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Markov state models are a widely used method for approximating the eigenspectrum of the molecular
dynamics propagator, yielding insight into the long-timescale statistical kinetics and slow dynamical
modes of biomolecular systems. However, the lack of a unified theoretical framework for choosing be-
tween alternative models has hampered progress, especially for non-experts applying these methods
to novel biological systems. Here, we consider cross-validation with a new objective function for
estimators of these slow dynamical modes, a generalized matrix Rayleigh quotient (GMRQ), which
measures the ability of a rank-m projection operator to capture the slow subspace of the system. It is
shown that a variational theorem bounds the GMRQ from above by the sum of the first m eigenvalues
of the system’s propagator, but that this bound can be violated when the requisite matrix elements
are estimated subject to statistical uncertainty. This overfitting can be detected and avoided through
cross-validation. These result make it possible to construct Markov state models for protein dynamics
in a way that appropriately captures the tradeoff between systematic and statistical errors. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4916292]

I. INTRODUCTION

Conformational dynamics are central to the biological
function of macromolecular systems such as signaling pro-
teins, enzymes, and channels. The molecular description
of processes as diverse as protein folding, kinase activa-
tion, voltage-gating of ion channels, and ubiquitin signaling
involves not only just the structure of a unique single
conformation but also the conformational dynamics between
a multitude of states accessible on the potential energy
surface.1–4 These dynamics occur on a range of timescales
and have varying degrees of structural complexity: localized
vibrations may occur on the 0.1 ps timescale, while large-
scale structural changes like protein folding can take seconds
or longer.5 Although many experimental techniques—most
notably X-ray crystallography and nuclear magnetic resonance
spectroscopy—can yield detailed structural information on
functional conformations, the experimental characterization
of the dynamical processes, intermediate conformations,
and transition pathways in macromolecular systems remains
exceptionally challenging.6,7

Atomistic molecular dynamics (MD) simulations can
complement experiment and provide a powerful tool for prob-
ing conformational dynamics, allowing researchers to directly
visualize and analyze the time evolution of macromolecular
systems in atomic detail. Three major challenges for MD simu-
lation of complex systems are the accuracy of the potential
energy functions, adequate sampling of conformational space,
and quantitative analysis of simulation results. The state-of-
the-art on all three fronts has advanced rapidly in recent
years. A new generation of increasingly accurate forcefields
has recently emerged, such as those which include explicit
polarizability and have been parameterized more system-
atically.8–12 On the sampling problem, the introduction of
graphical processing units (GPUs) has dramatically expanded
the timescales accessible with MD simulation at modest

cost, and specialized MD-specific hardware and distributed
computing networks have yielded further gains.13–17 In this
work, we focus on the remaining challenge, the quantitative
analysis of MD simulations.

Despite, or perhaps because of their detail, MD simu-
lations require further analysis in order to yield insight into
macromolecular dynamics or quantitative predictions capable
of being tested experimentally. The direct result of a simula-
tion, a MD trajectory, is a time series of Cartesian positions
(and perhaps momenta) of dimension 3N (6N if momenta
are retained), where N is the number of atoms in the system.
Because routine MD simulations may contain tens or hundreds
of thousands of atoms, these time series are extremely high-
dimensional. A multitude of methods have been proposed for
reducing the dimensionality or complexity of MD trajectories
and enabling the analysis of the system’s key long-lived
conformational states, dynamical modes, transition pathways,
and essential degrees of freedom.18–24

In this work, we combine two central ideas from machine
learning and chemical physics—hyperparameter selection via
cross-validation and variational approaches for linear operator
eigenproblems—to create a new method for discriminating
between alternative simplified models for molecular kinetics
constructed from MD simulations. Towards this end, we
prove a new variational theorem concerning the simultaneous
approximation of the first m eigenfunctions of the propagator
of a high-dimensional reversible stochastic dynamical system,
which mathematically formalize the slow collective dynamical
motions we wish to identify in molecular systems.

II. CROSS VALIDATION

In seeking to estimate the slowest collective dynamical
modes of a molecular system from a finite set of stochastic
trajectories, statistical noise is unavoidable. These dynamical
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modes, which we formally identify as the first m eigenfunc-
tions, φi, of the propagator, an integral operator associated
with the dynamics of a molecular system (vide infra), are
functions on R3N to R. Like the ground state wave function
in quantum chemistry, these eigenfunctions can only be
approximately represented in any finite basis set. Reducing
this approximation error, a statistical bias, motivates the use
of larger and more flexible basis sets. Unfortunately, in an
effect known as the bias-variance tradeoff,25,26 larger basis
sets tend to exacerbated a competing source of error, the
model variance: with a fixed simulation data set but additional
adjustable parameters due to a larger basis set, the model
estimates of these eigenfunctions become more unstable and
uncertain.

As has been known since at least the early 1930s, training
a statistical algorithm and evaluating its performance on the
same data set generally yield overly optimistic results.27 For
this reason, standard practice in supervised machine learning
is to divide a data set into separate training and test sets.
The model parameters are estimated using the training data
set, but performance is evaluated separately by scoring the
now-trained model on the separate test set, consisting of data
points that were left out during the training phase. To avoid
overfitting, the choice between alternative models is made
using test set performance not training set performance.

However, because researchers may expend significant
effort to collect data sets, the exclusion of a large fraction of
the data set from the training phase can be a costly proposition.
k-fold cross-validation is one alternative that can be more data-
economical, where the data are split into k disjoint subsets,
each of which is cycled as both the training and test sets.

