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Abstract—In this work, we develop a novel variational
Bayesian learning method for the Dirichlet process (DP) mixture
of the inverted Dirichlet distributions, which has been shown
to be very flexible for modeling vectors with positive elements.
The recently proposed extended variational inference (EVI)
framework is adopted to derive an analytically tractable solution.
The convergency of the proposed algorithm is theoretically
guaranteed by introducing single lower bound approximation
to the original objective function in the EVI framework. In
principle, the proposed model can be viewed as an infinite
inverted Dirichelt mixture model (InIDMM) that allows the
automatic determination of the number of mixture components
from data. Therefore, the problem of pre-determining the optimal
number of mixing components has been overcome. Moreover,
the problems of over-fitting and under-fitting are avoided by the
Bayesian estimation approach. Comparing with several recently
proposed DP-related methods and conventional applied methods,
the good performance and effectiveness of the proposed method
have been demonstrated with both synthesized data and real data
evaluations.

Index Terms—Dirichlet process mixture, inverted Dirichlet
distribution, Bayesian estimation, variational learning, computer
vision

I. INTRODUCTION

Finite mixture modeling [1], [2] is a flexible and powerful

probabilistic modeling tool for data that are assumed to be

generated from heterogeneous populations. It has been widely

applied to many areas, such as pattern recognition, machine

learning, data mining, computer vision [3]–[7]. Among all

finite mixture models, the finite Gaussian mixture model (GM-

M) has been the most popular method for modeling continuous

data. Much of its popularity is due to the fact that any

continuous distribution can be arbitrarily well approximated

by a GMM with unlimited number of mixture components.

Moreover, the parameters in a GMM can be estimated ef-

ficiently via maximum likelihood (ML) estimation with the

expectation maximum (EM) algorithm [8]. By assigning prior

distributions to the parameters in a GMM, Bayesian estimation

of GMM can be carried out with conjugate prior-posterior
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pair matching [9], [10]. Both the ML and the Bayesian esti-

mation algorithms can be represented in analytically tractable

form [9].

Recent studies have shown that non-Gaussian statistical

models, e.g., the beta mixture model (BMM) [6], the Dirichlet

mixture model (DMM) [7], the Gamma mixture model (GaM-

M) [11], the von Mises-Fisher mixture model (vMM) [12],

can model the non-Gaussian distributed data more efficiently,

compared to the conventional GMM. For example, BMM has

been widely applied in modeling grey image pixel values [6]

and DNA methylation data [13]. In order to efficiently model

proportional data [7], [14], DMM can be utilized to describe

the underlying distribution. In generalized-K (KG) fading

channels, GaMM has been used to analyze the capacity and

error probability [11]. The vMM has been widely used in

modeling directional data, such as yeast gene expression [12]

and topic detection [15]. The finite inverted Dirichlet mixture

model (IDMM), among others, has been demonstrated to be

an efficient tool for modeling data vector with positive ele-

ments [16], [17]. Moreover, the inverted Dirichlet distribution

also has connections with nonnegative matrix factorization

(NMF). In sparse NMF [18], the l1-norm constraint is usually

applied to favor the sparseness. As the definition of the

inverted Dirichlet distribution is similar to the nonnegative

properties of the columns in the original matrix and the

basis matrix, selecting proper prior distribution to describe

the underlying distribution of the aforementioned columns can

favor the sparse NMF.

An essential problem in finite mixture modeling is how

to automatically decide the appropriate number of mixture

components based on the data. The component number has

a strong effect on the modeling accuracy [19]. If the number

of mixture components is not properly chosen, the mixture

model may over-fit or under-fit the observed data. To deal with

this problem, many methods have been proposed. These can

be categorized into two groups: deterministic approaches [20],

[21] and Bayesian methods [22], [23]. Deterministic approach-

es are generally implemented by ML estimation under an

EM-based and require the integration of entropy measures or

some information theoretic criteria, such as the minimum mes-

sage length (MML) [21], the Bayesian information criterion

(BIC) [24], and the Akaike information criterion (AIC) [25],

to determine the number of components in the mixture model.

It is worth noting that, in general, the EM algorithm converges

to a local maximum or a saddle point and its solution is

highly dependent on its initialization. On the other hand, the

Bayesian methods, which are not sensitive to initialization
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by introducing proper prior distributions to the parameters in

the model, have been widely used to find a suitable number

of components in a finite mixture model. In this case, the

parameters of a finite mixture model (including the parameters

in a component and the weighting coefficients) are treated as

random variables under the Bayesian framework. The poste-

rior distributions of the parameters, rather than simple point

estimates, are computed [2]. The model truncation in Bayesian

estimation of finite mixture model is carried out by setting the

corresponding weights of the unimportant mixture components

to zero (or a small value close to zero) [2]. However, the

number of mixture components should be properly initialized,

as it can only decrease during the training process.

The increasing interest in mixture modeling has led to the

development of the model selection method1. Recent work has

shown that the non-parametric Bayesian approach [26]–[30]

can provide an elegant solution for automatically determining

the complexity of model. The basic idea behind this approach

is that it provides methods to adaptively select the optimal

number of mixing components, while also allows the number

of mixture components to remain unbounded. In other words,

this approach allows the number of components to increase

as new data arrives, which is the key difference from finite

mixture modeling. The most widely used Bayesian nonpara-

metric [31] model selection method is based on the Dirichlet

process (DP) mixture model [32], [33]. The DP mixture model

extends distributions over measures, which has the appealing

property that it does not need to set a prior on the number

of components. In essence, the DP mixture model can also

be viewed as an infinite mixture model with its complexity

increasing as the size of dataset grows. Recently, the DP mix-

ture model has been applied in many important applications.

For instance, the DP mixture model has been adopted to a

mixture of different types of non-Gaussian distributions, such

as the DP mixture of beta-Liouville distributions [34], the

DP mixture of student’s-t distributions [35], the DP mixture

of generalized Dirichlet distributions [36], the DP mixture of

student’s-t factors [37], and the DP mixture of hidden Markov

random field models [38].

Generally speaking, most parameter estimation algorithms

for both the deterministic and the Bayesian methods are time

consuming, because they have to numerically evaluate a given

model selection criterion [21]. This is especially true for the

fully Bayesian Markov chain Monte Carlo (MCMC) [27],

[39], which is one of the widely applied Bayesian approaches

with numerical simulations. The MCMC approach has its own

limitations, when high-dimensional data are involved in the

training stage [40]. This is due to the fact that its sampling-

based characteristics yield a heavy computational burden and it

is difficult to monitor the convergence in the high-dimensional

space. To overcome the aforementioned problems, variational

inference (VI), which can provide an analytically tractable

solution and good generalization performance, has been pro-

posed as an efficient alternative to the MCMC approach [41].

With an analytically tractable solution, the numerical sampling

1Here, model selection means selecting the best of a set of models of
different orders

during each iteration in the optimization stage can be avoided.

Hence, the VI-based solutions can lead to more efficient

estimation. They have been successfully applied in a variety of

applications including the estimation of mixture models [5]–

[7], [34], [42].

Motivated by the ability of the Bayesian non-parametric

approaches to solve the model selection problem and the

good performance recently obtained by the VI framework,

we focus on the variational learning of the DP mixture of

inverted Dirichlet distributions (a.k.a. the infinite inverted

Dirichlet mixture model (InIDMM)). Since InIDMM is a

typical non-Gaussian statistical model, it is not feasible to

apply the standard VI framework to obtain an analytically

tractable solution for the Bayesian estimation. As a variate

of VI, stochastic variational infernece (SVI) [43], [44] has

been proposed as an alternative solution to approximate the

posterior distributions. The algorithm under SVI framework is

scalable and suitable for massive data. However, when dealing

with non-Gaussian distributions, the expectations in the update

iterations (Fig. 4, [43]) cannot be calculated explicitly and

some sampling methods are also required to approximate

the expectations. In order to derive an analytically tractable

solution for the variational learning of InIDMM, the recently

proposed extended variational inference (EVI) [6], [7], which

is particularly suitable for non-Gaussian statistical models, has

been adopted to provide an appropriate single lower bound

(SLB) approximation to the original object function. With

the auxiliary function, an analytically tractable solution for

Bayesian estimation of InIDMM is derived. The key contribu-

tions of our work are three-fold: 1) The finite inverted Dirichlet

mixture model (IDMM) has been extended to the infinite

inverted Dirichlet mixture model (InIDMM) under the stick-

breaking process framework [32], [45]. Thus, the difficulty in

automatically determining the number of mixture components

can be overcome. 2) An analytically solution is derived with

the EVI framework for InIDMM. Moreover, comparing with

the recently proposed algorithm for InIDMM [46], which is

based on multiple lower bound (MLB) approximation, our

algorithm can not only theoretically guarantee convergence but

also provide better approximations. 3) The proposed method

has been applied in several important applications in computer

vision, such as image categorization and object detection. The

good performance has been illustrated with both synthesized

and real data evaluations.

