative and positive.

It should also be noted that the second derivative (15) is non-negative for all
values of w. This implies that that for KL(θ0|p) < KL(θ1|p) and positive first
derivative (17) at w = 0, all mixtures (1 − w)q(θ0) + wq(θ1) have larger KL
divergence than q(θ0). This holds independent of whether q(θ0) is the actual
single-component minimizer.

For the example of Sec. 3.2 involving an isotropic generalized normal target
distribution approximated by isotropic Gaussians, criterion (17) can be evalu-
ated analytically. Choosing q(θ0) as the single-component minimizer determined
by (13), it is found that for β < 2 and any d, (17) is negative for any q(θ1), i.e.,
q(θ0) is always unstable against admixture of a second component. For β > 2,
however, (17) is always positive. In particular, this implies that any mixture
(1−w)q(θ0) +wq(θ1) has a larger KL divergence than q(θ0). Nevertheless, this
argument does not rule out that mixture distributions not involving q(θ0) may
have a lower KL divergence. This can only be checked numerically.

We now turn to the second way of perturbing the single-component solution
which involves modification of the component parameters. Let Q(1) be a family
of trial functions q(θ) which smoothly depend on the p-dimensional parameter

vector θ. The KL distance KL(1)(θ) to the target function p and the first two

derivatives of KL(1) with respect to θ are given by

KL(1)(θ) =

∫

q(θ) log q(θ)−
∫

q(θ) log p, (18)

∂θKL(1)(θ) =

∫

∂θq(θ) log q(θ) −
∫

∂θq(θ) log p, (19)

∂θθKL(1)(θ) = A(θ) +B(θ) (20)

with the matrices A(θ) and B(θ) defined by

A(θ) =

∫

∂θθq(θ) log q(θ) −
∫

∂θθq(θ) log p, (21)

B(θ) =

∫

1

q(θ)
∂θq(θ)[∂θq(θ)]

T . (22)

Let θ0 be the global minimizer of KL(1)(θ), assumed to lie within the interior

of the parameter space. This implies that ∂θKL(1)(θ0) = 0. We assume that the

matrix of second derivatives ∂θθKL(1)(θ0) is positive definite, thus excluding
some exceptional cases.

4The difference KL(θ1|p)−KL(θ0|p) is available from the single-component computations.
In case p is of the form p(x|y) = p(x, y)p(y), the potentially problematic evidence terms
− log p(y) in the KL divergence cancel. The KL divergence KL(θ1|θ0) can be derived analyti-
cally for Gaussian trial functions.
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We now consider the family Q(k) of k-component mixture distributions de-
rived from Q(1) and characterized by parameters (θ(1), . . . , θ(k)) and weights

w1, . . . , wk. The set Q(k)
0 of functions within Q(k) that are equivalent to the

single-component minimizer q(θ0) have constrained parameters (θ(1) = θ0, . . . ,
θ(k) = θ0) but unrestricted weights

∑

i wi = 1.

In the following, we first show that the functions in Q(k)
0 are stationary points

of the k-component KL distance KL(k). We then investigate the stability of these
stationary points with respect to variations of the θ(i). It turns out that the sta-
bility depends on the eigenvalues of the matrix A(θ). If A has negative eigenval-
ues, the stationary points will be unstable. This means that the global minimum
of KL(k) is less than KL(1)(θ0), i.e., the mixture distributions are guaranteed to
lead to an improved approximation compared to the single-component case. If
all eigenvalues are strictly positive, the k-component stationary points will be
stable, i.e., they form a local minimum. In this case, the local stability analysis
cannot predict anything about the possible improvements by mixtures, as we
cannot decide whether these local minima are also global. In the marginal case
of A having positive and zero eigenvalues, we also cannot draw any conclusions.
Note that this discussion is independent of the number of mixture components.

More formally, these results are summarized as follows (proofs are provided
in Appendix B).

Theorem 1. The functions in Q(k)
0 are stationary points of of the KL distance

KL(k).

The independence of KL(k) on the wi’s also directly implies that ∂wjwl
KL(k)

= 0 and ∂θ(j),wl
KL(k) = 0. The stability of the stationary points is therefore

determined by the matrix ∂θ(j),θ(l)KL(k).

Theorem 2. For the functions in Q(k)
0 ,

det
[

∂θ(j),θ(l)KL(k)
]

= (detA)k−1 det(A+B)
k
∏

i=1

wi (23)

with A and B defined in (21) and (22) with θ = θ0. At w1 = · · · = wk = 1/k,

the eigenvalues λ of ∂θ(j),θ(l)KL(k) are the roots of the characteristic equation

[det(A− kλ1p)]
k−1 det(A+B − kλ1p) = 0 (24)

with 1p the p-dimensional identity matrix.

Corollary 1. If A has negative eigenvalues, the global VB optimizer in the
class Q(k) of k-component mixture distributions is guaranteed to improve upon
the best single-component approximation q(θ0).

