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Abstract

Bayesian optimal experimental design (BOED) is a principled framework for mak-
ing efficient use of limited experimental resources. Unfortunately, its applicability
is hampered by the difficulty of obtaining accurate estimates of the expected infor-
mation gain (EIG) of an experiment. To address this, we introduce several classes
of fast EIG estimators by building on ideas from amortized variational inference.
We show theoretically and empirically that these estimators can provide significant
gains in speed and accuracy over previous approaches. We further demonstrate the
practicality of our approach on a number of end-to-end experiments.

1 Introduction

Tasks as seemingly diverse as designing a study to elucidate human cognition, selecting the next
query point in an active learning loop, and designing online feedback surveys all constitute the same
underlying problem: designing an experiment to maximize the information gathered. Bayesian
optimal experimental design (BOED) forms a powerful mathematical abstraction for tackling such
problems [8, 23, 37, 43] and has been successfully applied in numerous settings, including psychology
[30], Bayesian optimization [16], active learning [15], bioinformatics [42], and neuroscience [38].

In the BOED framework, we construct a predictive model p(y|θ, d) for possible experimental
outcomes y, given a design d and a particular value of the parameters of interest θ. We then choose
the design that optimizes the expected information gain (EIG) in θ from running the experiment,

EIG(d) , Ep(y|d)

[
H[p(θ)]−H[p(θ|y, d)]

]
, (1)

where H[·] represents the entropy and p(θ|y, d) ∝ p(θ)p(y|θ, d) is the posterior resulting from
running the experiment with design d and observing outcome y. In other words, we seek the design
that, in expectation over possible experimental outcomes, most reduces the entropy of the posterior
over our target latent variables. If the predictive model is correct, this forms a design strategy that is
(one-step) optimal from an information-theoretic viewpoint [24, 37].

The BOED framework is particularly powerful in sequential contexts, where it allows the results of
previous experiments to be used in guiding the designs for future experiments. For example, as we
ask a participant a series of questions in a psychology trial, we can use the information gathered
from previous responses to ask more pertinent questions in the future, that will, in turn, return more
information. This ability to design experiments that are self-adaptive can substantially increase their
efficiency: fewer iterations are required to uncover the same level of information.

In practice, however, the BOED approach is often hampered by the difficulty of obtaining fast and
high-quality estimates of the EIG: due to the intractability of the posterior p(θ|y, d), it constitutes
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a nested expectation problem and so conventional Monte Carlo (MC) estimation methods cannot
be applied [33]. Moreover, existing methods for tackling nested expectations have, in general, far
inferior convergence rates than those for conventional expectations [22, 30, 32]. For example, nested

MC (NMC) can only achieve, at best, a rate of O(T−1/3) in the total computational cost T [33],

compared with O(T−1/2) for conventional MC.

To address this, we propose a variational BOED approach that sidesteps the double intractability of
the EIG in a principled manner and yields estimators with convergence rates in line with those for
conventional estimation problems. To this end, we introduce four efficient and widely applicable
variational estimators for the EIG. The different methods each present distinct advantages. For
example, two allow training with implicit likelihood models, while one allows for asymptotic
consistency even when the variational family does not contain the target distribution.

We theoretically confirm the advantages of our estimators, showing that they all have a convergence

rate of O(T−1/2) when the variational family contains the target distribution. We further verify their
practical utility using a number of experiment design problems inspired by applications from science
and industry, showing that they provide significant empirical gains in EIG estimation over previous
methods and that these gains lead, in turn, to improved end-to-end performance.

To maximize the space of potential applications and users for our estimators, we provide2 a general-
purpose implementation of them in the probabilistic programming system Pyro [5], exploiting Pyro’s
first-class support for neural networks and variational methods.

2 Background

The BOED framework is a model-based approach for choosing an experiment design d in a manner
that optimizes the information gained about some parameters of interest θ from the outcome y of the
experiment. For instance, we may wish to choose the question d in a psychology trial to maximize
the information gained about an underlying psychological property of the participant θ from their
answer y to the question. In general, we adopt a Bayesian modelling framework with a prior p(θ)
and a predictive model p(y|θ, d). The information gained about θ from running experiment d and
observing y is the reduction in entropy from the prior to the posterior:

IG(y, d) = H[p(θ)]−H[p(θ|y, d)] . (2)

At the point of choosing d, however, we are uncertain about the outcome. Thus, in order to define
a metric to assess the utility of the design d we take the expectation of IG(y, d) under the marginal
distribution over outcomes p(y|d) = Ep(θ)[p(y|θ, d)] as per (1). We can further rearrange this as

