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Abstract

Practitioners of Bayesian statistics have long depended on Markov chain Monte
Carlo (MCMC) to obtain samples from intractable posterior distributions. Un-
fortunately, MCMC algorithms are typically serial, and do not scale to the large
datasets typical of modern machine learning. The recently proposed consensus
Monte Carlo algorithm removes this limitation by partitioning the data and draw-
ing samples conditional on each partition in parallel [22]. A fixed aggregation
function then combines these samples, yielding approximate posterior samples.
We introduce variational consensus Monte Carlo (VCMC), a variational Bayes
algorithm that optimizes over aggregation functions to obtain samples from a dis-
tribution that better approximates the target. The resulting objective contains an
intractable entropy term; we therefore derive a relaxation of the objective and
show that the relaxed problem is blockwise concave under mild conditions. We
illustrate the advantages of our algorithm on three inference tasks from the lit-
erature, demonstrating both the superior quality of the posterior approximation
and the moderate overhead of the optimization step. Our algorithm achieves a
relative error reduction (measured against serial MCMC) of up to 39% compared
to consensus Monte Carlo on the task of estimating 300-dimensional probit re-
gression parameter expectations; similarly, it achieves an error reduction of 92%
on the task of estimating cluster comembership probabilities in a Gaussian mix-
ture model with 8 components in 8 dimensions. Furthermore, these gains come
at moderate cost compared to the runtime of serial MCMC—achieving near-ideal
speedup in some instances.

1 Introduction

Modern statistical inference demands scalability to massive datasets and high-dimensional models.
Innovation in distributed and stochastic optimization has enabled parameter estimation in this set-
ting, e.g. via stochastic [3] and asynchronous [20] variants of gradient descent. Achieving similar
success in Bayesian inference – where the target is a posterior distribution over parameter values,
rather than a point estimate – remains computationally challenging.

Two dominant approaches to Bayesian computation are variational Bayes and Markov chain Monte
Carlo (MCMC). Within the former, scalable algorithms like stochastic variational inference [11]
and streaming variational Bayes [4] have successfully imported ideas from optimization. Within
MCMC, adaptive subsampling procedures [2, 14], stochastic gradient Langevin dynamics [25], and
Firefly Monte Carlo [16] have applied similar ideas, achieving computational gains by operating
only on data subsets. These algorithms are serial, however, and thus cannot take advantage of
multicore and multi-machine architectures. This motivates data-parallel MCMC algorithms such as
asynchronous variants of Gibbs sampling [1, 8, 12].

Our work belongs to a class of communication-avoiding data-parallel MCMC algorithms. These
algorithms partition the full dataset X1:N into K disjoint subsets XI1:K

where XIk
denotes the data
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associated with core k. Each core samples from a subposterior distribution,

pk (θk) ∝ p (XIk | θk) p (θk)
1/K

, (1)

and then a centralized procedure combines the samples into an approximation of the full posterior.
Due to their efficiency, such procedures have recently received substantial attention [18, 22, 24].

One of these algorithms, consensus Monte Carlo (CMC), requires communication only at the start
and end of sampling [22]. CMC proceeds from the intuition that subposterior samples, when aggre-
gated correctly, can approximate full posterior samples. This is formally backed by the factorization

p (θ | x1:N ) ∝ p (θ)

KY

k=1

p (XIk | θ) =

KY

k=1

pk (θ) . (2)

If one can approximate the subposterior densities pk, using kernel density estimates for instance [18],
it is therefore possible to recombine them into an estimate of the full posterior.

Unfortunately, the factorization does not make it immediately clear how to aggregate on the level of
samples without first having to obtain an estimate of the densities pk themselves. CMC alters (2) to
untie the parameters across partitions and plug in a deterministic link F from the θk to θ:

p (θ | x1:N ) ≈

KY

k=1

pk (θk) · δθ=F (θ1,...,θK). (3)

This approximation and an aggregation function motivated by a Gaussian approximation lie at the
core of the CMC algorithm [22].