Let X be a collection of molecular dynamics trajectories
(the data set), which we assume for simplicity to consist
of a multiple of k independent MD trajectories of equal
length. In k-fold cross validation, the trajectories are split
into k equally sized disjoint subsets, called folds, denoted
X (i), for i ∈ {1,2, . . . , k}. These will serve as the test sets. Let
X (−i) = X \ X (i) denote the set of all trajectories excluded from
fold i; these will serve as the training sets.

Consider an algorithm to estimate the m slowest dynam-
ical modes of the system, g. Examples of such estimators
include Markov state models (MSMs)28 and time-structured
independent components analysis (tICA).29,30 The result of
this calculation, the estimated eigenfunctions, φ̂1:m, is taken
to be a function of both an input dataset, X , and a set of
hyperparameters, θ, which may include settings such as the
number of states or clustering algorithm in a MSM or the basis
set used in tICA,

φ̂1:m = (φ̂1, φ̂2, . . . , φ̂m) = g(X, θ). (1)

Furthermore, consider an objective function, O(φ̂1:m,X ′),
which evaluates a set of proposed eigenfunctions, φ̂1:m, and a
(possibly new) dataset X ′, returning a single scalar measuring
the performance or accuracy of these eigenfunctions. The
mean cross validation performance of a set of hyperparameters
is defined by the following expression, which builds k
models on each of the training sets and scores them on the
corresponding test sets,

MCV (θ) = 1
k

k
i=1

O(g(X (−i), θ), X (i)). (2)

Model selection can be performed by finding the hyper-
parameters, θ∗ = arg maxθMVC(θ), which maximize the cross
validation performance. Many variants of this protocol with
different procedures for splitting the training and test sets,
such as repeated random subsampling cross-validation and
leave-one-out cross validation, are also possible.31

The remainder of this work seeks to develop a suitable
objective function, O, for estimates of the slow dynamical
modes in molecular kinetics that can be used as shown above
in a cross-validation protocol. This task is complicated by the
fact that no ground-truth values of true eigenfunctions, φi, are
available either in the training or test sets. Nevertheless, our
goal is to construct a consistent objective function, such that
as the size of a molecular dynamics data set, X , grows larger,
the maximizer of O(·,X) converges in probability to the true
propagator eigenfunctions, φ1:m,

arg max
φ̂1:m

O(φ̂1:m,X) p
−→ φ1:m. (3)

III. THEORY BACKGROUND

We begin by introducing the notion of the propagator
and its eigenfunctions from a mathematical perspective,
introducing the key variables and notation that will be essential
for the remainder of this work. We largely follow the order of
presentation in Prinz et al.28 which contains a longer and more
thorough discussion.

Consider a time-homogeneous, ergodic, continuous-time
Markov process x(t) ∈ Ω which is reversible with respect to
a stationary distribution µ(x) : Ω → R+. Where necessary for
concreteness, we take the phase space, Ω, to be R3N , where N
is the number of atoms of a molecular system. The system’s
stochastic evolution over an interval τ > 0 is described by a
transition probability density

p(x,y; τ)dy = P[x(t + τ) ∈ Bϵ(y) | x(t) = x], (4)

where Bϵ(y) is the open ϵ-ball centered at y with infinitesimal
measure dy.

Consider an ensemble of such systems at time t, distrib-
uted according to some probability distribution pt(x). After
waiting for a duration τ, the distribution evolves to a new
distribution,

pt+τ(y) =

Ω

dx p(x,y; τ) pt(x) = P(τ) ◦ pt(y), (5)

which defines a continuous integral operator, P(τ), called the
propagator with lag time τ. The propagator, P(τ), admits
a natural decomposition in terms of its eigenfunctions and
eigenvalues,

P(τ) ◦ φi = λiφi. (6)

Furthermore, due to the reversibility of the underlying
dynamics, P(τ) is compact and self-adjoint with respect to
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a µ−1 weighted scalar product,32

⟨ f , g⟩µ−1 =


Ω

dx f (x)g(x)µ−1(x), (7)

where f and g are arbitrary scalar functions on Ω. The
propagator has a unique largest eigenvalue λ1 = 1 with
corresponding eigenfunction φ1(x) = µ(x). The remaining
eigenvalues are real and positive, can be sorted in descending
order, and can be normalized to be µ−1-orthonormal. Using
the spectral decomposition of P(τ), the conformational
distribution of an ensemble at arbitrary multiples of τ can
be written as a sum of exponentially decaying relaxation
processes,

pt+kτ(x) =
∞
i=1

λ
k
i ⟨pt, φi⟩µ−1φi (8)

= µ(x) +
∞
i=2

exp
(
− kτ

ti

)
⟨pt, φi⟩µ−1φi, (9)

where ti = −
τ

ln λi
. The eigenfunctions φi(x) for i = 2, . . . can

thus be interpreted as dynamical modes, along each of which
the system relaxes towards equilibrium with a characteristic
timescale, τi. Many molecular systems are characterized
by m individual slow timescales with eigenvalues close
to one, separated from the remaining eigenvalues by a
spectral gap. These slowest collective degrees of freedom,
such as protein folding coordinates and pathways associated
with enzyme activation/deactivation, are often identified with
key functions in biological systems. The remaining small
eigenvalues correspond to faster dynamical processes that
rapidly decay to equilibrium. Under these conditions, the
long-time dynamics induced by the propagator can be well
described by consideration of only these slow eigenfunctions
— that is, a rank-m low-rank approximation to the propagator.