The remaining part of this paper is organized as follow: Sec-

tion II provides a brief overview of the finite inverted Dirichlet

mixture and the DP mixture. The infinite inverted Dirichlet

mixture model is also proposed. In Section III, a Bayesian

learning algorithm with EVI is derived. The proposed algorith-

m has an analytically tractable form. The experimental results

with both synthesized and real data evaluations are reported in

Section IV. Finally, we draw conclusions and future research

directions in Section V.

II. THE STATISTICAL MODEL

In this section, we first present a brief overview of the finite

inverted Dirichlet mixture model (IDMM). Then, the DP mix-

Page 2 of 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

3

ture model with stick-breaking representation is introduced.

Finally, we extend the IDMM to InIDMM.

A. Finite inverted Dirichlet mixture model

Given a D-dimensional vector ~x = {x1, · · · , xD} generated

from an IDMM with M components, the probability density

function (PDF) of ~x is denoted as [16]

IDMM(~x|~π,Λ) =

M∑

m=1

πmiDir(~x|~αm), (1)

where Λ = {~αm}Mm=1 and ~π = {πm}Mm=1 is the mixing

coefficient vector subject to the constraints 0 ≤ πm ≤ 1 and∑M
m=1 πm = 1. Moreover, iDir(~x|~α) is an inverted Dirichlet

distribution with its (D + 1)-dimensional positive parameter

vector ~α = {α1, · · · , αD+1} defined as

iDir(~x|~α) =
Γ(
∑D+1

d=1 αd)∏D+1
d=1 Γ(αd)

D∏

d=1

x
αd−1
d

(
1 +

D∑

d=1

xd

)−
∑D+1

d=1
αd

,

(2)

where xd > 0 for d = 1, · · · , D and Γ(·) is the Gamma

function defined as Γ(a) =
∫∞

0 ta−1e−tdt.

B. Dirichlet Process with Stick-Breaking

The Dirichlet process (DP) [32], [33] is a stochastic process

used for Bayesian nonparametric data analysis, particularly

in a DP mixture model (infinite mixture model). It is a

distribution over distributions rather than parameters, i.e., each

draw from a DP is a probability distribution itself, rather

than a parameter vector [47]. We adopt the DP to extend

the IDMM to the infinite case, such that the difficulty of the

automatic determination of the model complexity (i.e., the

number of mixture components) can be overcome. To this

end, the DP is constructed by the following stick-breaking

formulation [31], [48], [49], which is an intuitive and simple

constructive definition of the DP.

Assume that H is a random distribution and ϕ is a positive

real scalar. We consider two countably infinite collections

of independently generated stochastic variables Ωm ∼ H
and λm ∼ Beta(λm; 1, ϕ)2 for m = {1, · · · ,∞}, where

Beta(x; a, b) is the beta distribution defined as Beta(x; a, b) =
Γ(a+b)
Γ(a)Γ(b)x

a−1(1 − x)b−1. A distribution G is said to be DP

distributed with a concentration parameter ϕ and a base

measure or base distribution H (denoted as G ∼ DP(ϕ,H)),
if the following conditions are satisfied:

G =

∞∑

m=1

πmδΩm , πm = λm

m−1∏

l=1

(1− λl), (3)

where {πm} is a set of stick-breaking weights with constraints∑∞
m=1 πm = 1, δΩm

is a delta function whose value is 1 at

location Ωm and 0 otherwise. The generation of the mixing

coefficients {πm} can be considered as process of breaking

a unit length stick into an infinite number of pieces. The

2To avoid confusion, we use f (x; a) to denote the PDF of x parameterized
by parameter a. f (x|a) is used to denote the conditional PDF of x given a,
where both x and a are random variables. Both f (x; a) and f (x|a) have
exactly the same mathematical expressions.

               

               

                

               

~zn

∞

∞

∞

λm ϕm

~αm

N

~xn

Fig. 1: Graphical representation of the variables relationships

in the Bayesian inference of a InIDMM. All of the circles

in the graphical figure represent variables. Arrows show the

relationships between variables. The variables in the box are

the i.i.d. observations.

length of each piece, λm, which is proportional to the rest

of the “stick” before the current breaking, is considered as an

independent random variable generated from Beta(λm; 1, ϕ).
Because of its simplicity and natural generalization ability, the

stick-breaking construction has been a widely applied scheme

for the inference of DPs [34], [45], [50].

C. Infinite Inverted Dirichlet Mixture Model

Now we consider the problem of modeling ~x by an Infinite

Inverted Dirichlet Mixture Model (InIDMM), which is actually

an extended IDMM with an infinite number of components.

Therefore, (1) can be reformulated as

InIDMM(~x|~π,Λ) =
∞∑

m=1

πmiDir(~x|~αm), (4)

where ~π = {πm}∞m=1 and Λ = {~αm}∞m=1. Then, the

likelihood function of the InIDMM given the observed dataset

X = {~xn}
N
n=1 is given by

InIDMM(X|~π,Λ) =

N∏

n=1

{
∞∑

m=1

πmiDir(~xn|~αm)

}
. (5)

In order to clearly illustrate the generation process of each

observation ~xn in the mixture model, we introduce a latent

indication vector variable ~zn = {zn1, zn2, · · · }. ~z has only

one element equal to 1 and the other elements in ~z are 0. For

example, znm = 1 indicates the sample ~xn comes from the

mixture component m. Therefore, the conditional distribution

of X given the parameters Λ and the latent variables Z =
{znm} is

InIDMM(X|Z,Λ) =
N∏

n=1

∞∏

m=1

iDir(~xn|~αm)znm . (6)

Moreover, to exploit the advantages of the Bayesian frame-

work, conjugate prior distributions are introduced for all the

unknown parameters according to their distribution properties.

In this work, we place the conjugate priors over the unknown

stochastic variables Z , Λ, and ~λ = (λ1, λ2, · · · ) such that a

full Bayesian estimation model can be obtained.

In the aforementioned full Bayesian model, the prior distri-

bution of Z given ~π is given by

p(Z|~π) =

N∏

n=1

∞∏

m=1

πznm
m . (7)
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As ~π is a function of ~λ according to the stick-breaking

construction of the DP as shown in (3), we rewrite (7) as

p(Z|~λ) =

N∏

n=1

∞∏

m=1

[
λm

m−1∏

l=1

(1− λl)

]znm

. (8)

As previously mentioned in Section II-B, the prior distribu-

tion of ~λ is

p(~λ|~ϕ) =
∞∏

m=1

Beta(λm; 1, ϕm) =
∞∏

m=1

ϕm(1− λm)ϕm−1, (9)

where ~ϕ = (ϕ1, ϕ2, · · · ). Based on (3), we can obtain the

expected value of πm. In order to do this, the expected value

of λm will first be calculated as

〈λm〉 = 1/(1 + ϕm). (10)

Then, the expected value of πm is denoted as

〈πm〉 = 〈λm〉

m−1∏

l=1

(1− 〈λl〉). (11)

It is worth to note that, when the value of ϕm is small, 〈λm〉
will become large. Therefore, the expected of the mixing co-

efficients πm are controlled by the parameters ϕm, i.e., small

value of ϕm will yield small πm such that the distribution of

πm will be sparse.

As ϕm is positive, we assume ~ϕ follows a product of gamma

prior distributions as

p(~ϕ;~s,~t) =
∞∏

m=1

Gam(ϕm; sm, tm) =
∞∏

m=1

tsmm
Γ(sm)

ϕsm−1
m e−tmϕm ,

(12)

where Gam(·) is the gamma distribution. ~s = (s1, s2, · · · )
and ~t = (t1, t2, · · · ) are the hyperparamters and subject to the

constraints sm > 0 and tm > 0.

