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ABSTRACT
In this paper, we propose a novel statistical capacitance extraction
method for interconnects considering process variations. The new
method, called statCap, is based on the spectral stochastic method
where orthogonal polynomials are used to represent the statistical
processes in a deterministic way. We first show how the variational
potential coefficient matrix is represented in a first-order form us-
ing Taylor expansion and orthogonal decomposition. Then an aug-
mented potential coefficient matrix, which consists of the coeffi-
cients of the polynomials, is derived. After that, corresponding
augmented system is solved to obtain the variational capacitance
values in the orthogonal polynomial form. Experimental results
show that our method is two orders of magnitude faster than the
recently proposed statistical capacitance extraction method based
on the spectral stochastic collocation approach [18] and many or-
ders of magnitude faster than the Monte Carlo method for several
practical interconnect structures.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-aided design(CAD);
I.6.5 [Simulation and Modeling]: Model Development; G.3 [Proba-
bility and Statistics]: Statistical computing

General Terms
Design, Algorithms

Keywords
Capacitance extraction, process variations, random variable reduc-
tion, orthogonal decomposition

1. INTRODUCTION
It is well accepted that the process-induced variability has huge

impacts on the circuit performance in the sub-100nm VLSI tech-
nologies [12, 11]. The variational consideration of process has to
be assessed in the various VLSI design steps to ensure robust circuit
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design. Process variations consist of both systematic ones, which
depend on patterns and other process parameters, and random ones,
which have to be dealt with using stochastic approaches.

To consider the variation impacts on the interconnects, one has
to consider the RLC extraction processes of the three-dimensional
structures modeling the interconnect conductors. In this paper, we
investigate the geometry variational impacts on the extracted ca-
pacitance. Statistical extraction of capacitance considering process
variations has been studied recently and several approaches have
been proposed [7, 18, 4, 19, 17] under different variational models.
Method in [7], uses analytical formulae to consider the variations
in capacitance extraction and it has only first-order accuracy. The
FastSies program considers the rough surface effects of the inter-
connect conductors[19]. It assumes only Gaussian distributions and
has high computation costs. In [4], a method combining hierarchi-
cal extraction and principle factor analysis is proposed. The capac-
itance extraction is done based on second-order perturbation in this
method, which can generate quadratic variational capacitance for
better accuracy.

Recently, a spectral stochastic collocation based capacitance ex-
traction method was proposed [18]. This approach is based on the
Hermite orthogonal polynomial representation of the variational
capacitance. It applies the collocation idea, where the capacitance
extraction processes (by solving the potential coefficient matrices)
are performed many times by sampling so that the coefficients of
orthogonal polynomials of variational capacitance can be computed
using the weighted least square method. The number of samplings
is O(m2), where m is the number of variables. So if m is large,
the approach will lose it efficiency compared to the Monte Carlo
method.

In this paper, instead of using collocation method, we use a dif-
ferent spectral stochastic method, where the Galerkin scheme is
used. Galerkin-based Spectral stochastic method has been applied
for statisitical interconenct modeling [14, 1] and on-chip power grid
analysis consider process variations in the past [9, 8].

The new method, called statCap, first transforms the original
stochastic potential coefficient equations into a deterministic and
larger one and then solves it using iterative method. It avoids the
sampling process in the existing collocation-based extraction ap-
proach. As a result, the potential coefficient equations and the cor-
responding augmented system only need to be set up once versus
many times in the collocation based sampling method. This can
lead to a significant saving in CPU time. Also the augmented poten-
tial coefficient system is sparse, symmetric and low-rank, which is
further exploited by an iterative solver to gain further speedup. Ex-
perimental results show that the proposed method can deliver two
orders of magnitude speedup over the collocation based spectral
stochastic method and many orders of magnitude over the Monte
Carlo method.

The rest of this paper is organized as follows: Section 2 presents
statistical capacitance extraction problem to be solved. Section 3
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reviews the orthogonal polynomial chaos based stochastic simula-
tion methods and Section 4 presents our new statistical capacitance
extraction method. Section 5 presents the experimental results and
Section 6 concludes this paper.