Furthermore, not only do these slow eigenfunctions form
a convenient basis but also in fact they lead to an optimal
reduced-rank description of the dynamics. That is, each of the
partial sums formed by truncating the expansion in Eq. (8) at
its first m terms is the closest possible rank-m approximation
to P(τ) in spectral norm. This statement is made precise by
the following theorem.

Theorem 1. Let P be compact linear operator which is
self-adjoint with respect to an inner product ⟨·, ·⟩µ−1. Assume
that the eigenvalues λi and associated eigenfunctions φi are
sorted in descending order by eigenvalue. Define the rank-m
operator Pm such that Pm ◦ f =

m
i=1 λi⟨ f , φi⟩µ−1φi and let

Am be an arbitrary rank m operator. Then,

Pm = argmin
rank(Am)≤m

∥Am − P∥µ−1. (10)

Proof. This is the extension of the familiar Eckart-Young
theorem to self-adjoint linear operators. The original result
is by Schmidt.33 See Courant and Hilbert (pp. 161)34 and
Micchelli and Pinkus35 for further details. �

While Theorem 1 is a statement about operator approx-
imation, it can also be viewed as a statement about optimal
dimensionality reduction for description of slow dynamics.

Over all m-dimensional dimensionality reductions, the one
which projects the dynamics onto its first m propagator
eigenfunctions preserves to the largest degree information
about the long-timescale evolution of the original system.

Note however that rank-constrained propagator, Pm,
while optimal by spectral norm is not generally positivity-
preserving, as proved in Appendix B, which is an important
property of the propagator necessary for its probabilistic
interpretation in Eq. (5).

IV. OBJECTIVE FUNCTION AND SUBSPACE
VARIATIONAL PRINCIPLE

In this section, we introduce the objective function
discussed abstractly in Sec. II. We show that both the existing
tICA29,30 and MSM28,36–39 methods can be interpreted as
procedures which directly optimize this criteria using different
restricted families of basis functions. Furthermore, we show
that in the infinite-data limit, when the requisite matrix
elements can be computed without error, a variational bound
governs this objective function: ansatz eigenfunctions, φ̂1:m,
which differ from the propagator’s true eigenfunctions, φ1:m,
are always assigned a score which is less than the score of the
true eigenfunctions.

Unfortunately, in the more typical finite-data regime, this
variational bound can be violated in a pernicious manner: as
the size of the basis set increases past some threshold, models
can give continually increasing training set performance
(even breaking the variational bound), even as they get less
accurate when measured on independent test data sets. This
observation underscores the practical value of cross-validation
in estimators for the slow dynamical processes in molecular
kinetics.

Our results build on the important contributions of
Noé and Nüske40 and Nüske et al.,41 who introduced a
closely related variational approach for characterizing the slow
dynamics in molecular systems. Our novel contribution stems
from an approach to the problem through the lens of cross-
validation, with its need for a single scalar objective function.
While previous work focuses on estimators of each of the
propagator eigenfunctions, φi, one at time, we focus instead
on measures related to the simultaneous estimation of all of
the first m eigenfunctions collectively.

Theorem 2. Let P be compact linear operator whose
eigenvalues λ1 > λ2 ≥ λ3, . . . are bounded from above and
which is self-adjoint with respect to an inner product ⟨·, ·⟩µ−1.
Furthermore, let f be an arbitrary set of m linearly
independent functions on Ω → R, f = { f i(·)}mi=1. Let Sm

and Sm++ be the space of m × m real symmetric matrices
and positive definite matrices, respectively. Define a matrix
P ∈ Sm with Pi j = ⟨ f i,P ◦ f j⟩µ−1 and a matrix Q ∈ Sm++ with
Qi j = ⟨ f i, f j⟩µ−1. Define RP[ f ] as

RP[ f ] = Tr
�
PQ−1�

. (11)

Then,

RP[ f ] ≤
m
i=1

λi. (12)
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Lemma 3. The equality in Eq. (12) holds for f = {φ1,
φ2, . . . , φm} and any set of m functions, f , such that span( f )
= span({φ1, φ2, . . . , φm}).

The proof of Theorem 2 follows from the Ky Fan
theorem.42,43 Its proof, as well as the proof of Lemma 3, can
be found in Appendix A.

This result implies that the slow eigenspace of the
molecular propagator can be numerically determined by
simultaneously varying a set of ansatz functions f to maximize
RP[ f ]. If the maxima is found, then f are the desired
eigenfunctions up to a rotation. The matrix P has the form of a
time-lagged covariance matrix between the ansatz functions,
describing the tendency of the system to move from regions of
phase space strongly associated one ansatz function to another
in time τ. The matrix Q acts like a normalization, giving
the equilibrium overlap between ansatz functions. Note that
when the trial functions, f , are µ−1-orthonormal, Q is simply
the identity. Under these conditions, RP[ f ] then assumes a
simple form as the sum of the individual Ritz values of the
trial functions.

Physically, RP[ f ] can be interpreted as the “slowness”
of the lower-dimensional dynamical process formed by
projecting a high-dimensional process through the m ansatz
functions. The maximization ofRP[ f ] corresponds to a search
for the coordinates along which the system decorrelates as
slowly as possible.

Because it is bounded by the sum of the first m true
eigenfunctions of the propagator, RP[ f ] is the foundation
of the sought objective function for cross-validation of
estimators for the slow dynamical modes in molecular kinetics.
Unfortunately, it cannot be calculated exactly from a molecular
dynamics simulation. Next, we show how the requisite matrix
elements, Pi j and Qi j, can be approximated from MD. The
noise in these approximations will be a function of both the
amount of available simulation data and the size and flexibility
of a basis set, leading to the bias variance tradeoff discussed
earlier. By the continuous mapping theorem and Theorem 2,
consistency of the objective function (in the sense of Eq. (3))
is established if these estimators for P and Q are consistent.

