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Abstract. We study the problem of extracting statistical dependencies
between multivariate signals, to be used for exploratory analysis of com-
plicated natural phenomena. In particular, we develop generative models
for extracting the dependencies, made possible by the probabilistic in-
terpretation of canonical correlation analysis (CCA). We introduce a
mixture of robust canonical correlation analyzers, using t-distribution to
make the model robust to outliers and variational Bayesian inference for
learning from noisy data. We demonstrate the improvements of the new
model on artificial data, and further apply it for analyzing dependen-
cies between MEG and measurements of autonomic nervous system to
illustrate potential use scenarios.

Keywords: Bayesian data analysis, canonical correlation analysis, data
fusion, latent variable models, robust models.

1 Introduction

Noisy estimates of human brain activity can be obtained with several measure-
ment techniques, such as functional magnetic resonance imaging (fMRI) and
magnetoencephalography (MEG). Given a controlled experiment, even relatively
simple approaches can shed light on brain functions. For example, linear regres-
sion from brain activity to stimulus covariates can reveal which brain regions are
related to the task at hand. For uncontrolled experiments, such as analysis of the
brain functions in natural environments, the classical approaches, however, fall
short since there are no simple covariates available and unsupervised analysis
cannot separate the relevant variation from the rest.

A recent approach to tackling the problem is to consider correlations between
the brain activity measurements and multivariate vectorial representations of the
stimulus [6,17]. This allows using the stimulus still as a supervision signal, despite
the representation not being condensed as simple covariates. Instead, we need
to assume the stimulus representation contains noise just like the brain activity
measurements do. The actual signal is separated from the noise by making one
simple assumption: Statistical dependencies between the brain activity and the
stimulus must be related to processing the stimulus, while independent variation
in either signal should be seen as structured noise.
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Canonical correlation analysis (CCA) is a standard approach for finding cor-
relations between two multivariate sources (see, e.g., [9]), and is the method used
in [17] for analysis of fMRI data under natural stimulation. CCA has, however,
several limitations that make it suboptimal in practical applications. It assumes
the signals are stationary, does not come with an easy way of estimating the
number of correlated components, is not robust against outliers, and estimat-
ing the reliability of the components is difficult. Building on the probabilistic
interpretation of CCA, we have earlier introduced a model that removes the
stationarity assumption through mixture modeling and automatically learns the
model complexity from data [10]. The earlier model, however, has practical lim-
itations that prevent using it for neuroinformatics applications. In this article
we improve the model further, by introducing more efficient and more easily
interpretable inference procedure, and by making the model robust to outliers.

The model in [10] used posterior sampling for inference, and was formulated as
a Dirichlet process mixture for estimating the model complexity, which makes the
model suitable for small sample sizes but the inference becomes very inefficient
for large data sets. In particular, the model does not have a fully conjugate prior,
and hence less efficient sampling strategies need to be applied. Consequently, ap-
plying the model for analysis of MEG data would be beyond computationally
feasible by some orders of magnitude. Furthermore, neuroscientific interpretation
of the results of such a model would be difficult since the posterior sampler re-
turns a set of results that need to be processed further for conclusive summaries.
In this paper we solve both of these issues by switching to variational inference,
which results in highly efficient optimization and also makes interpretation more
straighforward since the approach is deterministic, while retaining the mixture
capability and automatic relevance determination prior for inferring the number
of correlating components.

The robustness to outliers is obtained by replacing the generative assumption
of Gaussian noise by that of Student’s t-distribution, modeled as a scale-mixture
[11]. Similar representation was earlier used in the robust CCA variant of [2],
but they only sought a maximum likelihood estimate for the model parameters
instead of considering the full posterior distribution. Robust variational infer-
ence has earlier been presented only for simpler projection methods such as
robust PCA [8,12] and robust factor analysis [5], using two different alternative
approximations that have not been compared earlier. We show that there is no
noticeable difference in accuracy or computational complexity between the two
alternatives.

