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Abstract—In this paper, we address the super resolution (SR)
problem from a set of degraded low resolution (LR) images to obtain
a high resolution (HR) image. Accurate estimation of the sub-pixel
motion between the LR images significantly affects the performance
of thereconstructedHRimage. Inthispaper,we proposenovel super
resolution methods where the HR image and the motion parameters
are estimated simultaneously. Utilizing a Bayesian formulation, we
model the unknown HR image, the acquisition process, the motion
parameters and the unknown model parameters in a stochastic
sense. Employing a variational Bayesian analysis, we develop two
novel algorithms which jointly estimate the distributions of all
unknowns. The proposed framework has the following advantages:
1) Through the incorporation of uncertainty of the estimates, the
algorithms prevent the propagation of errors between the estimates
of the various unknowns; 2) the algorithms are robust to errors
in the estimation of the motion parameters; and 3) using a fully
Bayesian formulation, the developed algorithms simultaneously
estimate all algorithmic parameters along with the HR image and
motion parameters, and therefore they are fully-automated and
do not require parameter tuning. We also show that the proposed
motion estimation method is a stochastic generalization of the clas-
sical Lucas-Kanade registration algorithm. Experimental results
demonstrate that the proposed approaches are very effective and
compare favorably to state-of-the-art SR algorithms.

Index Terms—Bayesian methods, parameter estimation, super
resolution, total variation, variational methods.

I. INTRODUCTION

I
N many imaging applications, acquiring an image of a scene

with high spatial resolution is not possible due to a number

of theoretical and practical limitations. These limitations in-

clude for instance the sensor resolution, the Rayleigh resolution

limit, the increased cost, data transfer rate and the amount of

shot noise due to the size of the digital sensor, among others.

In these cases, super resolution (SR) methods can be utilized

to process one or more low-resolution (LR) images of the scene

together to obtain a high-resolution (HR) image. The basic prin-

ciple of super resolution is that changes in the LR images caused
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by the blur and the (camera or scene) motion provide additional

data that can be utilized to reconstruct the HR image from the

set of LR observations. Super resolution methods are widely uti-

lized in a number of imaging fields, such as surveillance, remote

sensing, medical and nano-imaging.

Although the super resolution literature is rich (see [1]–[3]

for reviews) it is still an open and widely investigated topic.

Super resolution methods utilizing a set of LR images generally

consist of two parts: Registration, where the motion between

the LR images is estimated; and image estimation, where the

HR image is recovered from the LR images using information

about the motion and blurring. Many conventional methods in

the literature assume that the motion information is known a

priori. However, this assumption does not hold in many prac-

tical systems since exact motion information is very hard to ob-

tain. Therefore, a registration step is needed to obtain the motion

parameters from the LR images.

Super resolution is a highly ill-posed problem, especially

when the motion parameters are estimated along with the HR

image solely from the LR images. The registration parameters

are generally very hard to estimate using only LR observations,

which makes estimation errors unavoidable in many practical

systems. The errors in estimating the registration parameters

cause significant drawbacks in super resolution, leading to

instabilities in the recovery of the HR image and significantly

affecting the robustness of the restoration procedures.

A number of approaches have been proposed to address this

problem, which can be classified into two major categories based

on the stage where the registration is performed. The first class

of methods employ registration as a preprocessing stage [4]–[7].

The motion parameters are estimated from the observed LR im-

ages, and then used in a separate image estimation process. Since

the motion parameters estimated using only the LR images can

be unreliable, a desired property of the algorithm is robustness to

outliers and errors in motion estimates. A robust backprojection

method is proposed in [5] based on median estimators. Farsiu et

al. [6] proposed to use an observation model based on -norms

and image priors based on bilateral total-variation (BTV) func-

tions, whose combination makes the algorithm robust to motion

outliers. Other methods employ regularization by modeling the

registration errors as Gaussian noise [8], [9]. All methods in this

category attempt to reduce the effect of estimation errors and

noise by decreasing the weight of unreliable observations in the

restoration process, but they do not attempt to correct the errors

in the motion estimation process.

Another class of SR methods estimate both the HR image and

the motion parameters simultaneously. The most common ap-

proach in this category is alternating minimization (AM), where

at each iteration, the estimates of the HR image and the motion

parameters are improved progressively in an alternating fashion

[10]–[20]. Some methods in this category also employ explicit
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models of the errors in motion estimates. In [16] and [17], the

errors in motion and blur parameters are assumed to follow

Gaussian distributions. In [16], the HR image is marginalized

out from the joint distribution and the motion and blur param-

eters are estimated from this marginal distribution. A major

disadvantage of this method is that the marginalization of the

HR image requires the utilization of a Gaussian image prior,

which overpenalizes strong image edges and therefore reduces

the quality of the estimated HR image. In [17], this problem

is overcome by marginalizing the motion and blur parameters,

and employing a Huber prior to model the HR image. Recently,

joint identification methods are proposed in [21]–[23] where the

optimization problem is solved simultaneously for both the HR

image and motion parameters. Methods which do not utilize ex-

plicit knowledge of the motion estimation parameters have been

proposed in [24], [25]. Finally, a number of methods have been

proposed recently that utilize a single image and example-based

learning methods [26], [27].