EIG(d) = Ep(y,θ|d)

[

log
p(θ|y, d)
p(θ)

]

= Ep(y,θ|d)

[

log
p(y, θ|d)
p(θ)p(y|d)

]

= Ep(y,θ|d)

[

log
p(y|θ, d)
p(y|d)

]

(3)

with the result that the EIG can also be interpreted as the mutual information between θ and y given
d, or the epistemic uncertainty in y averaged over the prior p(θ). The Bayesian optimal design is

defined as d∗ , argmaxd∈D EIG(d), where D is the set of permissible designs.

Computing the EIG is challenging since neither p(θ|y, d) or p(y|d) can, in general, be found in closed
form. Consequently, the integrand is intractable and conventional MC methods are not applicable.
One common way of getting around this is to employ a nested MC (NMC) estimator [30, 43]

µ̂NMC(d),
1

N

N∑

n=1

log
p(yn|θn,0, d)

1
M

∑M
m=1 p(yn|θn,m, d)

where θn,m
i.i.d.∼ p(θ), yn∼ p(y|θ = θn,0, d). (4)

Rainforth et al. [33] showed that this estimator, which has a total computational cost T = O(NM),
is consistent in the limit N,M → ∞ with RMSE convergence rate O(N−1/2 +M−1), and that it is

asymptotically optimal to set M ∝
√
N , yielding an overall rate of O(T−1/3).

Given a base EIG estimator, a variety of different methods can be used for the subsequent optimization
over designs, including some specifically developed for BOED [1, 29, 32]. In our experiments, we

2Implementations of our methods are available at http://docs.pyro.ai/en/stable/contrib.oed.html.
To reproduce the results in this paper, see https://github.com/ae-foster/pyro/tree/vboed-reproduce.
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will adopt Bayesian optimization [39], due to its sample efficiency, robustness to multi-modality, and
ability to deal naturally with noisy objective evaluations. However, we emphasize that our focus is on
the base EIG estimator and that our estimators can be used more generally with different optimizers.

The static design setting we have implicitly assumed thus far in our discussion can be generalized
to sequential contexts, in which we design T experiments d1, ..., dT with outcomes y1, ..., yT . We
assume experiment outcomes are conditionally independent given the latent variables and designs, i.e.

p(y1:T , θ|d1:T ) = p(θ)
T∏

t=1

p(yt|θ, dt). (5)

Having conducted experiments 1, ..., t− 1, we can design dt by incorporating data in the standard
Bayesian fashion: at experiment iteration t, we replace the prior p (θ) in (3) with p (θ|d1:t−1, y1:t−1),
the posterior conditional on the first t− 1 designs and outcomes. We can thus conduct an adaptive
sequential experiment in which we optimize the choice of the design dt at each iteration.

3 Variational Estimators

Though consistent, the convergence rate of the NMC estimator is prohibitively slow for many practical
problems. As such, EIG estimation often becomes the bottleneck for BOED, particularly in sequential
experiments where the BOED calculations must be fast enough to operate in real-time.

In this section we show how ideas from amortized variational inference [10, 17, 34, 40] can be used
to sidestep the double intractability of the EIG, yielding estimators with much faster convergence
rates thereby alleviating the EIG bottleneck. A key insight for realizing why such fundamental gains
can be made is that the NMC estimator is inefficient because a separate estimate of the integrand
in (3) is made for each yn. The variational approaches we introduce instead look to directly learn a
functional approximation—for example, an approximation of y 7→ p(y|d)—and then evaluate this
approximation at multiple points to estimate the integral, thereby allowing information to be shared
across different values of y. If M evaluations are made in learning the approximation, the total
computational cost is now T = O(N +M), yielding substantially improved convergence rates.

Variational posterior µ̂post Our first approach, which we refer to as the variational posterior
estimator µ̂post, is based on learning an amortized approximation qp(θ|y, d) to the posterior p(θ|y, d)
and then using this to estimate the EIG:

EIG(d) ≈ Lpost(d) , Ep(y,θ|d)

[

log
qp(θ|y, d)
p(θ)

]

≈ µ̂post(d) ,
1

N

N∑

n=1

log
qp(θn|yn, d)

p(θn)
, (6)

where yn, θn
i.i.d.∼ p(y, θ|d) and µ̂post(d) is a MC estimator of Lpost(d). We draw samples of p(y, θ|d)

by sampling θ ∼ p(θ) and then y|θ ∼ p(y|θ, d). We can think of this approach as amortizing the
cost of the inner expectation, instead of running inference separately for each y.

