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Variational Blue Noise Sampling
Zhonggui Chen, Zhan Yuan, Yi-King Choi, Ligang Liu, and Wenping Wang

Abstract—Blue noise point sampling is one of the core algorithms in computer graphics. In this paper we present a new

and versatile variational framework for generating point distributions with high-quality blue noise characteristics while precisely

adapting to given density functions. Different from previous approaches based on discrete settings of capacity-constrained

Voronoi tessellation, we cast the blue noise sampling generation as a variational problem with continuous settings. Based on

an accurate evaluation of the gradient of an energy function, an efficient optimization is developed which delivers significantly

faster performance than the previous optimization-based methods. Our framework can easily be extended to generating blue

noise point samples on manifold surfaces and for multi-class sampling. The optimization formulation also allows us to naturally

deal with dynamic domains, such as deformable surfaces, and to yield blue noise samplings with temporal coherence. We

present experimental results to validate the efficacy of our variational framework. Finally, we show a variety of applications of the

proposed methods, including non-photorealistic image stippling, color stippling, and blue noise sampling on deformable surfaces.

Index Terms—Point sampling, blue noise, centroidal Voronoi tessellation, capacity-constrained, quasi-Newton method

✦

1 INTRODUCTION

THE problem of sampling, or point set generation,
is about how to generate a point set with a certain

distribution. It plays an important role in computer
graphics as well as many other fields. In computer
graphics, the quality of a point set distribution is
of major concern in diverse contexts such as digital
halftoning, point-based modeling and rendering, anti-
aliasing, and distributed ray tracing. It is often de-
sirable to have a uniformly distributed yet randomly
located point set. Repetitive patterns should be avoid-
ed as they are prone to producing aliasing. A point
set which is uniformly distributed without regularity
artifacts is said to exhibit blue noise characteristics.

Lloyd’s method [1], which iteratively moves each
point to the centroid of the corresponding Voronoi
cell, is a popular optimization method for enhancing
the blue noise properties of a given point set [2].
This method converges to a point distribution corre-
sponding to a centroidal Voronoi tessellation (CVT)
in which each point is the centroid of its Voronoi
cell. Although it produces a uniformly distributed
point set, such a point distribution exhibits regular
patterns because the Voronoi cells of a CVT are regular
hexagons in an asymptotic sense [3]. The problem
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of using Lloyd’s method for generating blue noise
sampling is therefore the control of the number of
iterations to avoid convergence. On the other hand,
using Lloyd’s method to compute a CVT is slow, but
Liu et al. [4] showed that the computation of CVT can
be accelerated by employing quasi-Newton methods.

Recently, Balzer et al. [5] presented a variant of
Lloyd’s method for generating point distribution by
introducing the capacity-constrained Voronoi tessel-
lation (CapVT), in which each point obtains equal
capacity (i.e., the mass of its Voronoi cell). By requir-
ing also that each point coincides with the centroid
of its Voronoi cell in the CapVT, the resulting point
distributions were shown to possess the blue noise
properties. However, their method is implemented in
the discrete setting, which is highly dependent on the
resolution of the discretization of the domain, and is
therefore computationally inefficient.

Inspired by [5] and [4], we propose a variational
framework based on a new energy function combin-
ing the CVT energy and the CapVT energy. Both the
capacity constraint and the centroid constraint are
considered as soft constraints in our framework. The
development of this function is based on the obser-
vation that CVT accounts for generating the uniform
point distribution while CapVT tends to generate
point distribution without regularity artifact.

We derive formulae for accurate evaluation of the
gradient of the new energy function and present an
efficient numeric approach to optimizing the energy
function that integrates a fast local search based on
the L-BFGS method [6]. Our method is implemented
in the continuous setting and achieves significantly
faster performance (generally two orders of magni-
tude faster for a large number of points) over the
method of [5] without sacrificing blue noise proper-
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ties. We also study the accommodation of the density
functions and reveal the relationship between the
density functions used in the CVT and CapVT energy
functions.

Our framework is flexible and can easily be extend-
ed to other domains such as surfaces. Temporal sam-
pling coherence required in dynamic domains such as
deformable surfaces can also naturally be dealt with
within this optimization framework. We also show
how our method can be extended to handle multi-
class sampling in which point samples in individual
classes, as well as those in their union, are required
to exhibit blue noise properties simultaneously.

The contributions of this work are summarized as
follows:

• A variational framework based on a new en-
ergy formulation is developed for generating
point distributions with blue noise characteristic-
s. Based on the accurate evaluation of gradient
of the energy function, we present an efficient
optimization approach to minimizing the ener-
gy function and gain significantly faster perfor-
mance than the method of [5].

• We extend our variational framework to gener-
ating blue noise sampling points on other do-
mains including surfaces and dynamic domains.
We also develop a variational framework for
handling multi-class sampling. All the variational
frameworks for these different domains benefit
from our efficient optimization methods and thus
attain fast performances.

2 RELATED WORK

Due to its unique spatial and spectral properties, blue
noise sampling has been extensively studied in the
literature [7]. We mainly review previous works which
are most relevant to our work.

Blue noise sampling in 2D: A Poisson disk
sampling can yield a blue noise point distribution [8].
Dart throwing is a classical method to produce Pois-
son disk distributed point sets, in which randomly
located points are generated one by one and a newly
generated point is only accepted if there is no other
existing points lying within a given radius. This pro-
cess is simple but very slow. There are various works
on accelerating the dart throwing approach [9], [10],
[11], [12], [13]. The acceleration is usually achieved by
encoding the vacant regions where it is legal to place
a dart, or/and by parallel implementation.