Corollary 2. If all eigenvalues of A are positive, the KL divergence KL(k) has
a local minimum at the k-component mixture distributions corresponding to the
best single-component solution q(θ0).
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To illustrate these results, we again apply them to the example discussed in
Sec. 3.2. In this case, the parameter vector θ is one-dimensional and only con-
tains the variance σ2 of the isotropic Gaussian trial function. The determinant
det(A(θ0)) at the minimizer θ0 of the single-component problem be calculated
analytically. It is found to be proportional to 2 − β, with β the shape param-
eter of the target. Corollaries 1 and 2 thus imply that for β < 2, mixture trial
functions are guaranteed to provide an improvement, whereas for β > 2 the
single-component solution remains a local minimum. These conclusions are in
agreement with the results obtained from criterion (17) and are confirmed by
the numerical calculations described in Sec. 3.2. In particular, for β > 2 the re-
sults suggest that the single-component solution is in fact the global minimum,
as no better approximation could be found.

We conclude this section with a brief comment on the application of the
criteria to the shape- and orientation-locked Gaussian mixture trial functions
described in Sec. 3.1. Here one should keep in mind that the parameter vector
θ cannot contain the unconstrained covariance matrix due to the locking condi-
tion. To simplify the practical use of the criteria, one could therefore consider
mixture components N (µ, βΣ0) where only µ and the scalar β are variable pa-
rameters. The covariance matrix Σ0 would be kept fixed, e.g., at the result for
the single-component minimizer.

5. A non-Gaussian state-space model

Following the study of an illustrative example with an isotropic target den-
sity in Sec. 3, we now investigate a non-Gaussian linear state-space model as
a more realistic application of the mixture method. The choice of this model
is partly motivated by the results of Sec. 3.2, where we found that the use of
mixtures can provide appreciable improvements for heavy-tailed target distri-
butions. However, it should be emphasized that the approach can be applied
to any model that is amenable to VB treatment with a single Gaussian. As is
common with variational calculations, the potential benefits are very difficult
to gauge a priori, and empirical studies are needed, in general.

Our non-Gaussian state-space model for the random variables X1:n and Y1:n

is defined by

Xi+1 = φXi + ηi, ηi ∼ GN (0, β, κ), (25)

Yi = Xi + ξi, ξi ∼ GN (0, α, ρ), (26)

where we have set X0 ≡ 0. Here, GN (β, µ, κ) denotes the (univariate) gener-
alized normal distribution with mean µ, shape and scale parameters β and κ,
respectively, and density

pgn(x;µ, β, κ) =
β

2κΓ(1/β)
exp

[

−
( |x− µ|

κ

)β
]

. (27)
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The complete probability distribution for the model is thus given by

p(x1:n, y1:n) =

n
∏

i=1

pgn(xi;φxi−1, β, κ)pgn(yi;xi, α, ρ). (28)

In the following, we will assume that the model parameters (α, β, κ, ρ, φ) are
known, and that data y1:n have been observed. The objective is then to study
the posterior distribution p(x1:n|y1:n). In the VB treatment of this model, we
will compare the approximation using a single Gaussian to two- and three-
component mixtures. The three-component calculation is based on the modified
VB optimization problem (9). Details of the variational calculations are given
in Appendix C. We note that the dimensionality of the minimization problem
scales linearly with the number of observations. To assess the overall accuracy
of the variational results, we have also performed MCMC calculations using a
standard Gibbs sampling approach. Draws from the corresponding univariate
conditional densities are obtained using adaptive rejection Metropolis sampling
(Gilks, Best and Tan 1995).

In the subsequent discussion, we will focus on the variational results for mean,
variance, and skewness. In particular, it should be emphasized that the skewness
(or any other higher-order moment) cannot be obtained from single-component
VB, but becomes accessible through the mixture approach. In view of the fact
that nonparametric variational calculations would be very difficult for the given
model, we can thus conclude that Gaussian-mixture VB provides a genuine
extension of the capabilities of variational calculations.

Our numerical studies of the model (25), (26) confirm some general trends
which are already observed in the simple example of Sec. 3.2. It is found that
the mixture approach is most effective for heavy-tailed distributions (i.e., α and
β less than 2) and moderate dimensionality (i.e., number n of observations not
too large).

In the subsequent numerical examples, we will therefore focus on the case of
equal shape parameters α = β for which the values 1.2 and 0.35 are chosen in
two sets of calculations. The other model parameters are kept fixed at κ = 1,
ρ = 0.2, and φ = 0.5. The observations y1:n are generated from the model
(25), (26) with the given parameters and n set to 5 or 15. For each parameter
setting, 200 random samples are investigated in order to get an overview of the
performance of the approach.

The main findings can be summarized as follows. In all cases, mixture VB
reduces the KL divergence, i.e., it improves the approximation of the posterior.
MCMC means are reproduced quite accurately already with a single Gaus-
sian. VB tends to underestimate variances, but the mixture approach increases
single-component results by up to 30% on average depending on parameters,
with larger increases for smaller samples and growing non-Gaussianity. The
variational skewness estimates usually reproduce the sign of the MCMC results
although they tend to underestimate the actual value.

