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Abstract

A variational method for calculating excited stretching states of
symmetric tetrahedral penta-atomic molecules is presented based on
the use of Radau coordinates and Morse oscillator-like basis functions.
Symmetry is used both to reduces the size of secular matrix to be
diagonalized and to calculate potential energy matrix elements over
a reduced grid of quadrature points. Test results are presented for
methane, silane and germane. For CHy stretch-bend coupling is found
to be significant, whereas it is less important for the more strongly

local mode SiH4 and GeH4 molecules. Converged results are obtained
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for stretching states significantly higher than considered in previous
calculations. These states will be used to represent stretching motions

in a fully coupled stretch-bend calculation.

1 Introduction

The spectroscopy of the tetrahedral XY, molecules has been studied exten-
sively. For a review of early work on XH, (X = C, Si, Ge, Sn, Pb) the reader
is referred to Biirger and Bahner[1]. Probably the most important of these
systems is methane. Methane is the third most important greenhouse gas,
is present in many planetary atmospheres and is a major component of the
atmosphere of cool stars, particularly the newly identified ultra-cool T-stars.
The way methane absorbs and emits light remains poorly understood, par-
ticularly when it is hot. A better theoretical understanding of the methane
rovibrational spectrum would undoubtedly lead not only to more information
being obtained from the astronomical spectra, but also to better modeling
of methane in many other situations. A bibliography on experimental work
on methane spectra can be found in reference [2, 3, 4, 5].

Some variational vibration-rotation calculation have already been per-
formed for methane [3, 4, 5, 6] . However these studies are tractable because
they make approximations based on the molecule being semi-rigid or on the
form of the potential energy surface, or both. It is unlikely that these ap-
proaches will be reliable for the highly excited states necessary to treat the
hot methane problem.

Here we report on progress in developing a full variational treatment of

the methane rotation-vibration problem. The procedure adopted is general



to XY, type molecules which makes no assumption about any decoupling
of modes in the potential energy hypersurface. This lack of decoupling im-
plies full nine-dimensional quadrature over the potential. However this cost
is moderated by taking advantage of the symmetry inherent in these XY,
systems, itself a subject of considerable study [7, 8. When highly excited
vibrational states of XY, systems are desired, the computation can easily
suffer from basis set explosion: the number of product basis functions is or-
der of N¥, where the number in each dimension, N, is on the order of 10
and F', the number of degrees of freedom, is 9. Using N = 10 to accurately
represent the desired states then the results in a total of 10° basis functions.
Numerical quadrature suffers from similar problems of scaling.

Our strategy, besides taking the maximum advantage of symmetry, is to
solve separate, reduced Hamiltonians for the stretches and the bends, and
to use the results of these to solve the full coupled problem. So far we have
developed a procedure for treating the stretching and bending motion of
XY, molecules. For the non-rotating XY, systems, the vibrational motions
can be divided into stretches (four coordinates) and bends (five independent
coordinates). In this paper we report results obtained using our stretch-
only Hamiltonian; the following paper [9] we present results obtained for
the bending problem including a discussion of the well-known problem of

redundancy in these coordinates.



2 Theory

2.1 The Hamiltonian

The exact vibrational Hamiltonian of XY, molecules can be expressed in
terms of internal Radau coordinates. For XY, molecules, this is conveniently
similar to standard valence coordinates of the system. This form not only
retains the symmetry of the methane problem, but also gives a simple, or-
thogonal (ie diagonal in differential operators) kinetic energy operator. A
method for constructing a vibrational Hamiltonian for an XY, system in
Radau coordinates has been given by Schwenke [10] and Mladenovic [11].
Using these approaches, the expression for the vibrational kinetic energy T,
of XY, in Radau coordinates, with X as the central atom, can be written
as the sum of an angular contribution 7,,, to the vibrational kinetic energy
operator in the six angular coordinates «;; and stretching kinetic energy T, .

Thus the J = 0 Hamiltonian is
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where p is the mass of atom Y, r; is the Radau radial vector, and «;; is the
angle between the vector r; and r;. In this work these angles are fixed at

their equilibrium value, the tetrahedral angle, giving an effective stretching



Hamiltonian. This eliminates Ty,4; the following paper deals with solution

of the angular problem [9].

