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Quantum error correction is vital for implementing universal quantum computing. A key component is

the encoding circuit that maps a product state of physical qubits into the encoded multipartite entangled

logical state. Known methods are typically not “optimal” either in terms of the circuit depth (and therefore

the error burden) or the specifics of the target platform, i.e., the native gates and topology of a system. This

work introduces a variational compiler for efficiently finding the encoding circuit of general quantum error-

correcting codes with given quantum hardware. Focusing on the noisy intermediate-scale quantum regime,

we show how to systematically compile the circuit following an optimizing process seeking to minimize

the number of noisy operations that are allowed by the noisy quantum hardware or to obtain the highest

fidelity of the encoded state with noisy gates. We demonstrate our method by deriving efficient encoders

for logic states of the five-qubit code and the seven-qubit Steane code. We describe ways to augment

the discovered circuits with error detection. Our method is applicable quite generally for compiling the

encoding circuits of quantum error-correcting codes.
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I. INTRODUCTION

Quantum error correction is the key for building large-

scale universal quantum computers [1–3] and is essential

for mitigating errors in noisy intermediate-scaled quan-

tum (NISQ) computing [4–6]. By encoding the logical

state as a multipartite entangled state of several physi-

cal qubits, it allows us to detect and even further correct

errors of the physical qubit without destroying the logical

state. The five-qubit “perfect” code is one of the earliest

known codes [7,8]. Being the smallest code that is capa-

ble of correcting an arbitrary physical error, the code is

also advantageous with low-weight stabilizer operators.

An even earlier example is the seven-qubit Steane code

[9]. Also known as the smallest two-dimensional (2D)

color code, it has low-weight and symmetrical X and Z

stabilizers. As a CSS code it further allows transversal Clif-

ford operations, thus the logical gates of the entire Clifford

group are inherently fault tolerant.

In experiment, quantum error-detecting and -correcting

codes have been implemented in different platforms rang-

ing from superconducting circuits [10–14], trapped ions

[15–18], N-V centers in a diamond [19], optics [20–23],

and others [24,25]. However, those experiments are limited

to handling only a certain type of error or with a particular
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logical state. Comprehensive demonstration of full error

correction remains a challenge for the field, mainly due

to experimental imperfect controls of the physical qubits

and theoretical inefficient compiling of the encoding and

decoding processes. Achieving proof-of-principle realiza-

tions using near-term noisy quantum devices is therefore

difficult, as the encoding, parity checks, and decoding pro-

cesses may include several dozens of imperfect gates as

well as nontrivial environmental decoherence, so that the

error burden may go beyond the capability that a code can

correct and therefore lead to a logical error that cannot be

detected and corrected.

Therefore, realizing error correction with NISQ hard-

ware requires both theoretical and experimental advances.

Theoretically, the use of classical approaches to rein-

force the performance of error-correction codes has been

exploited [26,27]. From the experimental perspective, the

manipulation of qubits should be improved to the highest

accuracy. However, different physical systems have dif-

ferent hardware arrangements, control pulses, native types

of multiqubit gates, etc. For example, the natural entan-

gling operation between two qubits with certain super-

conducting circuits and N-V centers is a form of CNOT

or CPHASE gate [28–31], while it is a Mølmer-Sørensen

gate for many trapped ion systems [32,33], and sqrt-SWAP

gate may be the native operation in quantum-dot systems

[34,35]. Meanwhile, conventional methods for the realiza-

tion of error-correcting codes do not necessarily involve

rigorous analytic or numerical optimization and therefore
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may have an unnecessarily large number of gates. It is

thus theoretically necessary to more efficiently compile

quantum error-correcting protocols against a specific hard-

ware target.

There are a number of approaches to quantum com-

pilation documented in the literature. These range from

classical methods based on exploiting perfect circuit iso-

morphisms (e.g., gate commutation) [36–40], to methods

that can “discover” near-equivalent circuits using a quan-

tum device for the compilation (or, for small circuits, an

emulator) [41–44]. In this work, we adopt an approach

more closely related to the latter, since we compile in such

a fashion to support any given noisy quantum hardware

where formal circuit equivalence may be difficult or impos-

sible to determine. We construct a variational compiler to

automatically search for circuits that encode a target log-

ical state of an error-correcting code. The procedures we

describe aim to seek circuits that are optimized in a defined

way, such that they meet all the constraints under the par-

ticular condition and they are most favorable by design.

For example, the “optimized” circuit can be one that has

the minimum number of two-qubit gates. Our procedures

cannot guarantee that the best solution found is the strictly

optimal solution. However we expect that this may indeed

be the case when our solution is more efficient than the

best circuits previously reported in the literature, or when

the automated process “rediscovers” a previously known

compact solution.

Our compiler first maps the problem into a ground-state

searching problem where the desired logical state is the

ground state of the given (synthetic) Hamiltonian. Differ-

ent from the conventional variational quantum eigensolver

cases where the energy spectra are unknown, here the

energy spectra are known and can be altered. Next, we con-

sider a set of parameterized ansatz circuits and make use of

the variational imaginary-time-evolution method [45,46]

to find the ground state, thus discovering the encoding cir-

cuit. The ansatz circuit can be tailored to meet specific

requirements of any hardware system and any optimization

target. For example, when considering quantum hardware

with only single- and two-qubit gates, we might either

minimize the number of two-qubit gates or minimize the

overall infidelity of the prepared state.