A. Basis function expansion

Equipped with this variational theorem, we now consider
the construction of an approximation to the dominant
eigenspace of P(τ) using linear combinations of functions
from a finite basis set. This reduces the problem of searching
over the space of sets of m functions to a problem of finding
a weight matrix that linearly mixes the basis functions.

Let {ϕa}na=1 be a set of n functions onΩ → R, which will
be used as basis functions in which to expand the slowest m
propagator eigenfunctions. Physically motived basis functions
for protein dynamics might include measurements of protein
backbone dihedral angles, the distances between particular
atoms, or similar structural coordinates. The basis can also be
indicator functions for specific regions of phase space—the
“Markov states” in a MSM.

Following Nüske et al.,41 we expand the m ansatz
eigenfunctions as µ-weighted linear combinations of the basis

functions, f i(x) = 
a Aiaµ(x)ϕa(x), where A ∈ Rn×m is a

weight matrix of arbitrary expansion coefficients. From the
basis functions, we define the time-lagged covariance and
overlap matrices C ∈ Sn and S ∈ Sn++, respectively, such that
Ci j = ⟨µϕi, P ◦ µϕ j⟩µ−1 and Si j = ⟨µϕi, µϕ j⟩µ−1.

Then, by exploiting the linearity of the basis function
expansion, the matrices P and Q can be written as matrix
products involving the expansion coefficients, correlation, and
overlap matrices,

P = ATC A, (13)

Q = ATSA. (14)

These equations can be interpreted in a simple way: the
time-lagged correlation and overlap of the ansatz functions
with respect to one another can be formed from two similar
matrices involving only the basis functions, C and S, and the
expansion coefficients, A. When the ansatz functions, f , are
constructed this way, RP[ f ] reduces to the generalized matrix
Rayleigh quotient (GMRQ), RP[ f ] = R(A; C,S) = R(A),

R(A) ≡ Tr
�
ATC A (ATSA)−1�

. (15)

Following Lemma 3, we note that R(A) is a function only
of column span of A and is not affected by rescaling or the
application of any invertible transformation of the columns.
Therefore, the optimization of R(A) can be seen as a single
optimization problem over the set of all m-dimensional linear
subspaces of Ω. This space is referred to as a Grassmann
manifold.44 Note that when m = 1, P and Q are scalars and
R(A) reduces to a standard generalized Rayleigh quotient.

Furthermore, with fixed basis functions, the training
problem, A∗ = arg maxAR(A; C,S), is solved directly by a
matrix A∗with columns that are the m generalized eigenvectors
of C and S with the largest eigenvalues, and this eigenproblem
is identical to the one introduced for the tICA method29,30 and
the Ritz method.40

B. Estimation of matrix elements from MD

Equipped with a collection of basis functions, {ϕ}, how
can C and S be estimated from a MD dataset? As previously
shown by Nüske et al.,41 the matrix elements C and S
can be estimated from an equilibrium molecular dynamics
simulations, X = {xt}Tt=1, by exploiting the ergodic theorem
and measuring the correlation between the basis functions,
with or without a time lag,

Ci j = ⟨µϕi,P(τ) ◦ µϕ j⟩µ−1 (16)

=


x∈Ω


y∈Ω

dx dy µ(y) ϕi(y) p(x,y; τ) ϕ j(x)
(17)

≈ 1
T − τ

T−τ
t=1

ϕi(xt)ϕ j(xt+τ), (18)

Si j = ⟨µϕi, µϕ j⟩µ−1 (19)

=


x∈Ω

ϕi(x)ϕ j(x)µ(x) (20)

≈ 1
T

T
t=1

ϕi(xt)ϕ j(xt). (21)
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Note that for Theorem 2 to be applicable, C is required
to be symmetric, a property which is likely to be violated by
the estimator Eq. (18). For this reason, in practice, we use an
estimator that averages the matrix computed in Eq. (18) with
its transpose. We call this method as transpose symmetrization,
and it amounts to including each trajectory twice in the dataset,
once in the forward and once in the reversed direction, as
discussed by Schwantes and Pande.29

MSMs28,36–39 are particular case of the proposed method,
which have been widely applied to the analysis of biomolec-
ular simulations,45–53 where the basis functions are chosen
to indicator functions on a collection of non-overlapping
subsets of the conformation space. Given a set of discrete
non-overlapping states which partition Ω, S = {si}ni=1, such
that si ⊆ Ω,

n
i=1 si = Ω and si ∩ s j = ∅, and define

ϕMSM
i (xt) =




1, if xt ∈ si.
0, otherwise.

(22)

Using this basis set, as previously shown by Nüske
et al.,41 estimates of the correlation matrix elements Ci j can
be obtained following Eq. (18) by counting the number of
observed transitions between sets si and s j. The overlap matrix
S is diagonal with entries, Sii, that estimate the stationary
probabilities of the sets, Sii ≈


x∈si dx µ(x).

For the particular case of MSM basis sets, in contrast to
the somewhat crude transpose symmetrization method, a more
elegant enforcement of symmetry of C can be accomplished
via a maximum likelihood estimator following Algorithm 1 of
Prinz et al.28

Equipped with these estimators for C and S from MD
data, Eq. (15) now has a form which is suitable for use as a
cross-validation objective function, O(φ̂1:m,X ′). The proposed
eigenfunctions, which may have been trained on a different
dataset, are numerically represented by expansion coefficients,
Â, and C and S act as sufficient statistics from the test dataset
X ′; the GMRQ objective function is R(Â; C(X ′),S(X ′)).