The introduction of CMC raises numerous interesting questions whose answers are essential to its
wider application. Two among these stand out as particularly vital. First, how should the aggregation
function be chosen to achieve the closest possible approximation to the target posterior? Second,
when model parameters exhibit structure or must conform to constraints — if they are, for example,
positive semidefinite covariance matrices or labeled centers of clusters — how can the weighted
averaging strategy of Scott et al. [22] be modified to account for this structure?

In this paper, we propose variational consensus Monte Carlo (VCMC), a novel class of data-parallel
MCMC algorithms that allow both questions to be addressed. By formulating the choice of aggrega-
tion function as a variational Bayes problem, VCMC makes it possible to adaptively choose the ag-
gregation function to achieve a closer approximation to the true posterior. The flexibility of VCMC
likewise supports nonlinear aggregation functions, including structured aggregation functions appli-
cable to not purely vectorial inference problems.

An appealing benefit of the VCMC point of view is a clarification of the untying step leading
to (3). In VCMC, the approximate factorization corresponds to a variational approximation to
the true posterior. This approximation can be viewed as the joint distribution of (θ1, . . . , θK)
and θ in an augmented model that assumes conditional independence between the data partitions
and posits a deterministic mapping from partition-level parameters to the single global parameter.
The added flexibility of this point-of-view makes it possible to move beyond subposteriors and in-
clude alternative forms of (3) within the CMC framework. In particular, it is possible to define
pk (θk) = p (θk) p (XIk | θk), using partial posteriors in place of subposteriors (cf. [23]). Although
extensive investigation of this issue is beyond the scope of this paper, we provide some evidence
in Section 6 that partial posteriors are a better choice in some circumstances and demonstrate that
VCMC can provide substantial gains in both the partial posterior and subposterior settings.

Before proceeding, we outline the remainder of this paper. Below, in §2, we review CMC and
related data-parallel MCMC algorithms. Next, we cast CMC as a variational Bayes problem in §3.
We define the variational optimization objective in §4, addressing the challenging entropy term
by relaxing it to a concave lower bound, and give conditions for which this leads to a blockwise
concave maximization problem. In §5, we define several aggregation functions, including novel
ones that enable aggregation of structured samples—e.g. positive semidefinite matrices and mixture
model parameters. In §6, we evaluate the performance of VCMC and CMC relative to serial MCMC.
We replicate experiments carried out by Scott et al. [22] and execute more challenging experiments
in higher dimensions and with more data. Finally in §7, we summarize our approach and discuss
several open problems generated by this work.
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2 Related work

We focus on data-parallel MCMC algorithms for large-scale Bayesian posterior sampling. Sev-
eral recent research threads propose schemes in the setting where the posterior factors as in (2).
In general, these parallel strategies are approximate relative to serial procedures, and the specific
algorithms differ in terms of the approximations employed and amount of communication required.

At one end of the communication spectrum are algorithms that fit into the MapReduce model [7].
First, K parallel cores sample from K subposteriors, defined in (1), via any Monte Carlo sampling
procedure. The subposterior samples are then aggregated to obtain approximate samples from the
full posterior. This leads to the challenge of designing proper and efficient aggregation procedures.

Scott et al. [22] propose consensus Monte Carlo (CMC), which constructs approximate posterior
samples via weighted averages of subposterior samples; our algorithms are motivated by this work.
Let θk,t denote the t-th subposterior sample from core k. In CMC, the aggregation function averages

across each set of K samples {θk,t}
K
k=1 to produce one approximate posterior sample θ̂t. Uniform

averaging is a natural but naı̈ve heuristic that can in fact be improved upon via a weighted average,

θ̂ = F (θ1:K) =

K
X

k=1

Wkθk, (4)

where in general, θk is a vector and Wk can be a matrix. The authors derive weights motivated by the
special case of a Gaussian posterior, where each subposterior is consequently also Gaussian. Let Σk

be the covariance of the k-th subposterior. This suggests weights Wk = Σ
−1
k equal to the subpos-

teriors’ inverse covariances. CMC treats arbitrary subpostertiors as Gaussians, aggregating with

weights given by empirical estimates of Σ̂−1
k computed from the observed subposterior samples.