To learn a suitable qp(θ|y, d), we show in Appendix A that Lpost(d) forms a variational lower bound
EIG(d) ≥ Lpost(d) that is tight if and only if qp(θ|y, d) = p(θ|y, d). Barber and Agakov [3] used
this bound to estimate mutual information in the context of transmission over noisy channels, but the
connection to experiment design has not previously been made.

This result means we can learn qp(θ|y, d) by introducing a family of variational distributions
qp(θ|y, d, φ) parameterized by φ and then maximizing the bound with respect to φ:

φ∗ = argmax
φ

Ep(y,θ|d)

[

log
qp(θ|y, d, φ)

p(θ)

]

, EIG(d) ≈ Lpost(d;φ
∗). (7)

Provided that we can generate samples from the model, this maximization can be performed using
stochastic gradient methods [35] and the unbiased gradient estimator

∇φLpost(d;φ) ≈ 1
S

∑S

i=1
∇φ log qp(θi|yi, d, φ) where yi, θi

i.i.d.∼ p(y, θ|d), (8)

and we note that no reparameterization is required as p(y, θ|d) is independent of φ. After K
gradient steps we obtain variational parameters φK that approximate φ∗, which we use to compute
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a corresponding EIG estimator by constructing a MC estimator for Lpost(d;φ) as per (6) with
qp(θn|yn, d) = qp(θn|yn, d, φK). Interestingly, the tightness of Lpost(d) turns out to be equal to

the expected forward KL divergence3
Ep(y|d) [KL (p(θ|y, d)||qp(θ|y, d, φ))] so we can view this

approach as learning an amortized proposal by minimizing this expected KL divergence.

Variational marginal µ̂marg In some scenarios, θ may be high-dimensional, making it difficult to
train a good variational posterior approximation. An alternative approach that can be attractive in
such cases is to instead learn an approximation qm(y|d) to the marginal density p(y|d) and substitute
this into the final form of the EIG in (3). As shown in Appendix A, this yields an upper bound

EIG(d) ≤ Umarg(d) , Ep(y,θ|d)

[

log
p(y|θ, d)
qm(y|d)

]

≈ µ̂marg(d) ,
1

N

N∑

n=1

log
p(yn|θn, d)
qm(yn|d)

, (9)

where again yn, θn
i.i.d.∼ p(y, θ|d) and the bound is tight when qm(y|d) = p(y|d). Analogously to

µ̂post, we can learn qm(y|d) by introducing a variational family qm(y|d, φ) and then performing
stochastic gradient descent to minimize Umarg(d, φ). As with µ̂post, this bound was studied in a mutual
information context [31], but it has not been utilized for BOED before.

Variational NMC µ̂VNMC As we will show in Section 4, µ̂post and µ̂marg can provide substantially
faster convergence rates than NMC. However, this comes at the cost of converging towards a biased
estimate if the variational family does not contain the target distribution. To address this, we propose
another EIG estimator, µ̂VNMC, which allows one to trade-off resources between the fast learning of a
biased estimator permitted by variational approaches, and the ability of NMC to eliminate this bias.4

We can think of the NMC estimator as approximating p(y|d) using M samples from the prior. At a
high-level, µ̂VNMC is based around learning a proposal qv(θ|y, d) and then using samples from this
proposal to make an importance sampling estimate of p(y|d), potentially requiring far fewer samples
than NMC. Formally, it is based around a bound that can be arbitrarily tightened, namely

EIG(d) ≤ E

[

log p(y|θ0, d)− log
1

L

L∑

ℓ=1

p(y, θℓ|d)
qv(θℓ|y, d)

]

, UVNMC(d, L) (10)

where the expectation is taken over y, θ0:L ∼ p(y, θ0|d)
∏L
ℓ=1 qv(θℓ|y, d), which corresponds to one

sample y, θ0 from the model and L samples from the approximate posterior conditioned on y. To
the best of our knowledge, this bound has not previously been studied in the literature. As with µ̂post

and µ̂marg, we can minimize this bound to train a variational approximation qv(θ|y, d, φ). Important
features of UVNMC(d, L) are summarized in the following lemma; see Appendix A for the proof.