For a more detailed discussion, we first turn to the case α = β = 1.2 for
which VB calculations of posterior variance and skewness are shown in Fig. 5
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Fig 5. Variational study of non-Gaussian state space model (25), (26) for parameters α = β =
1.2, κ = 1, ρ = 0.2, φ = 0.5 and number of observations n = 5 (a,b) and n = 15 (c,d). For both
parameter settings, 200 random samples generated from the model were investigated. Figures
(a) and (c) show the ratio V3/VMC of marginal variances calculated from three-component
VB and MCMC as a function of V1/VMC with V1 the variance from the single-component
calculation. Red lines show diagonal y = x. These diagrams illustrate the change in the
estimated variance when using mixture VB. Figures (b) and (c) depict the skewness ratio
γ3/γMC as a function of the standardized third moment τMC as obtained from MCMC.

(means will be briefly mentioned in the discussion of Fig. 7 which refers to
α = β = 0.35). Results for the variance are shown in Figs. 5(a) (n = 5) and 5(c)
(n = 15). The diagrams depict the variance ratio V3/VMC as a function of
V1/VMC . Here, V1 and V3 denote the variance of a specific posterior marginal
p(xi) as calculated from one- and three-component VB, whereas VMC is the
corresponding MCMC result. We see that the single-component results are al-
ready quite accurate as V1/VMC ranges from 0.85 to 0.95 (note that variances
are underestimated as discussed in Sec. 2.1). All points in Figs. 5(a) and (c) lie
between the diagonal y = x (red line) and the horizontal y = 1. This means
that in all cases V1 < V3 < VMC , i.e., the three-component calculation always
provides an improved estimate of the variance. As V1 already yields a very good
approximation, the improvement is not large, but nevertheless clearly obvious
and significant. We also see that for growing n the average improvement is re-
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duced, e.g., for V1/VMC ≈ 0.90 we find V3/VMC to approximately range within
0.934± 0.005 for n = 5 and 0.912± 0.002 for n = 15.

The benefits of the mixture calculation become even more obvious when
studying the results for the skewness as this quantity cannot be obtained from
single-Gaussian VB. Skewness is defined as

γ =
τ

V 3/2
(29)

with V the variance and τ = E[(X−E(X))3] = E(X3)−3E(X2)E(X)+2E(X)3

the third moment about the mean. In Figs. 5(b),(d) (for sample sizes n = 5 and
n = 15, respectively), the VB-to-MCMC skewness ratio γ3/γMC is shown as a
function of the third moment τMC obtained from MCMC. We first of all find
that the VB calculation provides a reliable estimate of the overall skew of the
posterior (i.e., the sign of γ). In both calculations, one finds that in only about
5% of all cases the ratio γ3/γMC is negative, i.e., γ3 and γMC have opposing
signs. As can be seen from the diagrams, these discrepancies predominantly
occur when |τMC | is small. This behavior can be explained by the fact that for
small |τ |, the estimate of τ will be very sensitive to any errors in the (MCMC
or variational) calculations of the moments E(Xj). For larger |τMC |, most VB
results appear to underestimate γMC by an almost constant factor (about 0.3
in (b) and 0.1 in (d)). However, there is also a distinct group of cases for which
the ratio γ3/γMC becomes close to one. Altogether, we thus find that mixture
VB provides a useful first approximation of posterior skewness.

Results for the case of α = β = 0.35 are displayed in Figs. 6 and 7. Fig-
ures 6(a),(b),(d),(e) show variance ratios for n = 5 and n = 15, with (b) and
(e) providing enlargements of (a) and (d), respectively, for small V1/VMC . For
α = β = 0.35, the model exhibits much stronger non-Gaussianity than in the
previous case and consequently the VB approximation becomes less accurate.
As can be seen from Figs. 6(a) and (d), the variance ratio V1/VMC extends over
a much larger range extending from 0 to 1 with most values, however, in the
region of small V1/VMC . For small ratios V1/VMC , Figs. 6(b) and (e) indicate
that mixture VB brings about a marked improvement in the estimation of the
variances. We also see that for small V1/VMC , we have only a few cases with
V3 < V1. However, this behavior changes as V1/VMC becomes larger as estimates
with V3 < V1 occur more often.

More specifically, 66% of all cases for n = 5 (68% for n = 15) have V1/VMC <
0.5. For 92% (96%) of these cases, the mixture approximation improves the vari-
ance estimates, i.e., V3 > V1. The extent of improvement, as measured by mean
of the variance ratio V3/V1, is 1.49 (1.13). When we consider all cases, the per-
centages decrease to 73% (83%) and the ratios to 1.31 (1.08). It thus appears as if
the benefits of the mixture approximation are strongest where single-component
VB performs badly (i.e., small V1), at the expense of reduced improvement where
single-component VB is good already. At any rate, it should be kept in mind
that for every sample the KL divergence of the mixture approximation is lower
than the single-component value, i.e., the overall approximation of the posterior
is improved even if some variance estimates become somewhat less accurate.
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Fig 6. Variational study of non-Gaussian state space model (25), (26). Parameters as in
Fig. 5 except for α = β = 0.35. Number of observations are n = 5 (a,b,c) and n = 15 (d,e,f).
Diagrams show variance and skewness ratios obtained for 200 random samples analogous to
Fig. 5. Figures (b) and (e) depict detail of (a) and (d), respectively, for small V1/VMC .