Neiswanger et al. [18] propose aggregation at the level of distributions rather than samples. Here, the
idea is to form an approximate posterior via a product of density estimates fit to each subposterior,
and then sample from this approximate posterior. The accuracy and computational requirements
of this approach depend on the complexity of these density estimates. Wang and Dunson [24]
develop alternate data-parallel MCMC methods based on applying a Weierstrass transform to each
subposterior. These Weierstrass sampling procedures introduce auxiliary variables and additional
communication between computational cores.

3 Consensus Monte Carlo as variational inference

Given the distributional form of the CMC framework (3), we would like to choose F so that the
induced distribution on θ is as close as possible to the true posterior. This is precisely the problem
addressed by variational Bayes, which approximates an intractable posterior p (θ | X) by the solution
q∗ to the constrained optimization problem

minDKL (q || p (· | X)) subject to q ∈ Q,

where Q is the family of variational approximations to the distribution, usually chosen to make both
optimization and evaluation of target expectations tractable. We thus view the aggregation problem
in CMC as a variational inference problem, with the variational family given by all distributions
Q = QF = {qF : F ∈ F}, where each F is in some function class F and defines a density

qF (θ) =

Z

ΩK

K
Y

k=1

pk (θk) · δθ=F (θ1,...,θK) dθ1:K .

In practice, we optimize over finite-dimensional F using projected stochastic gradient descent
(SGD).

4 The variational optimization problem

Standard optimization of the variational Bayes objective uses the evidence lower bound (ELBO)

log p (X) = logEq



p (θ, X)

q (θ)

�

≥ Eq



log
p (θ, X)

q (θ)

�

= log p (X)−DKL (q || p (· | X)) =: LVB (q) . (5)
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We can therefore recast the variational optimization problem in an equivalent form as

maxLVB (q) subject to q ∈ Q.

Unfortunately, the variational Bayes objective LVB remains difficult to optimize. Indeed, by writing

LVB (q) = Eq [log p (θ, X)] + H [q]

we see that optimizing LVB requires computing an entropy H [q] and its gradients. We can deal with
this issue by deriving a lower bound on the entropy that relaxes the objective further.

Concretely, suppose that every F ∈ F can be decomposed as F (θ1:K) =
PK

k=1 Fk (θk), with
each Fk a differentiable bijection. Since the θk come from subposteriors conditioning on different
segments of the data, they are independent. The entropy power inequality [6] therefore implies

H [q] ≥ max
1≤k≤K

H [Fk (θk)] = max
1≤k≤K

(H [pk] + Epk
[log det [J (Fk) (θk)]])

≥ min
1≤k≤K

H [pk] + max
1≤k≤K

Epk
[log det [J (Fk) (θk)]] (6)

≥ min
1≤k≤K

H [pk] +
1

K

K
X

k=1

Epk
[log det [J (Fk) (θk)]] =: H̃ [q] , (7)

where J (f) denotes the Jacobian of the function f . The proof can be found in the supplement.

This approach gives an explicit, easily computed approximation to the entropy—and this approx-
imation is a lower bound, allowing us to interpret it simply as a further relaxation of the original
inference problem. Furthermore, and crucially, it decouples pk and Fk, thereby making it possible
to optimize over Fk without estimating the entropy of any pk. We note additionally that if we are
willing to sacrifice concavity, we can use the tighter lower bound on the entropy given by (6).

Putting everything together, we can define our relaxed variational objective as

L (q) = Eq [log p (θ, X)] + H̃ [q] . (8)

Maximizing this function is the variational Bayes problem we consider in the remainder of the paper.