2.2 Symmetry, basis functions and matrix elements

For the radial problem, we evaluate the kinetic energy matrix elements for
each of five possible total symmetry types denoted in standard point group
notation A;, Ay, E, Fi, Fo. For a symmetrized basis set it is necessary to
consider basis functions which satisfy the relationship N > a >b>c¢c > d
where N denotes the highest quantum number in the basis and hence controls
size of the basis set. Symmetrized functions arise from eight different basis

types which can be denoted:
aaaa, abbb, aaad, aace, abee, abbd, aacd, abed (4)

For example, the wavefunction in case abbb with A; and Fy, symmetry types

1S

|abbb, A, >= %(abbb + babb + bbab + bbba) (5)
|abbb, Fyy >= %(abbb — babb + bbab — bbba) (6)
|abbb, Fy, >= %(abbb — babb — bbab + bbba) (7)
|abbb, Fy, >= %(abbb + babb — bbab — bbba) (8)

General forms for these basis functions are given by Child and Halonen [12],
who actually only consider 5 rather than the 8 classes used here. We have re-
derived the functions of Child and Halonen; our results agree with theirs with
the exception of the |abed, F; > functions which we find to take the opposite

sign. This phase difference is not significant in some case but matters for

5



method of computing the matrix elements over the potential, see eq. (10)
below.

Symbolic kinetic energy matrix elements for these symmetrized basis
functions were derived by hand and checked by using Mathematica. In
all cases the matrix elements can be reduced to simple sums over one-

dimensional integrals. These were then coded in fortran 90.

2.3 Potential matrix elements

As we assume an arbitrary form for the stretching potential energy hyper-
surface, the integration must be done numerically, using quadrature, in four
dimensions. Initially we took advantage of the symmetry of the basis func-
tion but not of the quadrature. The numerical evaluation of radial potential

matrix elements is then given by

M M M M

< abed, T|V]aVCd, T >= 33" 3 Y wapns Ui @f10) Uy (0B70)V (0570)
a=1p=17=14=1
(9)
where 37§ denote a point in four M*-order (Gaussian) quadrature grids
and wqgys is the corresponding product of weights. This approach is demand-
ing of both memory and CPU time. It is also inefficient as it involves repeat
evaluation of the potential at points related by symmetry.
We have therefore derived formulae for symmetrized quadrature based
on use of the reduced set of points given by M > a > > v > 4§ > 1.
This somewhat complicates the expression for the potential matrix elements

as this symmetrization mixes different components (denoted I'; below) for



Table 1: Weighting factor for the possible combination of grid point with

symmetry.
Case grid points W
1 acor 1
2 appp 4
3 acad 4
4 aayy 6
5 afyy 12
6 afpé 12
7 aayd 12
8 afyd 24

degenerate representations. The new expression is:

< abed, T|V|a'b'dd', T >=h7} fj i i iwgwwama) i Ol (aByd) UL, .. (aByd),
a=18=17=14=1 i=1
(10)
where h is the degree of degeneracy. h = 1,2, 3 for A, E and F representations
respectively.
Our new formulation only requires the potential evaluations at unique
points. The weight w; s s in eq (10) is related to the standards weights wag.s
in eq (9) by a factor which depends on the number of unique geometries
there are for the particular combination of grid points. Again there are eight
possible cases which are listed in Table 1 along with their extra weighting,

W. The new weight is then given by
Wapys = WWapys- (11)
The new algorithm is not only more efficient in computer time, since it sig-
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Table 2: Optimized Morse parameters [15] of methane, silane and germane

in atomic units.

Molecule We Te D,
CH, 0.01279 2.2298 0.0445
SiH, 0.00916 3.0988 0.1725

GeHy 0.00902 3.1624 0.1582

nificantly reduces the number of potential evaluations, it also uses much less
memory. This is because our algorithm involves storing the wavefunctions in
memory at each integration point, thus reducing the number of points saves
memory. In practice the new algorithm is some 5 to 20 times quicker than
the old one, depending on the details of the problem under investigation, and

reduces the overall memory requirement by more than a factor of 20.