V. ALGORITHMIC REALIZATION

The central practical purpose of cross-validation with
GMRQ is, given a MD dataset, to select a set of appropriate
basis functions with which to construct MSMs for system’s
kinetics. Note that Eq. (22) leaves substantial flexibility in the
definition of the basis set, since the partitioning of phase space
into states is left unspecified.

Methodologies for constructing these states include clus-
tering the conformations in the dataset using a variety of
distance metrics, clustering algorithms, and dimensionality
reduction techniques. Let θ be a variable containing the
settings for these procedures, which parameterizes a function,
gMSM
θ (X), that, given a collection of MD trajectories, returns

a set of n states, S.
Procedurally, GMRQ-based cross-validation for MSMs is

a protocol for assigning a scalar score, MCV (θ), to the MSM
hyperparameters, θ, with the following steps.

1. Separate the full data set into k disjoint folds, as described
in Sec. II.

2. For each fold, i, use the training data set, X (−i), to construct
a set of states, S(−i) = gθ(X (−i)).

3. Use the states S(−i) and the training data set X (−i) to build
a Markov state model. This entails clustering the dataset to
obtain the basis functions (states), {ϕ}, estimating the train-
ing set correlation and overlap matrices C(−i) and S(−i) from
the trajectories, and computing their first m generalized
eigenvectors, A = arg maxAR(A; C−(i),S(−i)), with a stan-
dard generalized symmetric eigensolver (e.g., LAPACK’s
 subroutine).54

4. These eigenvectors maximize the GMRQ on the training
set, but how do they perform when tested on new data?
Using the test set data, X (i), and the states, S(−i), as
determined from the training set, compute the test set
correlation and overlap matrices, C(i) and S(i). These trained
eigenvectors, A, are scored on the test set byR(A; C(i),S(i)).
The key metric for model selection, the cross-validation
mean test set generalized matrix Rayleigh quotient is

MVC(θ) = k−1
k
i=1

R(A; C(i),S(i)). (23)

As an overfitting diagnostic, we also calculate the cross-
validation mean training set GMRQ,

MVC ′(θ) = k−1
k
i=1

R(A; C(−i),S(−i)). (24)

5. Finally, the entire procedure is repeated for many choices
of θ, and the hyperparameter set that maximizes the
mean cross validation score is chosen as the best model,
θ⋆ = arg maxθ MVC(θ).

For this approach, one symptom of overfitting—the
construction of models that describe the statistical noise in
X rather than the underlying slow dynamical processes—is
an overestimation of the eigenvalues of the propagator and
overestimation of the GMRQ. Related statistical methods,
such as kernel principal components analysis which also
involve spectral analysis of integral operators under non-
negligible statistical error suffer from the same effect, which
has been termed variance inflation.55–57

Left unspecified in this protocol are three important
parameters: the degree of cross validation, k, the number of
desired eigenfunctions, m, and the correlation lag time, τ. In
our experiments, following common practice in the machine
learning community, we use k = 5. Especially in the data-
limited regime, the tradeoffs involving the choice of k are not
entirely clear, as the objective lacks the form of an empirical
risk minimization problem.26,58 For MSMs, substantial atten-
tion in the literature has been paid to the selection of the lag
time, τ.28,38,59 With fixed basis function, it has been shown
that the eigenfunction approximation error is a decreasing
function of the τ, which motivates the use of larger values.60

On the other hand, larger values of τ limit the temporal
resolution of the model. For MSMs of protein folding, the
authors’ experience suggests that appropriate values for τ are
often in the range between 1 and 100 ns. Finally, we suggest
that m, the rank of GMRQ, be selected based on the number
of slow dynamical processes in the system, as determined
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by an apparent gap in the eigenvalue spectrum of P(τ), or
heuristically to a value between 2 and ∼10.

VI. SIMULATIONS

A. Double well potential

In order to gain intuition about the method, we begin by
considering one of the simplest possible systems: Brownian
dynamics on a double well potential. We consider a one
dimensional Markov process in which a single particle evolves
according to the stochastic differential equation,

dxt

dt
= −∇V (xt) +

√
2DR(t), (25)

where V is the reduced potential energy, D is the diffusion
constant, and R(t) is a zero-mean delta-correlated stationary
Gaussian process. For simplicity, we consider the potential

V (x) = 1 + cos(2x) (26)

with reflecting boundary conditions at x = −π and x = π.
Using an Euler integrator, a time step of ∆t = 10−3 and
diffusion constant D = 103, we simulated 10 trajectories
starting from x = 0 of length 105 steps and saved the position
every 100 steps. The potential and histogram of the resulting
data points are shown in Fig. 1(b). We computed the true
eigenvalues of the system’s propagator to machine precision
by discretizing the propagator matrix elements on a dense grid
(see Appendix C). The timescale of the slowest relaxation
process in this system is t2 ≈ 7115.3 steps and the dataset
contains approximately 94 transition events.