The structure of the paper is as follows. In Sec. II, we

first review the framework of quantum error correction

and introduce the problem of circuit compiling. In Sec. III,

we introduce the variational compiling algorithm including

the construction of the Hamiltonian, the design of ansatz,

and the variational imaginary time evolution. In Sec. IV,

we show numerical realizations of the compiling algorithm

for different logical states of the five-qubit and seven-qubit

codes. We consider both the noise-free and noisy circuits,

and for the latter case, we show the fidelity of the prepared

state can be boosted through different levels of postse-

lection. We compare our results to existing circuits and

discuss its applicability in NISQ computing. We discuss

applications of our results and summarize in Sec. V.

II. BACKGROUND: QUANTUM ERROR

CORRECTION

The main idea of quantum error correction is to encode

logical qubit(s) with a greater number of noisy physi-

cal qubits. Many quantum error-correcting codes can be

described by the stabilizer formalism, where the code

space is determined by the joint positive eigenspace of

a set of commutative stabilizer operators. Specifically,

considering the Pauli group Gn on n qubits,

Gn ≡ {±I , ±iI , ±X , ±iX , ±Y, ±iY, ±Z, ±iZ}⊗n, (1)

the set of stabilizers S for a quantum error-correcting

code is a subset of Gn such that −I /∈ S and elements

in S commute with each other. Suppose S is generated

by G = 〈g1, . . . , gl〉, then the code space corresponds to

quantum states |�〉L satisfying gi |�〉L = |�〉L for all sta-

bilizers gi. Here we introduce two of the most well-known

small quantum error-correcting codes—the five-qubit per-

fect code and the seven-qubit Steane code, which encode

one logical qubit state with five and seven physical qubits,

respectively. A stabilizer set for the five-qubit code is

{XZZXI , IXZZX , XIXZZ, ZXIXZ},
and for the Steane code is

{IIIXXXX , XXIIXXI , XIXIXIX , IIIZZZZ, ZZIIZZI , ZIZIZIZ}.

In the logical subspace, the code is further uniquely deter-

mined by the logical ZL operator, with ZL |0〉L = |0〉L and

ZL |1〉L = − |1〉L. A general logical pure state can be thus

represented as |�〉L = a |0〉L + b |1〉L. For the five- and

seven-qubit codes, all the logical Pauli operators can be

transversely realized with corresponding identical local

Pauli operators. That is, we have ZL = ZZZZZ and ZL =
ZZZZZZZ for the five- and seven-qubit codes, respec-

tively. For example, the logical |0〉L and |1〉L states of the

five-qubit code are defined by

|0〉L = 1

4
[|00000〉 − |00011〉 + |00101〉 − |00110〉

+ |01001〉 + |01010〉 − |01100〉 − |01111〉
− |10001〉 + |10010〉 + |10100〉 − |10111〉
− |11000〉 − |11011〉 − |11101〉 − |11110〉],

|1〉L = 1

4
[− |00001〉 − |00010〉 − |00100〉 − |00111〉

− |01000〉 + |01011〉 + |01101〉 − |01110〉
− |10000〉 − |10011〉 + |10101〉 + |10110〉
− |11001〉 + |11010〉 − |11100〉 + |11111〉].

(2)
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(a)

(b)

FIG. 1. Encoding circuit for the five-qubit code. (a) Circuit to

encode the logical minus state |−〉L [47]. (b) Circuit to encode an

arbitrary logical state [11].

In this work, we focus on the problem of how to prepare

a logical quantum state |�〉L = a |0〉L + b |1〉L by applying

an encoding circuit to a given easily prepared initial state.

We aim to find suitable circuits automatically and in

a fashion that is more optimal according to some user-

specified criteria. As context for our work, we now exhibit

a few previously reported examples of encoding circuits

for the five-qubit code and the Steane code.

For the five-qubit code, at minimum five two-qubit gates

are required to prepare a logical state. The circuit shown

in Fig. 1(a) encodes a logical minus state |−〉L with five

single-qubit gates and five CPHASE gates [47]. However, to

encode an arbitrary logical state, an extra two-qubit gate is

required; a suitable circuit is shown in Fig. 1(b) and was

recently reported in Ref. [11].

Encoding a logical qubit with the seven-qubit Steane

code requires more multiqubit gates. Figure 2(a) shows the

circuit to prepare a logical zero state |0〉L with eight CNOT

gates [48]. This circuit can also be fault tolerant given three

additional two-qubit gates and one ancilla qubit [49], as

shown in Fig. 2(b). To encode an arbitrary logical state,

one may use the circuit shown in Fig. 2(c), which has 11

CNOT gates [47].