We illustrate the technical properties of the model using artificial data, show-
ing the improvements in a set of experiments. We also demonstrate what kind of
real analysis scenarios the model is useful for, by using it to learn dependencies
between brain oscillations and autonomic nervous system (ANS) response under
emotional sound stimuli. The emotions of the user are strongly visible in ANS
but only vaguely in MEG, and correlations between these two pinpoint possible
hypotheses on what part of the variation in the signals captured by MEG might
be related to the emotions. In brief, the ANS measurements can be considered as
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noisy descriptions of the stimulus itself. The model is shown to find interpretable
clusters that capture much stronger correlations than stationary analysis could.
The model also outperforms the alternative of first clustering the data and then
applying CCA separately for each of the clusters [7].

2 Bayesian CCA

The probabilistic CCA (PCCA) [3] is a generative probabilistic model for two
multi-dimensional data sources X1 = [x11, . . . ,x1N ] and X2 = [x21, . . . ,x2N ].
The model is written as

tn ∼ N (tn|0, ID)
x1n|tn ∼ N (x1n|W1tn + μ1,Ψ1) (1)
x2n|tn ∼ N (x2n|W2tn + μ2,Ψ2),

where the Ψ denote the precision matrices of the normal distribution. The latent
variables t encode the low-dimensional statistically dependent part while projec-
tion matrices W1 and W2 specify how this dependency is manifested in each of
the data sources. Bach and Jordan [3] established the connection between this
probabilistic model and classical CCA by showing that the maximum-likelihood
solution of the model coincides with the classical solution except for an arbi-
trary rotation in the latent space and projection matrices. PCCA as such does
not solve any of the problems classical CCA has since it is merely an equivalent
description, but the probabilistic formulation makes justified extensions possible.
In the remainder of this section, we walk through the extensions and modifica-
tions required for creating a practically applicable dependency modeling tool for
real-world signals.

The first step is to make the inference more reliable by switching from the
maximum likelihood solution to full Bayesian analysis, by complementing the
likelihood with priors for the model parameters. We adopt the formulation of
[10,16] for Bayesian CCA (BCCA)

wij |αi ∼ N (wij |0, diag(αi1, . . . , αiD))
αij ∼ G(αij |ai, bi)
Ψi ∼ W(Ψi|γi,Φi) (2)
μi ∼ N (μi|0, βiI),

where G is the gamma distribution, W denotes the Wishart distribution, the
subscript i is used to denote the data sources, and the distribution of data is
given in (1). The rest of the symbols are hyper-priors of the model. The priors for
the projection matrix row vectors p(wij |αi) and the precision prior p(αij) imple-
ment the Automatic Relevance Determination (ARD) [14] which automatically
controls the number of the components in the model by adjusting the precisions
αij – the precisions for unnecessary components are driven to infinity, and hence
the posterior peaks around the zero vector. Both [10,16] experimentally verified



Variational Bayesian Mixture of Robust CCA Models 373

that the ARD mechanism detects the correct dimensionality of the latent space,
which is the second necessary component for our practically usable model.

The Bayesian CCA model makes a strict assumption of Gaussian noise, which
is problematic for many real life signals used as stimulus representations or brain
activity measurements. This problem can be alleviated by replacing both the
Gaussian noise and the Gaussian latent variables by Student’s t-distribution
(with ν degrees of freedom) that is more robust to outliers:

tn ∼ S(tn|0, ID, ν)
x1n|tn ∼ S(x1n|W1tn + μ1,Ψ1, ν)
x2n|tn ∼ S(x2n|W2tn + μ2,Ψ2, ν).

For efficient inference, we exploit the latent infinite scale-mixture formulation of
the t-distribution [11],

S(t|μ,Λ, ν) =
∫ ∞

0

duN (t|μ,Λ)G (u|ν/2, ν/2) .

Using this formulation, we can write the robust CCA model by adding an extra
level of hierarchy

un ∼ G (un|ν/2, ν/2)
tn|un ∼ N (tn|0, unID)

x1n|un, tn ∼ N (x1n|W1tn + μ1, unΨ1)
x2n|un, tn ∼ N (x2n|W2tn + μ2, unΨ2).