2.4 Computational details

The radial motions were represented using a basis of Morse oscillator-like
functions of Tennyson and Sutcliffe [13]. These Laguerre polynomial func-
tions, which are adapted from standard Morse functions to provide a com-
plete set, have proved very successful for triatomic species [14]. In this
scheme, the basis functions are parameterized using the Morse parameter
We, Te, De [15] which can be variationally optimized for each system under
investigation. Table 2 presents the parameters optimized for the systems
considered here.

Numerical integration over the potential was performed using Gauss-
Laguerre quadrature based on the definition of the Morse-like functions.

Previous work [13] has shown that M = N + 3 grid points are sufficient



for reliable a quadrature, where N is the order of the basis functions in that
dimension. This finding was confirmed by this study and all results presented

below used this number of quadrature points.

3 Results

3.1 Basis set convergence

For testing purposes we used the local mode, valence coordinate potential
function of Halonen and Child [12]. Tables 3 and 4 show convergence of
our calculations with increasing basis set size for A; symmetry calculations
on methane and germane respectively. Other symmetries show similar con-
vergence characteristics. Silane, considered further below, was found to be
intermediate between the other two systems.

The tables show that, for most states considered, excellent convergence
with respect to increasing basis set size is achieved for N = 26, which implies
a matrix of size 1683 for A; symmetry. However there are a few states which
show markedly slower convergence than the others. Analysis showed that
these states were the pure local modes (see Jensen [16]) and have the general
assignment (n000, A;).

For example, use of N = 18 converges the (6000, A;) local mode state
converge to within 0.06 cm™! for germane, 0.67 cm™! for silane and 9.28 cm ™!
for methane. Increasing N to 24 converges these states but only converges the
(8000, A;) local mode state to 0.32 cm™! for germane, 0.11 cm ™! for silane
and a very poor 137.79 cm™! for methane. For all lower states, the N =

1

24 basis converges the energies to within 0.1 cm™ . Calculations reported

below were therefore performed using the N = 24 basis. This gives final



Table 3: Vibrational band origins, in cm™!, for the I stretching state of

methane with A; symmetry as function of basis set size.
E26 E24 - E26 E21 - E24 E18 - E21 E15 - EIS

I=1 2918.42 0.00 0.00 0.00 0.00
2 5798.85 0.00 0.00 0.00 0.00
3 6035.95 0.00 0.00 0.00 0.00
5  8625.64 0.00 0.00 0.00 0.01
6  8796.00 0.00 0.00 0.00 0.01
7 9084.07 0.00 0.00 0.00 0.00
8 11345.11 0.00 0.01 0.09 0.63
9 11533.06 0.00 0.00 0.03 0.25

10 11808.71 0.00 0.00 0.01 0.11
11 11933.59 0.00 0.00 0.00 0.01
21 17106.59 0.03 0.13 0.35 4.51
27 18700.82 10.69 64.16 202.74 320.62
28 19311.59 1.29 9.71 71.06 288.68
29 19704.65 0.11 0.86 9.69 182.65
31 19929.84 0.12 0.48 1.32 13.36
38 20874.50 0.00 0.01 0.09 0.73

matrices of dimension 1298, 515, 1690, 2163 and 2933 for A, Ay, E, F; and
Fy symmetries respectively. The notation Ey stands for the energy obtained
from a basis set with up to /V one-dimensional stretching basis function and

N + 3 quadrature points.

3.2 Comparison with experiment

Calculations were performed using a number of potentials for methane, silane
and germane. The results of these calculations were compared with previous

studies and known experimental band origins. These results are presented in
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Table 4: Vibrational band origins, in cm™', for the I'" stretching state of

germane with A; symmetry as function of basis set size.
E26 E24 - E26 E21 - E24 E18 - E21 E15 - E18

I=1 2110.77 0.00 0.00 0.00 0.00
2 4153.51 0.00 0.00 0.00 0.00
3 4221.96 0.00 0.00 0.00 0.00
4  6127.71 0.00 0.00 0.00 0.00
5  6264.83 0.00 0.00 0.00 0.01
6 6333.56 0.00 0.00 0.00 0.01
7 8033.53 0.00 0.00 0.00 0.00
8 823943 0.00 0.00 0.00 0.04
9 8308.22 0.00 0.00 0.00 0.03