The overall skew is still determined correctly in about 77% of all cases (i.e.,
γ3 and γMC have the same sign). As can be expected, Figs. 6(c) and (f) show
that the skewness ratios γ3/γMC are lower than in the case of α = β = 1.2.
Altogether, the results show that the application of mixture VB still remains
useful in the study of this model.
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Fig 7. Variational calculation of marginal means. Parameters as in Fig. 6 with n = 5. (a)
Marginal mean µMC calculated with MCMC as a function of the corresponding observation
yi. (b) Ratio µ3/µMC as a function of µ1/µMC with µ1 and µ3 marginal means obtained
from one- and three-component VB.

Finally, Fig. 7 displays some results on the posterior means for α = β = 0.35.
In order to provide an additional perspective on the model, Fig. 7(a) shows the
ratio µMC/yi of the posterior mean µMC evaluated from MCMC and the actual
observation yi as a function of yi itself. As might be expected from the model
structure, the posterior mean is very close to yi for large |yi|, but becomes more
variable and typically smaller in modulus than yi when yi tends towards 0. The
histogram shows the frequency distribution for the values of the ratio µMC/yi.

Figure 7(b) indicates that the VB estimation of the posterior means is typi-
cally very accurate even in this case of strong non-Gaussianity. In almost 90%
of all cases, µ1/µMC lies between 0.8 and 1.2. Mixture VB does not provide an
obvious benefit in this regard as µ1 and µ3 are mostly very close to each other.
For α = β = 1.2 it is found that the spread in µ1/µMC and µ3/µMC is even
further reduced (between 0.97 and 1.03).

6. The Bayesian lasso

In sparse regression, one solves the minimization problem

min
(µ,β)∈Rp+1

n
∑

i=1

L(yi − µ− xiβ) +

p
∑

j=1

P (|βj |, λ) (30)

in order to obtain shrinkage estimates for the regression coefficients β. In (30),
(y1, . . . , yn)

T ≡ y are observations, µ is an overall mean and xi a row of the
n×p-dimensional design matrix X. The loss function to be minimized is denoted
L, and P is a penalty function that shrinks the estimates towards zero. The
amount of shrinkage is controlled by the penalty parameter λ. The popular
lasso is obtained for quadratic loss and the penalty function P (|βj |, λ) = λ|βj |
(Tibshirani 1996).
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Recently, Bayesian versions of sparse regression have attracted considerable
attention (see, e.g., Park and Casella (2008), Hans (2009; 2010)). In the Bayesian
formulation, the loss function is used to construct the data likelihood while the
penalty gives rise to a prior for β. For certain models, for example the Bayesian
lasso, it has been possible to derive efficient MCMC samplers (Park and Casella
2008, Hans 2009). However, these samplers usually rely on sophisticated method-
ology, and for other models it may not be obvious how to construct suitable
sampling schemes. For example, Park and Casella (2008) discuss a “Huberized”
lasso for which MCMC sampling of a one-to-one Bayesian translation appears
difficult. In such situations, variational Bayesian inference with Gaussian trial
functions might present an interesting alternative.

Consider, e.g., a Bayesian sparse regression problem with a multivariate nor-
mal data likelihood (derived from a quadratic loss L) and a prior distribution
exp[−∑j P (|βj |, λ)]. For Gaussian trial functions, it is straightforward to com-
pute the contribution of the data likelihood to the energy part of the KL diver-
gence. The prior gives rise to one-dimensional integrals

∫

N (β;µ, σ2)P (|β|, λ)dβ
which either may be solved analytically or can be evaluated numerically using
Gauss-Hermite integrals. If such an approach turns out to be feasible, it is
natural to ask what improvements in accuracy are afforded by using Gaussian
mixtures as trial functions.

In the following, we will discuss this question for the Bayesian lasso. This
model provides a convenient example as the availability of efficient MCMC sam-
plers makes it easy to compare the variational approximations to Monte-Carlo
results. The computational gain of the variational method is not too pronounced
in this case, but for other models the variational approximation should provide
a clear advantage. The Bayesian lasso is defined as

y|µ,β, σ2 ∼ N (µ1n +Xβ, σ2
In), (31)

βi|σ2, λ ∼ Laplace(0,
√
σ2/λ), (32)

µ ∼ 1. (33)

Laplace(0,
√
σ2/λ) denotes the Laplace distribution with mean 0 and scale pa-

rameter
√
σ2/λ, i.e., pL(x; 0,

√
σ2/λ) = λ/(2σ2) exp(−λ|x|/

√
σ2). In order to

compute inferences for β, it is convenient to center y and standardize X. With
a flat prior, the parameter µ can then be marginalized out (Park and Casella
2008) and is ignored in the following. It is straightforward to impose priors on
λ and σ2, but in order to work out the effects of the mixture trial functions as
clearly as possible, these parameters will be assumed known. Specifically, σ2 is
set equal to its estimate from standard linear regression whereas λ is treated as
a variable external parameter. Details of the variational calculations are given
in Appendix D.