Another type of approaches [14], [15], [16] generates
blue noise samples in a set of small domains, called
tiles, with toroidal boundary conditions in a prepro-
cessing step. These tiles are then used for generating
a non-periodic tiling of the plane. Ostromoukhov
et al. proposed methods for hierarchical importance
sampling with blue-noise properties by using special
tiles, Penrose tiles [17] and polyominoes [18]. These

methods are generally fast and allow progressive
refinement.

The relaxation approach moves the points in a
given set to enhance the blue noise properties. Lloyd’s
method [1], [2] is commonly used due to its simplicity.
However, the points converge to a regular hexagonal
pattern and as pointed by Balzer et al. [5], it is hard to
decide a suitable iteration number for Lloyd’s method
in practice. To this end, Balzer et al. [5] proposed
a variant of Lloyd’s approach using the capacity
constraints, which makes all Voronoi cells have equal
mass, to achieve blue noise sampling. However, their
proposed implementation involves the discretization
of the underlying domain and is therefore slow (while
its acceleration [19] by parallel implementation is
possible).

A recent method by Schmaltz et al. [20] models the
points as charged particles which repulse each other.
The uniform point distributions with high-quality
blue-noise properties are obtained by simulating the
Coulomb interactions between points. Fattal [21] de-
scribes an optimization-based method for blue-noise
point sampling by using kernel density model. Like
the CVT energy function, the global minimizer of the
energy function defined in [21] is given by a hexag-
onal arrangement of points. To avoid the regularity
artifacts, a statistical model is defined to allow solu-
tions that are less energetically-favorable. By iterative-
ly enlarging the minimum distance between points,
Schlömer et al. [22] construct irregular distributions
with a significantly higher minimum distance than
previous methods.

Sampling on surfaces: Point sampling on sur-
faces is also crucial to many important applications in
computer graphics, such as texturing, remeshing, and
rendering. By means of parameterization, the relax-
ation method [23], [24] and tile-based method [25] can
be applied to blue noise sampling on surfaces. How-
ever, these methods need pre-computed parameteri-
zations and are thus unsuitable for applications with
dynamic geometry. The extensions of dart throwing
method for surfaces are described in [26], [27], [28].
The computational complexity and the approximation
of the geodesic metric are the major concerns in these
extensions. The recent work of Öztireli et al. [29]
provides a new approach to improve quality of the
sampling of a surface by maximizing measures de-
rived from spectral analysis theorem. Although their
algorithm is shown to be able to handle adaptive
surface sampling, it seems hardly able to make the
point distributions adapt to given density functions.

Our variational framework can easily be extended
to generating blue noise samples on surfaces from a
given initial configuration. We optimize the positions
of points on the surface directly, and no parameteriza-
tion is needed. Due to the optimization nature of our
framework, it is suitable for applications that require
sampling coherence on deformable surfaces.
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Multi-class blue noise sampling: Recently,
Wei [30] introduces the problem of multi-class blue
noise sampling in which not only each individual
class but also their union exhibit blue noise proper-
ties and presents two approaches to generating such
multi-class blue noise samples. This is quite useful
for applications (e.g., object distribution and color
stippling) that require a well distribution of multiple
classes of samples. Schmaltz et al. [31] generalize
the electrostatic halftoning approach [20] for multi-
class blue noise sampling. As pointed in [30], Lloyd
relaxation fails to handle multiple classes of samples.
With a variant of energy function and an elaborate
initial configuration, our capacity-constrained CVT
method is shown to be capable of generating high-
quality multi-class blue noise sampling.

3 VARIATIONAL APPROACH

In this section we introduce our variational approach
to generating blue noise samplings.

3.1 Energy formulation

Centroidal Voronoi tessellation (CVT): Let X =
{x1, . . . ,xn} be a set of points, called sites, in a com-
pact domain Ω ∈ R

d. Suppose that ρ(x) ≥ 0 is a
density function defined in Ω. The Voronoi cell Vi of
a site xi is given by

Vi = {x ∈ Ω | d(x,xi) ≤ d(x,xj), ∀j ̸= i, j = 1, . . . , n},

where d(x,y) is the Euclidean distance between two
points x and y. The collection of the Voronoi cells
{Vi}ni=1 constitutes a Voronoi tessellation of Ω. If each
site xi coincides with the mass centroid of Vi, i.e.,

xi =

∫
Vi

ρ(x)xdσ
∫
Vi

ρ(x)dσ
, where dσ is the differential area ele-

ment of Ω, then {Vi}ni=1 is called a centroidal Voronoi
tessellation (CVT).

From a variational standpoint, a CVT is character-
ized by a critical point of the following CVT energy
function [32]:

ECVT(X) =
n
∑

i=1

∫

Vi

ρ(x)∥x− xi∥2 dσ. (1)

The most commonly used method for minimizing
ECVT(X) is the Lloyd’s method [1]. Recently Liu et
al. [4] proved that ECVT(X) is a C2 function and
proposed an efficient quasi-Newton method for mini-
mizing it. The minimization of ECVT(X) ensures that
all the sites are isotropically uniform; however, the site
distribution exhibits regular patterns as is shown in
Fig. 1(a).

Capacity-constrained Voronoi tessellation
(CapVT): A Voronoi tessellation {Vi}ni=1 is
called a capacity-constrained Voronoi tessellation
(CapVT) [5] if its Voronoi cells satisfy the constraints
|Vi| =

∫

Vi
ϱ(x) dσ = ci (i = 1, . . . , n) where ϱ(x) ≥ 0 is

(a) ECVT (b) ECapVT (c) ECapCVT

Fig. 1. Site distributions and Voronoi tessellations by

optimizing the three different energies. Site distribution

is (a) uniform but regular; (b) irregular but nonuniform;

(c) uniform and irregular. λ is set to 30 in ECapCVT.

a density function defined in Ω and the ci are capacity
constraints with ci > 0 and

∑n
i=1 ci =

∫

Ω
ϱ(x) dσ.