Lemma 1. For any given model p(θ)p(y|θ, d) and valid qv(θ|y, d),
1. EIG(d) = limL→∞ UVNMC(d, L) ≤ UVNMC(d, L2) ≤ UVNMC(d, L1) ∀L2 ≥ L1 ≥ 1,

2. UVNMC(d, L) = EIG(d) ∀L ≥ 1 if qv(θ|y, d) = p(θ|y, d) ∀y, θ,

3. UVNMC(d, L)−EIG(d)=Ep(y|d)

[

KL
(
∏L
ℓ=1 qv(θℓ|y, d)

∣
∣
∣
∣ 1
L

∑L
ℓ=1 p(θℓ|y, d)

∏

k 6=ℓ qv(θk|y, d)
)]

Like the previous bounds, the VNMC bound is tight when qv(θ|y, d) = p(θ|y, d). Importantly, the
bound is also tight as L → ∞, even for imperfect qv. This means we can obtain asymptotically
unbiased EIG estimates even when the true posterior is not contained in the variational family.

Specifically, we first train φ using K steps of stochastic gradient on UVNMC(d, L) with some fixed
L. To form a final EIG estimator, however, we use a MC estimator of UVNMC(d,M) where typically
M ≫ L. This final estimator is a NMC estimator that is consistent as N,M → ∞ with φK fixed

µ̂VNMC(d) ,
1

N

N∑

n=1

(

log p(yn|θn,0, d)− log
1

M

M∑

m=1

p(yn, θn,m|d)
qv(θn,m|yn, d, φK)

)

(11)

where θn,0
i.i.d.∼ p(θ), yn ∼ p(y|θ = θn,0, d) and θn,m ∼ qv(θ|y = yn, d, φK). In practice,

performance is greatly enhanced when the proposal qv is a good, if inexact, approximation to the
posterior. This significantly improves upon traditional µ̂NMC, which sets qv(θ|y, d) = p(θ) in (11).

3See Appendix A for a proof. A comparison with the reverse KL divergence can be found in Appendix G.
4In Appendix F, we describe a method using qm(y|d) as a control variate that can also eliminate this bias

and lower the variance of NMC, requiring additional assumptions about the model and variational family.
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Implicit likelihood and µ̂m+ℓ So far we have assumed that we can evaluate p(y|θ, d) pointwise.
However, many models of interest have implicit likelihoods from which we can draw samples, but
not evaluate directly. For example, models with nuisance latent variables ψ (such as a random effect
models) are implicit likelihood models because p(y|θ, d) = Ep(ψ|θ) [p(y|θ, ψ, d)] is intractable, but
can still be straightforwardly sampled from.

In this setting, µ̂post is applicable without modification because it only requires samples from p(y|θ, d)
and not evaluations of this density. Although µ̂marg is not directly applicable in this setting, it can be
modified to accommodate implicit likelihoods. Specifically, we can utilize two approximate densities:
qm(y|d) for the marginal and qℓ(y|θ, d) for the likelihood. We then form the approximation

EIG(d) ≈ Im+ℓ(d) , Ep(y,θ|d)

[

log
qℓ(y|θ, d)
qm(y|d)

]

≈ µ̂m+ℓ(d) ,
1

N

N∑

n=1

log
qℓ(yn|θn, d)
qm(yn|d)

. (12)

Unlike the previous three cases, Im+ℓ(d) is not a bound on EIG(d), meaning it is not immediately
clear how to train qm(y|d) and qℓ(y|θ, d) to achieve an accurate EIG estimator. The following lemma
shows that we can bound the EIG estimation error of Im+ℓ. The proof is in Appendix A.

Lemma 2. For any given model p(θ)p(y|θ, d) and valid qm(y|d) and qℓ(y|θ, d), we have

|Im+ℓ(d)− EIG(d)| ≤ −Ep(y,θ|d)[log qm(y|d) + log qℓ(y|θ, d)] + C, (13)

where C = −H[p(y|d)] − Ep(θ) [H(p(y|θ, d)] does not depend on qm or qℓ. Further, the RHS of

(13) is 0 if and only if qm(y|d) = p(y|d) and qℓ(y|θ, d) = p(y|θ, d) for almost all y, θ.

This lemma implies that we can learn qm(y|d) and qℓ(y|θ, d) by maximizing Ep(y,θ|d)[log qm(y|d) +
log qℓ(y|θ, d)] using stochastic gradient ascent, and substituting these learned approximations into
(12) for the final EIG estimator. To the best of our knowledge, this approach has not previously been
considered in the literature. We note that, in general, qm and qℓ are learned separately and there need
not be any weight sharing between them. See Appendix A.4 for a discussion of the case when we
couple qm and qℓ so that qm(y|d) = Ep(θ)[qℓ(y|θ, d)].