Next, we introduce an approximating conjugate prior dis-

tribution to parameter Λ in InIDMM. The inverted Dirichlet

distribution belongs to the exponential family and its formal

conjugate prior can be derived with the Bayesian rule [2] as

p(~α|~µ0, v0) = C(~µ0, v0)

[
Γ(
∑D+1

d=1 αd)∏D+1
d=1 αd

]ν0
e−~µ0(~α

T −~ID+1), (13)

where ~µ0 = [µ10 , · · ·µD+10 ] and ν0 are the hyperparameters

in the prior distribution, C(~µ0, v0) is a normalization coeffi-

cient such that
∫
p(~α|~µ0, v0)d~α = 1. ~Id is a D-dimensional

vector with all elements equal to one. Then, we can write the

posterior distribution of ~α as (with N i.i.d. observations X )

f(~α|X ) =
iDir(X|~α)f(~α|~µ0, ν0)∫
iDir(X|~α)f(~α|~µ0, ν0)d~α

=C(~µN , νN)

[
Γ(
∑D+1

d=1 αd)∏D+1
d=1 Γ(αd)

]νN
e−~µN (~αT −~ID+1)

(14)

where the hyperparameters νN and ~µN in the posterior distri-

bution are

νN = ν0 +N, ~µN = ~µ0 − [lnX+ − ~ID+1 ln(1 + ~ITD+1X
+)]~IN .

(15)

In (15), X+ is a (D + 1) × N matrix by connecting ~ITD+1

to the bottom of X . However, it is not applicable in our VI

framework due to the analytically intractable normalization

factor in (44). Because Λ is positive, we adopt gamma prior

Model estimation 

strategies for IDMM

Model estimation 

strategies for InIDMM

Fig. 2: Development progress of the model estimation strategies for
finite IDMM and infinite IDMM.

distributions to approximate conjugate prior for Λ as well. By

assuming the parameters of inverted Dirichlet distribution are

mutually independent, we have

p(Λ) = Gam(Λ;U, V ) =
∞∏

m=1

D+1∏

d=1

vumd

md

Γ(umd)
αumd−1
md e−vmdαmd ,

(16)

where all the hyperparameters U = {umd} and V = {vmd}
are positive.

With the Bayesian rules and by combining (6) and (8)-(16)

together, we can represent the joint density of the observation

X with all the i.i.d. latent variables Θ = (Z,Λ, ~λ, ~ϕ) as

p(X ,Θ) =p(X|Z,Λ)p(Z|~λ)p(~λ|~ϕ)p(~ϕ)p(Λ)

=
N∏

n=1

∞∏

m=1



λm

m−1∏

j=1

(1− λj)
Γ
(∑D+1

d=1 αmd

)

∏D+1
d=1 Γ(αmd)

×

D∏

d=1

x
αmd−1
nd

(
1 +

D∑

d=1

xnd

)−
∑D+1

d=1
αmd




znm

×

∞∏

m=1

[
ϕm(1− λm)ϕm−1 tsmm

Γ(sm)
ϕsm−1

m e−tmϕm

]

×
∞∏

m=1

D+1∏

d=1

v
umd

md

Γ(umd)
αumd−1
md e−vmdαmd .

(17)

The structure of the InIDMM can be represented in terms of

a graphical model in Fig. 1. The development progress for the

related models are shown in Fig. 2.

III. VARIATIONAL LEARNING FOR INIDMM

In this section, we develop a variational Bayesian inference

framework for learning the InIDMM. With the assistance

of recently proposed EVI [6], [7], an analytically tractable

algorithm, which prevents numerical sampling during each

iteration and facilitates a training procedure, is obtained. The

proposed solution is also able to overcome the problem of

overfitting and automatically decide the number of mixture

components.

A. Extended Variational Inference

The purpose of Bayesian analysis is to estimate the values

of the hyperparameters as well as the posterior probability

distribution of the latent variables. Within the conventional
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variational inference framework, the objective function that

needs to be maximized is

L(q) = Eq(Θ)[ln p(X ,Θ)]− Eq(Θ)[ln q(Θ)]. (18)

For most of the non-Gaussian mixture models (e.g., the beta

mixture model [7], the Dirichlet mixture model [6], the beta-

Liouville mixture model [34], the inverted Dirichlet mixture

model [17]), the term Eq(Θ)[ln p(X ,Θ)] is analytically in-

tractable such that the lower bound L(q) cannot be maximized

directly by a closed-form solution. Therefore, the EVI method

[6], [7], [41] was proposed to overcome the aforementioned

problem. With an auxiliary function p̃(X ,Θ) that satisfies

Eq(Θ)[ln p(X ,Θ)] ≥ Eq(Θ)[ln p̃(X ,Θ)] (19)

and substituting (19) into (18), we can still reach the maximum

value of L(q) at some given points by maximizing a lower

bound of L̃(q)

L(q) ≥ L̃(q) = Eq(Θ)[ln p̃(X ,Θ)]− Eq(Θ)[ln q(Θ)]. (20)

If p̃(X ,Θ) is properly selected, an analytically tractable so-

lution can be obtained. In order to properly formulate the

variational posterior q(Θ), we truncate the stick-breaking

representation for the InIDMM at a value M as

λM = 1, πm = 0 when m > M, and

M∑

m=1

πm = 1. (21)

Note that the model is still a full DP mixture. The truncation

level M is not a part of our prior infinite mixture model, it is

only a variational parameter for pursuing an approximation to

the posterior, which can be freely initialized and automatically

optimized without yielding overfitting during the learning

process. Additionally, we make use of the following factorized

variational distribution to approximate p(Θ|X ) as

q(Θ) =
M∏

m=1

q(λm)q(ϕm)
N∏

n=1

q(znm)
D+1∏

d=1

q(αmd), (22)

where the variables in the posterior distribution are assumed to

be mutually independent (as illustrated by the graphical model

in Fig. 1). This is the only assumption we introduced to the

posterior distribution. No other restrictions are imposed over

the mathematical forms of the individual factor distribution-

s [2].

Applying the full factorization formulation and the truncated

stick-breaking representation for the proposed model, we can

solve the variational learning by maximizing the lower bound

L̃(q) shown in (20). The optimal solution in this case is given

by
ln qs(Θs) = 〈ln p̃(X ,Θ)〉j 6=s + Con., (23)

where 〈·〉j 6=s refers to the expectation with respect to all the

distributions qj(Θj) except for variable s. In addition, any term

that does not include Θs are absorbed into the additive constant

“Con.” [2], [41]. In the variational inference, all factors qs(Θs)
need to be suitably initiated, then each factor is updated in turn

with a revised value obtained by (23) using the current values

of all the other factors. Convergence is theoretically guaranteed

since the lower bound is a convex with respect to each factor

qs(Θs) [2], [6].

B. EVI for the Optimal Posterior Distributions

According to the principles of EVI, the expectation of the

logarithm of the joint distribution, given the joint posterior

distributions of the parameters, can be expressed as

〈ln p(X ,Θ)〉

=
N∑

n=1

M∑

m=1

〈znm〉

[
Rm+

D∑

d=1

(〈αmd〉 − 1) ln xnd

−

D+1∑

d=1

〈αmd〉(1 +

D∑

d=1

xnd) + 〈lnλm〉+

m−1∑

j=1

〈ln(1− λj)〉

]

+

M∑

m=1

[〈lnϕm〉+ (〈ϕm〉 − 1)〈ln(1− λm)〉]

+
M∑

m=1

D+1∑

d=1

[
(umd − 1)〈lnαmd〉 − vmd〈αmd〉

]

+
M∑

m=1

[(sm − 1)〈lnϕm〉 − tm〈ϕm〉] + Con.,

(24)

where Rm =
〈
ln

Γ(
∑D+1

d=1 αmd)∏D+1
d=1 Γ(αmd)

〉
.

With the mathematical expression in (24), an analytically

tractable solution is not feasible, which is due to the fact

that Rm cannot be explicitly calculated (although it can be

simulated by some numerical sampling methods). In order

to apply (23) to explicitly calculate the optimal posterior

distributions and with the principles of the EVI framework,

it is required to introduce an auxiliary function R̃m such that

Rm ≥ R̃m. According to [6, Eq. 25], we can select R̃m as

R̃m = ln
Γ(
∑D+1

d=1 〈αmd〉)∏D+1
d=1 Γ(〈αmd〉)

+

D+1∑

d=1

[
Ψ(

D+1∑

k=1

〈αmd〉)−Ψ(〈αmd〉)

]

× [〈lnαmd〉 − ln 〈αmd〉] 〈αmd〉,
(25)

where Ψ(·) is the digamma function defined as Ψ(a) =
∂ ln Γ(a)/∂a.