A major drawback of most super resolution methods is that

they employ a number of unknown parameters that need to be

tuned. This tuning process can be cumbersome and time-con-

suming since the parameter values have to be chosen differ-

ently for each image and degradation condition. Moreover, the

algorithmic performance depends significantly on the appro-

priate choice of parameters, such that generally a long super-

vised process is needed to obtain useful results.

In this paper, we propose two novel Bayesian super resolution

methods which address both of the above mentioned issues. We

provide a systematic modeling of the unknown HR image and

the motion parameters within a novel hierarchical Bayesian for-

mulation, and develop SR algorithms which jointly estimate the

HR image and the motion. Through the utilization of variational

Bayesian analysis, the proposed framework provides uncertain-

ties of the estimates during the restoration process, which helps

to prevent error-propagation and improves robustness. All re-

quired algorithmic parameters are estimated along with the HR

image and the motion parameters, and therefore algorithms do

not require user supervision. Moreover, the parameters are esti-

mated optimally in a stochastic sense, which provides high re-

construction performance. We show that the proposed methods

are very robust to errors in initial motion estimates due to adap-

tive parameter and motion estimation. We demonstrate with ex-

perimental results that the proposed methods provide HR im-

ages with high quality and accurate motion information, and

compare favorably to existing SR methods.

The rest of this paper is organized as follows. Section II

provides the mathematical model for the LR image acquisi-

tion process. We provide the description of the hierarchical

Bayesian framework modeling the unknowns in Section III.

The inference procedure to develop the proposed methods is

presented in Section IV. We demonstrate the effectiveness of

the proposed methods with experimental results in Section V

and conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

The imaging process is assumed to have generated LR im-

ages , from the HR image . The LR images

and the HR image consist of and pixels, respec-

tively, where the integer is the factor of increase in res-

olution (non-integer factors can also be supported by appropri-

ately changing the downsampling and interpolation schemes).

In this paper we adopt the matrix-vector notation such that the

images and are arranged as and vectors,

respectively. The imaging process introduces shifting, blurring

and downsampling, which is modeled as

(1)

where is the downsampling matrix, is the

blurring matrix, is the warping

matrix generated by the motion vector , and is the

acquisition noise. Note that the matrices and and the

noise can be different for each LR image . In this work,

we assume that the blurring matrices are known.

In this work we assume that the motion vectors are not

known, so they have to be estimated along with the HR image

. We consider a motion model consisting of translational and

rotational motion, so that , where is the ro-

tation angle, and and are the horizontal and vertical trans-

lations of the th HR image, respectively, with respect to the

reference frame . This motion model is quite general as op-

posed to many existing SR methods which consider only transla-

tional motion. Additionally, as will be shown later, the proposed

framework can be extended to more complex motion models

such as affine and projective motion (similarly to [22], [23]).

The effects of downsampling, blurring, and warping can be

combined into a single system matrix , such

that each row in matrix maps the pixels in the HR image

to one pixel in the LR image . Given (1), the super resolu-

tion problem is to find an estimate of the HR image from the

set of LR images using prior knowledge about

, and .

III. HIERARCHICAL BAYESIAN MODEL

In order to obtain high quality estimates of and

the model parameters from , properties of the unknowns

and the acquisition process have to be taken into account.

In Bayesian models, the incorporation of prior knowledge is

achieved by treating all unknowns as stochastic quantities and

by assigning probability distributions to them. These distribu-

tions are used to introduce prior knowledge into the estimation

process.

In this work, we adopt a hierarchical Bayesian framework

consisting of two stages. The first stage is used to model the

acquisition process, the unknown HR image and the motion

vectors . The unknowns and are assigned prior distri-

butions and , respectively. The observation

is also a random process with the corresponding condi-

tional distribution . These distributions de-

pend on additional parameters and (called hyperpa-

rameters), which are modeled by assigning hyperprior distribu-

tions in the second stage of the hierarchical model.

In the following subsections we provide the description of

individual distributions used to model the unknowns.
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A. Observation Model

Using the model in (1) and assuming that is zero-mean

white Gaussian noise with the inverse variance (precision) ,

the conditional distribution of the LR image is given by

(2)

Assuming statistical independence of the noise among the LR

image acquisitions, the conditional probability of the set of LR

images given can be expressed as

(3)

The independent Gaussian model in (3) is used in most of the

existing super resolution methods [8], [9], [15]–[17], [28]. Some

methods utilized -norm based observation models which take

both acquisition and registration noise into account [5], [6]. In

this paper, we use (3) to model only the acquisition noise. We

incorporate an explicit modeling of the registration errors sepa-

rately and therefore they are not taken into account in (3).

Let us now explicitly state the form of the matrices .

We denote the coordinates of the reference HR grid by

and the coordinates of the th warped HR grid, after applying

to , by . Let us also define

(4)

(5)

Note that the coordinates generally correspond to frac-

tional values, and therefore the HR image value at pixel

in the th HR grid has to be calculated using resampling. As

in [21], we incorporate bilinear interpolation to approximate

the HR image value at using the four neighboring HR

image values , and , which are the

pixels at the top-left, top-right, bottom-left and bottom-right lo-

cations of the pixel at , respectively.

Let us denote by the vector difference be-

tween the pixel at and the pixel at its top-left position

in the reference HR grid, that is

(6)

(7)

Using bilinear interpolation, the warped image can be

approximated as (see [21] for details)

(8)

where and denote diagonal matrices with the

vectors and in their diagonal, respectively. The

matrices with are con-

structed in such a way that the product produces pixels at

the top-left, top-right, bottom-left and bottom-right locations of

, respectively.