Using estimators for sequential BOED In sequential settings, we also need to consider the im-
plications of replacing p(θ) in the EIG with p(θ|d1:t−1, y1:t−1). At first sight, it appears that,
while µ̂marg and µ̂m+ℓ only require samples from p(θ|d1:t−1, y1:t−1), µ̂post and µ̂VNMC also re-
quire its density to be evaluated, a potentially severe limitation. Fortunately, we can, in fact,
avoid evaluating this posterior density. We note that, from (5), we have p(θ|y1:t−1, d1:t−1) =

p(θ)
∏t−1
i=1 p(yi|θ, di)/p(y1:t−1|d1:t−1). Substituting this into the integrand of (6) gives

Lpost(dt) = Ep(θ|y1:t−1,d1:t−1)p(yt|θ,dt)

[

log
qp(θ|yt, dt)

p(θ)
∏t−1
i=1 p(yi|θ, di)

]

+ log p(y1:t−1|d1:t−1) (14)

where p(θ)
∏t−1
i=1 p(yi|θ, di) can be evaluated exactly and the additive constant log p(y1:t−1|d1:t−1)

does not depend on the new design dt, θ, or any of the variational parameters, and so can be safely
ignored. Making the same substitution in (11) shows that we can also estimate UVNMC(dt, L) up
to a constant, which can then be similarly ignored. As such, any inference scheme for sampling
p(θ|d1:t−1, y1:t−1), approximate or exact, is compatible with all our approaches.

Table 1: Summary of EIG estimators. Baseline meth-
ods are explained in Section 5.

Implicit Bound Consistent Eq.

O
u

rs

µ̂post ✓ Lower ✗ (6)
µ̂marg ✗ Upper ✗ (9)
µ̂VNMC ✗ Upper ✓ (11)
µ̂m+ℓ ✓ ✗ ✗ (12)

B
as

el
in

e µ̂NMC ✗ Upper ✓ (4)
µ̂laplace ✗ ✗ ✗ (75)
µ̂LFIRE ✓ ✗ ✗ (76)
µ̂DV ✓ Lower ✗ (77)

Selecting an estimator Having proposed
four estimators, we briefly discuss how to
choose between them in practice. For refer-
ence, a summary of our estimators is given
in Table 1, along with several baseline ap-
proaches. First, µ̂marg and µ̂m+ℓ rely on
approximating a distribution over y; µ̂post

and µ̂VNMC approximate distributions over
θ. We may prefer the former two estimators
if dim(y) ≪ dim(θ) as it leaves us with a
simpler density estimation problem, and vice
versa. Second, µ̂marg and µ̂VNMC require an
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explicit likelihood whereas µ̂post and µ̂m+ℓ do not. If an explicit likelihood is available, it typically
makes sense to use it—one would never use µ̂m+ℓ over µ̂marg for example. Finally, if the variational
families do not contain the target densities, µ̂VNMC is the only method guaranteed to converge to the
true EIG(d) in the limit as the computational budget increases. So we might prefer µ̂VNMC when
computation time and cost are not constrained.

4 Convergence rates

We now investigate the convergence of our estimators. We start by breaking the overall error down into
three terms: I) variance in MC estimation of the bound; II) the gap between the bound and the tightest
bound possible given the variational family; and III) the gap between the tightest possible bound and
EIG(d). With variational EIG approximation B(d) ∈ {Lpost(d), Umarg(d), UVNMC(d, L), Im+ℓ(d)},
optimal variational parameters φ∗, learned variational parameters φK after K stochastic gradient
iterations, and MC estimator µ̂(d, φK) we have, by the triangle inequality,

‖µ̂(d, φK)−EIG(d)‖2 ≤ ‖µ̂(d, φK)−B(d, φK)‖2
︸ ︷︷ ︸

I

+ ‖B(d, φK)−B(d, φ∗)‖2
︸ ︷︷ ︸

II

+ |B(d, φ∗)−EIG(d)|
︸ ︷︷ ︸

III

where we have used the notation ‖X‖2 ,
√

E [X2] to denote the L2 norm of a random variable.