Substituting (25) into (24), a lower bound to 〈ln p(X ,Θ)〉
can be obtained as

〈ln p̃(X ,Θ)〉

=
N∑

n=1

M∑

m=1

〈znm〉

[
R̃m+

D∑

d=1

(〈αmd〉 − 1) ln xnd

−
D+1∑

d=1

〈αmd〉(1 +
D∑

d=1

xnd) + 〈lnλm〉+
m−1∑

j=1

〈ln(1− λj)〉

]

+

M∑

m=1

[〈lnϕm〉+ (〈ϕm〉 − 1)〈ln(1− λm)〉]

+
M∑

m=1

D+1∑

d=1

[
(umd − 1)〈lnαmd〉 − vmd〈αmd〉

]

+
M∑

m=1

[(sm − 1)〈lnϕm〉 − tm〈ϕm〉] + Con..

(26)

With (23), we can get analytically tractable solutions for

optimally estimating the posterior distributions of Z , ~λ, ~ϕ,

and Λ. We now consider each of these in more detail: 1) The

posterior distribution of q(Z)
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As any term that is independent of znm can be absorbed

into the additive constant, we have

ln q∗(znm) = Con. + znm

[
R̃m + 〈lnλm〉+

m−1∑

j=1

〈ln(1− λj)〉

+
D∑

d=1

(〈αmd〉 − 1) ln xnd +
D+1∑

d=1

〈αmd〉 ln(1 +
D∑

d=1

xnd)

]
,

(27)

which has same logarithmic form of the prior distribution (i.e.,

the categorial distribution). Therefore, we can write ln q∗(Z)
as

ln q∗(Z) =

N∑

n=1

M∑

m=1

znm ln ρnm + Con. (28)

with the definition that

ln ρnm = 〈lnλm〉+

m−1∑

j=1

〈ln(1− λj)〉+ R̃m

+

D∑

d=1

(〈αmd〉 − 1) lnxnd −

D+1∑

d=1

〈αmd〉(1 +

D∑

d=1

xnd).

(29)

Recalling that znm ∈ (0, 1) and
∑M

m=1 znm = 1, we define

rnm =
ρnm∑M

m=1 ρnm

. (30)

Taking the exponential of both sides of (28), we have

q∗(Z) =
N∏

n=1

M∏

m=1

rznm
nm , (31)

which is the optimal posterior distribution of Z .

The posterior mean 〈znm〉 can be calculated as 〈znm〉 =
rnm. Actually, the quantities {rnm} are playing a similar role

as the responsibilities in the conventional EM [51] algorithm.

In the following parts, we show only the optimal solutions

to ~λ, ~ϕ, and Λ, respectively. The derivation details can be

found in the appendix.

2) The posterior distribution of q(~λ)
The optimal solution to the posterior distribution of ~λ is

characterized as

q(~λ) =
M∏

m=1

Beta(λm; g∗m, h∗
m), (32)

where the hyperparameters s∗m and q∗m are

g∗m = 1 +

N∑

n=1

〈znm〉, h∗
m = 〈ϕm〉+

N∑

n=1

M∑

j=m+1

〈znj〉. (33)

3) The posterior distribution of q(~ϕ)
The optimal solution to the posterior distribution of ~ϕ is

q∗(~ϕ) =
M∏

m=1

Gam(ϕm; s∗m, t∗m), (34)

where the optimal solutions to the hyperparamters s∗m and t∗m
are

s∗m = 1 + s0m, t∗m = t0m − 〈ln(1− λm)〉, (35)

where s0m and t0m denote the hyperparameters initialized in the

prior distribution, respectively.

4) The posterior distribution of q(Λ)

The optimal approximation to the posterior distribution of

Λ is

q∗(Λ) =
M∏

m=1

D+1∏

d=1

Gam(αmd;u
∗
md, v

∗
md), (36)

where the optimal solutions to the hyperparameters u∗
md and

v∗md are given by

u∗
md = u0

md +
N∑

n=1

〈znm〉

[
Ψ(

K+1∑

k=1

〈αmk〉)−Ψ(〈αmd〉)

]
〈αmd〉

(37)

and

v∗md = v0md −
N∑

n=1

〈znm〉

[
ln xnd − ln(1 +

D∑

d=1

xnd)

]
. (38)

In the above equations, u0
md and v0md are the hyperparameters

in the prior distribution and we set xn,D+1 = 1. The following

expectations are needed to calculate the aforementioned update

equations:

〈ln(1− λm)〉 =Ψ(h∗
m)−Ψ(g∗m + h∗

m),

〈lnλm〉 =Ψ(g∗m)−Ψ(g∗m + t∗m),

〈lnαmd〉 =Ψ(u∗
md)− ln v∗md,

〈ϕm〉 =
s∗m
t∗m

, 〈αmd〉 =
u∗
md

v∗md

.

(39)

C. Full Variational Learning Algorithm

As can be observed from the above updating process, the

optimal solutions for the posterior distributions are dependent

on the moments evaluated with respect to the posterior dis-

tributions of the other variables. Thus, the variational update

equations are mutually coupled. In order to obtain optimal

posterior distributions for all the variables, iterative updates

are required until convergence. With the obtained posterior

distributions, it is straightforward to calculate the lower bound

L̃(q)

L̃(q) =

∫
q(Θ) ln

p̃(Θ,X )

q(Θ)
dΘ

=〈ln p̃(X ,Θ)〉 − 〈ln q(Θ)〉

=〈ln p̃(X ,Θ)〉 − 〈ln q(Z)〉 − 〈ln q(~λ)〉

− 〈ln q(~ϕ)〉 − 〈ln q(Λ)〉,

(40)

which is helpful in monitoring the convergence. In (40), each

term with expectation (i.e., 〈·〉) is evaluated with respect to all

the variables in its argument as

〈ln q(Z)〉 = rnm ln rnm, (41)

〈ln q(~λ)〉 =
M∑

m=1

[ln Γ(g∗m + h∗
m)− ln Γ(g∗m)− ln Γ(h∗

m)

+(g∗m − 1)〈lnλm〉+ (h∗
m − 1)〈ln(1− λm)〉] ,

(42)

〈ln q(~ϕ)〉 =

M∑

m=1

[s∗m ln t∗m − ln Γ(s∗m)

+(s∗m − 1)〈lnϕm〉 − t∗mϕ̄m] ,

(43)

and

〈ln q(~α)〉 =
M∑

m=1

D+1∑

d=1

[u∗
md ln v

∗
md − ln Γ(u∗

m)

+(u∗
m − 1)〈lnαmd〉 − v∗mdᾱmd] .

(44)
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Fig. 3: Observations of the objective function’s oscillations during iterations. This non-convergence indicates that the MLB approximation-
based method cannot theoretically guarantee convergence. The model settings are the same as Tab. I.

Algorithm 1 Algorithm for EVI-based Bayesian InIDMM

1: Set the initial truncation level M and the initial values for

hyperparameters s0m, t0m, u0
md, and v0md

2: Initialize the values of rnm by K-means algorithm.

3: repeat

4: Calculate the expectations in (39).

5: Update the posterior distributions for each variable by

(33), (35), (37) and (38).

6: until Stop criterion is reached.

7: For all m, calculate 〈λm〉 = s∗m/(s∗m + t∗m) and substi-

tute it back into (11) to get the estimated values of the

mixing coefficients π̂m.

8: Determine the optimum number of components M by

eliminating the components with mixing weights smaller

than 10−5.3

9: Renormalize {π̂m} to have a unit l1 norm.

10: Calculate α̂md = u∗
md/v

∗
md for all m and d.

Additionally, 〈ln p̃(X ,Θ)〉 is given in (26) .

The algorithm of the proposed EVI-based Bayesian estima-

tion of InIDMM is summarized in Algorithm 1.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, both synthesized data and real data are

utilized to demonstrate the performance of the proposed al-

gorithm for InIDMM. In the initialization stage of all the

experiments, the truncation level M is set to 15 and the

hyperparameters of the gamma prior distributions are chosen

as u0 = s0 = 1 and v0 = t0 = 0.005, which provide non-

informative prior distributions. Note that these specific choices

were based on our experiments and were found convenient and

effective in our case. We take the posterior means as point

estimates to the parameters in an InIDMM.