B. Image Model

The quality of the estimated HR image as well as the accu-

racy in the estimates of other unknowns depends on the incor-

poration of accurate image models. The TV function is utilized

successfully in a number of image recovery methods including

denoising [29], blind deconvolution [30], inpainting, and super

resolution [31]. TV priors are very effective in preserving edges

while imposing smoothness. In this work, as the HR image prior,

we utilize the quadratic approximation of the TV prior, that is

(9)

where is a constant and

(10)

The operators and correspond, respectively, to

the horizontal and vertical first order differences at pixel . Let

us also define the horizontal and vertical first order difference

matrices and , such that and

.

C. Modeling the Uncertainties in the Registration Parameters

Let us denote by the estimate of obtained from LR

observations in a preprocessing step, using registration algo-

rithms, such as the ones reported in [32], [33]. As mentioned

earlier, these estimates are in general inaccurate, which lowers

the image restoration quality. Therefore, we model the motion

parameters as stochastic variables following Gaussian distribu-

tions with a priori means set equal to the preliminary motion

parameters , that is

(11)

with the a priori covariance matrix. The parameters and

incorporate prior knowledge about the motion parameters

into the estimation procedure. If such knowledge is not avail-

able, and can be set equal to zero, which makes the

observations solely responsible for the estimation process. Sim-

ilar models utilizing Gaussian distributions to model the uncer-

tainty in preliminary motion parameters have also been used in

some existing algorithms [8], [16], [17], but with different in-

ference methods.

D. Hyperpriors on the Hyperparameters

The hyperparameters and are crucial in determining

the performance of the SR algorithm. For their modeling, we

employ Gamma distributions

(12)
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where denotes a hyperparameter, and and

are the shape and scale parameters, respectively. The hyper-

priors are chosen as Gamma distributions since they are the con-

jugate priors for the variance of the Gaussian distribution, that

is, they have the same functional form with the product of the

prior distributions and the observation model [34].

Finally, combining (3), (9), (11) and (12), we obtain the joint

probability distribution of all variables as

(13)

IV. VARIATIONAL BAYESIAN INFERENCE

Let us first denote the set of all unknowns by

for clarity. The Bayesian inference

is based on the posterior distribution

(14)

However, as in many applications, this distribution is in-

tractable, since cannot be computed. Therefore, approx-

imation methods are utilized, some of which are evidence

analysis (type-II maximum likelihood) and sampling methods

[35]. In this work, we resort to a variational Bayesian analysis

due to its certain advantages, including accounting for the

uncertainties in the estimation processes and computational

efficiency compared to the sampling approaches, among others.

In the variational Bayesian analysis, the posterior distribu-

tion is approximated by a tractable distribution .

This approximating distribution is found by minimizing the

Kullback-Leibler (KL) distance between and the posterior

, given by

(15)

Generally, the only assumption made in variational Bayesian

analysis is that the distribution can be factorized [35]–[37].

In this work, we use the following factorization

(16)

Unfortunately, we can not directly calculate the KL distance be-

cause of the TV image prior. In earlier work with TV priors, this

difficulty is overcome by resorting to majorization-minimiza-

tion (MM) approaches, which is also the method adopted in this

paper. In the following we present an outline of the MM ap-

proach (details can be found in [38]).

The main principle of the MM approach is to find a bound of

the joint distribution in (13) which makes the minimization of

(15) tractable. A lower bound of the distribution in (13) can be

found as follows. Let us first consider the following inequality,

derived from the geometric-arithmetic mean inequality, which

states that for real numbers and

(17)

Next we define the functional with a -di-

mensional vector , with components

, as follows:

(18)

As will be clear later, the auxiliary variable is a quantity that

needs to be computed and it has an interpretation related to the

unknown HR image . Using and

in the inequality (17) it is easy to show that the functional

is a lower bound of the image prior ,

that is

(19)

This lower bound can be used to find a lower bound for the joint

distribution in (13)

(20)

which results in an upper bound of the KL distance in (15) as

(21)

It has been shown in [30] that the minimization of (15) can be

replaced by the minimization of its upper bound (21), as mini-

mizing this bound with respect to the unknowns and the auxil-

iary variable in an alternating fashion results in closer bounds

at each iteration. The bound in (21) is quadratic and therefore

it is easy to evaluate analytically. The standard solutions of the

variational Bayesian methods [35] can then be used by replacing

with to estimate the unknown distributions

with as follows

(22)

where denotes the set with removed and

denotes expected value with respect to the distribution

. In the following, the subscript of the expected value will

be removed when it is clear from the context.