We now consider the construction of Markov state models
for this system, and in particular, the selection of the number
of states, n, using states, S = {si}ni=1, which evenly partition
the region between x = −π and x = π into n equally spaced
intervals,

si =

−π + 2π

n
(i − 1), −π + 2π

n
i
)
. (27)

When n is too low, we expect that the discretization error
in the MSM will dominate, and our basis will not be flexible
enough to capture the first eigenfunction of the propagator. On
the other hand, because the number of parameters estimated
by the MSM is proportional to n2, we expect that for n too
large, our models will be overfit. We therefore use 5-fold cross
validation with the GMRQ to select the appropriate number of
states, balancing these competing effects. The cross-validation
GMRQ for the first two eigenvectors (m = 2, τ = 100 steps) of
the MSMs is shown in Fig. 1(a), along with the exact value of the

GMRQ. The blue training curve gives the average GMRQ over
the folds when scoring the models on the same trajectories that
they were fit with, and is simply equal to the mean sum of the
first two eigenvalues of the MSMs, whereas the red curve shows
the mean GMRQ evaluated on the left-out test trajectories.

The training GMRQ increases monotonically, and we
note with particular emphasis that it increases past the exact
value when using a large number of states. This indicates that
the models built with more than 200 states predict slower
dynamics than the true propagator. This effect is impossible
in the limit of infinite data as demonstrated by Eq. (12)—
it is a direct manifestation of overfitting and indicates why
straightforward variational optimization without testing on
held-out data or consideration of statistical error fails in a data-
limited regime. The training set eigenvectors, the maximizers
of the training set GMRQ, are actually exploiting noise in the
dataset more so than modeling the propagator eigenfunctions.
On the other hand, the test GMRQ displays an inverted U-
shaped behavior and achieves a maximum at k = 61. These
models thus achieve the best predictive accuracy in capturing
the systems slow dynamics, given the finite data available.

B. Comparison of clustering procedures: Octaalanine

What methods of MSM construction are most robustly
able to capture the long-timescale dynamics of protein
systems? To address this question, we performed a series of
analyses of 27 molecular dynamics trajectories of terminally
blocked octaalanine, a small helix forming peptide. We used 8
different methods to construct the state discretization using
clustering with three distance metrics and three clustering
algorithms.

For clustering, we considered three distance metrics.
The first was the backbone φ and ψ dihedral angles. Each
conformation was represented by the sine and cosine of
these torsions for a total of 32 features per frame, and
distances for clustering were computed using a Euclidean
metric. Second, we considered the distribution of reciprocal
interatomic distances (DRID) distance metric introduced by
Zhou and Caflisch,61 using the Cα, C β, C, N , and O atoms
in each residue. Finally, we considered the Cartesian minimal
root mean square deviation (RMSD) using the same set of
atoms per residue.62 We also considered three clustering
algorithms; k-centers,63 a landmark version of UPGMA
hierarchical clustering (see Appendix D), and k-means.64

For each pair of distance metric and clustering algorithm
(excluding k-means and RMSD which is incompatible),65 we

FIG. 1. Model selection for MSMs of a double well potential. Error bars indicate standard deviations over the 5 folds of cross validation. See text for details.
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performed 5-fold cross validation using between 10 and 500
states for the clustering. For this experiment, we heuristically
chose a lag time of τ = 10 ps and m = 6, to capture the
first five dynamical processes in addition to the stationary
distribution. The results are shown in Fig. 2, with blue curves
indicating the mean GMRQ on the training set and red curves
indicating the mean performance on the held-out sets. We
find that in all cases, the performance on the training set is
optimistic, in the sense that the ansatz eigenvectors fit during
training score more poorly when reëvaluated on held out
data. Furthermore, although the training curves all continue
to increase with respect to the number of states within the
parameter range studied—which might be interpreted from a
variational perspective as the quality of the models continually
increasing—the performance on the test sets tends to peak at
a moderate number of states and then decrease. We interpret
this as a sign of overfitting: when the number of states is too
large, with models fitting the statistical noise in the dataset
rather than the underlying slow dynamical processes. Of
the parameters studied, the best performance appears to be
using the combination of k-means clustering with the dihedral
distance metric, using between 50 and 200 states. We also note
that k-centers appears to yield particularly poor models for all
distance metrics, which may be rationalized on the basis that,
by design, the algorithm selects outlier conformations to serve
as cluster centers.63

VII. DISCUSSION

Some amount of summarization, coarse-graining, or
dimensionality reduction of molecular dynamics data sets is a

necessary part of their use to answer questions in biological
physics. In this work, we argue that the goal of this effort
should essentially be to find the dominant eigenfunctions
of the system’s propagator, an unknown integral operator
controlling the system’s dynamics. We show that this goal can
be formulated as the variational optimization of a single scalar
functional, which can be approximated using trajectories
obtained from simulation and a parametric basis set. Although
overfitting is a concern with finite simulation data, this risk can
be mitigated by the use of cross-validation.

When the basis sets are restricted to mutually orthogonal
indicator functions or linear functions of the input coordinates,
this method corresponds to the existing MSM and tICA
methods. Unlike previous formulations, it provides a method
by which MSM and tICA solutions can be “scored” on new
data sets that were not used during parameterization, making
it possible to measure the generalization performance of these
methods and choose the various hyperparameters required for
each method, such as the number of MSM states or clustering
method. Furthermore, the extension to other families of basis
functions (e.g., Gaussians) is straightforward, and GMRQ
provides a natural quantitative basis on which to conclude
whether these new methods are superior to existing basis sets.