A. Synthesized Data Evaluation

As shown in the previous studies for EVI-based Bayesian

estimation [5], [6], the SLB approximation can guarantee the

convergence while the MLB approximation cannot. We use the

3When a mixing coefficient is small enough, it converges to 0 faster. There-
fore, we can remove components with very small value (less than a threshold).
This choice (empirically choosing a threshold) is purely for the convenience
of easy implementation. Similar strategy is also widely used applied in many
other sticking-break process-based DP mixture models, e.g., [34], [46].

synthesized data evaluation to compare the Bayesian InIDMM

using the SLB approximation (proposed in this paper and

denoted as InIDMMSLB) with the Bayesian InIDMM using

the MLB approximation (proposed in [46] and denoted as

InIDMMMLB). Three models (see Tab. I for details) were

selected to generate the synthesized datasets.

1) Model Selection: One advantage of DP process mix-

ture model is to decide the number of mixture components

automatically, based on the training data. Following the in-

structions in [52] and for a first check, we ran the proposed

EVI-based method for InIDMMSLB. The optimization pro-

cedure is carried out without component elimination (i.e., a

fixed number of components, M , is chosen and the mixing

coefficients are fixed during iteration. The initial value of the

mixing coefficients were obtained from plain EM estimation.)

Under this setting, the variational lower-bound can be treated

as a model selection score and the effect of the number of

the mixture components is demonstrated. With synthesized

data generated from the aforementioned three models, we

plotted the relation between the variaional lower-bounds and

the number of mixture components in Fig. 4.

2) Observations of Oscillations: We ran the InIDMMMLB

algorithm and monitored the value of the variational objective

function during each iteration. It can be observed that the

variational objective function was not always increasing in

Bayesian estimation with the InIDMMMLB. Figure 3 illustrates

the decreasing values during iterations. On the other hand, the

variational objective function obtained with the InIDMMSLB

algorithm was always increasing until convergence, as the

SLB approximation insures the convergency theoretically. The

observations of oscillations demonstrate that the convergence

with MLB approximation cannot be guaranteed. The original

variational object function was numerically calculated by

employing sampling method. In order to monitor the parameter

estimation process of InIDMMSLB, we show the value of the

variational objective function during iterations in Fig. 5. It can

be observe that the variational objective function obtained by

InIDMMSLB increases during iterations and in most cases it

increases very fast.

3) Quantitative Comparisons: Next, we compare the

InIDMMSLB with the InIDMMMLB quantitatively. With

a known IDMM, 2000 samples were generated. The

InIDMMSLB and the InIDMMMLB were applied to estimate

the posterior distributions of the model, respectively. In Tab. I,
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TABLE I: Comparisons of true and estimated models.

True Model

Model A

π1 = 0.5 , ~α1 = [16 8 6 2]T

π2 = 0.5 , ~α2 = [8 12 15 18]T

Model B

π1 = 0.25 , ~α1 = [12 36 14 18 55 16]T

π2 = 0.25 , ~α2 = [32 48 25 12 36 48]T

π3 = 0.25 , ~α3 = [25 10 18 10 36 48]T

π4 = 0.25 , ~α4 = [6 28 16 32 12 24]T

InIDMMSLB
π̂1 = 0.502 , ~̂α1 = [16.96 8.58 6.39 12.49]T

π̂2 = 0.498 , ~̂α2 = [8.20 12.16 15.49 18.34]T

π̂1 = 0.251 , ~̂α1 = [12.26 36.59 14.30 18.19 56.36 16.25]T

π̂2 = 0.249 , ~̂α2 = [33.37 49.92 25.85 12.80 37.00 49.79]T

π̂3 = 0.252 , ~̂α3 = [25.72 10.32 18.09 10.09 37.27 49.58]T

π̂4 = 0.248 , ~̂α4 = [6.14 28.94 16.72 33.46 12.32 25.20]T

InIDMMMLB
π̂1 = 0.508 , ~̂α1 = [15.20 7.71 5.90 11.64]T

π̂2 = 0.492 , ~̂α2 = [9.21 13.76 17.13 21.10]T

π̂1 = 0.249 , ~̂α1 = [12.18 37.82 14.56 18.85 57.32 16.44]T

π̂2 = 0.249 , ~̂α2 = [33.71 51.10 26.92 12.89 38.66 51.73]T

π̂3 = 0.250 , ~̂α3 = [24.94 9.90 18.07 10.04 36.10 48.25]T

π̂4 = 0.252 , ~̂α4 = [5.82 27.43 15.77 31.14 11.82 23.58]T

True Model

Model C

π1 = 0.2 , ~α1 = [12 21 36 18 32 65 76]T

π2 = 0.2 , ~α2 = [28 42 21 8 54 21 48]T

π3 = 0.2 , ~α3 = [32 12 7 35 13 32 18]T

π4 = 0.2 , ~α4 = [62 44 31 65 72 15 44]T

π5 = 0.2 , ~α5 = [53 12 18 44 65 33 52]T

InIDMMSLB

π̂1 = 0.201 , ~̂α1 = [12.08 20.89 36.25 18.28 32.69 65.72 76.70]T

π̂2 = 0.199 , ~̂α2 = [29.12 43.43 21.41 8.33 56.11 21.74 49.20]T

π̂3 = 0.200 , ~̂α3 = [31.57 11.89 6.99 34.70 12.90 31.85 17.89]T

π̂4 = 0.201 , ~̂α4 = [59.83 42.55 29.89 61.98 67.68 14.11 42.46]T

π̂5 = 0.199 , ~̂α5 = [58.00 12.8 20.02 47.70 71.08 36.57 57.66]T

InIDMMMLB

π̂1 = 0.200 , ~̂α1 = [12.56 21.50 37.69 19.00 33.06 68.04 79.64]T

π̂2 = 0.200 , ~̂α2 = [28.26 43.02 20.85 8.14 55.36 21.21 49.17]T

π̂3 = 0.199 , ~̂α3 = [32.17 12.19 7.13 35.66 13.01 32.54 17.84]T

π̂4 = 0.199 , ~̂α4 = [63.61 45.48 32.00 66.63 74.31 15.21 45.45]T

π̂5 = 0.202 , ~̂α5 = [52.12 11.83 18.34 43.77 64.80 32.53 51.48]T
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Fig. 4: Effect of the number of mixture components.

TABLE II: Comparisons of objective function values and runtime for InIDMM with SLB and MLB.

Model & Method
Model A Model B Model C

InIDMMSLB InIDMMMLB InIDMMSLB InIDMMMLB InIDMMSLB InIDMMMLB

Obj. Func. Val. −1.86× 10
3 −1.90× 103 0.42× 10

3 0.32 × 103 3.05× 10
3 2.99 × 103

p-values 0.046 6.48× 10−4 0.016

KL(p(X|Θ)‖p(X|Θ̂)) 3.35× 10
−3 6.97× 10−3

2.80× 10
−3 8.07 × 10−3

2.93× 10
−3 6.24 × 10−3

p-values 1.46× 10−11 6.93× 10−15 2.08× 10−7

Runtime (in s)† 2.06 2.26 3.06 3.61 2.84 3.07
† On a ThinkCentrer computer with Intelr CoreTM i5− 4590 CPU 8G.

we list the estimated parameters by taking the posterior

means. It can be observed that, both the InIDMMSLB and the

InIDMMMLB can carry out the estimation properly. However,

with 20 repeats of the aforementioned “data generation-model

estimation” procedure and calculating the variational objec-

tive function with sampling method, superior performance

of the InIDMMSLB over the InIDMMMLB can be observed

from Tab. II. The mean values of the objective function

obtained by InIDMMSLB are larger than those obtained by

the InIDMMSLB while the computational cost (measured in

seconds) required by the InIDMMSLB are smaller than those

required by the InIDMMMLB. Moreover, smaller KL diver-

gences4 of the estimated models from the corresponding true

models also verify that the InIDMMSLB yields better estimates

than the InIDMMMLB. In order to examine if the differences

between the InIDMMSLB and the InIDMMMLB are statistically

significant, we conducted the student’s t-test with the null-

4Here, the KL divergence is calculated as KL(p(X|Θ)‖p(X|Θ̂)) by

sampling method. Θ̂ denotes the point estimate of the parameters from the
posterior distribution.
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Fig. 5: Illustration of the variational objective function’s values obtained by SLB against the number of iterations.
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Fig. 6: Boxplots for comparisons of the objective function values’ distributions obtained by SLB and MLB with different models. The
model settings are the same as those in Tab. I. The central mark is the median, the edges of the box are the 25th and 75th percentiles. The
outliers are marked individually.