Let us now proceed with deriving the explicit forms of the

solutions for each unknown using (22).
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A. Estimation of the HR Image Distribution

From (22), the distribution can be found as

(23)

The explicit form of this distribution depends on the expecta-

tion . This calculation is not easy

since is nonlinear with respect to . Therefore, we ex-

pand using its first-order Taylor series around the mean

value of the distribution . Pro-

ceeding in this fashion, we obtain the following approximation

of

(24)

where

(25)

and

(26)

where and are vectors constructed by lexicographically

arranging the coordinates of the reference HR grid. We now

rewrite in a more convenient form that allows for

square completion with respect to in (23). We first define the

matrices

(27)

(28)

and

(29)

(30)

Then, can expressed as

(31)

(32)

such that using (24) we obtain

(33)

with

(34)

Notice that instead of the first-order expansion in

(24), a second-order expansion can be employed on

the error term in (23) (similar to [17]). The quantity

can then be calculated

using (33) as

(35)

where is the covariance matrix of the posterior distribution

constructed with elements ,

that is

(36)

Finally, using (35) in (23), the posterior distribution of

the HR image is found to be a multivariate Gaussian distribu-

tion given by

with parameters

(37)

(38)

where

(39)

The elements of the auxiliary vector

are calculated by minimizing the

upper bound in (21), which results in

(40)
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where and represent respectively the horizontal and ver-

tical difference matrices at pixel . It is clear from (40) that the

vector represents the local spatial activity in the HR image

. Therefore, the matrix introduces spatial adaptivity into

the estimation process of the HR image in (37)–(38) by control-

ling the smoothing applied at different locations. Moreover, the

uncertainty of the image estimate is also taken into account by

the last two terms in (40) when calculating the spatial adaptivity

vector using the distribution (see also [38] for a related

discussion).

B. Estimation of the Registration Parameter Distributions

The posterior distribution approximation is found from

(22) as

(41)

To obtain the explicit form of this distribution, the expectation

needs to be calculated. We proceed as in

the previous section by using its Taylor series expansion around

, the estimate of the registration parameters obtained in the

previous iteration. By utilizing the approximation (33) to obtain

(42)

with (43) shown at the bottom of the page. The distribution

can then be explicitly expressed from (41) and (42) as

a Gaussian distribution

(44)

with parameters

(45)

and

(46)

with (47), shown at the bottom of the page

Note that the proposed registration method in (44) with (45)

and (46) provides an estimate of the distribution of the reg-

istration parameters, where the mean (45) is utilized as their

point estimate. An interesting observation is that this registra-

tion method is a generalized stochastic version of the Lucas-

Kanade registration algorithm [33] as applied to the super reso-

lution problem. The classical Lucas-Kanade method can be ob-

tained as a special case of (45) by setting the matrix equal to

zero. This matrix incorporates the uncertainty of the image esti-

mate into the motion estimation procedure. As will be demon-

strated experimentally, this incorporation significantly helps in

the motion estimation process and results in more accurate esti-

mates, especially when the observation noise is high. Note that

modifications on the classical Lucas-Kanade method (see, e.g.,

[39]) can also be incorporated into the proposed framework by

appropriately manipulating the covariace matrix .

In this work, we considered a motion model that includes

translation and rotation. However, the proposed framework is

flexible enough to be extended to more complex parametric mo-

tion models, such as affine (with 6 degrees of freedom) or pro-

jective (with 8 degrees of freedom) motions. In these cases, we

redefine the coordinate transformations in (4)–(5) appropriately

and obtain and matrices for in (26),

respectively. The rest of the corresponding motion estimation

equations can then be derived with some algebra (explicit solu-

tions for these motion models are not shown here for brevity).

(43)

(47)
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C. Estimation of the Hyperparameter Distributions

In the last step of the algorithm, the distributions of the hy-

perparameters and are found from (22) as Gamma

distributions, expressed as

(48)

and

(49)

The quantity can be calculated using

(35) as

(50)

The means of the distributions in (48) and (49), which are

used as hyperparameter estimates, are given by

(51)

(52)

Note that the shape and scale parameters

can be used to incorporate prior knowledge about the variances

of the HR image and observation noise, in case such knowl-

edge is available. If they are set equal to and

, which corresponds to utilizing flat hyperprior

distributions for the hyperparameters, the observed LR images

are made solely responsible for the whole estimation process.

In summary, the algorithm iterates between estimating the HR

image using (37) and (38), the spatial adaptivity vector using

(40), the registration parameters using (45) and (46), and finally

the hyperparameters using (51) and (52). The algorithm is sum-

marized below in Algorithm 1. A major computational diffi-

culty in Algorithm 1 is the explicit construction of the matrix

in (38), which requires the inversion of an ma-

trix. To avoid this computation, we solve (37) efficiently using

the conjugate gradient method, and in equations where the ex-

plicit form of is needed, i.e., in (40), (42), (43) and (50),

is approximated by a diagonal matrix obtained by inverting the

diagonal elements of (38). We have conducted extensive exper-

iments with small images which permit the explicit inversion of

(38) to verify the validity of this approximation, and we found

out empirically that this approximation results in very close es-

timates and has a minor effect in the estimation process. Sim-

ilar approximations have also been utilized in other Bayesian

recovery methods [15], [16], [30].

Algorithm 1 Variational Bayesian Super Resolution

Calculate initial estimates of the HR image, registration

parameters, and hyperparameters

while convergence criterion is not met do

1. Compute the HR image distribution using (37) and

(38).

2. Compute spatial adaptivity vector using (40).

3. Compute the distribution of the registration parameters

using (45) and (46).

4. Compute the distributions of the hyperparameters

using (48) and (49).

It is worth emphasizing here that although we utilized the ap-

proximations (21) and (33) in computing their closed forms, we

did not assume a priori that and are Gaussian distri-

butions. This result is derived due to the minimization of the KL

divergence with respect to all possible distributions according

to the factorization [40].