We formulate CapVT as a minimization of the func-

tion
∑n

i=1

(

∫

Vi
ϱ(x) dσ − ci

)2

. Assume each Voronoi

cell has the same capacity, that is ci = c for all i.
Hence,

n
∑

i=1

(
∫

Vi

ϱ(x) dσ − ci

)2

=

n
∑

i=1

(
∫

Vi

ϱ(x) dσ

)2

− 2c

∫

Ω

ϱ(x) dσ +

n
∑

i=1

c2.

Since the second and the third terms on the right hand
side of the above expression are constants, as far as
function minimization is concerned, we can define the
CapVT energy function as

ECapVT(X) =
n
∑

i=1

(
∫

Vi

ϱ(x) dσ

)2

. (2)

Balzer [33] proposes to minimize (2) using the
downhill simplex method [34]. The method is
derivative-free and requires only function evaluations.
However, it is inefficient for large-scale optimization
problem. As stated in [33], the downhill simplex
method usually computes millions of function sam-
ples before it converges. Large sets of sites, with many
thousands or even millions of sites, are beyond the
computational feasibility of the method. We will show
that (2) can be efficiently optimized by quasi-Newton
method.

Starting from a random initialization (so that site
capacities are not equal), minimizing ECapVT(X) in (2)
gives an irregular point distribution which is however
nonuniform, since the energy does not regulate point
positions (Fig. 1(b)).

Our variational energy function (CapCVT): We
propose a new energy function by combining the CVT
energy function ECVT and the CapVT energy function



4

ECapVT as

ECapCVT(X) = ECVT(X) + λECapVT(X)

=
n
∑

i=1

∫

Vi

ρ(x)∥x− xi∥2dσ + λ
n
∑

i=1

(
∫

Vi

ϱ(x)dσ

)2

,

(3)

where λ is a weight to balance the two energy
terms. We call ECapCVT the capacity-constrained cen-
troidal Voronoi tessellation (CapCVT) energy function.
Note that, we use different density functions ρ(x)
and ϱ(x) for ECVT and ECapVT, respectively. We will
discuss about choosing ρ(x) and ϱ(x) in Section 3.3.

The energy term ECapVT in (3) functions as an equal
capacity constraint and serves to introduce irregularity
to avoid the regularity artifact in the site distribution
often found in a CVT. Therefore, minimizing the new
CapCVT energy function in (3) tends to generate
uniform point distribution with less regularity artifact
as can be seen in Fig. 1(c).

3.2 Optimization with L-BFGS method

Gradient of the energy function: The energy
ECVT is proved to be C2 [4]. Similarly we can prove
that ECapVT is C2 and so is ECapCVT. The gradient of
ECVT is given in [32] as

∂ECVT(X)

∂xi

= 2|Vi|(xi − ci), (4)

where |Vi| =
∫

Vi
ρ(x)dσ and ci =

∫
Vi

ρ(x)xdσ
∫
Vi

ρ(x)dσ
. We have

derived the formulation of the gradient of ECapVT

which is given by (see Theorem 3 and its proof in
Section 3.5):

∂ECapVT(X)

∂xi

= 2
∑

j∈Ni

|Vi| − |Vj |
∥xj − xi∥

∫

Vij

ϱ(x)(x− xi)ds,

where Ni is the set of indices of Voronoi cells adjacent
to Vi and Vij = Vi ∩Vj is the common face of Voronoi
cells Vi and Vj . Thus the gradient of ECapCVT can be
written explicitly as:

∂ECapCVT(X)

∂xi

=
∂ECVT(X)

∂xi

+ λ
∂ECapVT(X)

∂xi

. (5)

L-BFGS method: Since ECapCVT is C2 with
an explicit gradient formula, we can use Newton-
type methods to minimize it. Specifically, we apply
the L-BFGS method [6], a fast local search scheme
which significantly improves the space requirement
of the original BFGS method [35] while preserving
its super-linear convergence. Unlike the original BFGS
method which uses the gradient information of all the
preceding steps, the L-BFGS method computes the
approximate Hessian by accumulating the gradients
over a small fixed number of preceding iterations.
Both the storage requirement and the computational
cost of each iteration of L-BFGS are of O(n), where
n is the number of variables. The pseudo-code of

our algorithm working on a 2D domain is given in
Algorithm 1. The L-BFGS method terminates when
there is no significant decrease of the energy value.

Algorithm 1 Variational CapCVT framework on 2D
domain
Input: an initial point set X and a weight λ
Output: a new point distribution X

1: X(0) ← X

2: ∆E ← ECapCVT(X
(0))

3: k ← 0
4: while ∆E/ECapCVT(X

(k)) > 10−5 do
5: Compute the Voronoi tessellation of X(k)

6: Compute the gradient ∇ECapCVT

7: Compute ∆X using the L-BFGS updating rule
8: X(k+1) ← X(k) +∆X

9: ∆E ← ECapCVT(X
(k+1))− ECapCVT(X

(k))
10: k ← k + 1
11: end while
12: return X(k)

3.3 Discussions

Initialization: It is known that a local search
method often ends up at a local minimum for a
non-convex function like ECapCVT. One may expect
to use some global search scheme to find its global
minimum. In general, it is hard, if not impossible,
to depict a global optimizer of ECapCVT as it all
depends on the domain complexity, boundary effect,
the number of sites, the domain density, etc.