TABLE III: Comparisons of image categorization accuracies (in %)
obtained with different models. The standard deviations are in the
brackets. The p-values of the student’s t-test with the null-hypothesis
that InIDMMSLB and the referring method have equal means but
unknown variances are listed.

InIDMMSLB IDMMSLB InIDMMMCMC InGMM SVM

Caltech-4
93.49 89.27 90.21 83.92 92.72
(1.05) (0.84) (0.73) (0.72) (0.82)

p-value N/A 1.01 × 10−8 1.91 × 10−7 4.55 × 10−15 0.085

ETH-80
75.49 72.88 73.05 68.88 72.47

(0.75) (1.46) (0.78) (0.74) (0.70)

p-value N/A 8.69 × 10−5 1.17 × 10−6 1.60 × 10−13 2.49 × 10−8

hypothesis that the results obtained by these two methods

have equal means and equal but unknown variances. All the

p-values of in Tab. II are smaller than the significant level 0.1,

which indicates that the superiority of the InIDMMSLB over

the InIDMMMLB is statistically significant. The distributions

of the objective function values are shown by the boxplots in

Fig. 6.

B. Real Data Evaluation

In the real data evaluations, the proposed InIDMMSLB

has been applied for the task of image categorization and

object detection. The referred methods for comparisons are the

IDMMSLB [53], the Markov Chain Monte Carlo-based numer-

ical model estimation (InIDMMMCMC, numerical simulation of

the posterior distributions) [54], the Dirichlet process Gaussian

mixture model (InGMM, another commonly used statistical

model) [55], and the support vector machine (SVM)-based

classifier (discriminant method, implemented with LIBSVM

toolbox [56]).

(a) Airplane (b) Motorbike (c) Face (d) Car (e) Background

Fig. 7: Sample images from the Caltech-4 dataset.

1) Datasets: The evaluations were conducted based on

two well-known datasets. The first dataset is the Caltech-4
dataset 5. It is a composite of four different categories. They

are 1074 images of airplanes from the side, 526 images of cars

from the rear, 826 images of motorbikes from the side, and 450
frontal face images from about 27 unique persons. Example

images from these four categories are shown in Fig. 7(a)-7(d).

The second dataset is the ETH-80 dataset 6 that consists of

eight categories: apple, car, cup, dog, pear, tomato, horse, and

cow. Each category has 410 images which are cropped, so

that they contain only the object in the center. Examples of

images from each category in the ETH-80 dataset are shown

in Fig. 9. Our experiments were evaluated on the these two

commonly used public datasets for the purpose of validating

the effectiveness of the proposed method.

2) Descriptor Extraction: In recent years, many excellent

global and local descriptors have been proposed for the

purpose of image categorization and object detection. For

5http://www.vision.caltech.edu/archive.html
6http://www.d2.mpi-inf.mpg.de/Datasets/ETH80
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 9: Sample images from ETH-80 dataset. (a) Apple. (b) Car. (c) Cow. (d) Cup. (e) Dog. (f) Horse. (g) Pear. (h) Tomato.
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Fig. 8: Boxplots for comparisons of the categorization accuracies’
distributions for the Caltech-4 and the ETH-80 datasets. The central
mark is the median, the edges of the box are the 25th and 75th

percentiles. The outliers are marked individually.

example, the scale-invariant feature transform (SIFT) [57]

descriptor, the local binary pattern (LBP) descriptor [58], and

the Histogram of Oriented Gradient (HOG) descriptor [59].

The HOG descriptor, among others, has been one of the most

popular and effective one for image categorization or detec-

tion [60], [61]. In this paper, we employ the rectangular HOG

(R-HOG) descriptor [62], an variant and improved version of

HOG. With the principles of R-HOG and by considering seven

windows and nine histogram bins, each image is represented

by a 441-dimensional positive feature vector.

3) Image Categorization: Object categorization refers to

classifying a given image into a specific category, such as car,

face, motorbike, and airplane. It can also be considered as

an image categorization problem [63], which is an important

and challenging problem in a wide range of application areas

such as multimedia retrieval, pattern recognition and computer

vision. Image categorization and its related applications have

attracted considerable attention during the past few years [64]–

[68]. The reason that image categorization has emerged as one

TABLE IV: Comparisons of object detections accuracies (in %) on
Caltech-4 dataset. The standard deviations are in the brackets. The p-
values of the student’s t-test with the null-hypothesis that InIDMMSLB

and the referring method have equal means but unknown variances
are listed.

InIDMMSLB IDMMSLB InIDMMMCMC InGMM SVM

Airplanes
97.78 96.41 96.62 93.22 93.69
(0.78) (0.74) (0.75) (0.80) (0.79)

p-value N/A 7.71 × 10−4 0.0031 1.48 × 10−107.57 × 10−10

Faces
94.92 93.37 93.62 89.42 89.60
(0.56) (1.97) (0.98) (1.70) 0.65

p-value N/A 0.028 0.002 1.46 × 10−8 1.37 × 10−13

Cars
99.26 97.85 97.97 94.68 97.25
(0.64) (1.13) (0.82) (0.73) (0.68)

p-value N/A 0.0029 9.57 × 10−4 1.28 × 10−11 2.31 × 10−6

Motorbikes
94.31 93.03 93.24 90.24 89.29
(0.63) (0.89) (0.77) (0.64) (0.83)

p-value N/A 0.0017 0.0033 2.63 × 10−119.88 × 10−12

of the most active areas in the fields of image understanding

and computer vision is mainly because its large potential in

web image research, video retrieval, image database anno-

tation, and medical image mining. Although human usually

perform well on the task of image categorization, it remains

difficult for computers to achieve similar performance. This is

due to the various poses, different scales, multiple viewpoints.

Our experiments for image categorization were implement-

ed as follows. First, R-HOG descriptors were extracted from

each image. Each image in the datasets was then represented

by a 441-dimensional positive vector. Second, the vectors

from one category are assumed to be generated from an

InIDMM. Each category has been randomly divided into equal

training and test sets. For each category, one InIDMM was

trained based on the training set. Third, the proposed Bayesian

InIDMM was employed as a classifier to categorize objects by

assigning the test image to a given class that has the highest

posterior probability. Table III lists the average categorization

accuracies. It can be observed that the proposed InIDMMSLB

is superior to all the other referred methods. In order to

remove the randomness effect in the results, we conducted 10
rounds of simulations and the mean values with the standard

deviations are reported. The accuracy distributions are shown

in Fig. 8.

4) Object Detection: Object detection is another essential

problem in computer vision and has been commonly applied

in various applications like content-based image retrieval,

intelligent traffic management, driver assistance system, and

video surveillance [69], [70]. The main goal of object detection

is to find instances of real-world objects such as car, face, or

bicycle in an images or a video clip. Typical object detec-

tion algorithms apply the extracted features and employ the
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Fig. 10: Boxplots for comparisons of the detection accuracies’ distributions for the Caltech-4. The central mark is the median, the edges of
the box are the 25th and 75th percentiles. The outliers are marked individually.

learning algorithms to recognize the instances from an object

class. Here, we apply the proposed InIDMM as a classifier

and study its performance in object detection. Similar as

image categorization, we also applied the R-HOG descriptor to

represent an image. Each image in the dataset was represented

by a 441-dimensional positive feature vector.

For the experiments on the Caltech-4 dataset, we evaluated

the detection performance on the four sub-datasets mentioned

in Sec. IV-B3. In addition these four datasets, we used the

Caltech background sub-dataset (451 images) as the non-

object sub-dataset for these four object sub-classes. Samples

images from each of these four object classes and the Caltech

background dataset are shown in Fig 7.

The proposed InIDMM is utilized as a classifier to detect the

objects through assigning the testing image to a given group

(object or non-object). Table IV summarizes the detection

accuracies. It can be observed from these results that the

InIDMM provides the best detection accuracies compared

to the other methods. During the evaluations, each of the

aforementioned sub-datasets were randomly into two separate

halves, one for training and the other one for test. Ten rounds

of simulations were conducted and the mean values with

the standard deviations are reported. Figure 10 illustrates the

distributions of the detection accuracies.