Conditions for concavity Under certain conditions, the problem posed above is blockwise con-
cave. To see when this holds, we use the language of graphical models and exponential families. To
derive the result in the greatest possible generality, we decompose the variational objective as

LVB = Eq [log p (θ, X)] + H [q] ≥ L̃+ H̃ [q]

and prove concavity directly for L̃, then treat our choice of relaxed entropy (7). We emphasize that
while the entropy relaxation is only defined for decomposed aggregation functions, concavity of the
partial objective holds for arbitrary aggregation functions. All proofs are in the supplement.

Suppose the model distribution is specified via a graphical model G, so that θ = (θu)u∈V (G), such

that each conditional distribution is defined by an exponential family

log p
⇣

θ
u | θpar(u)

⌘

= log hu (θu) +
X

u0∈par(u)

⇣

θ
u0

⌘T

Tu0→u (θu)− logAu
⇣

θ
par(u)

⌘

.

If each of these log conditional density functions is log-concave in θ
u, we can guarantee that the log

likelihood is concave in each θ
u individually.

Theorem 4.1 (Blockwise concavity of the variational cross-entropy). Suppose that the model dis-
tribution is specified by a graphical model G in which each conditional probability density is a
log-concave exponential family. Suppose further that the variational aggregation function family
satisfies F =

Q

u∈V (G) F
u such that we can decompose each aggregation function across nodes via

F (θ) = (Fu (θu))u∈V (G) , F ∈ F and Fu
∈ Fu.

If each Fu is a convex subset of some vector space Hu, then the variational cross-entropy L̃ is
concave in each Fu individually.
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Assuming that the aggregation function can be decomposed into a sum over functions of individual
subposterior terms we can also prove concavity of our entropy relaxation (7).

Theorem 4.2 (Concavity of the relaxed entropy). Suppose F =
QK

k=1 Fk, with each function

F 2 F decomposing as F (✓1, . . . , ✓K) =
PK

k=1 Fk (✓k) for unique bijective Fk 2 Fk. Then the
relaxed entropy (7) is concave in F .

As a result, we derive concavity of the variational objective in a broad range of settings.

Corollary 4.1 (Concavity of the variational objective). Under the hypotheses of Theorems 4.1 and

4.2, the variational Bayes objective L = L̃+ H̃ is concave in each Fu individually.

5 Variational aggregation function families

The performance of our algorithm depends critically on the choice of aggregation function family F .
The family must be sufficiently simple to support efficient optimization, expressive to capture the
complex transformation from the set of subposteriors to the full posterior, and structured to preserve
structure in the parameters. We now illustrate some aggregation functions that meet these criteria.

Vector aggregation. In the simplest case, ✓ 2 R
d is an unconstrained vector. Then, a linear aggre-

gation function FW =
PK

k=1 Wk✓k makes sense, and it is natural to impose constraints to make this

sum behave like a weighted average—i.e., each Wk 2 Sd
+ is a positive semidefinite (PSD) matrix

and
PK

k=1 Wk = Id. For computational reasons, it is often desirable to restrict to diagonal Wk.

Spectral aggregation. Cases involving structure exhibit more interesting behavior. Indeed, if our
parameter is a PSD matrix Λ 2 Sd

+, applying the vector aggregation function above to the flattened
vector form vec (Λ) of the parameter does not suffice. Denoting elementwise matrix product as �,

we note that this strategy would in general lead to FW (Λ1:m) =
PK

k=1 Wk � Λk /2 Sd
+.

We therefore introduce a more sophisticated aggregation function that preserves PSD structure. For
this, given symmetric A 2 R

d×d, define R (A) and D (A) to be orthogonal and diagonal matrices,

respectively, such that A = R (A)
T
D (A)R (A). Impose further—and crucially—the canonical

ordering D (A)11 � · · · � D (A)
dd

. We can then define our spectral aggregation function by

F spec
W

(Λ1:K) =

K
X

k=1

R (Λk)
T
[WkD (Λk)]R (Λk) .

Assuming Wk 2 Sd
+, the output of this function is guaranteed to be PSD, as required. As above we

restrict the set of Wk to the matrix simplex {(Wk)
K

k=1 : Wk 2 Sd
+,

PK

k=1 Wk = I}.