We can, however, make an assumption that these distributions

are degenerate, i.e., they take one value with probability one

and the rest of the values with probability zero. Using this as-

sumption, we obtain another algorithm very similar to the one

presented above, with the only exception that the uncertainty

terms arising from the covariance matrices are removed. The

derivation of this algorithm is very similar to the first one, and

therefore we omit its details and provide the iterative procedure

below in Algorithm 2.

It is clear that using degenerate distributions for and in

Algorithm 2 removes the uncertainty terms of the image and mo-

tion estimates. As demonstrated in the experimental results sec-

tion, incorporation of this uncertainty through the covariances

of and improves the restoration performance, especially in

cases when the observation noise is high. This is mainly due to

the fact that poor estimations of one variable (due to noise or

outliers) can influence the estimation of other unknowns, and

as a result the overall performance can significantly be affected.

By estimating the full posterior distribution of the unknowns in-

stead of point estimates corresponding to the maximum proba-

bility (such as MAP estimates), the uncertainty of the estimates
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is incorporated into the estimation procedure to ameliorate the

propagation of estimation errors among unknowns.

Algorithm 2 Variational Bayesian Super Resolution with

Degenerate Distributions

Calculate initial estimates of the initial HR image,

registration parameters, and hyperparameters

while convergence criterion is not met do

1. Calculate the HR image estimate using

(53)

2. Compute spatial adaptivity vector using

(54)

3. Estimate registration parameters by solving

(55)

with (56), shown at the bottom of the page.

4. Compute hyperparameter estimates using

(57)

(58)

We conclude this section by commenting on the computa-

tional complexity of the algorithms. Algorithms 1 and 2 have

similar complexities, with Algorithm 1 requiring more compu-

tations per iteration due to the incorporation of the covariance

matrices. The majority of computations in both algorithms is

performed for estimating the HR image and the registration vec-

tors. The HR image is calculated efficiently using the conjugate

gradient method [41] in (37) and (53), and the registration pa-

rameters are calculated by inverting a 3 3 matrix for each ob-

served LR image in (45) and (55). Note that the matrix multipli-

cations can be performed very efficiently by implementing the

corresponding operators rather than storing full matrices. There-

fore, the algorithms have computational demands very similar

to most existing SR algorithms in the literature (for instance, the

AM methods [10], [11], [16], [17]).

V. EXPERIMENTAL RESULTS

In this section, we analyze the performance of the proposed

algorithms on both synthetic and real images under various con-

ditions. In synthetic experiments, the quality of the restored HR

image is measured quantitatively by the peak signal-to-noise

ratio (PSNR), which is defined as

(59)

where and are the estimated and original HR images, re-

spectively, and pixel values in both images are normalized to

lie in the interval . We also provide examples of estimated

HR images to assess their visual quality. To evaluate the es-

timated motion parameters we use the sum of squared errors

(SSE), given by

(60)

In the following, Algorithm 1 will be abbreviated as ALG1,

and Algorithm 2 as ALG2. In all experiments reported below, the

initial values of the algorithms ALG1 and ALG2 are chosen as

follows: The initial registration parameters are estimated using

the standard Lucas-Kanade method [33] (similar results were

obtained with other registration algorithms such as [32]). The

HR image estimate is then initialized using the average image

[17], which is an oversmooth estimate of the HR image obtained

using the LR images as

(61)

where is a diagonal matrix with the column sums of

as its elements. Note that this initial estimate is calculated very

efficiently, and it generally increases the robustness of the algo-

rithm to the noise. On the other hand, other initializations (such

as bicubic interpolation) resulted in similar restorations.

The inverse covariance matrices are set equal to

zero matrices, that is, no prior information is utilized about

the uncertainty of motion vectors. The covariance matrices in

ALG1 are initially set equal to zero. The rest of the algorithm

parameters are automatically calculated from the initial HR

image estimate using the algorithm steps provided in Algo-

rithm 1 and Algorithm 2. As the convergence criterion we used

, where and are the

image estimates at the th and st iterations, respectively.

(56)
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Fig. 1. (Left) Original HR image. (Right) Five synthetically generated LR
images.

In the following subsections, we present experimental results

demonstrating the performance limits of the proposed algo-

rithms with known motion information, robustness to initial

registration inaccuracy, the effect of the number of LR images

on the quality of the estimated HR image, and reconstruction

performance with real images, in comparison with existing

approaches.

A. Synthetic Experiments With Exact Motion Information

In this section, we evaluate the performance of two SR

methods in comparison with the proposed algorithms in cases

where exact motion information is available. This study presents

a comparison of the best possible performances achieved by the

algorithms, and in addition it provides reference information

to evaluate their behavior when the motion information is

inaccurate, which will be studied in the next subsection.

We used the following methods for comparison: 1) Bicubic

interpolation, 2) the robust SR method in [5] (denoted by ZMT),

which is based on backprojection with median filtering, and 3)

the robust SR method in [6] (denoted by RSR), which is based

on bilateral TV priors. We also experimented with other SR

methods contained in the EPFL SR software [42], but they pro-

vided inferior results compared to ZMT and RSR, and therefore

they are not reported here.