5) Computational efficiency: As emphasized at the intro-

duction section of this paper, one motivation of applying the

EVI framework to derive analytically tractable solution for

InIDMM such that the computational cost can be reduced,

compared with numerical solution. In Tab. V, we compare

the required runtime for InIDMMSLB and InIDMMMCMC.

Ten rounds of simulations were conducted and the mean

values are reported. The p-values of the student’s t-test with

the null-hypothesis that the runtimes of InIDMMSLB and

InIDMMMCMC have equal means but unknown variances are

listed.It can be concluded that the proposed InIDMMSLB has

statistically significantly superior performance in terms of

runtime.

V. CONCLUSIONS

The inverted Dirichlet distribution has been widely applied

in modeling the positive vector (vector that contains only

positive elements). The Dirichlet processing mixture of the

inverted Dirichlet mixture model (InIDMM) can provide good

modeling performance to the positive vectors. Compared to the

conventional finite inverted Dirichlet mixture model (IDMM),

the InIDMM has more flexible model complexity as the

number of mixture components can be automatically deter-

mined. Moreover, the over-fitting and under-fitting problem is

avoided by the Bayesian estimation of InIDMM. To obtain an

analytically tractable solution for Bayesian estimation of InID-

MM, we utilized the recently proposed extended variational

inference (EVI) framework. With single lower bound (SLB)

approximation, the convergence of the proposed analytically

tractable solution is guaranteed, while the solution obtained

via multiple lower bound (MLB) approximations may result

in oscillations of the objective function. Extensive synthesized

data evaluations and real data evaluations demonstrated the

superior performance of the proposed method.
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[27] M. Meilǎ and H. Chen, “Bayesian non-parametric clustering of ranking
data,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 38, no. 11, pp. 2156–2169, Nov 2016.

[28] Y. Xu, M. Megjhani, K. Trett, W. Shain, B. Roysam, and Z. Han, “Un-
supervised profiling of microglial arbor morphologies and distribution
using a nonparametric Bayesian approach,” IEEE Journal of Selected

Topics in Signal Processing, vol. 10, no. 1, pp. 115–129, Feb 2016.
[29] T. S. Ferguson, “A Bayesian analysis of some nonparametric problems,”

Annals of Statistics, vol. 1, no. 2, pp. 209–230, 1973.
[30] C. E. Antoniak, “Mixtures of Dirichlet processes with applications to

Bayesian nonparametric problems,” Annals of Statistics, vol. 2, no. 6,
pp. 1152–1174, 1974.

[31] N. L. Hjort, C. Holmes, P. Müller, and S. G. Walker, Eds., Bayesian

Nonparametrics. Cambridge University Press, 2010.

[32] Y. W. Teh and D. M. Blei, “Hierarchical Dirichlet processes,” Journal of

the American Statistical Association, vol. 101, no. 476, pp. 1566–1581,
2006.

[33] N. J. Foti and S. A. Williamson, “A survey of non-exchangeable priors
for Bayesian nonparametric models,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 37, no. 2, pp. 359–371, Feb
2015.

[34] W. Fan and N. Bouguila, “Online learning of a Dirichlet process
mixture of beta-Liouville distributions via variational inference,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 24, no. 11,
pp. 1850–1862, 2013.

[35] X. Wei and C. Li, “The infinite student’s t -mixture for robust modeling,”
Signal Processing, vol. 92, no. 1, pp. 224–234, 2012.

[36] N. Bouguila and D. Ziou, “A Dirichlet process mixture of generalized
Dirichlet distributions for proportional data modeling,” IEEE Transac-

tions on Neural Networks, vol. 21, no. 1, pp. 107–122, 2010.
[37] X. Wei and Z. Yang, “The infinite student’s t -factor mixture analyzer

for robust clustering and classification ,” Pattern Recognition, vol. 45,
no. 12, pp. 4346–4357, 2012.

[38] S. P. Chatzis and G. Tsechpenakis, “The infinite hidden Markov random
field model.” IEEE Transactions on Neural Networks, vol. 21, no. 6, pp.
1004–14, 2010.

[39] M. Wedel and P. Lenk, Markov Chain Monte Carlo. Boston, MA:
Springer US, 2013, pp. 925–930.

[40] M. Pereyra, P. Schniter, E. Chouzenoux, J. C. Pesquet, J. Y. Tourneret,
A. O. Hero, and S. McLaughlin, “A survey of stochastic simulation and
optimization methods in signal processing,” IEEE Journal of Selected

Topics in Signal Processing, vol. 10, no. 2, pp. 224–241, Mar. 2016.

[41] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An
introduction to variational methods for graphical models,” Machine

Learning, vol. 37, no. 2, pp. 183–233, 1999.

[42] J. Taghia and A. Leijon, “Variational inference for Watson mixture mod-
el,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 38, no. 9, pp. 1886–1900, 2015.

Page 12 of 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

13

[43] M. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic variational
inference,” The Journal of Machine Learning Research, vol. 14, no. 1,
pp. 1303–1347, 2013.

[44] R. Ranganath, C. Wang, D. M. Blei, and E. P. Xing, “An adaptive
learning rate for stochastic variational inference,” in Proceedings of

International Conference on Machine Learning, Feb. 2013, pp. 298–
306.

[45] J. Paisley, C. Wang, D. M. Blei, and M. I. Jordan, “Nested hierarchical
Dirichlet processes,” IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. 37, no. 2, pp. 256–270, Feb. 2015.

[46] W. Fan and N. Bouguila, “Topic novelty detection using infinite
variational inverted Dirichlet mixture models,” in IEEE International

Conference on Machine Learning and Applications (ICMLA), Dec 2015,
pp. 70–75.

[47] B. A. Frigyik, A. Kapila, and M. R. Gupta, “Introduction to the
Dirichlet distribution and related processes,” Department of Electrical
Engineering, University of Washington, Tech. Rep., 2010.

[48] J. Sethuraman, “A constructive definition of the Dirichlet prior,” Statis-

tica Sinica, vol. 4, no. 2, pp. 639–650, 1991.

[49] X. Wei and C. Li, “The student’s t-hidden Markov model with truncated
stick-breaking priors,” IEEE Signal Processing Letters, vol. 18, no. 6,
pp. 355–358, June 2011.

[50] J. Paisley and L. Carin, “Hidden Markov models with stick-breaking
priors,” IEEE Transactions on Signal Processing, vol. 57, no. 10, pp.
3905–3917, June 2009.

[51] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via EM algorithm,” Journal of the Royal Statistical

Society, vol. 39, pp. 1–38, 1977.

[52] A. Corduneanu and C. M. Bishop, “Variational bayesian model selec-
tion for mixture distribution,” in Proceedings of the 8th International

Conference on AI and Statistics, 2001, pp. 27–34.

[53] Y. Lai, Y. Ping, B. Wang, J. Wang, and X. Zhang, “Variational Bayesian
inference for finite inverted Dirichlet mixture models and its application
to object detection,” Chinese Journal of Electronics, 2017, accepted.

[54] T. Bdiri and N. Bouguila, “An infinite mixture of inverted Dirichlet
distributions,” in International Conference on Neural Information Pro-

cessing, 2011, pp. 71–78.

[55] T. S. F. Haines and T. Xiang, “Background subtraction with Dirichlet
process mixture models,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 36, no. 4, pp. 670–683, Apr. 2014.

[56] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transaction on Intelligent System Technology, vol. 2,
no. 3, pp. 27:1–27:27, May 2011.

[57] L. Seidenari, G. Serra, A. D. Bagdanov, and A. D. Bimbo, “Local
pyramidal descriptors for image recognition,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 36, no. 5, pp. 1033–
1040, May 2014.

[58] X. Qi, R. Xiao, C. G. Li, Y. Qiao, J. Guo, and X. Tang, “Pairwise
rotation invariant co-occurrence local binary pattern,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 36, no. 11, pp. 2199–
2213, Nov 2014.

[59] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in IEEE Internaional Conference on Computer Vision and

Pattern Recognition, vol. 1, June 2005, pp. 886–893.

[60] C. G. Blair and N. M. Robertson, “Video anomaly detection in real
time on a power-aware heterogeneous platform,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 26, no. 11, pp. 2109–
2122, Nov 2016.

[61] X. Ma, W. A. Najjar, and A. K. Roy-Chowdhury, “Evaluation and
acceleration of high-throughput fixed-point object detection on FPGAs,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 25, no. 6, pp. 1051–1062, June 2015.