Fig. 2. A regular

hexagonal lattice.

However, the global optimiz-
er of ECapCVT might not give
the desirable results as far as
blue noise properties are con-
cerned. In some special cases,
the global optimizer will in-
deed give a regular distribution
of sites which is undesirable
for blue noise sampling. Fig. 2
shows such an example in which the Voronoi cells
form a regular hexagonal lattice and the sites are
centrosymmetric. Both the CVT and CapVT energies
attain their respective global minimum in this case.
It is therefore expected that given such an initial
point pattern, optimizing ECapCVT will not break its
regularity. This phenomenon is also true of several
other energy function-based methods. In our case, it
is found that with an arbitrary, random initialization,
our method has high probability for stopping at a
local minimum which yields a desirable blue noise
point distribution. Hence, random point distribution
(e.g., error diffusion) is used as the initialization in
Algorithm 1. All the experiments we have tested show
that the results of point distributions have blue noise
characteristics.
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Density function adaptation: In many practical
applications such as importance sampling in comput-
er graphics, the distribution of the sites is expected
to adapt to some given density function φ(x) in the
region Ω, that is, the probability of one site locating
in some region (the density of site distribution) is
supposed to be equal to the density function at this
site.

The density function ρ(x) in ECVT(X) is simply set
to be φ(x) in general. Balzer et al. [5] observed that
with this density function, the CVT implicitly blurs
the density function so that fewer sites than expected
are found in regions of high density and more sites
are found in low density regions. We also noted this
issue and further discovered the relationship between
ρ(x) and φ(x) in an asymptotic sense (see the proof
in Section 3.5). We found that in a 2D domain ρ(x) =
φ2(x) should be used. This is done in our system to
achieve a given point density (Fig. 3). Simply setting
ρ(x) in ECVT(X) directly to be φ(x) indeed accounts
for the blurring by the traditional CVT reported in [5].

For the density function ϱ(x) in ECapVT(X), since
the capacity of a site offers a good measurement of
the quality of a density function adaption for the site
distribution, it is therefore set as φ(x) naturally.

Normalizing ECVT(X) & ECapVT(X) and the
choice of λ: The two energies ECVT(X) and
ECapVT(X) have different order of magnitudes and
therefore normalization is needed. We prove that in
the asymptotic case, the value ratio of ECVT(X) and
ECapVT(X) is about 1 : 6, which is independent of
the number of the sites, size of the domain, and the
given density function. The proof can be found in
Section 3.5.

The parameter λ provides a mechanism to adjust
the relative importance of ECVT(X) and ECapVT(X),
thus affecting the irregularity of the resulting point
distributions and therefore the blue noise properties.
We evaluate the point distributions obtained by our
method with different λ values using the spatial and
spectrum analysis by [36]. For each λ value, we per-
form 10 runs of our method on 1,000 points with
different initialization and the averaged periodogram-
s, radial mean power, and anisotropy are computed
(Fig. 4(a-e)). We also use the normalized Poisson disk
radius α suggested by Lagae and Dutré [7] to evaluate
the point distribution quality. The radius α is a value
ranged between 0 and 1, with 0 corresponding to
a distribution having two coinciding points and 1
corresponding to a regular hexagonal lattice distribu-
tion. Fig. 4(f) shows that the normalized Poisson disk
radius of the distribution generated by our methods
decreases gradually as λ increases. It can also be seen
that, when λ is large and our method is working more
towards a CapVT, the normalized radius decreases
significantly.

Lagae and Dutré [7] recommend α ≈ 0.75 for
high-quality blue noise point sets. However, Schlömer

1.56% 10.94% 29.69% 57.81%

(a) Quadratic density function ϕ(x)

1.5% 11.0% 29.7% 57.8%

(b) Site initialization generated by error diffusion

1.4% 11.3% 29.6% 57.7%

(c) CVT result with ρ(x) = ϕ2(x)

1.6% 11.0% 29.8% 57.6%

(d) CapVT result with ̺(x) = ϕ(x)

1.6% 11.0% 29.8% 57.6%

(e) CapCVT result with ρ(x) = ̺2(x) and ̺(x) = ϕ(x)
(λ = 30)

Fig. 3. The quadratic ramp in (a) is used as density

function. Starting with the initial 1,000 sites in (b),

our CVT, CapVT, and CapCVT results show precise

adaption with the density function. The percentages

indicate the density (i.e., the number of points) in each

quarter.

et al. [22] show that Poisson disk distributions can
have radii up to 0.93 or higher. Considering also the
spectrum properties, we found that our method with
λ ∈ [20, 100] gives a point distribution with good blue
noise characteristics. In our system, we use a default
value λ = 30.

Analysis and comparisons: As shown in Algo-
rithm 1, computing the Voronoi tessellation is the
most time-consuming part of our method. Let n be
the number of sites. We use CGAL [37] to compute
the Delaunay triangulation first which costs O(n log n)
time, and then obtain the Voronoi tessellation as
the dual of Delaunay triangulation. Hence, the time
complexity per iteration of our method is O(n log n).
Balzer et al. [5] implement a variant of Lloyd’s method
in a discrete domain Ω which is represented by a set
of points P . Let m be the number of points of P . Then
the time complexity per iteration of [5] is O(mn log m

n
).