This formulation has conjugate conditional distributions, which considerably
simplifies inference. The above formulation for robust CCA has earlier been
presented by [2], but they only considered the maximum likelihood estimate for
the parameters. We couple the robust noise assumption with the priors for the
Bayesian CCA model (2) to arrive at the novel model of Robust Bayesian CCA
(RBCCA). It is a basic building block of our full model.

2.1 Mixture of Robust Bayesian CCAs

Next we turn our attention to removing the stationarity assumption, by replacing
it with piecewise stationarity. In this work we follow our earlier model [10] and
introduce a probabilistic mixture of robust Bayesian CCA models, letting each
mixture cluster to model different kind of dependencies between the signals.

We formulate the probabilistic mixture by introducing an additional multi-
nomial latent variable which generates the mixture assignment [13]. The ro-
bust mixture CCA model is therefore obtained by adding the latent variable
zn ∼ Multinomial(zn|π), where π denotes the probabilities of the clusters (we
use point estimates for π, but the extension to Dirichlet prior would be straight-
forward), and conditioning all the rest of the latent variables and parameters on
the value of zn.
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Fig. 1. Plate diagram of the mixture of robust CCA models. N denotes the samples,
M the mixture clusters and V the two data sources. The hyper-priors of the variables
are excluded for clarity.

The full model including the mixture formulation for non-stationarity, ARD
prior for choosing the number of correlated components within the clusters,
and the t-distribution for handling outliers is represented in Figure 1. All of
the models described above like RBCCA and mixture of Gaussian BCCAs are
obtained as special cases of the full model, as are a number of other models.
In particular, fixing 1/αij = 0 results in (robust) Gaussian mixture model [1],
setting Ψ diagonal gives (robust) factor analysis [5], and further restricting it to
be spherical leads to (robust) Bayesian PCA [8,12].

2.2 Variational Inference

For analysis, the above model formulation needs to be coupled with an inference
algorithm. In particular, we need to learn the posterior distribution of the model
parameters, and be able to make predictions for future data. Since the goal is
to be able to apply the model for analysis of potentially very large data sets, we
steer away from the computationally heavy earlier alternatives like the Gibbs
sampling approach of [10] for mixture of BCCA inference, and instead choose
to use the deterministic variational approximation. The resulting algorithm is
computationally as efficient as finding the maximum likelihood or maximum
a posteriori estimate through the EM algorithm, but maintains the advantage
of full Bayesian analysis in capturing the uncertainty in the results. Next, we
briefly summarize the variational Bayesian (VB) approach for inference, and
only explain in more detail the choices specific for the novel parts of the model.
For more extensive introduction to variational inference see, e.g., [4].

The core of the inference process is in learning the posterior distribution
p(H |X1,X2, Θ) of both the latent variables and the model parameters, denoted
collectively as H = {Z,U,T,W1,W2, μ1, μ2,Ψ1,Ψ2}, given the observed data
and model hyper-parameters Θ. Finding the true posterior is not feasible even
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for the basic CCA model, let alone the full robust mixture, because evaluating
the marginal log-likelihood

ln p(X1,X2|Θ) = ln
(∫

dH p(H,X1,X2|Θ)
)

is not tractable.
With variational Bayesian inference the problem is solved by approximating

the true posterior with a variational distribution q(H) from some limited class of
distribution functions so that the inference remains tractable [4]. In practice, the
class of distributions is limited by assuming that the full posterior factorizes into
a number of (a priori) independent terms, and the optimal distribution in this
class is chosen by minimizing the Kullback-Leibler divergence from the approx-
imation to the true posterior DKL(q(H)||p(H |X1,X2, Θ)). The full posterior is
then found by an iterative EM-style algorithm. The resulting update formulas,
based on the factorization described below, are given in the Appendix.

Following the variational Bayesian CCA by Wang [16], we consider a varia-
tional distribution for which the parameter part is fully factorised as

2∏
i=1

M∏
k=1

q(Ψk
i )q(μk

i )q(Wk
i )q(αk

i ). (3)

We then focus on the approximation used for the latent variables, naturally
factorized over the data points as

∏N
n=1 q(zn, un, tn). It is clear that we need

to consider separate terms for each cluster, q(zn)q(un, tn|zn), but for the latter
term two different tractable approximations are possible. For example [8,12]
use the approximation q(un)q(tn), assuming conditional independence between
un and tn, whereas [5] chose q(un)q(tn|un), not introducing any independence
assumptions beyond those in the actual model. In our scenario both solutions
are analytically tractable, conditioned on zn.