[62] O. L. Junior, D. Delgado, V. Goncalves, and U. Nunes, “Trainable
classifier-fusion schemes: An application to pedestrian detection,” in
IEEE International Conference on Intelligent Transportation Systems,
Oct 2009, pp. 1–6.

[63] L. Zhang, R. Hong, Y. Gao, R. Ji, Q. Dai, and X. Li, “Image catego-
rization by learning a propagated graphlet path.” IEEE Transactions on

Neural Networks and Learning Systems, vol. 27, no. 3, pp. 674–685,
2016.

[64] C. H. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based classifi-
cation for zero-shot visual object categorization,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 36, no. 3, pp. 453–465,
2014.

[65] H. L. Luo, H. Wei, and L. L. Lai, “Creating efficient visual codebook
ensembles for object categorization,” IEEE Transactions on Systems Man

and Cybernetics-Part A Systems and Humans, vol. 41, no. 2, pp. 238–
253, 2011.

[66] L. Wu, Y. Hu, M. Li, N. Yu, and X. S. Hua, “Scale-invariant visual
language modeling for object categorization,” IEEE Transactions on

Multimedia, vol. 11, no. 2, pp. 286–294, 2009.
[67] J. Stottinger, A. Hanbury, N. Sebe, and T. Gevers, “Sparse color interest

points for image retrieval and object categorization,” IEEE Transactions

on Image Processing, vol. 21, no. 5, pp. 2681–2692, 2012.
[68] T. Deselaers, G. Heigold, and H. Ney, “Object classification by fusing

SVMs and Gaussian mixtures,” Pattern Recognition, vol. 43, no. 7, pp.
2476–2484, 2010.

[69] T. Xiao, C. Zhang, and H. Zha, “Learning to detect anomalies in
surveillance video,” IEEE Signal Processing Letters, vol. 22, no. 9, pp.
1477–1481, Sept 2015.

[70] S. J. Krotosky and M. M. Trivedi, “Person surveillance using visual and
infrared imagery,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 18, no. 8, pp. 1096–1105, Aug 2008.

Zhanyu Ma has been an Associate Professor at Beijing University of Posts
and Telecommunications, Beijing, China, since 2014. He is also an adjunct
Associate Professor at Aalborg University, Aalborg, Denmark, since 2015.
He received his Ph.D. degree in Electrical Engineering from KTH-Royal
Institute of Technology, Sweden, in 2011. From 2012 to 2013, he has
been a Postdoctoral research fellow in the School of Electrical Engineering,
KTH, Sweden. His research interests include pattern recognition and machine
learning fundamentals with a focus on applications in multimedia signal
processing, data mining, biomedical signal processing, and bioinformatics.
He is a senior member of IEEE.

Yuping Lai has been a lecturer at North China University of Technology,
China, since 2014. He received his Ph.D. degree in Information Security
from Beijing University of Posts and Telecommunications, Beijing, China, in
2014. His research interests include information security, computer vision,
pattern recognition, machine learning, and data mining.

Yi-Zhe Song is a senior lecturer at School of Electronic Engineering and
Computer Science, Queen Mary, University of London. He researches into
computer vision, computer graphics and their convergence, particularly per-
ceptual grouping, image segmentation (description),cross-domain image anal-
ysis, non-photo realistic rendering, with a recent emphasis on human sketch
representation, recognition and retrieval. He received both the B.Sc.(first class)
and Ph.D. degrees in Computer Science from the Department of Computer
Science, University of Bath, UK, in 2003 and 2008, respectively; prior to his
doctoral studies, he obtained a Diploma (M.Sc.) degree in Computer Science
from the Computer Laboratory, University of Cambridge, UK, in 2004. Prior
to 2011, he worked at University of Bath as a Research and Teaching Fellow.
He is an Associate Editor of Neurocomputing and member of IEEE and
BMVA.

Liang Wang received both the B. Eng. and M. Eng. degrees from Anhui
University in 1997 and 2000 respectively, and the PhD degree from the
Institute of Automation, Chinese Academy of Sciences (CAS) in 2004.
Currently, he is a full Professor of Hundred Talents Program at the NLPR,
Institute of Automation, CAS, China. His major research interests include
machine learning, pattern recognition and computer vision. He has widely
published at highly-ranked international journals such as IEEE TPAMI and
IEEE TIP, and leading international conferences such as CVPR, ICCV and
ICDM.

Bastiaan Kleijn received the PhD degree in electrical engineering from Delft
University of Technology, The Netherlands (TU Delft); the MSEE degree from
Stanford University, CA; and the MSc degree in physics and the PhD degree
in soil science from the University of California, Riverside. He is currently a
professor at Victoria University of Wellington (VUW), New Zealand, and TU
Delft, The Netherlands (part time). He was a professor and head of the Sound
and Image Processing Laboratory at KTH-Royal Institute of Technology,
Stockholm, Sweden, from 1996 until 2010, and a founder of Global IP
Solutions, a company that provided the original audio technology to Skype
and was later acquired by Google. Before 1996, he was with the Research
Division of AT&T Bell Laboratories in Murray Hill, New Jersey. He is an
IEEE fellow.

Jun Guo received B.E. and M.E. degrees from Beijing University of Posts and
Telecommunications (BUPT), China in 1982 and 1985, respectively, Ph.D.
degree from the Tohuku-Gakuin University, Japan in 1993. At present he
is a professor and a vice president of BUPT. His research interests include
pattern recognition theory and application, information retrieval, content based
information security, and bioinformatics. He has published over 200 papers on
the journals and conferences including SCIENCE, Nature Scientific Reports,
IEEE Trans. on PAMI, Pattern Recognition, AAAI, CVPR, ICCV, SIGIR, etc.

Page 13 of 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

��������	
�����������

������
���
���
������
�	����
����������	���������
��
������������	�� �

���
��������
����
�������������������	����	�����������	�
�������������� �!�"�

������
���	
����������
�#$���������	�	��	������
������������
��	��	���	��

�

������
������������!��������
����������������������������	
�

�
�#$���������	�	��	������
�������
��������	�����
����	���
����	�
����%&�

��	���	�
��'�������	
��������������
��������
����		��	�
����

���	������������	��'�����
��	���!��������
�����������������������	�������

	���	�'����
��	�
���
�������	�
����(������������������
���������	���
��������	����


�������	����������	����	�����
�����������
��	��	���	�������	�����
��	��

��
�
������	
���

��������
�	��'�	�
���
��
����
�������	���#�
��)� �

*"��������	�������	����������	����	�����
���� ��%%"����'������	������	
�	��

������	�������	����������	����	�����
���� ����%%"�������	���	���#'��������

������
���+*,��+-,�������	����������	�������	
��	����������������	�����'���
��

���	�����
��
���	������'��
����
��.�

-"�/�������	��������
��	�
���������������	�	���!��������
����
������%%���

'�����
����������
����'
��������
����	�
���%
��
������
����������	�	��

�����	�����
�
�������
��	���
������%%�+0,���������'�����
�����	������
����

'
��������
����	�
���
������
��	�������
	�
����	�
��	�������������	���

�
����������'�	����
���
�����'�		�������
����	�
��.�

0"������
�
������	
�����'��������������������������
�	��	��������	�
��������

�����������	��
����	�
������
'1��	���	��	�
�������

������
����������'����

�����	��	�����	�'
	����	������������������	��������	�
����

2�����
������3�
���4�������4���	
�'��	��/��	
�������	�����������
�����
��


�����'�����
��������������	���������������(���������
�������	��������������

�����������	���	
�
���������������	�	��������'�����������������
����������

1�������	�	
�	����
����

�����������5�

(��	����������

6�����%��
��'�����
������	����	
���

+*,� 7��2������������%��(�����89������������������	���
�������:�;
������
��	��/��������

4	�	��	�����/��
���	�
����
���*<*���
��=>?������*@??A*@B*��-<<?��

+-,� ;��3�����������2��������%��(���������%�����;
������8C��	���������������������	�

��
�������:�������������	�
���
��3�		����/������������%��������	������������
���0>���
��

-������-@?A-><��D�'�-<*@��

+0,� 2��D�������C��(
��������8�
�����
���	����	��	�
��������������	�������	�
���������	���

�������	����	�����
�����:�����������	����	�
�����
���������
��%������&������������

/������	�
��� ��%&/"������-<*@������><A>@��

Page 14 of 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60