2. PROBLEM FORMULATION
For m conductors system, the capacitance extraction problem

based on the Boundary Element Method (BEM) formulation is to
solve the following integral equation [10]:

Z
S

1
|ri − r j|ρ(r j)da j = v(ri) (1)

where ρ(r j) is the charge distribution on the surface at conductor
j, v(ri) is the potential at conductor i and 1

|ri−r j| is the free space

Green function 1. da j is the surface area on conductor j. ri and r j
are point vectors. To solve for capacitances from one conductor to
the rest of others, we set the conductor’s potential to be one and all
other m−1 conductors’ potential to be zero. The resulting charges
computed are capacitances. BEM method divides the surfaces into
N small panels and assume uniform charge distribution on each
panel, which transforms (1) into a linear algebraic equation

Pq = v (2)

where P ∈ RN×N is the potential coefficient matrix, q is the charge
on panels, v is the pre-set potential on each panel. By solving above
linear equation, we can obtain all the panel charges (thus capac-
itance values). In potential coefficient matrix P, each element is
defined as

Pi j =
1
s j

Z
Sj

G(xi,x j)da j (3)

where G(xi,x j) = 1
|xi−x j| is the Green function of point source x j.

S j is the surface of panel j and s j is the area of panel j.
Process variations introduce conductor geometry variations are

reflected on the fact that the size of panel and distances between
panels become random variables. Here we assume the panel is still
a two dimensional surface. These variations will make each ele-
ment in capacitance matrix follow some kinds of random distribu-
tions. The problem we need to solve now is to derive this random
distribution and then to effectively compute the mean and variance
of involved capacitance given geometry randomness parameters.

In this paper, we follows the variational model introduced in [4],
where each point in panel i is disturbed by a vector Δni that has the
same direction as the normal direction of panel i.

xi
′ = xi +Δni (4)

where the length of the Δni follows Gaussian distribution |Δni| ∼
N(0,σ2). If the value is negative, it means the direction of the per-
turbation is reversed. The correlation between random perturbation
on each panel is governed by the empirical formulation such as the
exponential model [20]

γ(r) = e−r2/η2
(5)

where r is the distance between two panel centers and η is the cor-
relation length.

The most straightforward method is to use Monte Carlo(MC)
simulation to obtain distribution, mean and variance of all those
capacitances. But MC method will be extremely time consuming as
each sample run requires the formulation of the changed potential
coefficient matrix P.

1Note that the scale factor 1/(4πε0) can be ignored here to simplify
the notation and is used in the implementation to give results in
units of farads.

3. REVIEW OF SPECTRAL STOCHASTIC
METHOD

In this section, we briefly review the spectral stochastic or or-
thogonal polynomial chaos (PC) based stochastic analysis methods.

3.1 Concept of Hermite polynomial chaos
In the following, a random variable ξ(θ) is expressed as a func-

tion of θ, which is the random event. Hermite PC utilizes a series of
orthogonal polynomials (with respect to the Gaussian distribution)
to facilitate stochastic analysis [3, 16]. These polynomials are used
as orthogonal basis to decompose a random process.

We remark that for the Gaussian and log-normal distributions,
using Hermite polynomials is the best choice as they lead to expo-
nential convergence rate [3]. For non Gaussian and non log-normal
distributions, there are other orthogonal polynomials such as Leg-
endre for uniform distribution, Charlier for Poisson distribution and
Krawtchouk for Binomial distribution, etc [2, 14].

Given a random variable v(t,ξ) with variation, where ξ = [ξ1, ...,ξn]
denotes a vector of orthonormal Gaussian random variables with
zero mean, the random variable can be approximated by a truncated
Hermite PC expansion as follows: [3]

v(t,ξ) =
P

∑
k=0

akHn
k (ξ), (6)

where n is the number of independent random variables, Hn
k (ξ) are

n-dimensional Hermite polynomials, and ak are the deterministic
coefficients. The number of terms P is given by

P =
p

∑
k=0

(n−1+k)!
k!(n−1)!

, (7)

where p is the order of the Hermite PC. For simplification of ex-
planation, only one random variable is considered, and the one-
dimensional Hermite polynomials are expressed as follows:

H1
0 (ξ) = 1,H1

1 (ξ) = ξ,H1
2 (ξ) = ξ2 −1,H1

3 (ξ) = ξ3 −3ξ, . . . (8)

The Hermite polynomials are orthogonal with respect to Gaussian
weighted expectation (the superscript n is dropped for simple nota-
tion):

< Hi(ξ),Hj(ξ) >=< H2
i (ξ) > δi j, (9)

where δi j is the Kronecker delta and < ∗,∗> denotes an inner prod-
uct defined as:

< f (ξ),g(ξ) >=
1√

(2π)n

Z
f (ξ)g(ξ)e−

1
2 ξT ξdξ. (10)

Thus, the coefficients, ak , are evaluated by the projection operation
onto the Hermite PC basis:

ak(t) =
< v(t,ξ),Hk(ξ) >

< H2
k (ξ) >

, ∀k ∈ {0, . . . ,P}. (11)

3.2 Computing coefficients, the mean and vari-
ance from Hermite PCs

In case that q(ξ) in (2) is unknown random variable vector (with
normal distribution), then potential coefficient equation become

P(ξ)q(ξ) = v (12)

Where both P(ξ) and q(ξ) are in Hermite PC form. Then the coeffi-
cients can be computed by using Galerkin method. The principle of
orthogonality states that the best approximation of v(ξ) is obtained
when the error, Δ(ξ), defined as

Δ(ξ) = P(ξ)q(ξ)−v (13)

is orthogonal to the approximation. That is

< Δ(ξ),Hk(ξ) >= 0, k = 0,1, . . . ,P, (14)
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where, Hk(ξ) are Hermite polynomials. In this way, we have trans-
formed the stochastic analysis process into a deterministic form,
whereas we only need to compute the corresponding coefficients
of the Hermite PC.

For the illustration purpose, considering two Gaussian variable
ξ = [ξ1,ξ2], we assume that the charge vector in panels can be writ-
ten as a second order (p = 2) Hermite PC, we have

q(ξ) = q0 +q1ξ1 +q2ξ2 +q3(ξ2
1 −1)+

q4(ξ2
2 −1)+q5(ξ1ξ2). (15)

which will be solved by using augmented potential coefficient ma-
trices to be discussed in Section 4. Once the Hermite PC of q(ξ)
is known, the mean and variance of q(ξ) can be evaluated trivially.
Given an example, for one random variable, the mean and variance
are calculated as:

E(q(ξ)) = q0

Var(q(ξ)) = q2
1Var(ξ)+q2

2Var(ξ2 −1)

= q2
1 +2q2

2. (16)

In consideration of correlations among random variables, we ap-
ply principal component analysis (PCA) to transform the correlated
variables into a set of independent variables.

4. NEW ORTHOGONAL POLYNOMIAL
BASED EXTRACTION METHOD: STAT-
CAP

In this section, we present our new spectral stochastic method
based method, statCap, which uses the orthogonal polynomials to
represent random variables starting from the geometry parameters.
This is contrast to existing approach [18], where only the capaci-
tances are presented by the orthogonal polynomials.

In our new method, we first represent the variation potential ma-
trix P into a first-order form using Taylor expansion. We want to
stress that our method can be further extended to the second-order
based extraction.

4.1 Expansion of potential coefficient matrix
Specifically, each element in the potential coefficient matrix P

can be expressed as:

Pi j =
1
s j

Z
Sj

G(xi,x j)da j (17)

where G(xi,x j) is the free space Green function define in (3).
Notice that if panel i and panel j are far away (their distance is

much larger than the panel area), we can have the following ap-
proximation [4]:

Pi j ≈ G(xi,x j) i �= j (18)

Suppose variation of panel i can be written as Δni = δi
→
ni where

→
ni

is the unit normal vector of panel i and δi is the scalar variation.
Then use Taylor expansion on the Green function,

G(xi +Δni,x j +Δn j) =
1

|xi −x j +Δni −Δn j| (19)

=
1

|xi −x j | +∇
1

|xi −x j| · (Δn j −Δni)+O((Δni −Δn j)2) (20)

From free space Green function, we have

∇G(xi,x j) = ∇
1

|xi −x j| = ∇
1

| →r |
=

→
r

| →r |3
(21)

→
r = xi −x j (22)

In this paper, we ignore the second order terms to make the vari-
ation in the affine form. As a result, the potential coefficient matrix
P can be written as

P ≈ P0 +P1 =⎛
⎜⎝

G(x1 +Δn1,x1 +Δn1) . . . G(x1 +Δn1,xn +Δnn)
G(x2 +Δn2,x1 +Δn1) . . . G(x2 +Δn2,xn +Δnn)

. . . . . . . . .
G(xn +Δnn,x1 +Δn1) . . . G(xn +Δnn,xn +Δnn)