By the weak law of large numbers, term I scales as N−1/2 and can thus be arbitrarily reduced
by taking more MC samples. Provided that our stochastic gradient scheme converges, term II
can be reduced by increasing the number of stochastic gradient steps K. Term III, however, is a
constant that can only be reduced by expanding the variational family (or increasing L for µ̂VNMC).
Each approximation B(d) thus converges to a biased estimate of the EIG(d), namely B(d, φ∗). As
established by the following Theorem, if we set N ∝ K, the rate of convergence to this biased

estimate is O(T−1/2), where T represents the total computational cost, with T = O(N +K).

Theorem 1. Let X be a measurable space and Φ be a convex subset of a finite dimensional inner
product space. Let X1, X2, ... be i.i.d. random variables taking values in X and f : X × Φ → R be
a measurable function. Let

µ(φ) , E[f(X1, φ)] ≈ µ̂N (φ) ,
1

N

∑N

n=1
f(Xn, φ)

and suppose that supφ∈Φ ‖f(X1, φ)‖2 < ∞. Then supφ∈Φ ‖µ̂N (φ) − µ(φ)‖2 = O(N−1/2). Sup-
pose further that Assumption 1 in Appendix B holds and that φ∗ is the unique minimizer of µ. After
K iterations of the Polyak-Ruppert averaged stochastic gradient descent algorithm of [28] with
gradient estimator ∇φf(Xt, φ), we have ‖µ(φK)− µ(φ∗)‖2 = O(K−1/2) and, combining with the
first result,

‖µ̂N (φK)− µ(φ∗)‖2 = O(N−1/2 +K−1/2) = O(T−1/2) if N ∝ K.

The proof relies on standard results from MC and stochastic optimization theory; see Appendix B.
We note that the assumptions required for the latter, though standard in the literature, are strong. In
practice, φ can converge to a local optimum φ†, rather than the global optimum φ∗, introducing an
additional asymptotic bias

∣
∣B(d, φ†)− B(d, φ∗)

∣
∣ into term III.

Theorem 1 can be applied directly to µ̂marg, −µ̂post, and µ̂VNMC (with fixed M = L), showing that

they converge respectively to Umarg(d, φ
∗), −Lpost(d, φ

∗), and UVNMC(d, L, φ
∗) at a rate = O(T−1/2)

if N ∝ K and the assumptions are satisfied. For µ̂m+ℓ, we combine Theorem 1 and Lemma 2 to

obtain the same O(T−1/2) convergence rates; see the supplementary material for further details.

The key property of µ̂VNMC is that we need not set M = L and can remove the asymptotic bias by
increasing M with N . We begin by training φ with a fixed value of L, decreasing the error term

‖UVNMC(d, L, φK)−UVNMC(d, L, φ
∗)‖2 at the fast rate O(K−1/2) until |UVNMC(d, L, φ

∗)−EIG(d)|
becomes the dominant error term. At this point, we start to increase N,M . Using the NMC

convergence results discussed in Sec. 2, if we set M ∝
√
N , then µ̂VNMC converges to EIG(d) at

a rate O((NM)−1/3). Note that the total cost of the µ̂VNMC estimator is T = O(KL + NM),
where typically M ≫ L. The first stage, costing KL, is fast variational training of an amortized
importance sampling proposal for p(y|d) = Ep(θ)[p(y|θ, d)]. The second stage, costing NM , is
slower refinement to remove the asymptotic bias using the learned proposal in an NMC estimator.
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Table 2: Bias squared and variance from 5 runs, averaged over designs, of EIG estimators applied to
four benchmarks. We use - to denote that a method does not apply and ∗ when it is superseded by
other methods. Bold indicates the estimator with the lowest empirical mean squared error.

A/B test Preference Mixed effects Extrapolation

Bias2 Var Bias2 Var Bias2 Var Bias2 Var

µ̂post 1.33×10−2 7.15×10−3 4.26×10−2 8.53×10−3 2.34×10−3 2.92×10−3 1.24×10−4 5.16×10−5

µ̂marg 7.45×10−2 6.41×10−3
1.10×10

−3
1.99×10

−3 - - - -

µ̂VNMC 3.44×10−3 3.38×10−3 4.17×10−3 9.04×10−3 - - - -

µ̂m+ℓ ∗ ∗ ∗ ∗ 3.06×10
−3

5.94×10
−5

6.90×10
−6

1.84×10
−5

µ̂NMC 4.70×100 3.47×10−1 7.60×10−2 8.36×10−2 - - - -

µ̂laplace 1.92×10
−4

1.47×10
−3 8.42×10−2 9.70×10−2 - - - -

µ̂LFIRE 2.29×100 6.20×10−1 1.30×10−1 1.41×10−2 1.41×10−1 6.67×10−2 - -

µ̂DV 4.34×100 8.85×10−1 9.23×10−2 8.07×10−3 9.10×10−3 5.56×10−4 7.84×10−6 4.11×10−5

One can think of the standard NMC approach as a special case of µ̂VNMC in which we naively choose
p(θ) as the proposal. That is, standard NMC skips the first stage and hence does not benefit from the
improved convergence rate of learning an amortized proposal. It typically requires a much higher
total cost to achieve the same accuracy as VNMC.