The accelerated implementation in [19] of the same
method brings down the time complexity to O(mn).
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(a) λ = 1 (b) λ = 10 (c) λ = 20

(d) λ = 50 (e) λ = 100

CVT

CapVT

10 20 30 40 50 60 70 80 90 100 500
¸

(f) Normalized radius

Fig. 4. Control of irregularity by varying λ. (a)-(e): Spectral analysis of distribution of 1,000 points obtained by

CapCVT optimization. (f) Normalized radius is around 0.75 for λ ∈ [30, 60].
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[Balzer et al. 2009] 512 points-per-site

[Balzer et al. 2009] 256 points-per-site

[Li et al. 2010] 512 points-per-site

[Li et al. 2010] 256 points-per-site

Our method 

(a) Running time in log scale (b) Our method (c) Balzer et al. 2009 (d) Li et al. 2010

Fig. 5. Comparisons of our method, the methods by Balzer et al. [5] and Li et al. [19]. The point distribution,

spatial and spectral analysis of 4, 096 sites (512 points per site in discrete setting) obtained by the three methods

are shown in (b), (c) and (d), respectively.

Note that m is usually much bigger than n, hence our
method is expected to achieve significant acceleration.

We compare our method with [5] as well as its
parallel implementation [19] in terms of sampling
quality and running time, with varying number of
points. The result is shown in Fig. 5. We can achieve
blue noise sampling with comparable spatial and
spectral properties to [5], [19]. Also, our method is
more than two orders of magnitude faster than the
original method proposed by [5], and is about 10 times
faster than the method by [19]. All timing data is taken
on a workstation with Intel Xeon 3.16GHz quad-core
CPUs and 8GB memory. Both our method and the
method by [5] run single-threaded, while the method
by [19] runs 4-threaded.

3.4 Extension to surfaces

Our variational approach can easily be extended to
surface cases. Let the input surface S ⊂ R

3 be a
triangular mesh surface with a set of triangles {τk |
k = 1, · · · ,m}.

Variational formulation on surface: The Voronoi
diagram can be naturally defined on a surface us-
ing geodesic distance, which results in the so-called
geodesic Voronoi diagram. However, it is difficult
to compute an exact geodesic Voronoi diagram, and
existing approximate algorithms for geodesic Voronoi
diagram computation are computationally expen-
sive [38]. Instead, we use the restricted Voronoi di-
agram [39] by approximating the geodesic distance
between two points with their Euclidean distance in
3D space, which can be efficiently computed by Yan
et al.’s method [40].



7

The CapCVT energy function on a surface S can be
written as

ECapCVT(X) =

n
∑

i=1

∫

Vi

ρ(x)∥x− xi∥2dσ

+ λ
n
∑

i=1

(
∫

Vi

ϱ(x)dσ

)2

,

(6)

where Vi is the restriction of the 3D Voronoi cell of xi

on S and λ is the weight, and dσ is the area element
of the surface. As in 2D domains, we set ρ(x) = ϱ2(x)
where ϱ(x) is the desired point distribution function.

Gradient of the energy function: The gradient
of ECVT(X) on surface domains is the same as equa-
tion (4). Please refer to [41] for the derivation. We
derive the gradient of ECapVT(X) on surface domain
as:

∂ECapVT(X)

∂xi

=2
∑

j∈Ni

(|Vi| − |Vj |)
∑

τk∈T

∫

Vij∩τk

ϱ(x)(x− xi)

∥xj − xi∥τk
ds,

where T is the set of facets of S intersecting with
Vij (the common face of Vi and Vj), and ∥x∥τk is the
length of the projection of the vector x onto the plane
τk. Its proof is given in Section 3.5. Thus we have the
explicit computation of the gradient of ECapCVT(X).
As the sites have to be on the surface S, the gradient
must be computed within the tangent space of S as

∂ECapCVT

∂xi

∣

∣

∣

∣

S

=
∂ECapCVT

∂xi

−
[

∂ECapCVT

∂xi

·N(xi)

]

N(xi),

where N(xi) is the normal of the triangle containing
xi.

Algorithm: The algorithm for computing a point
distribution on a surface S by minimizing ECapCVT is
given in Algorithm 2.

Algorithm 2 differs from Algorithm 1 in a few
steps. In Step 5, we compute the restricted Voronoi
tessellation of X(k) on S which can be efficiently
computed by the method presented in [40]. In Step
6, we use the gradient of ECapCVT within the tangent
space of S. In Step 9, we have to project the computed
points onto S to guarantee that the resulting points lie
on the surface.

Results and comparisons: Fig. 6 shows the re-
sults of blue noise sampling on a dog surface with
different λ values. It can be seen that more irregu-
larities are introduced to the point distribution as λ
increases. In Fig. 7, we show an adaptive sampling
obtained by minimizing the CapCVT function on a cat
surface by the L-BFGS method. The density function
is defined according to the curvature of the surface, so
that regions of higher curvature are of higher density
distribution. We compare our CapCVT method with
other methods by the spectral analysis method pro-
posed by Bowers et al. [28] and the results are shown
in Fig. 8. Our method behaves similarly on surfaces

Algorithm 2 Variational CapCVT framework on sur-
face
Input: an initial point set X on S and a weight λ
Output: a new point distribution X on S

1: X(0) ← X

2: ∆E ← ECapCVT(X
(0))

3: k ← 0
4: while ∆E/ECapCVT(X

(k)) > 10−5 do
5: Compute the restricted Voronoi tessellation of

X(k) on S
6: Compute the gradient ∇ECapCVT|S
7: Compute ∆X using the L-BFGS updating rule
8: X(k+1) ← X(k) +∆X

9: Project X(k+1) onto surface S, denoted still by
X(k+1)

10: ∆E ← ECapCVT(X
(k+1))− ECapCVT(X

(k))
11: k ← k + 1
12: end while
13: return X(k)

Fig. 6. Sampling on a surface by the CapCVT method

with different λ. It takes about 16 seconds to obtain a

distribution with 2,000 samples.

to its counterpart on 2D domains. From the spectral
analysis, we suggest that λ ∈ [20, 100] is suitable for
obtaining blue noise sampling on surfaces with our
framework.