To our knowledge, these two choices have not been compared before, nor
the additional independence assumption justified. Since both are tractable and
lead to implementations of comparable computational complexity, the relative
accuracy of the two approximations is an interesting question for variational ap-
proximations of t-distribution models in general. Hence, we implemented both
alternatives and empirically compare them in the experiments, showing that the
difference in performance is negligible, making both alternatives valid. The for-
mulas given in the Appendix assume the approximative q(un)q(tn) factorisation.

Besides learning the posterior distribution of the latent variables and model
parameters, we are naturally interested in making predictions for new data. Both
inferring x1 given x2 (or vise versa) and inferring the latent variable t given x1

and/or x2 are useful for various application scenarios. Exact calculation of these
distributions is again untractable due to the dependency on the hidden data
posterior distributions. However, we can utilize the variational distributions to
make the predictions tractable. For a new data point, q(z, u, t) is chosen as
the distribution which maximizes the variational lower bound of ln p(X−i|Θ)
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where −i denotes the observed data source(s). As an example, we consider the
predictive density p(xi|x−i). Using the conditional independence of xi and x−i

when t is known, and integrating out t results in

xi|zk = 1, u,Ψi, μi,Wi ∼ N (xi|Wk
i μtk

+ μk
i , ((uΨk

i )−1 + Wk
i Σtk

(Wk
i )�)−1),

where the information from the observed data source is encapsulated in the pa-
rameters μtk

, Σtk
and the gamma distribution of u (these paremeters, however,

are slightly different in comparison to the formulas in the Appendix as we observe
only X−i). The above predictive density assumes the factored approximation for
the latent variables; with the non-factored alternative the density is of the same
form but Σtk

will explicitely depend on u.
The above expression does not yield a closed form expression for the distri-

bution p(xi|x−i) but at least the two first moments are analytically tractable.
The most important quantity is the conditional mean

E[xi|x−i] =
M∑

k=1

q(zk)〈Wk
i 〉q({Wi})μtk

+ 〈μk
i 〉q({µi}).

3 Model Validation

To validate that the model does what it promises, we performed two experiments
using artificial data. First we show how replacing the Gaussian distribution with
t-distribution considerably improves the accuracy of the model in presense of
increasing amounts of outliers. At the same time we compare the two alterna-
tive variational factorizations for t-distributed latent variable models, showing
that there is no noticeable difference in accuracy. Then we show how the model
correctly captures non-stationarity with clusters and automatically extracts the
correct number of correlated components.

In both of our artificial data experiments, we fix the hyperparameters to
values corresponding to broad priors (ai = bi = 0.1, γi = di + 1, Φi = 102I,
βi = 1) and consequently let the data determine the model parameters. The
hyper-parameters π and ν:s are updated by maximizing the variational lower
bound which leads to closed form and line-search update rules.

3.1 Robustness against Outliers

We start by showing the importance of robust modeling in presense of outliers.
We first generate data (N=500) from the model (with single cluster), and then
add a varying number of outlier data points drawn from the uniform distribu-
tion. We then compare the robust model with the two alternative variational
approximations against the Gaussian model by measuring the variational lower
bound and the mean error in predicting x1 from x2. Figure 2 shows how the
performance is identical for the case of no outliers, meaning that there is no
harm in using the robust variant, and that already for fairly modest ratios of
outliers the robust variant is considerably better.
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Fig. 2. Left: The mean prediction error for the robust CCA model stays essentially
constant irrespective of the number of outliers in the data, whereas the Gaussian CCA
model starts losing accuracy already for a low number of outliers. Even below 1% of
samples being outliers the difference in accuracy is already noticeable. Right: The same
effect is visible also in the variational lower bound. For both measures the curves for
the two alternative approximations for the robust variant are completely overlapping,
showing no difference.