It is in general nontrivial to find an efficient encoding

circuit for a given error-correcting code, and the circuit

found by hand may not be optimal or compatible with spe-

cific experimental hardware. The present work solves this

problem by introducing a variational way of compiling the

encoding circuit. We show in the following that even the

presented encoding circuits for the five- and seven-qubit

codes are not necessarily optimal in terms of the number

of two-qubit gates.

(a)

(b)

(c)

FIG. 2. Previously known encoding circuits for the seven-

qubit code. (a) Circuit to encode a logical zero state |0〉L[48].

(b) Circuit to fault tolerantly encode a logical zero state |0〉L

[49]. Note that logical Clifford eigenstates can also be prepared

with this circuit by applying transversal logical Clifford gates

after the error-detection process. Three CNOT gates are applied

to the ancilla qubit, which is then measured in {0, 1} basis. If the

measurement result is 1, indicating more than one bit-flip errors

occurring, the whole circuit is abandoned and restarted from the

beginning, until the ancilla qubit is measured to be 0. (c) Circuit

to encode an arbitrary logical state [47].

III. VARIATIONAL CIRCUIT COMPILING FOR

QUANTUM ERROR CORRECTION

Here we introduce the variational circuit compiler for

preparing a logical state of an error-correcting code. The

key idea is to construct a Hamiltonian so that the target

logical state is its ground state. Then with a parameterized

ansatz circuit, we optimize the parameters in order to find

the ground state of the Hamiltonian and hence the encoding

circuit of the target logical state. We can either realize the
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variational circuit compiler with a classical emulator for

small error-correcting codes, or with a quantum computer

for the general case. In the following, we first introduce

the variational circuit compiler and show how to design the

Hamiltonian. Then we review the recently proposed varia-

tional imaginary time evolution for finding the ground state

of the Hamiltonian. We also present the realization of the

compiler with quantum circuits. Finally we discuss ansatz

design with respect to different quantum hardware.

A. Variational circuit compiler

We first show that any logical state of a stabilizer code

can be straightforwardly described as the ground state

of a Hamiltonian. Suppose an error-correcting code is

stabilized by the generator set {gi}. By definition we have

gi |�〉L = |�〉L , ∀i, (3)

where |�〉L is an arbitrary logical state. The stabilizers only

force the state into the code space. Suppose the logical state

is a single-qubit state, it can be further uniquely determined

by an additional logical operator

OL = |�〉L 〈�|L − |�〉⊥L 〈�|⊥L . (4)

Suppose |�〉L = α |0〉L + β |1〉L, it can be further decom-

posed as a linear sum of logical Pauli operators XL, YL, and

ZL as

OL = (αβ∗ + α∗β)XL − i(α∗β − αβ∗)YL

− (ββ∗ − αα∗)ZL, (5)

which satisfies OL |�〉L = |�〉L. In general, when the error-

correcting code encodes more than one qubit, one can

always construct a set of logical operators that deter-

mines any logical state. Therefore, we can construct a

Hamiltonian,

H = −
∑

i

cigi − coOL, (6)

and the target state |�〉L is its unique ground state

H |�〉L = −
(

∑

i

ci + co

)

|�〉L , (7)

with energy E0 = −
(
∑

i ci + co

)

. As the terms of the

Hamiltonian commute with each other, its eigenstate

should be the eigenstate of each term. Thus, it is not

hard to see that the first excited state has an energy E1 =
E0 + 2 min{ci, co}.

To find the encoding circuit that prepares the target log-

ical state |�〉L, we employ variational methods for deter-

mining a Hamiltonian’s ground state (an approach of much

current interest). We first prepare a trial state via a parame-

terized quantum circuit, called an ansatz, ψ(
θ) = V(
θ) |0̄〉,
where |0̄〉 refers to a quantum register of which all the data

qubits are initialized at |0〉, and V(
θ) is described with m

parameters, V(
θ) = Vm(θm) · · · V2(θ2)V1(θ1). Suppose the

ground state of the Hamiltonian H can be represented by

the circuit ansatz, then the problem is rephrased as finding

a set of parameters 
θmin, which minimizes the energy

Emin = min
{

〈ψ(
θ)|H |ψ(
θ)〉
}

. (8)

The minimization can be accomplished by any optimiza-

tion algorithm, such as simple gradient descent or the

imaginary time evolution [45,46] as we presently review.

The design of ansatz with respect to different quantum

hardware is also discussed shortly.

In practice, we may not be able to find the exact ground

state, for example because it lies outside the set of states

reachable from the ansatz, or because of the existence of

gate noise, etc. Suppose the minimal energy we can find is

Emin, then we can also lower bound the fidelity between the

state ρ we find and the target logical state |�〉L according

to

F = 〈�|ρ|�〉L ≥ 1 − (Emin − E0)/c, (9)

where we denote c = 2 min{ci, co} and assume Emin ∈
[E0, E1]. The proof of Eq. (9) can be found in the appendix.

Therefore, when observing an energy that is close to

the ground-state energy, we are assured that the state is

indeed close to the exact ground state. In the rest of this

paper, we thus focus only on minimizing the energy of the

Hamiltonian.