⎞
⎟⎠

(23)
where

P0 =

⎛
⎜⎝

G(x1,x1) G(x1,x2) . . . G(x1,xn)
G(x2,x1) G(x2,x2) . . . G(x2,xn)

. . . . . . . . . . . .
G(xn,x1) G(xn,x2) . . . G(xn,xn)

⎞
⎟⎠

P1 =

⎛
⎜⎝

0 . . . ∇G(x1,xn) · (Δnn −Δn1)
∇G(x2,x1) · (Δn1 −Δn2) . . . ∇G(x2,xn) · (Δnn −Δn2)

. . . . . . . . .
∇G(xn,x1) · (Δn1 −Δnn) . . . 0

⎞
⎟⎠

We can further write the P1 as the following form:

P1 = V1 ·N1 · J1 −J1 ·N1 ·V1 (24)

J1 =

⎛
⎜⎝

0 ∇G(x1,x2) . . . ∇G(x1,xn)
∇G(x2,x1) 0 . . . ∇G(x2,xn)

. . . . . . . . . . . .
∇G(xn,x1) . . . ∇G(xn,xn−1) 0

⎞
⎟⎠

where

N1 =

⎛
⎜⎜⎝

→
n1 0 . . .

0
→
n2 . . .

. . . . . . . . .

0 . . .
→
nn

⎞
⎟⎟⎠

V1 =

⎛
⎜⎝

δn1 0 . . .
0 δn2 . . .
. . . . . . . . .
0 . . . δnn

⎞
⎟⎠

J1 and N1 are vector matrices and V1 is a diagonal matrix.
To deal with spatial correlation, P1 can be further expressed as

linear combination of the dominate and independent variables

ξ = [ξ1,ξ2, . . . ,ξp] (25)

through the principal component analysis (PCA) operation. As a
result, J1 can be further expressed as
⎛
⎜⎝

a11ξ1 + . . .+a1pξp 0 . . .
0 a21ξ1 + . . .+a2pξp . . .
. . . . . . . . .
. . . 0 an1ξ1 + . . .+anpξp

⎞
⎟⎠

Finally we can represent the P1 as

P1 = ∑P1iξi (26)

where

P1i = Ai ·N1 · J1 −J1 ·N1 ·Ai (27)

and

Ai =

⎛
⎜⎝

a1i 0 . . . 0
0 a2i . . . 0
. . . . . . . . . . . .
0 . . . 0 ani

⎞
⎟⎠ (28)
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4.2 Formulation of the augmented system
Once the potential coefficient matrix is represented in the affine

form as shown in (26), we are ready to solve for the coefficients P1i
by using the Galerkin method, which will result in a larger system
with augmented matrices and variables.

Specifically, for p independent Gaussian random variables
ξ = [ξ1, . . . ,ξp], there are K = 2p+ p(p−1) first and second order
Hermite polynomials. Hi(ξ) i = 1, . . . ,K represents each Hermite
polynomial and H1 = ξ1, . . . ,Hp = ξp. So for the vector of varia-
tional potential variables q(ξ), it can be written as:

q(ξ) = q0 +
K

∑
i=1

qiHi(ξ) (29)

where each qi is a vector associated with one polynomial. So the
random linear equation can be written as:

Pq = (P0 +
p

∑
i=1

P1iHi)(q0 +
K

∑
i=1

qiHi) = v (30)

Expanding the equation and performing inner product with Hi on
both side, we can derive a new linear system equation:

(W0 ⊗P0 +
p

∑
i=1

Wi ⊗P1i)Q = V (31)

where ⊗ is the tensor product and

Q =

⎛
⎜⎝

q0
q1
. . .
qK

⎞
⎟⎠ ; V =

⎛
⎜⎝

v
0
. . .
0

⎞
⎟⎠ (32)

and

Wi =

⎛
⎜⎝

< HiH0H0 > < HiH0H1 > ... < HiH0HK >
< HiH1H0 > < HiH1H1 > ... < HiH1HK >

... . . . < HiHl Hm > ...
< HiHK H0 > < HiHK H1 > ... < HiHK HK >

⎞
⎟⎠ (33)

where < HiH0H0 > represent the inner product of three Hermite
polynomial Hi, H0, H0. The matrix (W0 ⊗P0 + ∑p

i=1Wi ⊗P1i) in
(31) is called the augmented potential coefficient matrix. Since Hi
are at most second order polynomials, we can quickly calculate
every element in Wi with a lookup table for any number of random
variables.