10 8376.57 0.00 0.00 0.00 0.11
11 8445.59 0.00 0.00 0.00 0.02
21 12258.00 0.00 0.00 0.00 0.10
26 13340.74 0.01 0.17 1.92 19.38
27 13752.66 0.00 0.01 0.28 6.00
28 14027.48 0.00 0.00 0.01 1.09
29  14096.04 0.00 0.00 0.02 2.02
31 14164.65 0.00 0.00 0.00 1.00
38 14973.37 0.32 4.06 25.86 121.99
41 15865.71 0.00 0.04 0.76 18.30
51  16543.82 491 3.32 0.32 38.17
52  16552.05 0.00 37.18 32.08 12.31
53 16621.27 0.00 0.00 105.22 321.95
60 17979.18 0.00 0.05 1.15 43.77
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tables 5 — 7. For nearly all states our results are stable to better than 0.01
cm ! with respect to increasing the basis. A full set of calculated vibrational
band origins for each system, covering all 5 symmetries has been placed in
the journal archive.

For methane, we used the ab initio stretching potential functions of
Schwenke and Partridge [3], and the empirically determined one of Halo-
nen [6]. Results for the band origins are given in table 5. The table also
compares with results given in the cited works, both of which only consider
relatively low levels of excitation.

The source of the differences between our calculations and previous ones
is somewhat different in origin. Halonen [6] employed a second-order per-
turbation theory expansion and a spectroscopic model. His third-order force
constant expansion, which we employ here, is thus not exactly the same po-
tential as the one implied by his model. Conversely Schwenke and Partridge
[3] performed full coupled stretch-bend calculations, albeit over a limited en-
ergy range. Differences with their results thus gives a measure of the impor-
tance of stretch-bend coupling determining the band origins of the stretching
states. The importance of these stretch-bend coupling effects for methane
means that little is to be gained from a direct comparison of our results
to the experimental data. However our method is capable of getting con-
verged results over the entire range of energies for which experimental data

are available, which extends to over 20,000 cm™!.

This suggests that with
the inclusion of stretch-bend coupling this procedure should be capable of ad-
dressing problems which cannot be tackled by other variational approaches.

For silane, calculations were performed using two spectroscopically de-

termined potentials due to Halonen and Child [12], see Table 6. Compari-
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son is made with the more approximate stretch-only calculations of Halonen
and Child, and of Wang and Silbert [24]. Unlike methane, the various ap-
proximate treatments all give results both in reasonable agreement with the
experimental measurements [17, 18, 19, 20, 21, 22] and each other. All the
results generally agree within 2 cm™! for the lower states and 5 cm ™! for the
higher ones. Silane is a much stronger local mode system than methane. It
would appear that for silane, not only is stretch-bend coupling greatly re-
duced, but that the stretching motion can be treated to reasonable accuracy
using methods based on approximate expansions.

The vibrations of germane have a very strongly local mode character,
one would therefore anticipate that this system should also be amenable to
a stretch-only treatment. Our calculations performed using the two model
potential energy surfaces (denoted PES (1) and (2)) due to Halonen and
Child [12]. Calculations using this surface gave results in good agreement
with those of Halonen and Child (not given) and with the experimental

band origins [25, 27, 28, 29], see Table 7. For lower states our calculations

1 1

reproduce experiment to within 1 ecm™", although this increases to 5 cm™
for higher stretching states.

We have also performed calculations using the more recent potential en-
ergy surface of Zhu et al. [27], whose fitted potential gives results in almost
perfect agreement with their related experimental studies [23, 29]. Our cal-
culations generally support the calculations of Zhu et al., who used a more
approximate perturbative treatment. However we show that while potential

remains good, it is less exact for vibrational band origins not considered in

the study.
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Table 5: Band origins, in cm™", of the stretching vibrational states of

methane. For observed band origins, results are given as observed — cal-

culated.

observed Halonen [6] Schwenke and Partridge [3]