B. Variational simulation with imaginary time

evolution

In previous studies we have find that the imaginary-

time-evolution method can outperform conventional opti-

mization methods [45,46], therefore we opt to use the

variational imaginary time approach as our ground-state

finding strategy. Needless to say, other variational meth-

ods could equivalently be substituted and this is an area

for future study. We briefly review the theory here for

self-consistency, including both the pure- and mixed-state

cases thus supporting both noiseless and noisy operations

in realizing the encoding circuit.

1. Pure state

The imaginary time evolution is defined as

|φ(τ)〉 = e−Hτ |φ(0)〉
√

〈ψ(0)| e−2Hτ |φ(0)〉
(10)
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or equivalently

∂ |φ(τ)〉
∂τ

= −(H − Eτ ) |φ(τ)〉 , (11)

with τ being imaginary time and Eτ = 〈φ(τ)|H |φ(τ)〉. As

the amplitudes of all excited eigenstates decay faster than

the ground state, we always have |φ(∞)〉 being the ground

state of the Hamiltonian H . While the imaginary time evo-

lution cannot be directly realized via a unitary quantum

circuit, it can be emulated via the variational algorithm.

Assuming the state |φ(τ)〉 can be well approximated by

a parameterized state |φ(τ)〉 = |ψ(θ1, θ2, . . .)〉 with real

parameters θi, the imaginary time evolution of the quan-

tum state |ψ(τ)〉 can be mapped to the evolution of the

parameters as

∑

j

Ai,j θ̇i = −Bi, (12)

where

Ai,j = Re
(∂ 〈ψ[
θ(τ )]|

∂θi

∂ |ψ[
θ(τ )]〉
∂θj

+ ∂ 〈ψ[
θ(τ )]|
∂θi

|ψ[
θ(τ )]〉 ∂ 〈ψ[
θ(τ )]|
∂θj

|ψ[
θ(τ )]〉
)

,

Bi = Re
(∂ 〈ψ[
θ(τ )]|

∂θi

H |ψ[
θ(τ )]〉
)

, (13)

Suppose for the initial state we have |φ(τ)〉 = |ψ〉 [θ1(0),

θ2(0), . . .], thus we can update the parameters 
θ =
(θ1, θ2, . . .) via 
θ(τ + �τ) = 
θ(τ ) + �τ ∗ 
̇θ(τ ) to emulate

imaginary time evolution. Here we choose �τ to be a

sufficiently small step size.

2. Mixed state

When the state is a mixed state, the imaginary time

evolution obeys [46]

∂

∂τ
ρ(τ) = −{[H , ρ(τ)] − 2〈H 〉ρ(τ)}. (14)

When considering a parameterized density matrix ρ[
θ(τ )],

the imaginary time evolution of ρ[
θ(τ )] is mapped to the

evolution of the parameters as

∑

i

Cj ,iθ̇i = −Dj , (15)

where

Cj ,i = Tr
(∂ρ[
θ(τ )]

∂θj

∂ρ[
θ(τ )]

∂θi

)

,

Dj = Tr

(

∂ρ[
θ(τ )]

∂θj

{H , ρ[
θ(τ )]}
) (16)

C. Implementation on quantum circuits

Our variational circuit compiler can be emulated with

a classical computer for small error-correcting codes or

it can be implemented with quantum circuits for gen-

eral codes. Here we briefly discuss the implementation of

the pure-state case with quantum circuits and we refer to

Ref. [46] for the discussion of the mixed-state case.

As the target logical state is the unique ground state

of a Hamiltonian, we thus make use of the variational

imaginary-time-evolution method to find the ground state.

For the pure-state case, we need to measure every term of

A and B defined in Eq. (13). Suppose we consider an ansatz

ψ(
θ) = V(
θ) |0̄〉, where each Vi(θi) is a single-qubit rota-

tion around the X , Y, or Z axis of the Bloch sphere. We can

then decompose the derivative of the state as

∂ |ψ(
θ)〉
∂θi

= fi |ϕi(
θ)〉 , (17)

where

|ϕi(
θ)〉 = Ui(
θ) |0〉
= Vm(θm) · · · σiVi(θi) · · · V2(θ2)V1(θ1) |0〉 .

Thus each term of A consists of

∂ 〈ψ(
θ)|
∂θj

|ψ(
θ)〉

= f ∗
j 〈ϕj (
θ)|ψ(
θ)〉 = f ∗

j 〈0| U∗
j (


θ)V(
θ) |0〉 ,

∂ 〈ψ(
θ)|
∂θj

∂ |ψ(
θ)〉
∂θi

= fif
∗

j 〈0| U∗
j (


θ)Ui(
θ) |0〉 . (18)

Similarly, each Bj is the real part of

∂ 〈ψ(
θ)|
∂θj

H |ψ(
θ)〉 =
∑

k

f ∗
j lk 〈0| U∗

j (

θ)HkV(
θ) |0〉 ,

(19)

where we assume H = ∑

k λkHk with Hk representing a

tensor product of Pauli matrices. As all those terms are in

a general form of

aRe
(

eiθ 〈0̄| U |0̄〉
)

,

they can be efficiently measured with the Hadamard test

quantum circuit or equivalent but simpler methods [50,51].