3.5 Properties of the CapCVT energy

In this section, we give the derivation of the gradient
of the CapVT energy as well as several other proper-
ties regarding the CapCVT energy.

Gradient of ECapVT(X): We derive the compu-
tation of the gradient of the CapVT energy function
ECapVT(X) on surface domains (with 2D domains as
special cases) in this section. First, we introduce the
generalized Leibniz rule [43], also called the Leibniz-
Reynolds transport theorem, concerning the differen-
tiation under the integral sign.

Theorem 1 (Leibniz-Reynolds Transport Theorem):
Suppose Dt is a 2D domain changing smoothly with
time t. We are given a smooth function g(x, t),x ∈ Dt.
Denote v = ∂x/∂t as the velocity vector at a boundary
point x of Dt and denote b as the outward unit
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Fig. 7. Adaptive blue noise sampling on surfaces. Left:

density function defined according to the curvature.

The final Voronoi tessellation (middle) and the samples

(right).
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Fig. 8. Spectral comparison of the samples by our

CapCVT method using different λ’s, the CVT method

(which is equivalent to our method with λ = 0), the

retiling method [42], and Bowers et al.’s method [28].

The radial means (dark) and anisotropy (orange) are

generated using the method proposed by [28].

normal at the boundary. Then we have

d

dt

∫

Dt

g(x, t)dσ =

∫

∂Dt

g(x, t)v · bds+
∫

Dt

∂g(x, t)

∂t
dσ,

(7)
where ds is the element of arc length on the closed
boundary curve ∂Dt.
Note that (7) also holds for a 3D orientable surface
domain, whose closed boundary curve ∂Dt changes
smoothly with t. In this case, b is the binormal to the
space curve ∂Dt.

Theorem 2: The gradient of ECapVT(X) on surface
domains is

∂ECapVT(X)

∂xi

=2
∑

j∈Ni

(|Vi| − |Vj |)
∑

τk∈T

∫

Vij∩τk

ϱ(x)(x− xi)

∥xj − xi∥τk
ds,

where Vij = Vi ∩ Vj is the common face of Voronoi

Fig. 9. Computation of the gradient of CapVT function

on surface.

cells Vi and Vj , T is the set of triangles intersecting
with Vij , and ∥x∥τk is the length of the projection of
the vector x onto the plane τk, as shown in Fig. 9.

Proof: Assume that we apply a sufficiently small
perturbation to the location of site xi, then only the
shapes of the Voronoi region Vi and its adjacent
Voronoi regions {Vj | j ∈ Ni} will change due to
the movement of site xi. Let the coordinates of xi be
(xi1 , xi2 , xi3), then

∂ECapVT(X)

∂xil

= 2|Vi|
∂|Vi|
∂xil

+
∑

j∈Ni

2|Vj |
∂|Vj |
∂xil

, l = 1, 2, 3.

(8)
By Theorem 1, we have



















∂|Vi|
∂xil

=
∑

j∈Ni

∫

Vij

ϱ(x)v · b ds,

∂|Vj |
∂xil

= −
∫

Vij

ϱ(x)v · b ds, j ∈ Ni,

where v = ∂x/∂xil and b is the outward unit binor-
mal at boundary point x of the region Vi. Thus (8) can
be written as

∂ECapVT(X)

∂xil

=
∑

j∈Ni

2(|Vi|− |Vj |)
∫

Vij

ϱ(x)v ·b ds. (9)

We still have to compute v · b in the above equation.
The common face Vij of Vi and Vj is the intersection
of the perpendicular bisecting plane of the segment
xixj and the surface S. Consider a segment of Vij on
triangle τk, which satisfies the equations







(x− xi + xj

2
) · (xj − xi) = 0,

(x− pτk) · nτk = 0,

where nτk is the normal of τk and pτk is a vertex of τk.
By differentiating the above equations with respect to
xil , we get















∂x

∂xil

(xj − xi) = (x− xi) · el,

∂x

∂xil

nτk = 0,

where el is a 3-D vector with l-th element being 1 and
other elements being 0. The unit binormal b is given
by

b =
(xj − xi)− ((xj − xi) · nτk)nτk

∥(xj − xi)− ((xj − xi) · nτk)nτk∥
.
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Thus, we have

v · b =
(x− xi) · ek
∥xj − xi∥τk

.

Substituting this into (9) completes the proof.
The gradient of ECapVT(X) in 2D domain can be

directly obtained by replacing the triangles τk with a
constant plane x · e3 = 0 in Theorem 2, which then
leads to the following theorem:

Theorem 3: The gradient of ECapVT(X) on 2D do-
mains is

∂ECapVT(X)

∂xi

= 2
∑

j∈Ni

|Vi| − |Vj |
∥xj − xi∥

∫

Vij

ϱ(x)(x− xi)ds,

where Ni is the set of indices of Voronoi cells adjacent
to Vi, and Vij = ∂Vi ∩ ∂Vj is the common face of
Voronoi cells Vi and Vj .

Relationship between ρ(x) and φ(x): By Ger-
sho’s conjecture [3], the energy of each site in a CVT
is equal asymptotically. Then, we have

∫

Vi
ρ(x)∥x∥2dσ

=
∫

Vj
ρ(x)∥x∥2dσ, for all i ̸= j. Here we can assume

ρ(x) is constant inside a Voronoi cell, and hence
ρ(xi)

∫

Vi
∥x∥2dσ = ρ(xj)

∫

Vj
∥x∥2dσ.