Data from a diabetes study (n = 442, p = 10) have been used in numerical
examples in a number of papers on the lasso and its Bayesian version (e.g.,
Efron, Hastie, Johnstone and Tibshirani (2004), Park and Casella (2008), Hans
(2009)) and will also be considered in the following. More specifically, we study
the behavior of the variational approximations as the penalty parameter λ is
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Fig 8. Variational inference for the Bayesian lasso with diabetes data. Black, red and blue
curves pertain to variational approximations with one, two, and three Gaussians, respectively,
green curves are MCMC results. (a) Decrease in KL divergence. (b)-(f) Means, variances and
skew for posteriors of parameters β4 and β7. Means and variances are scaled to values from
ordinary linear regression.

varied. Figure 8 summarizes the calculations. Variational results for a single
Gaussian and two- and three-component mixtures are shown in black, red and
blue, respectively, while green curves pertain to MCMC. Figure 8(a) displays
the decrease in KL divergence compared to the single-Gaussian solution. Given
that the maximum possible gain in KL from a two-component mixture equals
log 2 ≈ 0.69 (Jaakkola and Jordan 1998), Fig. 8(a) indicates that even with the
locking constraint two-component VB provides an appreciable and consistent
improvement over the single-component approximation. The gain increases with
growing λ up to values around 0.13 for λ ≈ 200. The three-component solution
provides further improvement mainly for larger values of λ.
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Figure 8(b) shows a representative result for the mean value of the β pos-
teriors, here for the example of parameter β4 (blood pressure) normalized to
its value at λ = 0. Typically, the one-component mean already provides a very
good approximation to the MCMC result so that the further improvements by
the mixture solutions are small.

For the variance, the difference between variational and MCMC calculations
becomes larger. For some regression parameters, the mixture results show no-
ticeable improvements, for example for the parameters β4 and β7 (Figs. 8(c,d)).
Compared to the single-component solution, the relative increases in variance
are between 10 and 50% at larger λ’s. Note, in paticular, the additional improve-
ment for the three-component solution in 8(d). For most of the other parameters,
the relative increase in variance is smaller and of the order of a few percent.

For most parameters, the variational approximation of the skew correctly
predicts the sign but underestimates the actual value, similar to what was found
in Sec. 5. Results for β4 and β7 are shown in Figs. 8(e) and (f). The relatively
close agreement of the three-component solution with MCMC in Fig. 8(f) is
unusual. Parameters β3 and β9 show somewhat different behavior, there the
MCMC skew stays close to 0 whereas VB predicts values around −0.1.

The KL distance for the mixture trial functions typically has more than one
local minimum. In the two-component case, another solution was found5 which
has a smaller KL divergence at smaller λ, i.e., at these values it provides a better
overall approximation. Compared to the single-component result, it improves the
moments of the posterior marginals mainly for β8 with the other parameters
remaining almost unchanged. As the solutions of Fig. 8 mainly enhance β4

and β7, these observations suggest that the mixture approximations tend to
focus their impact on a subset of parameters. This impression was confirmed
in calculations with other data sets where mixtures typically increased variance
estimates by up to 10% for most parameters, but significantly larger increases
were observed for some parameters.

For the calculations of Fig. 8, the computation time for two- and three-
component optimizations was increased by factors of about 3.3 and 10.4 on
average compared to one-component runs (which took about 1.2 seconds on
average). However, since the most time-consuming contribution comes from cal-
culating the KL distance these factors can be expected to vary from problem to
problem. For the lasso, the energy computations were almost instantaneous com-
pared to the mixture entropy (the hypergeometric function was linearly interpo-
lated from a dense precomputed grid). In other cases, the energy computations
may be much more time-consuming thus modifying the time ratios. Another as-
pect that might warrant further exploration are the convergence criteria of the
VB optimization routine. In particular for mixtures, it often appeared that be-
fore stopping many iterations were performed with very little change in the KL
divergence. Computing 100,000 iterations of the MCMC sampler of Park and
Casella (2008) in the same computational environment took about 12 seconds.

5The discontinuity in the three-component results in Fig.8 (blue curves) around λ = 70 is
also due to a switch between different families of solutions.
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7. Summary and conclusions

An important objective of current research on Variational Bayesian methods is
to develop and investigate improved approximation schemes. In this context,
the purpose of the present paper is to study the use of Gaussian mixture distri-
butions as trial functions. The main results can be summarized as follows.