We generated 5 synthetic LR images from the HR image

shown on the left in Fig. 1 through warping, blurring and down-

sampling by a factor of 2. The warping consists of both transla-

tion and rotation, where the translations are chosen as

(62)

pixels, and the rotation angles are , re-

spectively. As the blur we used a 3 3 uniform PSF. The LR im-

ages obtained after the warping, blurring and downsampling op-

erations are further degraded by additive white Gaussian noise

at SNR levels of 5 dB, 15 dB, 25 dB, 35 dB and 45 dB. Example

LR images corresponding to the 25 dB SNR case are shown in

Fig. 1. Note that this resolution chart image is chosen for better

illustration of the performance in resolution enhancement; sim-

ilar results were obtained in experiments with other images.

We conducted simulations with 20 different noise realizations

at each SNR level, and the average and variance of these exper-

iments are reported. Since the algorithms ZMT and RSR contain

algorithmic parameters, we exhaustively searched for the pa-

rameters resulting in the maximum PSNR value to report their

best performance. Moreover, we reported the maximum PSNR

Fig. 2. Mean PSNR values of SR algorithms for different input SNR levels
when exact motion information is available.

result obtained during their iterations rather than the PSNR re-

sult at convergence, and initialized the algorithms with both the

bicubic interpolation result and the average image in (61), and

chose the best resulting image among them. Note, however, that

the parameters of the proposed methods are estimated automat-

ically so there is no need for parameter tuning.

Mean PSNR values with the standard deviations provided by

the algorithms are shown in Table I, and the mean PSNR values

are plotted in Fig. 2. As expected, all SR algorithms result in

better reconstructions than bicubic interpolation. It is also clear

that the proposed methods provide the best performance among

all methods across all noise levels. It should be emphasized that

the PSNR values of the methods ZMT and RSR are obtained by

exhaustively adjusting their parameters, which requires multiple

runs, whereas the proposed methods provided their results in an

fully-automated fashion in a single run. Therefore, even in the

cases where the PSNR values are close, algorithms ALG1 and

ALG2 should be preferred as the method of choice.

In general, ALG1 provides restored HR images with slightly

higher quality than ALG2. This is especially evident in high-

noise cases (e.g., dB), where the incorporation of the

uncertainty prevents the algorithm from overfitting due to high

noise.

Example HR restorations are shown in Fig. 3 for the

dB case, and in Fig. 4 for the dB case. It is

clear that the proposed methods provide the most visually en-

hanced restorations with significantly reduced ringing artifacts

and much sharper edges compared to other methods. Restora-

tions provided by ALG1 and ALG2 are very similar, with ALG1

providing slightly sharper edges with less ringing artifacts.

B. Synthetic Experiments With Inaccurate Motion Information

In this section, we compare the performance of the SR

methods when the motion parameters are inaccurate. We uti-

lized the same setup as in the previous section, and used the

same datasets to measure the decrease in performance due

to the errors in registration parameters. In order to simulate

the errors in motion estimation, we corrupted the original

translation parameters by white Gaussian noise with standard
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TABLE I
MEAN PSNRS WITH STANDARD DEVIATIONS IN 20 EXPERIMENTS PROVIDED BY THE SR ALGORITHMS

AT DIFFERENT SNR LEVELS WHEN MOTION INFORMATION IS EXACT

Fig. 3. Example estimated HR images from different SR methods in the case when ��� � �� dB and motion information is exact. Results of (a) Bicubic
interpolation (���� � �	��
 dB), (b) ZMT (���� � ����� dB), (c) RSR (���� � ���
� dB), and the proposed methods (d) ALG1 (���� � ��	� dB),
and (e) ALG2 (���� � ��� dB).

Fig. 4. Example estimated HR images from different SR methods in the case when ��� � 
� dB and motion information is exact. Results of (a) Bicubic
interpolation (���� � �	��� dB), (b) ZMT (���� � ����� dB), (c) RSR (���� � ����� dB), and the proposed methods (d) ALG1 (���� � ���� dB),
and (e) ALG2 (���� � ���� dB).

TABLE II
MEAN PSNRS WITH STANDARD DEVIATIONS IN 20 EXPERIMENTS PROVIDED BY THE SR ALGORITHMS

AT DIFFERENT SNR LEVELS WHEN MOTION INFORMATION IS INACCURATE (SEE TEXT)

deviation of 1, and the rotation parameters with noise uni-

formly distributed in . We also compare the proposed

methods with the method proposed in [21], denoted by NLS,

which simultaneously estimates both the HR image and the

registration parameters. Note that this algorithm has two free

parameters, which we have manually tuned for each noise

setting and reported its best performance.

Mean PSNR values with standard deviations in 20 experi-

ments are reported in Table II, and the mean PSNR values are

plotted in Fig. 5. Comparing Tables I and II, it can be seen that
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TABLE III
MEAN SSE WITH STANDARD DEVIATIONS OF THE MOTION PARAMETERS IN 20 EXPERIMENTS PROVIDED BY THE SR METHODS FOR DIFFERENT SNR LEVELS

Fig. 5. Mean PSNR values of SR algorithms for different input SNR levels
when motion information is inaccurate.

the performance of all algorithms decrease due to the motion

errors, as expected. However, the performance degradation is

severe with algorithms ZMT and RSR, mainly due to the fact

that they do not incorporate motion estimation, but try to com-

pensate for the motion errors using robust observation models.