5 Related work

We briefly discuss alternative approaches to EIG estimation for BOED that will form our baselines for
empirical comparisons. The Nested Monte Carlo (NMC) baseline was introduced in Sec. 2. Another
established approach is to use a Laplace approximation to the posterior [22, 25]; this approach
is fast but is limited to continuous variables and can exhibit large bias. Kleinegesse and Gutmann
[18] recently suggested an implicit likelihood approach based on the Likelihood-Free Inference by
Ratio Estimation (LFIRE) method of Thomas et al. [41]. We also consider a method based on the
Donsker-Varadhan (DV) representation of the KL divergence [11] as used by Belghazi et al. [4]
for mutual information estimation. Though not previously considered in BOED, we include it as
a baseline for illustrative purposes. For a full discussion of the DV bound and a number of other
variational bounds used in deep learning, we refer to the recent work of Poole et al. [31]. For further
discussion of related work, see Appendix C.

6 Experiments

6.1 EIG estimation accuracy

We begin by benchmarking our EIG estimators against the aforementioned baselines. We consider
four experiment design scenarios inspired by applications of Bayesian data analysis in science and
industry. First, A/B testing is used across marketing and design [6, 19] to study population traits.
Here, the design is the choice of the A and B group sizes and the Bayesian model is a Gaussian linear
model. Second, revealed preference [36] is used in economics to understand consumer behaviour.
We consider an experiment design setting in which we aim to learn the underlying utility function of
an economic agent by presenting them with a proposal (such as offering them a price for a commodity)
and observing their revealed preference. Third, fixed effects and random effects (nuisance variables)
are combined in mixed effects models [14, 20]. We consider an example inspired by item-response
theory [13] in psychology. We seek information only about the fixed effects, making this an implicit
likelihood problem. Finally, we consider an experiment where labelled data from one region of
design space must be used to predict labels in a target region by extrapolation [27]. In summary, we
have two models with explicit likelihoods (A/B testing, preference) and two that are implicit (mixed
effects, extrapolation). Full details of each model are presented in Appendix D.

For each scenario, we estimated the EIG across a grid of designs with a fixed computational budget
for each estimator and calculated the true EIG analytically or with brute force computation as
appropriate; see Table 2 for the results. Whilst the Laplace method, unsurprisingly, performed best
for the Gaussian linear model where its approximation becomes exact, we see that our methods are
otherwise more accurate. All our methods outperformed NMC.
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(a) Convergence in N (b) Convergence in K (c) Convergence N = K (d) Fixed budget N +K

Figure 1: Convergence of RMSE for µ̂post and µ̂marg. (a) Convergence in number of MC samples N
with a fixed number K of gradient updates of the variational parameters. (b) Convergence in time
when increasing K and with N fixed. (c) Convergence in time when setting N = K and increasing
both (dashed lines represent theoretical rates). (d) Final RMSE with N + K = 5000 fixed, for
different K. Each graph shows the mean with shading representing ±1 std. err. from 100 trials.

6.2 Convergence rates

We now investigate the empirical convergence characteristics of our estimators. Throughout, we
consider a single design point from the A/B test example. We start by examining the convergence of
µ̂post and µ̂marg as we allocate the computational budget in different ways.

We first consider the convergence inN after a fixed number ofK updates to the variational parameters.
As shown in Figure 1a, the RMSE initially decreases as we increase N , before plateauing due to the
bias in the estimator. We also see that µ̂post substantially outperforms µ̂marg. We next consider the
convergence as a function of wall-clock time when N is held fixed and we increase K. We see in
Figure 1b that, as expected, the errors decrease with time and that when a small value of N = 5 is
taken, we again see a plateauing effect, with the variance of the final MC estimator now becoming the
limiting factor. In Figure 1c we take N = K and increase both, obtaining the predicted convergence

rate O(T−1/2) (shown by the dashed lines). We conjecture that the better performance of µ̂post is
likely due to θ being lower dimensional (dim = 2) than y (dim = 10). In Figure 1d, we instead fix
T = N +K to investigate the optimal trade-off between optimization and MC error: it appears the
range of K/T between 0.5 and 0.9 gives the lowest RMSE.