[6] this work (3] this work

10004; 2916.48 [5] 1.85 —-1.94 2.71 —14.54
1000F;, 3019.49 [5] —1.60 —39.72 5.29 —20.28
20004; 5790.25 [5] —0.69 —8.99 —3.95 —30.75
2000F, 6004.60 [5] —3.30 —36.22 8.40 —26.88
30004, 8625.63 8633
3000F, 8807 [2] —64 52
40004, 11345 11271
A000F, 11277 [2] 77 3
50004, 13919 13666
5000F, 13755 [2] —165 88
60004, 16368 16643
6000F, 16155 [2] —213 —489
7000A, 18700 18843
7000F, 18420 [2] —291 423
8000A, 21082 21261
8000F, 20600 [2] —620 —609
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Table 6: Band origins, in cm™?, of the stretching vibrational states of silane.

For observed band origins, results are given as observed — calculated.

observed Model 1 [12] [24] Model 2 [12]

[12] this work this work [12] this work
10004;  2186.87 [17] 0.07 0.01 0.31 0.27 0.18
1000F5 2189.19 [17] 0.89 1.95 1.18 0.39 1.43
20004;  4308.87 [21] 1.07 2.57 123 -0.23 1.23
2000F% 4309.35 [21] 0.45 1.91 1.61 0.15 1.65
11004, 4374.56 [24] —1.34 —0.95 —0.04 —0.54 —0.11
1100F,  4378.40 [24] 0.90 2.41 2.35 1.10 2.66
1100E 4380.28 [24] 1.88 4.03 3.51 1.88 4.00
30004;  6362.05 [20] -0.15 2.04 1.83 —0.65 1.45
3000F> 6362.05 [20] —0.15 2.01 1.82 —0.65 1.45
2100F, 6496.13 [22] —2.47 0.08 0.16 —1.47 0.10
2100F, 6497.45 [22] —1.95 0.51 —0.48 0.75 —0.03
21004;  6500.30 [24] 0.30 2.08 4.91 —0.30 4.69
2100F; 6500.60 [24] -0.20 1.52 3.25 0.80 3.56
2100F 6502.88 [24] 1.38 3.64 6.32 4.48 6.41
40004;  8347.86 [20] —0.74 2.09 2.70 -1.14 1.64
4000F% 8347.86 [20] —0.74 2.09 2.69 -1.14 1.64
31004, 8533.70 8551.17 8549.30 8552.10 8549.74
3100F3 8551.88 [23] —2.42 0.39 2.50 —0.32 2.08
3100F 8555.00 8551.70 8550.41 8553.70 8550.57
3100F; 8553.50 [23] —2.60 0.34 3.04 -0.30 2.90
50004; 10266.49 [17] -1.31 2.12 3.94 —1.41 1.94
5000F, 1026649 [17]  —1.31 2.12 394  —141 1.93
4100A4; 10542.70 [24] 0.00 3.05 7.67 3.60 6.56
4100F, 10542.70 [24] —0.10 3.06 7.66 3.60 6.55
60004,  12120.00 [23] 0.20 417 7.34 0.60 441
6000F> 12120.00 [23] 0.20 4.17 7.34 0.60 4.41
70004; 13900.40 [24] —4.20 0.26 —-1.96 -3.20 0.43
7T000F>  13900.40 [24] —4.20 0.26 —-1.96 -3.20 0.43
80004; 15625.40 [24] 3.20 7 5.40 9.45
8000F, 15625.40 [24] 3.20 7.94 5.40 9.45
90004; 17266.60 [24] —6.00 —4.53 —4.00 —1.93
9000F> 17266.60 [24] —6.00 —4.53 —4.10 -1.93




Table 7: Band origins, in cm ™!, of the stretching vibrational states of °GeHy.

For observed band origins, results are given as observed — calculated.
observed PES1[12] PES2[12] Zhu et al. [27]
this work  this work  [27] this work