On the other hand, it is clear from Table II and Fig. 5 that the

performance degradation with algorithms ALG1 and ALG2 is

minor, and they resulted in almost the same PSNR values as in

the case when motion information is exact. This indicates that

the restoration quality is significantly improved when the mo-

tion is accurately estimated. The NLS method also outperforms

the ZMT and RSR algorithms due to the joint estimation of mo-

tion parameters. However, it provides lower PSNR values than

ALG1 and ALG2 in all noise levels although it requires user-su-

pervision whereas the proposed methods are fully-automated.

The corresponding SSE values of the motion parameters es-

timated by ALG1, ALG2 and NLS are shown in Table III. Note

that ALG1 and ALG2 estimate the motion parameters very ac-

curately in all noise levels. The NLS method also results in very

accurate motion estimates; some of its results are slightly better

than the ones of the proposed methods, although all three al-

gorithms resulted in negligibly small errors. Examples of esti-

mated motion parameters are shown in Fig. 6 for the

dB case, and in Fig. 7 for the dB case. Note that

in both cases the algorithms provide very accurate estimates

of the motion vectors, even though the initial vectors contain

high amounts of noise. Another observation is that the variances

among the resulting PSNR values obtained by ALG1 and ALG2

Fig. 6. Comparison between the true and initial motion parameters and motion
parameters estimated by the algorithms ALG1 and ALG2 when ��� � �� dB.
(a) Translation parameters. (b) Rotation angles. The resulting SSEs of the esti-
mated parameters are ���� �	 for ALG1 and 
���� �	 for ALG2. The
initial and estimated motion parameter pairs for each LR image are connected
by dashed lines.

are much smaller than the PSNR variances obtained by ZMT and

RSR, and very similar to the ones provided by NLS, indicating

the robustness of the proposed methods to inaccurate initializa-

tion of motion parameters.

Examples of HR images estimated by the algorithms are

shown in Fig. 8 for the dB case, and in Fig. 9 for

the dB case. The degradation of visual quality

in the methods ZMT and RSR is clear, especially comparing

Figs. 3(b)–(c) to 8(b)–(c), and 4(b)–(c) to 9(b)–(c), respec-

tively. On the other hand, ALG1 and ALG2 provided very high

quality restorations, and there is almost no quality degradation

when the initial motion parameters are inaccurate (compare

Figs. 3(d)–(e) to 8(d)–(e), and 4(d)–(e) to 9(d)–(e), respectively,

for ALG1 and ALG2). The NLS method also provided results

with much higher quality than ZMT and RSR, but they contain

a higher level of ringing artifacts compared to the images

provided by ALG1 and ALG2.
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Fig. 7. Comparison between the true and initial motion parameters and motion
parameters estimated by the algorithms ALG1 and ALG2 when ��� � �� dB.
(a) Translation parameters. (b) Rotation angles. The resulting SSEs of the esti-
mated parameters are ����� 	
 for ALG1 and 	��� 	
 for ALG2. The
initial and estimated motion parameter pairs for each LR image are connected
by dashed lines.

Fig. 8. Example estimated HR images from different SR methods in the case
when ��� � �� dB and motion information is inaccurate (see text). Results of
(a) Bicubic interpolation (���� � 	��	�dB), (b) ZMT (���� � 	����dB),
(c) RSR (���� � 	���	dB), (d) NLS (���� � ���� dB), and the proposed
methods (e) ALG1 (���� � ����� dB), and (f) ALG2 (���� � ����� dB).

C. Effect of Number of LR Images

In this section we present a study of the effect of the number

of LR images on the quality of the estimated HR image. To pro-

vide results with realistic images, we generated LR images from

the well-known “Cameraman” image by a downsampling factor

of 4 and a 3 3 uniform blur kernel. The number of LR im-

ages are varied from 10 to 20. The translation parameters are

chosen randomly between 0 and 8, and the rotation angles are

Fig. 9. Example estimated HR images from different SR methods in the case
when ��� � �� dB and motion information is inaccurate (see text). Results of
(a) Bicubic interpolation (���� � 	��	dB), (b) ZMT (���� � 	���� dB),
(c) RSR (���� � 	����dB), (d) NLS (���� � ����dB), and the proposed
methods (e) ALG1 (���� � ���		 dB), and (f) ALG2 (���� � ����
 dB).

Fig. 10. Number of LR images vs PSNR of the estimated HR images for the
“Cameraman” image with resolution increase of 4 (a) when exact motion infor-
mation is available, and (b) when initial motion information is inaccurate.

chosen randomly in . We experimented with both exact

and inaccurate initialization of the motion parameters. The NLS

method is included only with the inaccurate motion case, since

when exact motion information is available, it reduces to a spe-

cial case of ALG2 without parameter estimation.

Average PSNR results of 20 different motion and noise re-

alizations for the exact motion information case are shown in

Fig. 10(a). As expected, the performance of all algorithms in-

crease as the number of images increase. The methods ALG1

and ALG2 clearly outperform RSR independent of the number

of LR images. Their performance is very close and they provide

very high PSNR results even when the number of LR images is

relatively low (e.g., 10).