A. Connections to quantum mechanics and machine
learning

The variational theorem for eigenspaces in this work has
strong connections to work in two other related fields: excited
state electronic structure theory in quantum mechanics and
multi-class Fisher discriminant analysis in machine learning.
In quantum mechanics, Theorem 2 is analogous to what has

FIG. 2. Comparison of 8 methods for building MSMs under 5-fold cross validation, evaluated using the rank-6 GMRQ. We used the k-centers, k-means, and
landmark-based (nlandmarks= 5000) UPGMA hierarchical clustering algorithms, with the DRID61 and backbone dihedral angle featurizations. Error bars indicate
the standard error in the mean over the cross validation folds.
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been called the ensemble or trace variational principle in that
field,66–69 which bounds the sum of the energy of the first
m eigenstates of the Hamiltonian by the trace of a matrix
of Ritz values. While the goal of finding just the ground-
state eigenfunction (m = 1) is more common in computational
quantum chemistry, the simultaneous optimization of many
eigenstates is critical for many applications including band-
structure calculations for materials in solid state physics.

Furthermore, in machine learning, this work has an analog
in the theory multi-class Fisher discriminant analysis.70 Here,
the goal is to find a low-rank projection of a labeled multi-
class dataset which maximizes the between-class variance
of the dataset while controlling the within-class variances.
The optimal discriminant vectors are shown to be the first k
generalized eigenvectors of an eigenproblem involving these
two variance matrices—the problem shares the same structure
as Eq. (15) in this work.71 We anticipate that this parallel
will aid the development of improved algorithms for the
identification of slow molecular eigenfunctions, especially
with respect to regularization and sparse formulations.72,73

B. Comparison to likelihood maximization

While we focus on the identification of the domi-
nant eigenfunctions of the system’s propagator, a different
viewpoint is that analysis of MD should essentially entail
the construction of probabilistic, generative models over
trajectories, fit, for example, by maximum likelihood or
Bayesian methods.

As we show in Sec. IV B, and Nüske et al.41 have
shown earlier, MSMs arise naturally from a maximization
of Eq. (12) when the ansatz eigenfunctions are constrained
to be linear combinations of a set of mutually orthogonal
indicator functions. However, MSMs can also be viewed
directly as probabilistic models, constructed by maximizing a
likelihood function of the trajectories with respect to the model
parameters. This probabilistic view has, in fact, been central
to the field, driving the development of improved methods,
for example, in model selection,25,74 parameterization,75 and
coarse-graining.76,77 To what extent does this imply that the
variational and probabilistic views are equivalent?

In Appendix B, we show that while these two views may
coincide for the particular choice of basis set with MSMs, they
need not be equivalent in general. In fact, the GMRQ-optimal
model formed by the first m eigenfunctions of the propagator
need not be positivity preserving, which is essential to form
a probabilistic likelihood function in the sense of Kellogg,
Lange, and Baker74 or McGibbon, Schwantes, and Pande.25

On the other hand, the two views are tightly coupled; their
connection is given by the error bounds proved by Sarich, Noé
and Schütte.60 When the model gives a good approximation
to the slow propagator eigenspace (low eigenfunction approxi-
mation error, high GMRQ), a good approximation to the long-
timescale transition probabilities is obtained.

Cross validation with the log likelihood requires either
a generative model for the high dimensional data, such as
a hidden Markov model (HMM)78 or dimensionality reduc-
tion before model comparison. This is a major disadvantage,
because accurate and tractable generative models for time

series with tens or hundreds of thousands dimensions are not
generally available. However, treating dimensionality reduc-
tion as a preprocessing and applying probabilistic models
afterwards, as done by McGibbon, Schwantes, and Pande,25

does not enable quantitative comparison between alterna-
tive competing dimensionality reduction protocols. With the
GMRQ, on the other hand, the need for a reference state
decomposition or high-dimensional generative model is elimi-
nated,76 and different dimensionality reduction procedures can
easily be compared in a quantitative manner, as shown in Fig. 2.

VIII. CONCLUSIONS

The proliferation of new and improved methods for
constructing low-dimensional models of molecular kinetics
given a set of high-resolution MD trajectories has been a boon
to the field, but the lack of a unified theoretical framework for
choosing between alternative models has hampered progress,
especially for non-experts applying these methods to novel
biological systems. In this work, we have presented a new
variational theorem governing the estimation of the space
formed by the span of multiple eigenfunctions of the molecular
dynamics propagator. With this method, a single scalar-valued
functional scores a proposed model on a supplied data set, and
the use of separate testing and training data sets makes it
possible to quantify and avoid statistical overfitting. During
the training step, tICA and MSMs are specific instance of
this method with different types basis functions. This method
extends these tools, making it possible to score trained models
on new datasets and to perform hyperparameter selection.

We have applied this approach to compare eight different
protocols for Markov state model construction on a set of MD
simulations of the octaalanine peptide. We find that of the
methods tested, k-means clustering with the dihedral angles
using between 50 and 200 states appears to outperform the
other methods and that the k-centers cluster method can be
particularly prone to poor generalization performance. To our
knowledge, this work is the first to enable such quantitative
and theoretically well-founded comparisons of alternative
parameterization strategies for MSMs.

We anticipate that this work will open the door to more
complete automation and optimization of MSM construction.
Free and open source software fully implementing these
methods is available in the MDTraj and MSMBuilder3
packages from http://mdtraj.org and http://msmbuilder.org,
along with example and tutorials.79 While the lag time,
τ and rank, m, of the desired model must be manually
specified, other key hyperparameters that control difficult-
to-judge statistical tradeoffs, such as the number of states
in a MSM, can be chosen to be optimizing the cross-
validation performance. Furthermore, given recent advances in
automated hyperparameter optimization in machine learning,
we anticipate that this search itself can be fully automated.80
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APPENDIX A: PROOFS OF THEOREM2 AND LEMMA 3

Proof of Theorem 2. The eigenfunctions, φi, of P(τ)
form a complete basis. Expand each f i =


a waiφa with

coefficients W ∈ R∞×m with Wni = ⟨ f i, φn⟩µ−1,

Pi j = ⟨ f i, P ◦ f j⟩µ−1 (A1)