D. The ansatz

Our variational circuit compiler assumes the logical

state can be prepared by a parameterized ansatz. For dif-

ferent quantum hardware, the ansatz can have different

structures. Here, we introduce the general structure of the
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FIG. 3. Building block of the ansatz. The circuit starts with

three single-qubit gates applied to each of the data qubits. Then

elementary blocks are randomly inserted into the circuit. Each

elementary block consists of one two-qubit gate followed with

three single-qubit gates on both of the two data qubits. Ry and

Rz represent a single-qubit rotation over the Y and Z axes of

the Bloch sphere, respectively, where the rotation angle is the

parameter to be updated over time.

ansatz considered in this work, as shown in Fig. 3. We

consider parameterized single-qubit gates rotating along

the Pauli basis. For example, the gate Rx is defined as

Rx = exp(−iθX /2) with the rotation angle being a vari-

able parameter θ . The definitions of Ry and Rz are similar.

We also consider general two-qubit gates composed by a

fixed two-qubit gate followed by six parameterized single-

qubit gates. The overall structure of the ansatz is shown

in Fig. 3, where three single-qubit rotations with different

parameters are firstly applied to each of the data qubits fol-

lowing the order of RzRyRz. The gate set is chosen such

that an arbitrary single-qubit rotation can be realized. With

given constraints in the connectivity of the qubits and the

type of two-qubit gates that can be realized in a given

quantum hardware, a certain number of multiqubit sets are

then inserted into the circuit, where one gate set consists

of a multiqubit gate followed with three single-qubit gates

applied to each of the data qubits.

For a given ansatz, which is either randomly generated

or following a certain procedure, we update the param-

eters of the single-qubit gates in order to minimize the

energy of the Hamiltonian. Based on different ansatzes

or different initial values of parameters, we could either

reach the ground state verified by the ground-state energy,

or we may reach a local minimum. In the latter case, it

may indicate that the ansatz cannot represent the target

state, so the experiment is abandoned and restarted until

the energy reaches close to the ground-state energy. In

order to minimize the number of parameters or single-qubit

gates, circuit compilation is applied with the following

rule: after each several steps, gates with small parameters

are removed; this process continues until the energy starts

to increase. The technique cannot guarantee to find a cir-

cuit with minimum number of parameters, though many

equivalent circuits can be found and selected.

In practice, one may also need to change the structure

of the ansatz when the previously selected ansatz is not

powerful enough to represent the target state. Different

strategies can be applied here by either adding more sin-

gle and two-qubit gates or fully adopting a different ansatz

structure. Trying all possible ansatz structures is in gen-

eral impossible for a large error correcting code. Therefore,

one may either systematically explore a given family of

ansatz structures, or alternatively we may apply some kind

of circuit morphing algorithm to the ansatz (as recently dis-

cussed in Ref. [42,52,53]). In the following, we focus on

the five- and seven-qubit codes, and show numerical emu-

lation of the variational compiler for these two codes with

different ansatz structures.

IV. NUMERICAL SIMULATIONS

In this section we present numerical simulations for

the variational circuit compiler. The simulation is per-

formed on a classical computer with the Quantum Exact

Simulation Toolkit (QuEST) package [54], which is a

high-performance classical simulator written in C/C++. We

focus on the five- and seven-qubit codes and consider two

scenarios with noiseless and noisy gates. Several particular

states are considered in the simulation, including eigen-

states of the Pauli basis |0〉L, |−〉L and the magic state

|T〉L = (|0〉 + eπ i/4 |1〉)/
√

2. For the Hamiltonian, we set

the coefficients of all the terms to be the same and nor-

malize them so that the ground-state energy is −1. In

particular, the Hamiltonian corresponding to a logical state

|�〉L of the five- or seven-qubit code is

H = −1

n

(

∑

i

gi + OL

)

, (20)

where gi are the stabilizers for the five- or seven-qubit

code, OL is the logical operator defined in Eq. (4), n =
5 for the five-qubit code, and n = 7 for the seven-qubit

code. We can verify that H |�〉L = E0 |�〉L with E0 = −1

and E1 = −(n − 2)/n for the first excited state. Following

Eq. (9), when we find a state ρ with energy Emin, its fidelity

to the target state |�〉L is lower bounded by

F ≥ 1 − n

2
(Emin + 1), (21)

when Emin ∈ [−1, −(n − 2)/n].

We also consider different constraints of the circuit

topology for different hardware structures, as revealed in

the choice of ansatzes. The constraints could be from prac-

tical experimental limitations or inferred from preferences

in a future experimental design. In this paper, we take three

constraints as examples to illustrate our method.
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(1) Minimize the number of two-qubit gates, as most

quantum hardware has a lower fidelity for two-qubit gates.

(2) Only use a single type of two-qubit gate, reflecting

the fact that hardware typically supports one entangling

process at the physical level.

(3) Only apply nearest-neighbor interactions, such as in

superconducting qubit systems.