The results also indicate that there does not seem to be any difference between
the two variational approximations for the t-distribution. To further compare
the alternatives, we construct an experiment designed to emphasize potential
differences. We generate the data from the t-distribution with just ν = 2 de-
grees of freedom, making the data very heavy-tailed (for high values of ν the
t-distribution approaches Gaussian). The model is trained for N = 10000 data
points, and 10 separate sets of 10000 data points are used for testing. We mea-
sure the error in predicting x1 given x2, both with the mean prediction error
and quantiles of the error distribution to emphasize potential tail effects. The
results, collected in Table 1, confirm that the accuracies are indeed comparable.

3.2 Model Selection

Next we show how the model comes with ready tools for choosing the model
complexity. For any real analysis task both the number of clusters needed to
correctly capture the non-stationary dependencies and the number of correlating
components in each of the clusters are unknown. We show how the ARD prior
for the projection matrices removes the need of explicitly specifying the number
of components, by automatically ignoring unnecessary components, and how the
marginal likelihood of the model reveals the correct number of clusters.

We created M = 3 clusters each consisting of 2000 points from the model

tn ∼ N (tn|0, I)

x1n|tn ∼ N (x1n|Wk
1tn + μk

1 , (Lk
1L

k�
1 )−1)

x2n|tn ∼ N (x2n|Wk
2tn + μk

2 , (Lk
2L

k�
2 )−1),
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Table 1. Quantitative analysis of the prediction errors of the two alternative variational
approximations for t-distributions. The table shows the mean prediction error over
10000 independent test samples, averaged over 10 different realizations of the data set,
as well as different quantiles of the distribution of the errors. The two factorizations
are equal with respect to all of the measures.

Approximation Mean 5% quantile 50% quantile 95% quantile

Predict x2|x1

q(u)q(t) 8.9180 2.1766 6.2896 22.4195
q(u)q(t|u) 8.9180 2.1766 6.2895 22.4177

Predict x1|x2

q(u)q(t) 8.5027 2.0908 5.9635 21.4362
q(u)q(t|u) 8.5028 2.0911 5.9636 21.4384

where the mean vector entries are drawn randomly so that the cluster centers
are well seperated. The entries of the lower triangular matrices L1 and L2 are
drawn from the uniform distribution between 0 and 0.5, with additional small
positive entries added to the main diagonal, and the projection matrices W1

and W2 are generated as

Wk
1 =

dk∑
j=1

wk
1je

�
j

wk
1j ∼ N (wk

1j |1, (10 ∗ I)−1),

where dk = {3, 5, 7} encodes the dimensionality of the latent space in each of
the clusters. For x2 the procedure was the same.

Figure 3 shows two illustrations of the result, clearly demonstrating that the
marginal likelihood grows until the correct number of clusters but does not im-
prove further, indicating that coupling the likelihood with a reasonable prior
on the number captures the correct complexity. The other sub-figure illustrates
the projection matrix, revealing how only five components contain non-zero ele-
ments in the cluster that was created to have exactly five correlating components,
even though the model was ran with maximal possible complexity (the number
of dimensions that is here 50). Hence, the need for choosing the complexity is
efficiently sidestepped. Note that the columns of the matrix have not been re-
ordered for the illustration, but instead the approximation automatically learns
the components roughly in the order of the magnitude.

4 MEG Analysis

To concretize the scenarios where searching for mutual dependencies is likely to
be useful, we apply the model to analysis of brain response to natural stimulus.
For natural stimuli the traditional approaches are not sufficient due to lack of
repetition and control in the stimulus, and more data-driven approaches are
needed. The primary purpose of the experiment is to illustrate potential uses for
the model, and more detailed neuroscientific analysis is omitted.
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Fig. 3. Left: Marginal likelihood as a function of the number of clusters reveals that the
data has three clusters. The likelihood remains constant for larger number of potential
clusters because the model discovers only three clusters, leaving the rest empty. Right:
Hinton plot of the projection matrix W3

x of the three cluster model shows how the
model correctly captures the correlating dimensions. The ARD prior automatically
pushes the elements to zero for excess dimensions, keeping high values only for the five
true components.