(i) The key problem regarding the use of mixtures as trial functions is the
calculation of the entropy which becomes analytically intractable. In the present
work, this obstacle was overcome with the help of a lower-bound approxima-
tion to the entropy in terms of all contributions from individual components
and their pairwise combinations. (ii) Even for Gaussian mixtures, the pairwise
combinations still cannot be calculated analytically. In order to make practical
calculations feasible, “shape- and orientation-locking” constraints were imposed
on the Gaussian covariance matrices so that the entropy approximation could be
computed by standard two-dimensional numerical integration. (iii) Two simple
sufficient criteria were derived that permit to check if a mixture approxima-
tion is guaranteed to provide an improvement to single-component VB. (iv) To
illustrate the method, three examples were discussed in detail with target dis-
tributions chosen as isotropic generalized normal distributions, a non-Gaussian
state space model and the Bayesian lasso, respectively. These examples suggest
that for heavy-tailed distributions, Gaussian-mixture VB can be expected to in-
deed lead to an improved approximation of the target distribution in the sense
of a reduced KL divergence. Appreciable improvements for posterior variance
estimates could be obtained already with two- and three-component mixtures.
In addition, it was shown that mixture VB provides an estimate of skewness,
which is impossible for single-component Gaussian VB.

A major objective for further methodological work on the mixture approach
is the development of more flexible ways to calculate the mixture entropy that
allow us to overcome the current restriction to “shape- and orientation-locked”
Gaussians. The calculation of Gaussian mixture entropies is a topic of ongoing
research to which no final solutions have been found yet. However, in the present
context the problem is alleviated to some degree by the fact that only the entropy
of two-component mixtures is required, in contrast to the general k-component
problem. This should make it easier to find more general numerical or even
analytical approximations.

The numerical examples suggest a potential limitation of the approach in
the form of a reduced effectiveness for higher-dimensional target distirbutions.
This behavior might at least in part be due to the restrictions on the Gaussian
covariances imposed by the locking condition; however, it is also found for the
isotropic target of Sec. 3.2 where these restrictions should be less of an issue. A
possible qualitative explanation might be given by the reduction in the “entropic
repulsion” discussed in Sec. 3.1. Further work and investigation of additional
examples is necessary to clarify this issue. However, it should be kept in mind
that VB can be of significant practical value even in lower-dimensional problems.
Due to the relative speed advantage compared to MCMC, considerable gains in
absolute computation time can be obtained if a larger number of inference prob-
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lems has to be solved. An example for such a situation is given by the inferences
for multipe values of the penalty parameter in sparse regression, see Sec. 6. An-
other interesting lower-dimensional application of the present approach might be
found in semiparametric VB approximations when the Gaussian factor remains
of lower dimension.

Regarding the practical aspects of mixture VB calculations, it should be em-
phasized that the mixture entropy calculations need to be coded only once in
a problem-independent way, and the method then requires no further essential
adaptations to specific targets, except for what is already needed for the single-
component calculations. It is hoped that the modest implementation effort and
the potential gain in accuracy outweigh the increase in computation time and
make the method an interesting, practically viable option for improving VB
calculations.
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Appendix A: Numerical calculation of pairwise entropy

In the following, we outline the numerical calculation of the pairwise entropy
contribution S2 defined in (4) for multivariate normal distributions under the
locking condition. Essentially, one needs the integral

I(µ1, µ2,Σ1,Σ2, w1, w2) =

∫

dx1:k N (x;µ1,Σ1) ln

(

1 +
w2N (x;µ2,Σ2)

w1N (x;µ1,Σ1)

)

.

(A.1)
We now define the matrix U as square root of Σ−1

1 , i.e., Σ−1
1 = UTU with UT

the transpose of U , and set µ := µ1 − µ2. Using these definitions, the above
integral can be transformed to the “normal form”

I(µ1, µ2,Σ1,Σ2, w1, w2) =

∫

dx1:k N (x; 0, I) ln

[

1 +
w2N (x;Uµ,UΣ2U

T )

w1N (x; 0, I)

]

(A.2)
with I the identity matrix. We now invoke the locking condition Σ2 = λ2Σ1

which simplifies the above expression to

I(µ1, µ2,Σ1,Σ2, w1, w2) =

∫

dx1:k N (x; 0, I) ln

[

1 +
w2N (x;Uµ, λ2I)

w1N (x; 0, I)

]

. (A.3)

The integral can now be evaluated in cylindrical coordinates (ρ, z) with the
cylinder axis directed along Uµ. This yields
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I =

∫ ∞

−∞

dz

∫ ∞

0

dρΩk−1ρ
k−2 1

√

(2π)k
exp

[

−1

2
(z2 + ρ2)

]

× ln

[

1 +
w2

w1λk
exp

(

− 1

2λ2
(z − r)2 +

1

2
z2 − 1

2
(λ−2 − 1)ρ2

)]

(A.4)

with Ωk−1 = 2π(k−1)/2/Γ((k−1)/2) the surface area of a (k−1)-dimensional unit
sphere. Furthermore, r = |Uµ| which is readily evaluated from r2 = µTΣ−1

1 µ.
Due to the presence of the Gaussian weight function, the integral (A.4) can
very efficiently be computed using generalized Gauss-Hermite quadrature. In
typical calculations, we use 20 grid points for z and 10 points for (positive)
ρ. To save computation time, only (z, ρ) grid points are considered for which
the product of the quadrature weights is larger than a cutoff of 10−8. One
might also consider schemes with variable accuracy which is increased once the
calculation approaches convergence. For conjugate gradient minimization, one
also requires the partial derivatives of I with respect to λ, wi, and r. These are
readily obtained by differentiating the integrand in (A.4).