Note that while searching for circuits satisfying (2) or

(3), (1) is also applied by default, as more simplified cir-

cuits are usually preferred. At the start of one experiment,

an ansatz is generated based on the constraints, with all

parameters initialized from a small value around zero. The

parameters are then updated through the variational imag-

inary time algorithm, until the energy becomes static in a

local minimum, in which case the ansatz is abandoned, or

goes to the ground-state energy, in which case we con-

sider the current ansatz is successfully configured. The

number of parameters is also gradually reduced in the

simulation process: if a certain parameter is found to be

around zero, a further simulation is attempted with that

gate omitted. This procedure continues until the energy

starts to increase. With this trick, we manage to substan-

tially reduce the number of parameters and accelerate the

searching process.

In the following, we give several examples of applying

our compiler for certain logical states prepared with the

five- and seven-qubit code.

A. Compiling with ideal gates

We first consider the case where gates are assumed to be

perfect. In this case, we can focus on the optimization with

pure-state imaginary time evolution.

We begin with the five-qubit code. By considering the

circuit with the minimum number of two-qubit gates, we

first rediscover circuits for encoding the |−〉L state, which

are consistent with the latest conventional circuit as shown

in Fig. 1(a). We also note that with five controlled phase

gates, the circuit is capable of encoding the |0〉L state with

additional transversal single-qubit gates. As our method is

capable of discovering different but equivalent circuits, we

show one example in Fig. 4(a), which encodes a logical

minus state |−〉L.

Next, we apply our compiler for the magic state |T〉L

and we find the encoding circuit as shown in Fig. 4(b). The

encoding circuit for the magic state is also consistent with

the circuit for encoding an arbitrary logical state as shown

in Fig. 1(b). Therefore, our method has matched but not

surpassed the efficiency of a known circuit for encoding

the magic state.

In addition to rediscovering existing encoding circuits,

our compiler can also find efficient encoding methods

when considering a variety of constraints on the circuit

structure. First, we consider the case where sqrt-SWAP gates

are considered as the only type of two-qubit gate in the

ansatz. The sqrt-SWAP gate is a non-Clifford gate, so it is

not often seen in conventional error-correction encoding

circuits. On the other hand, it may be a natural two-qubit

gate [55]. The canonical approach would be to convert

this gate into a CNOT/CPHASE gate in a circuit design. As

one CNOT gate is decomposed into two sqrt-SWAP gates

and several single-qubit rotations, at minimum ten sqrt-

SWAP gates are then required to encode a |−〉L state. We

show here that by applying the sqrt-SWAP gate into the

ansatz directly, the number of the sqrt-SWAP gates can be

reduced to eight as shown in Fig. 4(c). Next, we con-

sider the case where the ansatz is restricted to allow only

nearest-neighbor interactions, which is common for solid-

state qubits. We present in Fig. 4(d) a circuit satisfying the

constraint, which prepares the magic state |T〉L with seven

nearest-neighbor CPHASE gates. (Note that here we specify

that CPHASE gates should be the only two-qubit gates; if

we relax this and subsume certain single-qubit and CPHASE

gates into CNOT gates, then this circuit simplifies further.)

For the seven-qubit Steane code, we also first redis-

cover the encoding circuits for the |0〉L state as shown in

Fig. 2(a), which has eight CNOT gates. For the magic state,

we find a circuit that only uses nine CNOT gates, in contrast

to the encoding circuit for an arbitrary state, which requires

11 CNOT gates as shown in Fig. 2(c).

B. Noise-robust circuits

In this section, we consider the practical scenario with

noisy gates. For each gate, we apply a small probability of

depolarizing noise as follows:

ρ ′ → (1 − r)ρ + r

3
(X ρX + YρY + ZρZ). (22)

We emphasize that any theoretically given noise model in

a simulator or any practical noise model in physical hard-

ware could be employed here; we consider depolarizing

noise for this first study in order to more readily compare to

known methods and results. Then we aim to find the most

“noise-robust” encoding circuit for preparing a target logi-

cal state. Here, we also consider an ancillary qubit, which

is applied to the circuit and postselected in a similar way to

fault-tolerant state preparation. Note that when the ancilla

is not entangled with the physical qubits, it reduces to the

previous case where there is no ancilla. As the encoded

state is a mixed state, we make use of the mixed-state mode

of the QuEST and the imaginary time evolution for mixed

states. We search over a large number (order 10 000) of

different ansatzes, and we obtain the circuit corresponding

to the lowest energy. We then verify that this circuit per-

forms better in the presence of small gate noise than the

circuits found in the earlier section, which are found under

the zero-noise assumption.
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(a)

(b)

(c)

(b)

FIG. 4. (a) Circuit to encode a logical minus state |−〉L, with the five-qubit code. This circuit is equivalent to Fig. 1(a). (b) Circuit

to encode a logical magic state |T〉L =
√

2
2

(|0〉L + e
π
4

i |1〉L), with the five-qubit code. Our method found at minimum six two-qubit

gates are required to prepare the state. (c) Circuit to encode a logical minus state |−〉L with the five-qubit code. The two-qubit gate is

restricted to be a sqrt-SWAP gate. (d) Circuit to encode a logical magic state |T〉L =
√

2
2

(|0〉L + e
π
4

i |1〉L). Only nearest-neighbor CPHASE

gates are permitted in this case.