In particular, we demonstrate how statistical dependencies between brain
activity measurements done with MEG and measurements of the autonomic
nervous system (ANS) can be used to create hypotheses on where to look for
emotional responses in MEG data. MEG measures the cortical brain activity
while emotional stimuli mainly cause response in the deeper regions, and hence
it is generally unknown to which degree emotional responses are visible in MEG
data (see [15] for a analysis of a simple controlled experiment). Since ANS mea-
surements are highly informative of emotional activity, correlations between the
two sources provide a link between MEG and the emotions.

In this paper we present the results from the point of view of further validating
the applicability of the model. In detail, we show how relaxing the stationarity
assumption of the signal by mixture modeling reveals stronger correlations be-
tween the signals, and how the mixture components found by the model are
interpretable and directly linked with the emotional stimuli labels not used in
learning the model. These results complement the artificial experiments and
show the model is directly applicable also for real scenarios, even for large sam-
ple sizes.

4.1 Data

We apply the model for joint analysis of brain oscillations and autonomic nervous
system (ANS) response to emotionally loaded auditory stimuli [18]. Emotional
sounds obtained from the International Affective Digitized Sounds (IADS-2) li-
brary with varying arousal and valence values were played while the brain activ-
ity of the test subjects was measured with MEG, and pupil diameter measured
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with iView XTM MEG eye tracker was used as an example signal for the ANS
activity. A total of 48 stimuli, each lasting 6 seconds, were played with 10 second
shade-in and shade-out periods.

We extract dependencies between a single MEG channel, chosen based on
preliminary analysis, and pupil diameter, as a demonstration of what the model
can achieve. The approach directly generalizes to more MEG channels and would
also be applicable to other measurements of ANS, such as galvanic skin response
or heart-rate variability, or combinations of those.

After basic signal pre-processing consisting of resampling, de-trending, filter-
ing and renormalisation, we apply a sliding rectangular window function to both
one-dimensional signals. The stimuli-evoked responses are time-localised in the
MEG signal, and the resulting window-based feature representation is a natural
choice for such short time analysis. In the context of the CCA-type models, this
representation encodes the time-amplitude information through the mean vector
and frequency-amplitude information in the CCA projections. In other words,
projecting the signal windows to the canonical scores corresponds to filtering.

The model hyperparameters are set in exactly the same way as for the ar-
tificial data except for the prior precisions which are smaller (with the order
of magnitude estimated from the empirical covariance matrices), because the
biomedical signals are known to be very noisy.

4.2 Results

Figure 4 (left) shows the marginal likelihood as a function of the number of
clusters, showing that the data strongly supports more than one cluster and
hence that the signal is clearly non-stationary. Solutions between two and five
clusters are all sensible, whereas using more than five clusters does not improve
the likelihood anymore. In fact, the excess clusters become empty during the
learning process, and hence play no role.

One of the main advantages of relaxing the stationarity assumption is that
the regions of the data space showing strong dependency can be separated from
the rest, to better capture the correlations. This should be manifested as some
clusters having high correlations, while some other clusters learn to model the less
dependent parts. We use this observation to construct a measure for comparing
our model with the alternative solution of first clustering the data in the joint
space and applying classical CCA for each of the clusters separately: For each
model complexity we measure the difference between the highest correlations
in the most and least dependent clusters. The comparison method also uses
variational inference for learning the clusters, and the result is then turned into a
hard clustering in order to compute the CCA. It hence follows the basic approach
of [7], but the clustering model is replaced with a better one to compensate for
the gain by our improved inference.

Figure 4 (right) shows how finding the clusters and the dependencies together
improves compared to the alternative. The joint clustering is not able to separate
the dependent parts from the independent ones, but instead merely divides the
data into clusters of roughly equal size having correlations relatively close to
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Fig. 4. Left: Marginal likelihood as a function of the number of clusters, showing how
the data only supports at most five clusters. The baseline (dashed line) corresponds
to the single-cluster solution, and the clear difference shows the improvement from
relaxing the stationarity assumption. Right: Illustration of how the proposed model
outperforms the alternative of first clustering the data and then applying classical CCA.
The curves measure the ability of the model to separate different kinds of dependencies
into different clusters, evaluated as the difference between the largest correlations in
the most/least dependent cluster in the model.

each other. Increasing the number of clusters helps, since small enough clusters
will start to capture the dependencies even when they were learned to model the
joint distribution, but even then the joint clusters cannot be directly interpreted
as capturing different kind of dependencies.