Denote s as the diameter of a Voronoi cell. Then
∫

Vi
∥x∥2dσ ∝ s4. To keep the sites distributed in

accordance with a given density φ, we need the area
of a Voronoi cell being inversely proportional to φ,
that is, area(Vi) ∝ 1/φ. Since area(Vi) ∝ s2, it follows
that

∫

Vi
∥x∥2dσ ∝ (1/φ)

2. We also have density being

inversely proportional to
∫

Vi
∥x∥2dσ. Therefore, we

have ρ ∝ φ2.
Ratio of ECVT(X) and ECapVT(X): Assume that

each Voronoi region is a regular hexagon with edge
length r and the density function ϱ(x) is constant
for each Voronoi region. The CVT energy and CapVT
energy in Vi are given by



















ECVT(Vi) =

∫

Vi

ϱ2∥x− xi∥2dσ =
5
√
3

8
r4ϱ2,

ECapVT(Vi) =

(
∫

Vi

ϱ dσ

)2

=
27

4
r4ϱ2.

Thus, we get

ECVT(X)

ECapVT(X)
=

5
√
3

54
≈ 1

6
.

Normalization of ECapCVT(X): When the capac-
ity constraint of the CapCVT energy is satisfied, each
Voronoi cell has the same CapVT energy. Thus we
have

ECapVT(X) ≈
n
∑

i=1

( |Ω|
n

)2

=
|Ω|2
n

,

where |Ω| =
∫

Ω
ϱ(x)dx and n is the number of

the sites. Then, we have nECapVT(X) ∝ |Ω|2. Since
ECapVT(X) ∝ ECVT(X), we have

nECapCVT(X) ∝ |Ω|2.

We call the above equation nECapCVT(X) the normal-
ization of ECapCVT(X), whose value is independent
of the number of sites n.

4 VARIATIONAL MULTI-CLASS BLUE NOISE

SAMPLING

Wei [30] first introduces the notion of multi-class
blue noise sampling which requires that blue noise
property be observed not only by the samples in the
union of all classes, but also by the samples in the
individual classes simultaneously. In this regard, we
devise a multi-class CapCVT energy function which
accounts for the CapCVT energies of the union and
the individual classes.

4.1 Variational formulation

Given N classes of points Xi, i = 1, . . . , N , with X =
∪i Xi, the multi-class CapCVT energy function of X,
EM

CapCVT(X), is defined as:

EM
CapCVT(X) = µ ·N ·E∗

CapCVT(X)+
N
∑

i=1

E∗
CapCVT(Xi),

(10)
where µ > 0 is a weight. The term E∗

CapCVT(X)
is the normalized CapCVT energy function which
equals nECapCVT(X), since the value of ECapCVT(X)
is inversely proportional to n, where n is the number
of seeds in X (see Section 3.5 for the proof).

4.2 Algorithm

The multi-class CapCVT energy in (10) is simply a
combination of the CapCVT energies of the union set
and the individual classes. A naı̈ve application of min-
imizing (10) of a multi-class point set at first glance
seems to be able to optimize the point distribution of
the union as well as the individual classes all at the
same time. However, due to the diversified interests

Algorithm 3 Variational multi-class CapCVT frame-
work
Input: the initial N classes of points Xi (i = 1, . . . , N)

and a weight µ > 0
Output: new distributions of points X̂i for the N

classes
1: for each class i do
2: Apply Algorithm 1 (for 2D) or 2 (for surface)

on Xi to obtain a blue noise sampling X′
i

3: end for
4: X← ∪i X′

i

5: Apply Algorithm 1 (for 2D) or 2 (for surface) on X,
with the energy function replaced by EM

CapCVT(X)
to obtain the blue noise sampling of the union as
X̂ as well as that of the individual classes as X̂i.

6: return X̂i (i = 1, . . . , N)
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Fig. 10. Multi-class blue noise sampling by variational

CapCVT with N = 2. All classes have the same

number of samples. Our result is shown in the left

column and Wei’s result [30] is in the right column. Only

a central portion of the 2D domain is displayed.

of these different considerations, the optimal gradient
directions for each energy term may conflict with
each other, thereby introducing a combined gradient
which in general does not favor any of the sampling
distributions, neither in the union set nor in the
individual classes. This behavior is also confirmed by
our experiments that blue noise sampling in neither
the union class nor the individual classes can be
accomplished by directly minimizing (10) for a multi-
class point set.

Surprisingly, if we start with individual classes Xi

of point distribution with minimized ECapCVT(Xi),
(10) can now be interpreted with a different perspec-
tive. The first term of (10) serves to achieve a good
point distribution with respect to the CapCVT energy
for the union set, while the latter terms are responsible
for preserving the optimal distributions of the individ-
ual classes. Based on this understanding, we devise
a two-stage algorithm: the first stage is to obtain
optimal blue noise sampling for each individual class,
while the second stage is to achieve multi-class blue
noise sampling by minimizing (10). The detailed steps
are given in Algorithm 3.

4.3 Results and comparisons

We evaluate the quality of our multi-class sampling
method on 2D domain using the same number of
points in each class as in the example sets given by
Wei [30]. The results of three example sets are shown
in Fig. 10 and Fig. 11 (for N = 2) and Fig. 12 (for N =
3). The spatial and spectral analysis show that our
multi-class sampling results are comparable to that of
Wei’s multi-class sampling by dart throwing [30].