For the five-qubit code, a noise-robust circuit is found

for encoding the logical minus state |−〉L as shown in

Fig. 6. The circuit contains two parts, with the first part

(gates on the data qubits) preparing a logical minus state,

while the second part (gates between the data qubits and

the ancilla) detecting and postselecting errors. Note that

the second part is a logical XL operator, which does not

change the logical state.

C. Error detection for general encoding circuits

It is interesting to reflect further on the principle

of the circuit, which our automated method has found.

We could generalize the rule to any error-correction

codes with transversal Pauli gates. For example, a

noise-robust circuit to encode any of the logical states

|0〉L , |1〉L , |+〉L , |−〉L , |+i〉L , |−i〉L could be realized by

preparing the states with the non-fault-tolerant (non-FT)

circuits first and applying a transversal logical operator

(which does not change the logical state) for detecting

and postselecting errors. We notice that by combining the

transversal logical operator with the stabilizer operator,

some Pauli terms can be cancelled out. If replaced with this

operator for error detection, the circuit is noise robust. Note

that the circuit shown in Fig. 6 is not fully fault tolerant,
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FIG. 5. Circuit to encode a log-

ical magic state |T〉L =
√

2
2

(|0〉L +
e

π
4

i |1〉L) with the seven-qubit code.

Minimally nine two-qubit gates are

required to prepare the state.

as the logical state prepared with the five-qubit code can

be corrupted by any single error, while measuring out one

logical operator and applying postselection cannot guaran-

tee FT detection of any single error. However, circuits to

prepare some logical states with the Steane code applied

with error detection can be realized fault tolerantly, as the

error detection needs only to detect a certain type of noise,

while the logical states are immune to the other type of

noise. For example, a logical |0〉L encoded with the Steane

code is immune to any phase noise. The circuit discovered

by Goto [49] to prepare a FT logical zero state |0〉L with

the Steane code [as shown in Fig. 2(b)] is an example.

For the Steane code, one can implement transversal Clif-

ford gates, so one may feel that the same trick can be

applied. That is, to test the fault tolerance of the circuit, we

measure the logical operator P, when it belongs to the Clif-

ford group and satisfies P |�〉L = |�〉L, with |�〉L being

the target logical state. Unfortunately, if an error occurs to

a data qubit, an extra gate needs to be applied to the data

qubit even if the ancilla is measured to be +. Therefore, a

subsequent error-detection or error-correction procedure is

FIG. 6. A noise-robust circuit to encode a logical minus state

|−〉L with the five-qubit code. In addition to the first part of the

circuit [Fig. 4(a)], which prepares |−〉L, three two-qubit gates are

applied from the ancilla qubit, which is then measured in the

{+, −} basis. If measured to be −, the output is abandoned and

reprepared until the measurement result is +.

still required to remove the single error, as pointed out in

Ref. [49,56].

In general, there are no universal transversal logical

operators for small error-correcting codes. Thus we cannot

apply the same trick to fault tolerantly prepare an arbi-

trary logical state, such as the magic state of the five- and

seven-qubit code. However, a FT circuit can be realized by

measuring all the stabilizer operators and applying posts-

elections: the ancilla should always be measured to be 1,

otherwise the circuit is abandoned and restarted from the

beginning. Note that measuring all the stabilizer operators

cannot guarantee fault tolerance of the circuit—a logical

error created before the error detection cannot be found. As

it takes a relatively long time to prepare a logical state, this

approach may not be ideal for systems with short coher-

ence time. On the other hand, one can measure one of the

stabilizer operators and still benefit partially.

We also note that measuring the stabilizer operators can

also be fault tolerant with an extra flag qubit, as shown

in Fig. 7. After a logical state is prepared nonfault tol-

erantly with the five-qubit code, we measure one of the

stabilizer operators. The flag qubit is to detect errors occur-

ring between one of the two-qubit gates as shown in the

figure.

Finally, we compare the fidelity of the prepared logical

state with different encoding circuits as discussed above.

In Fig. 8, we show the fidelity change with respect to an

FIG. 7. Circuit to fault tolerantly measure one stabilizer opera-

tor with the five-qubit code. The first and second ancillae need to

be measured to be + and 0, or otherwise the output is abandoned.
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FIG. 8. The fidelity change with the increasing gate error rate

in preparation of (a) a logical minus state |−〉L with the five-qubit

code and (b) a logical magic state |T〉L =
√

2
2

(|0〉L + e
π
4

i |1〉L)

with the seven-qubit code. The error rate for single-qubit gates,

two-qubit gates, and measurements is the same. The blue curves

represent the case where the logical state is prepared with the

non-FT circuits in Fig. 4(a) and Fig. 5 for the two codes, respec-

tively. If one of the four or six stabilizer operators is measured

with one ancilla and postselection is applied, the average behav-

ior of the four or six cases is shown as the red curves, while the

orange ones refer to the same scenario but the operators are mea-

sured fault tolerantly with two ancillae. The purple curve in (a)

refers to the case where a logical X operator is measured, with

the circuit shown in Fig. 6, except that the error detection is con-

ducted fault tolerantly with additional ancilla. The greens refer to

the case where all the stabilizer operators are measured with two

ancillae.