We remark that matrices Wi are very sparse due to the nature of
the inner product. As a result, their tenor products with P1i will
also lead to the very sparse augmented matrix in (31). As a result,
we have the following observations regarding the structure of the
Wi and the augmented matrix.

1. Observation 1: W0 is a diagonal matrix.

2. Observation 2: For Wi matrices, i �= 0, all the diagonal ele-
ments are zero.

3. Observation 3: All Wi are symmetric and the resulting aug-
mented matrix W0 ⊗P0 +∑p

i=1 Wi ⊗P1i is also symmetric.

4. Observation 4: If one element at position (l,m) in Wi is not
zero, i.e. Wi(l,m) �= 0, then elements at the same position
(l,m) of Wj , j �= i, must be zero. In other words,

Wi(l,m)·Wj(l,m) = 0 when i �= j

∀ i, j = 1, . . . ,P and l,m = 1, . . . ,K

Such sparse property can help save the memory significantly as we
do not need to actually perform the tensor product as shown in (31).
Instead, we can add all Wi together and expand each element in the
resulting matrix by some specific P1i during the solving process, as
there is no overlap among Wi for any element position.

As the original potential coefficient matrix is low rank, the aug-
mented matrix is also low rank. As a result, the sparsity, low rank
and symmetric properties can be exploited by iterative solvers to
speed up the extraction process as shown in the experimental re-
sults. In our implementation, the Minimum Residue Conjugate
Gradient method [13] is used as the solver since the augmented
system is symmetric.

5. EXPERIMENTAL RESULTS
In this section, we compare the results of the proposed statCap

method against the Monte Carlo method and the SSCM method [18],
which is based on the spectral stochastic collocation method. The
proposed method statCap has been implemented in Matlab 7.0. We
use Minimum Residue Conjugate Gradient method as the iterative
solver. We also implement the SSCM method in Matlab using the
sparse grid package [6, 5]. We do not use any hierarchical algo-
rithm to accelerate the calculation of the potential coefficient ma-
trix for both statCap and SSCM. Instead, we use analytic formula
in [15] to compute the potential coefficient matrices.

All the experimental results are carried out in a Linux system
with dual Intel Xeon CPUs with 3.06Ghz and 2GB memory.

We test our algorithm on three test cases. The three examples are
1×1 bus with 28 panels, 2×2 bus with 352 panels, which is shown
in Fig. 1, and three-layer metal plane capacitance with 75 panels
shown in Fig. 2. In all experiments, we set standard deviation as
10% of the wire width and the η, the correlation length, as 200%
of the wire width.

Figure 1: A 2×2 bus.

First, we compare the CPU times of the three methods. The re-
sults are summarized in Table 1, where MC(1000) means that 1000
runs used in MC method. The more specific running parameters,
number of panels and number of random variables for each test-
ing cases are summerized in Table 2 to Table 7. In those tables,
statCap refers to our proposed method. All the capacitances are in
picofarad.

It can be seen that statCap is much faster than both SSCM and
Monte Carlo method. For three cases, statCap can deliver about
two orders of magnitude speedup over the SSCM and three orders
of magnitude speedup over Monte Carlo method. Notice that both
SSCM and statCap use the same random variables after PCA re-
duction.
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Figure 2: 3-layer metal planes.

Table 1: CPU Runtime (in seconds) comparison among MC,
SSCM and statCap.

1×1 bus, MC (10000)
MC SSCM statCap SP(MC) SP(SSCM)

time(s) 9414 118 3.2 2942 37
2×2 bus, MC(6000)

MC SSCM statCap SP(MC) SP(SSCM)
time(s) 286620 10588 268 1069 39

3-layer metal plane, MC(2000)
MC SSCM statCap SP(MC) SP(SSCM)

time(s) 5479 387 7.6 721 51

We notice that both Monte Carlo and SSCM need to compute
the potential coefficient matrices each time the geometry changes.
This computation can be significant compared to the CPU time of
solving potential coefficient equations. This is one of the reasons
that SSCM and MC are much slower than statCap, in which the
augmented system only needs to be setup once.

Also SSCM uses the sparse grid scheme to reduce the collocation
points in order to derive the orthogonal polynomial coefficients.
But the number of collocation points are still O(m2) for second-
order Hermit polynomials, where m is the number of variables.
Thus it requires O(m2) solutions to the changed geometry. In our
algorithm, we only need to solve the augmented system once. The
solving process can be further improved by using some advanced
solver or acceleration techniques.