Combinatorial aggregation. Additional complexity arises with unidentifiable latent variables
and, more generally, models with multimodal posteriors. Since this class encompasses many popular
algorithms in machine learning, including factor analysis, mixtures of Gaussians and multinomials,
and latent Dirichlet allocation (LDA), we now show how our framework can accommodate them.

For concreteness, suppose now that our model parameters are given by ✓ 2 R
L×d, where L denotes

the number of global latent variables (e.g. cluster centers). We introduce discrete alignment param-
eters ak that indicate how latent variables associated with partitions map to global latent variables.
Each ak is thus a one-to-one correspondence [L] ! [L], with ak` denoting the index on worker
core k of cluster center `. For fixed a, we then obtain the variational aggregation function

Fa (✓1:K) =

✓ K
X

k=1

Wk`✓kak`(`)

◆L

`=1

.

Optimization can then proceed in an alternating manner, switching between the alignments ak
and the weights Wk, or in a greedy manner, fixing the alignments at the start and optimizing
the weight matrices. In practice, we do the latter, aligning using a simple heuristic objective

O (a) =
PK

k=2

PL

`=1

�

�✓̄kak`
� ✓̄1`

�

�

2

2
, where ✓̄k` denotes the mean value of cluster center ` on

partition k. As O suggests, we set a1` = `. Minimizing O via the Hungarian algorithm [15] leads
to good alignments.
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Figure 1: High-dimensional probit regression (d = 300). Moment approximation error for the
uniform and Gaussian averaging baselines and VCMC, relative to serial MCMC, for subposteri-
ors (left) and partial posteriors (right); note the different vertical axis scales. We assessed three
groups of functions: first moments, with f(�) = �j for 1 ≤ j ≤ d; pure second moments, with

f(�) = �2
j for 1 ≤ j ≤ d; and mixed second moments, with f(�) = �i�j for 1 ≤ i < j ≤ d. For

brevity, results for pure second moments are relegated to Figure 5 in the supplement.

6 Empirical evaluation

We now evaluate VCMC on three inference problems, in a range of data and dimensionality con-
ditions. In the vector parameter case, we compare directly to the simple weighting baselines corre-
sponding to previous work on CMC [22]; in the other cases, we compare to structured analogues of
these weighting schemes. Our experiments demonstrate the advantages of VCMC across the whole
range of model dimensionality, data quantity, and availability of parallel resources.

Baseline weight settings. Scott et al. [22] studied linear aggregation functions with fixed weights,

W unif
k =

1

K
· Id and W

gauss
k ∝ diag

⇣

Σ̂k

⌘

−1

, (9)

corresponding to uniform averaging and Gaussian averaging, respectively, where Σ̂k denotes the
standard empirical estimate of the covariance. These are our baselines for comparison.

Evaluation metrics. Since the goal of MCMC is usually to estimate event probabilities and func-
tion expectations, we evaluate algorithm accuracy for such estimates, relative to serial MCMC out-
put. For each model, we consider a suite of test functions f ∈ F (e.g. low degree polynomials,
cluster comembership indicators), and we assess the error of each algorithm A using the metric

✏A (f) =
|EA [f ]− EMCMC [f ]|

|EMCMC [f ]|
.

In the body of the paper, we report median values of ✏A, computed within each test function class.
The supplement expands on this further, showing quartiles for the differences in ✏VCMC and ✏CMC.

Bayesian probit regression. We consider the nonconjugate probit regression model. In this case,
we use linear aggregation functions as our function class. For computational efficiency, we also
limit ourselves to diagonal Wk. We use Gibbs sampling on the following augmented model:

� ∼ N (0, �2Id), Zn | �, xn ∼ N (�Txn, 1), Yn | Zn, �, xn =

⇢

1 if Zn > 0,

0 otherwise.

This augmentation allows us to implement an efficient and rapidly mixing Gibbs sampler, where

� | x1:N = X, z1:N = z ∼ N
�

ΣXT z, Σ
�

, Σ =
�

�−2Id +XTX
�

−1
.