Next we take the three-cluster solution of our model for closer analysis in
order to demonstrate that the clusters are interpretable. We do not proceed to
analyze the projection vectors that would reveal the signal filters needed for
full neuroscientific analysis, but instead idenfity the clusters based on the mean
profiles of the pupil data (Figure 5; left) and show how the cluster identities are
linked with the emotional stimuli labels (Figure 5; right). The labels were not
used in learning the model, and hence this serves as an external validation. The
mean vectors reveal that the largest cluster corresponds to no activity, while the
other two clusters correspond to pupil dilation and contraction. The histogram
of the stimuli labels in each of the clusters shows that the two smaller clusters
are enriched with the positive and negative stimuli, respectively, proving that
the model has learned not only a link between MEG and ANS, but that the link
is indeed related to the underlying natural stimulus.

5 Discussion

Efficient and robust models for extracting statistical dependencies between mul-
tiple co-occurring data streams or signals are needed for exploratory analysis
of complicated natural phenomena such as brain activity or cellular functions.
We introduced a novel model that synthetises the latest advances in generative
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Fig. 5. Left: Mean of the pupil diameter in each of the clusters. Right: Distribution of
the stimuli labels in each of the clusters. The stimuli enumeration from 0 to 3 refers to
no stimulus, enomotionally neutral stimulus, positive stimulus and negative stimulus,
respectively. Note how samples with positive stimulus labels are enriched in the first
cluster and samples with negative stimulus label in the second cluster.

dependency modeling to create a practically applicable tool for large-scale anal-
ysis. The robust mixture of canonical correlation analyzers combines the mixture
solution of [10] with the variational approximation of [16] and the robust CCA
extension of [2] into a single model. The model is directly applicable to data sets
of tens of thousands of observations, as demonstrated by the example applica-
tion on the MEG data, and includes automatic solutions for model complexity
selection. An open-source implementation of the model written in MATLAB is
available at http://www.cis.hut.fi/projects/mi/software/vbcca/.

Furthermore, we studied alternative variational approximations for robust t-
distribution models in general. Two different independence assumptions both
lead to tractable approximations that have been used by earlier models [5,8,12].
We showed that the difference in the modeling accuracy between the two ap-
proximations is negligible, concluding that future variational approximations
of scale-mixture models can choose either alternative based on the desired func-
tional form for the predictive distributions, not needing to consider the modeling
accuracy.
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Appendix: Variational EM-Update Equations

The factorization q(un|zn)q(tn|zn) results in the variational distributions of the
following form. The parameters of the approximation are implicitly defined as
the symbols for which the right hand sides are conditioned on:

q({Ψi}) =
M∏

k=1

W(Ψk
i |γ̃k

i , Φ̃k
i ))

q({μi}) =
M∏

k=1

N (μk
i |μμk

i
,Σμk

i
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di∏
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ij |μW k
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ij
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d∏
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ij , b
k
ij)

q(tn|znk = 1) = N (tn|μtnk
,Σ−1

tnk
)

q(un|znk = 1) = G(un|αqnk
, βqnk

)
q(zn) = Multinomial(zn|rn).

The update rules needed for learning the parameters of the approximation
are then given by the following formulas, where 〈A〉q(·) denotes the expectation
of A with respect to q(·). In addition, we denote the dimensionality of xin with
di and the latent space dimensionality with D:

μtnk
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2
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2
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〈1
2
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i tn − μk
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i (xin − Wk
i tn − μk

i )〉q(∗)

where q(∗) = q(tn|znk = 1)q({μi})q({Ψi})q({Wi}))
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ln ρnk = lnπk − DKL(q(un|znk = 1)||p(un|znk = 1))
− 〈DKL(q(tn|znk = 1)||p(tn|znk = 1, un))〉q(un|znk=1)

+
2∑
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