Equation (A.4) shows that the integral I depends only on the parameters
r, λ and the ratio ω = w2/w1, i.e., I = I(λ, ω, r). The total negative pairwise
entropy S̄2 = −S2[w1q1, w2q2] is then given by

S̄2[w1q1, w2q2] = w1I(λ, ω, r) + w2I(λ
−1, ω−1, r/λ). (A.5)

Appendix B: Proofs of Theorems and Corollaries in Section 4

Proof of Theorem 1. The functions in Q(k)
0 are given by

∑

iwiq(θ
(i) = θ0) with

∑

iwi = 1, wi ≥ 0. For these functions

∂θ(j)KL(k) =

∫

wj∂θq(θ0) log

[

∑

i

wiq(θ0)

]

+

∫

∑

i

wiq(θ0)
1

∑

iwiq(θ0)
wj∂θq(θ0)−

∫

wj∂θq(θ0) log p

= wj

[∫

∂θq(θ0) log q(θ0)−
∫

∂θq(θ0) log p

]

= 0,

the bracket in the last line vanishing because θ0 is a stationary point of the single-
component KL distance. As KL(k) does not depend on wi for the functions in

Q(k)
0 , we can immediately conclude that ∂wj

KL(k) = 0.

Proof of Theorem 2. Straightforward calculation shows that

∂θ(j),θ(l)KL(k) = diag(w1, . . . , wk)⊗A+
(

wwT
)

⊗B

= diag(w1, . . . , wk)⊗A

+
(

w1B
1/2, . . . , wkB

1/2
)T (

w1B
1/2, . . . , wkB

1/2
)

, (B.1)
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with w a column vector containing the weights wi, B = B1/2B1/2 and ⊗ the
Kronecker matrix product. We can now make use of the general matrix identity
det(M + QTQ) = det

(

1s +QM−1QT
)

detM for r × r-dimensional, invertible
M and s × r-dimensional Q with arbitrary r and s. Assuming for now that A
and B are invertible, we can apply this identity to (B.1) to obtain

det
(

∂θ(j),θ(l)KL(k)
)

= det

(

1p +B1/2A−1B1/2
k
∑

i=1

wi

)

(detA)k
k
∏

i=1

wi

= det
[

B1/2
(

B−1 +A−1
)

B1/2
]

(detA)k
k
∏

i=1

wi

= det
[

B
(

B−1 +A−1
)

A
]

(detA)k−1
k
∏

i=1

wi

= (detA)k−1 det(A+B)

k
∏

i=1

wi (B.2)

which proves (23) for invertible A and B. However, due to continuity (23) also
holds in case A or B are not invertible. To show (24), we need to study the

characteristic polynomial det(∂θ(j),θ(l)KL(k)−λ1kp) at wi = 1/k. However, brief
inspection of (B.1) reveals that we can evaluate this determinant in the same way
as above if we replace A by A− k1p in (B.1). This immediately yields (24).

Proof of Corollary 1. The k-component mixture with (θ(1) = θ0, . . . , θ
(k) = θ0)

and w1 = · · · = wk = 1/k describes the same distribution as q(θ0), its KL

divergence equalling KL(1)(θ0). However, from (24) and the assumption on A it
follows that its stability matrix has negative eigenvalues, i.e., the KL divergence
KL(k) has a saddle point at this distribution. Hence, the global minimum of
KL(k) must lie below the minimum of KL(1)(θ0).

Proof of Corollary 2. Consider first the case k = 2. From (24) follows that the
stability matrix for the mixture distribution with (θ(1) = θ0, . . . , θ