We run two experiments: the first using a data generating distribution from Scott et al. [22],
with N = 8500 data points and d = 5 dimensions, and the second using N = 105 data points and
d = 300 dimensions. As shown in Figure 1 and, in the supplement,1 Figures 4 and 5, VCMC de-
creases the error of moment estimation compared to the baselines, with substantial gains starting
at K = 25 partitions (and increasing with K). We also run the high-dimensional experiment using
partial posteriors [23] in place of subposteriors, and observe substantially lower errors in this case.
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Figure 2: High-dimensional normal-inverse Wishart model (d = 100). (Far left, left, right) Moment
approximation error for the uniform and Gaussian averaging baselines and VCMC, relative to serial
MCMC. Letting ρj denote the jth largest eigenvalue of Λ−1, we assessed three groups of functions:

first moments, with f(Λ) = ρj for 1 ≤ j ≤ d; pure second moments, with f(Λ) = ρ2j for 1 ≤ j ≤ d;

and mixed second moments, with f(Λ) = ρiρj for 1 ≤ i < j ≤ d. (Far right) Graph of error in
estimating E [ρj ] as a function of j (where ρ1 ≥ ρ2 ≥ · · · ≥ ρd).

Normal-inverse Wishart model. To compare directly to prior work [22], we consider the normal-
inverse Wishart model

Λ ∼ Wishart (ν, V ) , Xn | µ, Λ ∼ N
�

µ, Λ−1
�

.

Here, we use spectral aggregation rules as our function class, restricting to diagonal Wk for com-
putational efficiency. We run two sets of experiments: one using the covariance matrix from Scott
et al. [22], with N = 5000 data points and d = 5 dimensions, and one using a higher-dimensional
covariance matrix designed to have a small spectral gap and a range of eigenvalues, with N = 105

data points and d = 100 dimensions. In both cases, we use a form of projected SGD, using 40
samples per iteration to estimate the variational gradients and running 25 iterations of optimization.
We note that because the mean µ is treated as a point-estimated parameter, one could sample Λ

exactly using normal-inverse Wishart conjugacy [10]. As Figure 2 shows,2 VCMC improves both
first and second posterior moment estimation as compared to the baselines. Here, the greatest gains
from VCMC appear at large numbers of partitions (K = 50, 100). We also note that uniform and
Gaussian averaging perform similarly because the variances do not differ much across partitions.

Mixture of Gaussians. A substantial portion of Bayesian inference focuses on latent variable
models and, in particular, mixture models. We therefore evaluate VCMC on a mixture of Gaussians,

θ1:L ∼ N
�

0, τ2Id
�

, Zn ∼ Cat (π) , Xn | Zn = z ∼ N
�

θz, σ
2Id

�

,

where the mixture weights π and the prior and likelihood variances τ2 and σ2 are assumed known.
We use the combinatorial aggregation functions defined in Section 5; we set L = 8, τ = 2, σ = 1,
and π uniform and generate N = 5 × 104 data points in d = 8 dimensions, using the model
from Nishihara et al. [19]. The resulting inference problem is therefore L × d = 64-dimensional.
All samples were drawn using the PyStan implementation of Hamiltonian Monte Carlo (HMC).

As Figure 3a shows, VCMC drastically improves moment estimation compared to the baseline
Gaussian averaging (9). To assess how VCMC influences estimates in cluster membership prob-
abilities, we generated 100 new test points from the model and analyzed cluster comembership
probabilities for all pairs in the test set. Concretely, for each xi and xj in the test data, we es-
timated P [xi and xj belong to the same cluster]. Figure 3a shows the resulting boost in accuracy:
when σ = 1, VCMC delivers estimates close to those of serial MCMC, across all numbers of parti-
tions; the errors are larger for σ = 2. Unlike previous models, uniform averaging here outperforms
Gaussian averaging, and indeed is competitive with VCMC.