Next, we perform the accuracy comparison. We test the three
algorithms on 1×1 bus and 2×2 bus examples. The statistics for
1×1 bus case from the three algorithms are summarized in Table 2
and Table 3 for the mean and variance values respectively. In both
tables, PCA R.V . stands for the number of random variables after
the PCA operations. We make sure that both statCap and SSCM
use the same number of random variables.

Table 2: Capacitance mean values for the 1×1 bus.
Panel num=28, σ = 0.1, η = 2

PCA R.V. num=9
MC SSCM statCap

C11 135.93 135.99 136.58
C12 -57.12 -57.26 -57.49
C21 -57.12 -57.13 -57.49
C22 135.97 135.94 136.58

Table 3: Variance values for the 1×1 bus.
Panel num=28, σ = 0.1, η = 2

PCA R.V. num=9
MC SSCM statCap

C11 2.42 2.49 3.13
C12 1.71 1.74 2.02
C21 1.72 1.71 2.02
C22 2.51 2.52 3.19

From the tables, we can see that both SSCM and statCap give
similar results compared with the MC method.

For 2×2 bus case, we carry out 6000 times runs for Monte Carlo
simulation. The results are summarized in Table 4 and Table 5.

Table 4: Capacitance mean values for the 2×2 bus.
2x2 Bus

Panel num=352, σ = 0.1, η = 2
PCA R.V. num=10

MC SSCM statCap
C11 242.54 242.41 242.63
C12 -82.46 -82.48 -82.60
C13 -47.48 -47.34 -47.34
C14 -47.42 -47.33 -47.35
C22 242.34 242.07 242.65
C23 -47.31 -47.24 -47.36
C24 -47.25 -47.15 -47.36
C33 242.52 241.99 242.64
C34 -82.50 -82.25 -82.60
C44 242.47 242.02 242.64

Table 5: Variance values for the 2×2 bus.
Panel num=352, σ = 0.1, η = 2

PCA R.V. num=10
MC SSCM statCap

C11 3.15 2.72 3.36
C12 3.36 3.03 3.39
C13 2.06 1.94 2.17
C14 1.69 1.61 1.74
C22 4.09 3.69 4.41
C23 2.05 2.04 2.24
C24 1.81 1.76 1.99
C33 3.35 2.79 3.58
C34 3.21 2.89 3.32
C44 4.18 3.74 4.58

From Table 4 and Table 5, we can see that both statCap and
SSCM give the similar results for both mean and variance also.

The similar results of the 3-layer metal layers are summarized in
Table 6 and Table 7, for mean and variance values. The MC takes
2000 runs for this case.

6. CONCLUSION
In this paper, we have proposed a novel statistical capacitance

extraction method, called statCap, for three-dimensional intercon-
nects considering process variations. The new method is based on
the spectral stochastic method where orthogonal polynomials are
used to represent the variational geometrical parameters in a de-
terministic way. The new method avoids the sampling operations
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Table 6: The mean values of the 3-layer plane.
Panel num=75, σ = 0.1, η = 1

PCA R.V. num=8
MC SSCM statCap

C11 53.53 53.47 52.76
C12 -23.52 -23.47 -22.91
C13 -5.24 -5.25 -5.14
C22 63.56 63.40 62.42

Table 7: The variance values of the 3-layer plane.
Panel num=75, σ = 0.1, η = 1

PCA R.V. num=8
MC SSCM statCap

C11 2.19 2.0 2.02
C12 2.52 2.34 2.42
C13 0.21 0.21 0.18
C22 3.34 3.02 3.13

in the existing spectral stochastic method. It solves an enlarged
potential coefficient system to obtain the coefficients of orthogo-
nal polynomails for capacitances. statCap only needs to set up the
augmented equation once and can exploit the sparsity and low-rank
property to speedup the extraction process. Experimental results
show that our method is two orders of magnitude faster than the
recently proposed statistical capacitance extraction method based
on the spectral stochastic collocation method and many orders of
magnitude faster than the Monte Carlo method for several practical
interconnect structures.

7. REFERENCES
[1] J. Fan, N. Mi, S. X.-D. Tan, Y. Cai, and X. Hong, “Statistical

model order reduction for interconnect circuits considering
spatial correlations,” in Proc. European Design and Test
Conf. (DATE), 2007, pp. 1508–1513.