Figure 2: Convergence of µ̂VNMC taking

M=
√
N . ‘Steps’ refers to pre-training

of the variational posterior (i.e. K), with
0 steps corresponding to µ̂NMC. Means
and confidence intervals as per Fig. 1.

Finally, we show how µ̂VNMC can improve over NMC
by using an improved variational proposal for estimating
p(y|d). In Figure 2, we plot the EIG estimates obtained
by first running K steps of stochastic gradient with L = 1
to learn qv(θ|y, d), before increasing M and N . We see
that spending some of our time budget training qv(θ|y, d)
leads to noticeable improvements in the estimation, but
also that it is important to increase N and M . Rather than
plateauing like µ̂post and µ̂marg, µ̂VNMC continues to im-
prove after the initial training period as, albeit at a slower

O(T−1/3) rate.

6.3 End-to-end sequential experiments

We now demonstrate the utility of our methods for design-
ing sequential experiments. First, we demonstrate that our
variational estimators are sufficiently robust and fast to
be used for adaptive experiments with a class of models that are of practical importance in many
scientific disciplines. To this end, we run an adaptive psychology experiment with human participants
recruited from Amazon Mechanical Turk to study how humans respond to features of stylized faces.
To account for fixed effects—those common across the population—as well as individual variations
that we treat as nuisance variables, we use the mixed effects regression model introduced in Sec. 6.1.
See Appendix D for full details of the experiment.

To estimate the EIG for different designs, we use µ̂m+ℓ, since it yields the best performance on our
mixed effects model benchmark (see Table 2). Our EIG estimator is integrated into a system that

8



(a) Entropy (b) Posterior RMSE of ρ (c) Posterior RMSE of α (d) Posterior RMSE of u

Figure 4: Evolution of the posterior in the sequential CES experiment. (a) Total entropy of a mean-
field variational approximation of the posterior. (b)(c)(d) The RMSE of the posterior approximations
of ρ, α and u as compared to the true values used to simulate agent responses. Note the scale of the
vertical axis is logarithmic. All plots show the mean and ±1 std. err. from 10 independent runs.

presents participants with a stimulus, receives their response, learns an updated model, and designs
the next stimulus, all online. Despite the relative simplicity of the design problem (with 36 possible
designs) using BOED with µ̂m+ℓ leads to a more certain (i.e. lower entropy) posterior than random
design; see Figure 3.

Figure 3: Evolution of the posterior entropy
of the fixed effects in the Mechanical Turk
experiment in Sec. 6.3. We depict the mean
and ±1 std. err. from 10 experimental trials.

Second, we consider a more challenging scenario
in which a random design strategy gleans very lit-
tle. We compare random design against two BOED
strategies: µ̂marg and µ̂NMC. Building on the revealed
preference example in Sec. 6.1, we consider an ex-
periment to infer an agent’s utility function which we
model using the Constant Elasticity of Substitution
(CES) model [2] with latent variables ρ,α, u. We
seek designs for which the agent’s response will be
informative about θ = (ρ,α, u). See Appendix D for
full details. We estimate the EIG using µ̂marg because
the dimension of y is smaller than that of θ, and select
designs d ∈ [0, 100]6 using Bayesian optimization.
To investigate parameter recovery we simulate agent
responses from the model with fixed values of ρ,α, u.
Figure 4 shows that using BOED with our marginal
estimator reduces posterior entropy and concentrates
more quickly on the true parameter values than both baselines. Random design makes no inroads
into the learning problem, while BOED based on NMC particularly struggles at the outset when
p(θ|d1:t−1, y1:t−1), the prior at iteration t, is high variance. Our method selects informative designs
throughout.

7 Discussion

We have developed efficient EIG estimators that are applicable to a wide range of experimental design
problems. By tackling the double intractability of the EIG in a principled manner, they provide
substantially improved convergence rates relative to previous approaches, and our experiments show
that these theoretical advantages translate into significant practical gains. Our estimators are well-
suited to modern deep probabilistic programming languages and we have provided an implementation
in Pyro. We note that the interplay between variational and MC methods in EIG estimation is not
directly analogous to those in standard inference settings because the NMC EIG estimator is itself
inherently biased. Our µ̂VNMC estimator allows one to play off the advantages of these approaches,
namely the fast learning of variational approaches and asymptotic consistency of NMC.
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