As shown in the previous section, the performance of the

proposed methods does not significantly reduce when the mo-

tion information is inaccurate. Average PSNR results for this

case are shown in Fig. 10(b). A few important observations can

be made: The performance of the RSR algorithm does not in-

crease significantly with increasing number of LR images due

to highly inaccurate motion parameters. Second, ALG1 is more

capable than ALG2 with handling inaccurate initial motion pa-

rameters, and its performance is very close to the exact motion

information case. Finally, although the NLS algorithm also out-

performs the RSR method, its performance is inferior to both
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Fig. 11. Midsections of example reconstructed HR images with different number of input LR images when the initial motion information is inaccurate. Left
column: with 10; middle column: with 16; and right column: with 20 LR images. Top row: results of algorithm ALG1; middle row: results of algorithm ALG2;
and bottom row: results of algorithm NLS. The corresponding PSNR values are (in dB) 31.10, 34.26, 35.60 for ALG1, 30.569, 32.16, 32.95 for ALG2, and 27.80,
30.72, 31.37 for NLS.

ALG1 and ALG2. For visual comparison, example reconstructed

HR images are shown in Fig. (11) obtained by algorithms ALG1,

ALG2, and NLS.

D. Experiments With Real Images

We conducted extensive experiments with the proposed al-

gorithms on real SR applications, some of which are presented

in this section. We report real image experiments performed on

the datasets provided by UCSC [43]. The algorithms ZMT and

RSR are used again for comparing the performance of the al-

gorithms, and we used the MDSP software [44] to obtain their

results. We compare the proposed methods with RSR, NLS and

with the algorithm in [4], denoted by EF. The motion param-

eters are estimated from the LR images using the MDSP soft-

ware, and provided to NLS, ALG1, ALG2 as initial parameters.

As with the synthetic experiments, we manually tuned all re-

quired parameters of the algorithms RSR, NLS and EF to ob-

tain the most visually appealing results. On the other hand, no

prior knowledge is assumed in the proposed methods except for

the initial motion parameters. The inverse covariance matrices

are set equal to zero matrices so that the estimation

process only depends on the LR images.

In the first experiment, 20 LR images were used taken from

the disk dataset from [43]. The blur PSF is assumed to be a

5 5 Gaussian with variance 1. The reconstructed HR images

by a factor of four resolution enhancement obtained by bicubic

interpolation and SR algorithms are shown in Fig. 12.

The second dataset consists of 15 LR images taken from the

Adyoron dataset from [43]. The blur PSF is again assumed to be

a 5 5 Gaussian with variance 1. The reconstructed HR images

by a factor of three resolution enhancement obtained by bicubic

interpolation and SR algorithms are shown in Fig. 13.

It is clear from Figs. 12 and 13 that the proposed methods pro-

vide HR image estimates with sharper edges and fewer ringing

artifacts than other methods. This is especially clear around the

edges and around the letters in both images. Another obser-

vation is that the proposed methods are very effective in pre-

serving sharp image features while suppressing noise and mo-

tion artifacts. ALG1 and ALG2 provide very similar results, but
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Fig. 12. Super resolution results (4x resolution increase) by (a) bicubic inter-
polation, (b) EF, (c) RSR, (d) NLS, (e) ALG1 and (f) ALG2.

ALG1 results in slightly sharper images and the ringing arti-

facts around the edges are more suppressed than in the results

of ALG2.

Finally, we show the application of the proposed methods to

a real face data-set. The dataset contains 40 LR images of size

50 50. The reconstructed HR images by a factor of eight res-

olution increase obtained by bicubic interpolation and SR algo-

rithms are shown in Fig. (14). Although the proposed algorithms

are not specifically designed for face images, and the resolu-

tion enhancement factor is large, the reconstructed images are

of high quality and visually better than those provided by other

methods.

In summary, experimental results with both synthetic and real

image sets demonstrate that the proposed algorithms are very

effective in providing high quality super resolution results, and

they compare favorably to some of the state-of-the-art super res-

olution methods.

VI. CONCLUSION

In this paper, we presented a novel Bayesian formulation for

joint image registration and super resolution. The unknown high

resolution image, motion parameters and algorithm parameters,

Fig. 13. Super resolution results (3x resolution increase) by (a) bicubic inter-
polation, (b) EF, (c) RSR, (d) NLS, (e) ALG1 and (f) ALG2.

including the noise variances, are modeled within a hierarchical

Bayesian framework. Using this model, we develop two algo-

rithms with variational Bayesian analysis, both of which esti-

mate all unknowns and algorithm parameters solely from the

observed low resolution images without prior knowledge or user

intervention. We have shown that the proposed motion estima-

tion method generalizes the classical Lucas-Kanade registra-

tion method in a stochastic sense. The proposed methods have

the following advantages: First, the proposed framework allows

for estimation of distributions of unknowns, which prevent the

propagation of estimation errors within the estimation proce-

dure. This is especially useful when the acquisition noise is

heavy. Second, through the incorporation of motion estimation

and adaptive estimation of the algorithm parameters, the algo-

rithms are very robust to errors in motion estimates. Third, all

required parameters of the algorithms are calculated automat-

ically so they do not require user supervision unlike most ex-

isting super resolution methods. Experimental results with both

synthetic and real images demonstrate that despite the lack of

manual parameter tuning, the proposed methods provide super

resolution results superior to existing algorithms. Finally, we

have shown that the proposed framework can be extended to
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Fig. 14. Super resolution results (8x resolution increase) on a real dataset. (a) 40 LR images, and the results of (b) bicubic interpolation, (c) RSR, (d) NLS, (e) ALG1

and (f) ALG2.

more general super resolution applications with more complex

motion models.
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