[2] R. Ghanem, “The nonlinear Gaussian spectrum of
log-normal stochastic processes and variables,” Journal of
Applied Mechanics, vol. 66, pp. 964–973, December 1999.

[3] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements:
A Spectral Approach. Dover Publications, 2003.

[4] R. Jiang, W. Fu, J. M. Wang, V. Lin, and C. C.-P. Chen,
“Efficient statistical capacitance variability modeling with
orthogonal principle factor analysis,” in Proc. Int. Conf. on
Computer Aided Design (ICCAD), 2005, pp. 683–690.

[5] A. Klimke, “Sparse Grid Interpolation Toolbox – user’s
guide,” University of Stuttgart, Tech. Rep. IANS report
2006/001, 2006.

[6] A. Klimke and B. Wohlmuth, “Algorithm 847: spinterp:
Piecewise multilinear hierarchical sparse grid interpolation
in MATLAB,” ACM Transactions on Mathematical
Software, vol. 31, no. 4, 2005.

[7] A. Labun, “Rapid method to account for process variation in
full-chip capacitance extraction,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 23, pp. 941–951, June 2004.

[8] N. Mi, J. Fan, S. X.-D. Tan, Y. Cai, and X. Hong, “Statistical
analysis of on-chip power delivery networks considering
lognormal leakage current variations with spatial
correlations,” IEEE Trans. on Circuits and Systems I:
Fundamental Theory and Applications, 2008, in press.

[9] N. Mi, S. X.-D. Tan, P. Liu, J. Cui, Y. Cai, and X. Hong,
“Stochastic extended Krylov subspace method for variational
analysis of on-chip power grid networks,” in Proc. Int. Conf.
on Computer Aided Design (ICCAD), 2007, pp. 48–53.

[10] K. Narbos and J. White, “FastCap: a multipole accelerated
3D capacitance extraction program,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 10, no. 11, pp. 1447–1459, 1991.

[11] S. Nassif, “Delay variability: sources, impact and trends,” in
Proc. IEEE Int. Solid-State Circuits Conf., San Francisco,
CA, Feb 2000, pp. 368–369.

[12] ——, “Design for variability in DSM technologies,” in Proc.
Int. Symposium. on Quality Electronic Design (ISQED), San
Jose, CA, Mar 2000, pp. 451–454.

[13] C. C. Paige and M. A. Saunders, “Solution of sparse
indefinite systems of linear equations,” SIAM J. on
Numerical Analysis, no. 4, pp. 617–629, September 1975.

[14] S. Vrudhula, J. M. Wang, , and P. Ghanta, “Hermite
polynomial based interconnect analysis in the presence of
process variations,” IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol. 25, no. 10, 2006.

[15] D. Wilton, S. Rao, A. Glisson, D. Schaubert, O. Al-Bundak,
and C. Butler, “Potential integrals for uniform and linear
source distributions on polygonal and polyhedral domains,”
IEEE Trans. on Antennas and Propagation, vol. AP-32,
no. 3, pp. 276–281, March 1984.

[16] D. Xiu and G.Karniadakis, “Modeling uncertainty in flow
simulations via generalized polynomial chaos,” J. of
Computational Physics, no. 187, pp. 137–167, 2003.

[17] Y. Zhou, Z. Li, Y. Tian, W. Shi, and F. Liu, “A new
methodology for interconnect parasitics extraction
considering photo-lithography effects,” in Proc. Asia South
Pacific Design Automation Conf. (ASPDAC), Jan. 2007, pp.
450–455.

[18] H. Zhu, X. Zeng, W. Cai, J. Xue, and D. Zhou, “A sparse
grid based spectral stochastic collocation method for
variations-aware capacitance extraction of interconnects
under nanometer process technology,” in Proc. European
Design and Test Conf. (DATE), 2007, pp. 1514–1519.

[19] Z. Zhu and J. White, “FastSies: a fast stochastic integral
equation solver for modeling the rough surface effect,” in
Proc. Int. Conf. on Computer Aided Design (ICCAD), 2005,
pp. 675–682.

[20] Z. Zhu, J. White, and A. Demir, “A stochastic integral
equation method for modeling the rough surface effect on
interconnect capacitance,” in ICCAD ’04: Proceedings of the
2004 IEEE/ACM International conference on
Computer-aided design. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 887–891.

28