Assessing computational efficiency. The efficiency of VCMC depends on that of the optimization
step, which depends on factors including the step size schedule, number of samples used per iteration
to estimate gradients, and size of data minibatches used per iteration. Extensively assessing the
influence of all these factors is beyond the scope of this paper, and is an active area of research both
in general and specifically in the context of variational inference [13, 17, 21]. Here, we provide

1Due to space constraints, we relegate results for d = 5 to the supplement.
2Due to space constraints, we compare to the d = 5 experiment of Scott et al. [22] in the supplement.
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(a) Mixture of Gaussians (d = 8, L = 8). (b) Error versus timing and speedup measurements.

Figure 3: (a) Expectation approximation error for the uniform and Gaussian baselines and VCMC.
We report the median error, relative to serial MCMC, for cluster comembership probabilities of
pairs of test data points, for (left) σ = 1 and (right) σ = 2, where we run the VCMC optimization
procedure for 50 and 200 iterations, respectively. When σ = 2, some comembership probabilities
are estimated poorly by all methods; we therefore only use the 70% of comembership probabilities
with the smallest errors across all the methods. (b) (Left) VCMC error as a function of number of
seconds of optimization. The cost of optimization is nonnegligible, but still moderate compared to
serial MCMC—particularly since our optimization scheme only needs small batches of samples and
can therefore operate concurrently with the sampler. (Right) Error versus speedup relative to serial
MCMC, for both CMC with Gaussian averaging (small markers) and VCMC (large markers).

an initial assessment of the computational efficiency of VCMC, taking the probit regression and
Gaussian mixture models as our examples, using step sizes and sample numbers from above, and
eschewing minibatching on data points.

Figure 3b shows timing results for both models. For the probit regression, while the optimization
cost is not negligible, it is significantly smaller than that of serial sampling, which takes over 6000
seconds to produce 1000 effective samples.3 Across most numbers of partitions, approximately 25
iterations—corresponding to less than 1500 seconds of wall clock time—suffices to give errors close
to those at convergence. For the mixture, on the other hand, the computational cost of optimization
is minimal compared to serial sampling. We can see this in the overall speedup of VCMC relative
to serial MCMC: for sampling and optimization combined, low numbers of partitions (K ≤ 25)
achieve speedups close to the ideal value of K, and large numbers (K = 50, 100) still achieve good
speedups of about K/2. The cost of the VCMC optimization step is thus moderate—and, when the
MCMC step is expensive, small enough to preserve the linear speedup of embarrassingly parallel
sampling. Moreover, since the serial bottleneck is an optimization, we are optimistic that perfor-
mance, both in terms of number of iterations and wall clock time, can be significantly increased by
using techniques like data minibatching [9], adaptive step sizes [21], or asynchronous updates [20].

7 Conclusion and future work

The flexibility of variational consensus Monte Carlo (VCMC) opens several avenues for further
research. Following previous work on data-parallel MCMC, we used the subposterior factoriza-
tion. Our variational framework can accomodate more general factorizations that might be more
statistically or computationally efficient – e.g. the factorization used by Broderick et al. [4]. We
also introduced structured sample aggregation, and analyzed some concrete instantiations. Complex
latent variable models would require more sophisticated aggregation functions – e.g. ones that ac-
count for symmetries in the model [5] or lift the parameter to a higher dimensional space before
aggregating. Finally, recall that our algorithm – again following previous work – aggregates in a
sample-by-sample manner, cf. (4). Other aggregation paradigms may be useful in building approxi-
mations to multimodal posteriors or in boosting the statistical efficiency of the overall sampler.

Acknowledgments. We thank R.P. Adams, N. Altieri, T. Broderick, R. Giordano, M.J. Johnson,
and S.L. Scott for helpful discussions. E.A. is supported by the Miller Institute for Basic Research
in Science, University of California, Berkeley. M.R. is supported by a Hertz Foundation Fellowship,
generously endowed by Google, and an NSF Graduate Research Fellowship. Support for this project
was provided by Amazon and by ONR under the MURI program (N00014-11-1-0688).

3We ran the sampler for 5100 iterations, including 100 burnin steps, and kept every fifth sample.
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