(k) = θ0) and
w1 = · · · = wk = 1/k has only positive eigenvalues. By the implicit function
theorem, the eigenvalues of the stability matrix are continuous functions of the
weights w1 and w2. As long as w1 and w2 are both different from zero, (23)
thus guarantees that the eigenvalues will remain positive, as the determinant
cannot become zero. If w1 = 0 or w2 = 0, we have a one-component distribution
which is already known to minimize the KL distance under variation of θ. For
k > 2, we can prove the corollary inductively. As long as all mixture weights
are different from zero, the positivity of the eigenvalues of the stability matrix
follows in the same way as in the case of k = 2. If one or more weights are
zero, the distribution corresponds to a mixture with a number of components
less than k, and the positivity of the eigenvalues follows from the induction
hypothesis.
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Appendix C: Variational calculations for non-Gaussian state-space

model

To compute the energy term of the KL divergence we need the integral

∫

N (x1:n;µ,Σ) ln p(x1:n|y1:n)dx1:n

=

∫

N (x1:n;µ,Σ) ln p(x1:n, y1:n)dx1:n − ln p(y1:n) (C.1)

with N (x1:n;µ,Σ) the n-dimensional normal distribution with mean µ and co-
variance matrix Σ. As the evidence p(y1:n) is not known analytically, we can
only compute the first term on the right-hand side of (C.1). Therefore, we can-
not evaluate the actual KL divergence; rather, the optimization problem will
eventually provide a lower bound on the evidence. Using (28), we obtain from
(C.1)

∫

N (x1:n;µ,Σ) ln p(x1:n, y1:n)dx1:n

=

∫

N (x1:n;µ,Σ)

n
∑

i=1

[ln pgn(xi;φxi−1, β, κ) + ln pgn(yi;xi, α, ρ)] dx1:n

= n ln

[

β

2κΓ(1/β)

α

2ρΓ(1/α)

]

− κ−β

∫

N (x1;µ1,Σ11)|x1|βdx1 − ρ−α
n
∑

i=1

∫

N (xi;µi,Σii)|yi − xi|αdxi

− κ−β
n
∑

i=2

∫

N (xi−1:i;µi−1:i,Σi−1:i)|xi − φxi−1|βdxi−1:i (C.2)

where the normal distributions for xi and xi−1:i in the last two lines refer to the
corresponding marginals of N (x1:n, µ,Σ). The two one-dimensional integrals in
the second-to-last line of (C.2) can be solved analytically in terms of confluent
hypergeometric functions using the relation

∫

N (x, µ, σ2)|x|γdx =

√

(2σ2)γ

π
Γ

(

1 + γ

2

)

1F1

(

−γ

2
,
1

2
,− µ2

i

2σ2

)

(C.3)

(obviously, as a function of µ the right-hand side simply provides a smoothed
version of |µ|γ). For the computation of the confluent hypergeometric function

1F1, efficient numerical routines are available (Zhang and Jin 1996). To evaluate
the double integral of (C.2) involving xi−1 and xi, we first integrate out one
variable analytically using (C.3) and then perform the second integration using
Gauss-Hermite quadrature.

Equation (C.2) shows that the energy only depends on the elements Σi,i

and Σi±1,i of the covariance matrix Σ. For VB with a single Gaussian, (11)
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thus implies that the inverse of the optimized covariance matrix will be tridi-
agonal. The single-Gaussian VB problem therefore involves the optimization
of an n-component mean vector µ and a covariance matrix Σ depending on
2n−1 parameters. For VB with mixtures, there is no equivalent to relation (11)
that would impose a restriction on the form of the optimized covariance ma-
trix. However, the numerical calculations show that, at least under the locking
condition, the optimized inverse covariance matrices retain the band structure
form to a very good degree of approximation. It is therefore reasonable to im-
pose this constraint from the outset to simplify calculations. In this way, VB
with two components results in a 4n+1-dimensional optimization problem (2n
parameters for the two means, 2n−1 parameters for the covariance matrix, and
one parameter each for the locking ratio λ and the mixture weights). Similarly,
three-component VB leads to a 5n+ 3-dimensional problem. All minimizations
can be performed using standard numerical methods.

Appendix D: Variational calculations for Bayesian lasso

To compute the energy term of the KL divergence we need the logarithm of the
target distribution which reads

log p ∼ − (ỹ −Xβ)⊤(ỹ −Xβ)

2σ2
− λ

p
∑

i=1

|βi|√
σ2

(D.1)

after eliminating irrelevant constants. For a trial function N (β;µ,Σ) the energy
term is given by

E(µ,Σ) =
(y −Xµ)⊤(y −Xµ) +

∑

i,j Σij(X
⊤X)ij

2σ2

+
λ√
σ2

p
∑

i=1

√

2Σii

π
1F1

(

−1

2
,
1

2
,− µ2

i

2Σii

)

(D.2)

with 1F1 the confluent hypergeometric function (see (C.3)).

For the variational minimization, the Cholesky decomposition of Σ is used.
With single Gaussians as trial functions, the search space for the optimization
thus has dimension (p2+3p)/2 whereas for mixtures of two and three Gaussians
the dimensionalities are (p2 + 5p+ 4)/2 and (p2 + 7p+ 8)/2, respectively.

For the optimization, a number of derivative-free algorithms were tried out,
and Powell’s method (Press, Teukolsky, Vetterling and Flannery 2007) was found
to provide the best results in terms of speed and reliability. It remains open
whether performance could be further improved with the help of gradient-based
algorithms. In the calculations with variational mixture approximations, the
initial values for the optimization were chosen as the variational solution for the
previous λ when going through a sequence of λ’s.
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