Our result Wei’s result [30]

u
n
io
n

se
t

n
=

1
0
,
4
0
0

cl
a
ss

1
n
1
=

3
2
5

cl
a
ss

2
n
2
=

1
0
,
0
7
5

Fig. 11. Multi-class blue noise sampling by variational

CapCVT with N = 2. Each class has different number

of samples. Only a central portion of the 2D domain is

displayed.
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Fig. 12. Multi-class (N = 3) blue noise sampling by

variational CapCVT. The three classes have different

numbers of samples. Only a central portion of the 2D

domain is displayed.

We also apply Algorithm 3 for generating multi-
class blue noise samples on surfaces. Fig. 13 shows a
2-class sampling on the surface of a 3D model.

More examples of our multi-class method working
on applications such as color stippling can be found
in Section 5.
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Fig. 13. Multi-class blue noise sampling on a surface.

From left to right: union point distribution, point distri-

butions for classes 1 and 2.

5 APPLICATIONS

In this section, we demonstrate some applications and
evaluate the performance of our variational sampling
framework in different contexts.

Image stippling: Fig. 14 gives the result of our
method for stippling of a gray scale image using
10,000 points. The density function is defined based
on the intensity values of the input image. We first
obtain an initial point distribution that adapts to the
density function using error diffusion (Fig. 14(b)). Our
method can then achieve a desired sampling using
only 30 iterations of optimization (Fig. 14(c)). The
overall time taken is about 20 seconds.

Color stippling: We apply our multi-class
CapCVT method for color stippling with 7 classes of
colored dots (red, green, blue, cyan, magenta, yellow
and black). Fig. 15 shows our result against the multi-
class sampling by dart throwing [30] on a color image.
We define a particular density function for each indi-
vidual class based on the color intensities of the image
(see Appendix A). We aim to have more dots in the
area where the corresponding color is dominant and
fewer dots in the other regions. It can be seen that
our method can achieve comparable results as [30]
in terms of point distribution. Note that the visual
quality depends also on the color decomposition (i.e.,
how the underlying densities for the color classes are
defined), for which we adopt differently from that
used in [30].

Object placement on surfaces: Object placement
is also an important application in which objects
are required to arrange in a visually pleasing layout
without regularity artifacts. Fig. 16 shows our method
working for object placement. The box surface in
Fig. 16(a) is decorated with a mosaic of tiles which
is the resulting Voronoi tessellation of our CapCVT
method. Another example shows a texture of two
objects on a surface generated using our multi-class
sampling results.

Dynamic domains: For sampling in dynamic
domains such as deformable surfaces, a major issue is

to ensure temporal coherence of samples when the un-
derlying domain changes against time. A sample may
well represent an object which are expected to move
smoothly on a surface so as to avoid flickering. Our
variational framework is very suitable for sampling
with temporal coherence in the dynamic domains (see
Fig. 17 and the accompanying video). By taking the
result of the previous frame as the initialization of the
next frame, we can generate blue noise sampling in
only a few iterations. For the sequence in Fig. 17, it
takes 38 iterations to generate the blue noise sampling
in the first frame. Only 5-10 iterations are then needed
to produce each of the subsequent frames. Due to the
optimization nature of our framework, the identity of
each sample can be carried forward to the next time
instant naturally. The sampling therefore guarantees
temporal coherence to be observed over time change.
This property is not possessed automatically by any
stochastic blue noise sampling method, such as dart
throwing, without the use of auxiliary information or
processing (such as optical flow).

Fig. 17. Object placement on a deformable surface.

Our method naturally provides temporal coherence

while maintaining a desired density distribution when

the domain changes continuously. See also the accom-

panying video.

6 CONCLUSION

We present a novel variational approach to generating
blue noise sampling points. The energy function is
a combination of the CVT energy function and the
CapVT energy. Based on the derivation of the gradient
of the energy function, we propose an efficient L-
BFGS method to minimize the energy function. Our
algorithm achieves better results and runs two orders
of magnitude faster than the previous optimization-
based method [5]. Our variational framework is flexi-
ble and can easily be extended to surface cases. We
also develop a new method for generating multi-
class blue noise sampling based on the variational
framework. We demonstrate the applicability of our
variational approach in various applications includ-
ing image stippling, color stippling, and generating
dynamic blue noise samplings in dynamic domains.

It is promising to further study this variational ap-
proach for generating blue noise sampling. Firstly, it is
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(a)

(b) (c)

(d)

(e)

Fig. 14. Image stippling. (a) Input image as a density map; (b) initial point set obtained by error diffusion; (c)

the result after 30 iterations, overall taking 22.0s; (d) & (e) zoom-in views in the hair and face regions highlighted

with the boxes in (c).

(a) Original image (b) By our CapCVT method (c) By dart throwing

Fig. 15. Color stippling with 7 classes of color dots: red, green, blue, cyan, magenta, yellow and black. A total of

280k samples are used in the 7 classes following the color decomposition described in Appendix A. Our result

using the CapCVT method in (b) is comparable to that in (c) by the dart throwing method [30] in terms of point

distribution. We note here that the two methods use different color decomposition functions. (b) & (c) are zoom-in

views of the region highlighted by the black box in (a). The stippling result of the entire image in vector format is

provided in Appendix B.

(a) (b)

Fig. 16. Object placement on surfaces. (a) The mosaic tile placement on surface by using the CapCVT Voronoi

tessellation; (b) our multi-class blue noise samples are used to guide the placement of textures.
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straightforward to extend the variational framework
to blue noise sampling in 3D volumetric domain. The
energy function is the same except that the domain
is in 3D. Secondly, we will investigate speedup of
Voronoi tessellation (or Delaunay triangulation) com-
putation using GPU, for which there has been some
related work in the literature. Thirdly, it is worth-
while to develop a variational approach to generating
anisotropic blue noise sampling [44], which we feel is
possible but not straightforward.
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