10004;  2110.72 [26] -0.04 -0.04 0.14 0.14
1000F% 2112.03 [26] 0.01 -0.00 0.37 0.56
20004;  4154.80 [27] 0.05 -0.15 0.18 0.46
2000F, 4155.12 [27] 0.10 0.12  0.03 0.31
11004, 4222.82 4222.47 4222.28
1100F; 4224.10 4223.73 4223.19
30004;  6130.45 [27] 0.28 0.60 -0.28 0.13
3000F% 6130.45 [28] 0.26 0.60 -0.31 0.11
2100F; 6267.30 6266.02 6266.83
21004;  6265.20 [23] -2.41 -1.33 -1.59
40004, 8036.95 8036.28 8038.17
4000F> 8036.95 8036.27 8038.17
3100A 8243.00 8241.78 8242.91
3100F, 8243.36 8241.83 8243.22
50004;  9878.60 [29] 3.19 4.31 0.40
5000F, 9878.60 [29] 3.20 4.31 0.40
41004, 10150.85 10148.55 10151.84
4100F> 10150.85 10148.55 10151.84
60004; 11650.33 [25] 4.48 6.46 -0.84 -0.10
6000F, 11650.33 [25] 4.78 6.46 -0.84 -0.10
70004; 13356.06 [25] 8.49 10.86 -0.22 1.18
7000F> 13356.06 [25] 8.49 10.86 -0.22 1.18
80004, 14985.66 14982.78 14992.09
8000F, 14996.41 [25] 10.75 13.63 2.76 4.32
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Table 8: Band origins, in cm™', of the stretching vibrational states of "*GeH,

and ™GeD,. For observed band origins, results are given as observed —
calculated.
observed PES1[12] PES2([12] Zhu et al. [27]

this work  this work  [27] this work
4 GeH,y
100044 2110.70 [26] -0.07 -0.07  0.11 0.11
1000F5 2111.14 [26] 0.15 0.14 0.52 0.70
20004, 4153.57 [27] 0.28 0.07 044 0.69
2000F> 4153.82 [27] 0.09 0.30 0.26 0.50
1100A4, 4222.33 4221.96 4221.79
1100F5 4222.70 [23] 0.14 0.51 1.04
30004, 6128.60 [27] 0.53 0.89 0.06 0.43
3000F; 6128.60 [27] 0.56 0.89 0.04 0.42
2100F,  6263.70 [29] “1.59 1.44 -2.09
21004, 6266.09 6264.83 6265.60
40004, 8034.40 [23] 0.22 0.87 -0.99
4000F3 8034.40 [23] 0.22 0.87 -1.00
31004,  8241.00 [23] 0.38 1.57 0.49
3100F,  8241.06 [23] 0.31 1.63 0.60
22004, 8309.66 8308.22 8308.88
2200F,  8310.30 [29] 0.21 2.07 0.98
2110F, 8378.60 [29] 0.27 1.89 -0.33
21104;  8380.10 [23] 0.44 3.27 3.08
500044 9875.78[29] 3.71 4.81 0.92
5000F; 9875.78[29] 3.71 4.81 0.92
4100A; 10148.10 [25] 0.26 2.55 -0.71
4100F, 10148.10 [25] 0.24 2.55 -0.73
6000A; 11647.23 [25] 5.53 719 -0.02 0.66
6000F> 11647.23 [25] 5.53 719 -0.02 0.66
70004; 13352.66 [25] 9.57 11.91 0.82 2.10
7000F, 13352.66 [25] 9.57 11.91 0.82 2.10
80004, 14976.84 11#973.69 14987.35
8000F, 14976.84 14973.69 14987.35
" GeDy
10004;  1509.40[29] 2.30 2.11 2.68
1000F5 1522.70[29) 2.30 2.10 2.68
2000F, 3003.52[29] 5.41 5.31 5.71




4 Conclusions

We have developed a general variational method for treating the stretch-only
vibrational motions of XY, systems. Particularly important is our procedure
for computing matrix elements over the potential energy surface by consid-
ering only the unique points on the surface.

Test calculations performed on methane, silane and germane in each case
extend very considerably the range of stretching states for which converged
results have been obtained. Comparison of our results with previous low
energy studies suggests that the strength of stretch-bend coupling in methane
makes stretch only calculations unreliable. Conversely the stretches of silane
and germane, which are strongly local-mode in character, appear to be well
represented by our stretch only procedure.

The development of a stretch only method for XY, systems represents a
first step in our project to develop a general variational method for treating all
9 vibrational degrees of freedom in these systems at high levels of excitation.
The second step in this project, the solution of the five dimensional bend-only

problem, is discussed in the following paper [9].
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