increasing gate error rate. The error rate is the same for

single-qubit gates, two-qubit gates, and measurement and

noise is applied for both the state-preparation and error-

detection processes. A logical minus state is prepared with

the five-qubit code with the circuit shown in Fig. 4(a). We

see that with small noise, applying error detection always

leads to a higher fidelity. However, as the gate error rate

gradually increases, the extra noise introduced with the

extra gates negates the advantage of error detection. In

Fig. 8(a), there is a small gap between the blue and the

red curves, indicating that measuring one stabilizer oper-

ator nonfault tolerantly gains only a small benefit over

the case where no error detection is performed. However,

such an advantage increases if the measurement is con-

ducted fault tolerantly with one more ancilla. The purple

curve, representing postselection by measuring the X oper-

ator, has an overall higher fidelity than the red and orange

ones probably due to one fewer two-qubit gate applied.

If all the stabilizer operators are measured fault tolerantly

with postselection applied, as demonstrated by the green

curve, the fidelity is higher than the non-FT circuit when

the gate error rate is smaller than 8.6%. Note we verify

that in this case, the circuit involving measuring all the

stabilizers fault tolerantly is fault tolerant. In Fig. 8(b),

a logical magic state |T〉L = (1/
√

2)(|0〉L + e(π/4)i |1〉L) is

prepared with the seven-qubit code. Compared with (a),

we see a group of curves with different shapes but a sim-

ilar trend, that the curves applied with postselection have

a higher fidelity given a small gate error rate. The advan-

tage starts to vanish when the gate error rate is larger than

11%. In this case, we find the circuit involving measuring

the full stabilizer set is not fault tolerant but still leads to a

notably higher state fidelity. The result suggests the noise

robustness of our method.

V. DISCUSSION

In this work, we introduce a variational circuit com-

piler for efficiently encoding the logical state of an error-

correcting code. We construct a Hamiltonian so that the tar-

get logical state is its ground state and it can be found with

the variational imaginary-time-evolution method. We con-

sider the five- and seven-qubit codes as examples. When

having noiseless operations, we show the encoding circuit

to prepare different logical states with the minimal number

of gates for different hardware structures. When consider-

ing noisy gates, it is discovered by applying postselection,

the fidelity of the encoded state can be boosted. Therefore,

we can simplify the compiling process by searching for

more optimal non-FT circuit first with given constraints

and noise models, and applying postselection after the

state-preparation process.

We also compare the fidelity of logical states prepared

with different encoding circuits with respect to differ-

ent gate error rates. Our work thus opens an avenue for

automatically compiling circuits for implementing error-

correcting codes. Future studies may focus on the design

and searching of ansatzes for different codes and the

realization of the compiler with a real quantum computer.

It is natural that some of the highest-performing cir-

cuits found by our approach were previously known, since
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we opt to explore two very well-studied codes and more-

over we employ a noise model (depolarizing noise), which

has been the canonical model of choice for previous work.

However we emphasize that our approach is by no means

limited to these choices and can be used to optimize cir-

cuits for newly emerging codes—it is even practical to

seek optimization of larger codes, as we can start from the

previously discovered circuit and search for better ones,

based on bespoke error models that are matched to specific

hardware implementations.
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APPENDIX: PROOF OF EQ. (9)

Here we prove Eq. (9). Suppose we have a Hamilto-

nian H with ground and first excited energy denoted by E0

and E1, respectively. Given a quantum state ρ with aver-

aged energy E = Tr[ρH ] satisfying E ∈ [E0, E1], we want

to prove

F = 〈ψ0|ρ|ψ0〉 ≥ 1 − (E − E0)/c, (A1)

where we denote c = E1 − E0 and |ψ0〉 being the ground

state of H .

Proof. Denote the eigenstates of H by |ψi〉 with corre-

sponding eigenvalues Ei satisfying Ei ≤ Ej when i ≤ j .

Then we have

H =
∑

i

Ei |ψi〉 〈ψi| ,

and

E = Tr[ρH ],

=
∑

i

Ei 〈ψi| ρ |ψi〉 ,

= E0F +
∑

i≥1

Ei 〈ψi| ρ |ψi〉 ,

≥ E0F +
∑

i≥1

E1 〈ψi| ρ |ψi〉 ,

= E0F + E1(1 − F),

= (E0 + c) − cF . (A2)

In the third line, we make use of the definition of F in

Eq. (A1); In the fourth line, we make use of the order-

ing of the eigenvalues; In the fifth line, we make use of
∑

i≥1 〈ψi| ρ |ψi〉 = 1 − 〈ψ0| ρ |ψ0〉 = 1 − F . Solving the

equation, we thus get the lower bound of the fidelity F

based on the energy E as in Eq. (A1). �
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