=


a

Waiφa, P ◦

b

Wb jφb

µ−1 (A2)

=

a

WaiWa jλa, (A3)

Qi j = ⟨ f i, f j⟩µ−1 (A4)

=


a

Waiφa,

b

Wb jφb

µ−1 (A5)

=

a

WaiWa j . (A6)

We define the diagonal matrix D(λ) with Dii = λi. Then,
Eqs. (A3) and (A6) can be rewritten in matrix form,

P = WTD(λ)W, (A7)
Q = WTW. (A8)

Let F = Q1/2 ∈ Sm++ be the (unique) positive definite
square root of Q, which is guaranteed to exist because Q is
positive definite and B = W F−1. Then, rearrange the objective
function using the cyclic property of the trace,

RP[ f ] = Tr
�
WTD(λ)W              

P

(FF)−1    
Q−1

�
(A9)

= Tr
�
F−1WTD(λ)W F−1�

(A10)
= Tr

�
BTD(λ)B�

. (A11)

Note that BTB = F−1WTW F−1 = Im. Therefore, by applica-
tion of the Ky Fan theorem,42,43

RP[ f ] ≤
m
i

λi, (A12)

and the equality holds when f = {φ1, φ2, . . . , φm}.

Proof of Lemma 3. Following Absil et al.,44 let f = { f1,
f2, . . . , fm} and M ∈ Rm×m be an arbitrary invertible matrix.
Define a new collection of functions g = {g1, g2, . . . , gm},
such that gj =

m
i=1 Mi j f i and a matrix W ′ ∈ R∞×m such that

W ′
ni = ⟨gi, φn⟩µ−1. Expanding the matrix elements of W ′, we

note that

W ′ = W M. (A13)

Then, using Eqs. (A7) and (A8), RP[g] can be written as a
matrix expression involving W ′ and subsequently rewritten
involving W and M . Expansion of the matrix products and
application of the cyclic property of the trace confirms that

RP[g] = RP[ f ],
RP[g] = Tr

�
W ′TD(λ)W ′(W ′TW ′)−1�

(A14)

= Tr
�(W M)TD(λ)(W M)((W M)T(W M))−1�

(A15)

= Tr
�
MTWTD(λ)W M−1(WTW )−1M−T

�
(A16)

= Tr
�
WTD(λ)W (WTW )−1�

(A17)

= RP[ f ]. (A18)

The significance of this result is that it demonstrates RP
to be invariant to linear transformations of f which preserve
the space spanned by the functions. Much like the Ritz value
of an trial vector is invariant to rescaling, or the angle between
two planes is invariant to linear transformations of the basis
vectors defining the planes, RP[ f ] is only a functional of the
space spanned by f . This space—the set of all m-dimensional
linear subspaces of a vector or Hilbert space—is referred to as
a Grassmann manifold.44

APPENDIX B: TENSION BETWEEN SPECTRAL
AND PROBABILISTIC APPROACHES

Here, we show, by way of a simple analytical example, the
extent to which the variational and probabilistic approaches to
the analysis of molecular dynamics data are indeed distinct.
By explicitly constructing the propagator eigenfunctions for
a Brownian harmonic oscillator, we show that the rank-m
truncated propagator, Pm(τ), built from the first m eigenpairs
of P(τ) is not in general a nonnegativity-preserving oper-
ator. That is, for some valid initial distributions, pt(x), the
propagated distribution, p̃(m)

t+τ(x) = Pm(τ) ◦ pt(x), fails to be
non-negative throughoutΩ and thus does not represent a valid
probability distribution,

p(m)
t+τ(x) � 0 ∀ x ∈ Ω. (B1)

This indicates that variational and probabilistic approaches
have the potential to be almost contradictory in what they
judge to be “good” models of molecular kinetics.

Consider the diffusion of a Brownian particle in the
potential U(x) = x2. For simplicity, we take the temperature
and diffusion constant to be unity. This is an Ornstein-
Uhlenbeck process and the dynamics are described by the
Smoluchowski equation

∂

∂t
pt(x) = L ◦ pt(x), (B2)

with infinitesimal generator L given by

L = ∂2

∂x2 + 2
∂

∂x
x (B3)

and stationary distribution µ(x) = π−1/2e−x
2
.

We can expand the generator in terms of its eigenfunc-
tions, φn(x), and eigenvalues, ξn, defined by

L ◦ φn(x) = ξnφn(x), (B4)

which can be recognized as the Hermite equation whose
solutions are related to the Hermite polynomials, Hn. For
n = {0,1, . . .}, the solutions are

φn(x) = cne−x
2
Hn(x), (B5)
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ξn = −2n, (B6)

c2
n = (2nn!π)−1, (B7)

where the normalizing constants, cn, are chosen such that
⟨φn, φm⟩µ−1 = δnm.

The propagator P(τ) can be formed by integrating
Eq. (B1) with respect to t, giving

P(τ) = eτL. (B8)

P(τ) shares the same eigenfunctions as L. Its eigenvalues, λn,
are related to the eigenvalues of L by

λn = e−τξn. (B9)

We now define the rank-m truncated propagator, Pm(τ),
such that

Pm(τ) ◦ pt =
m−1
n=0

λn⟨pt, φn⟩µ−1φn (B10)

=

m−1
n=0

e−2nτcne−x
2
Hn(x)

×
 ∞

−∞
dx ′ cn

√
π pt(x ′)Hn(x ′)


. (B11)

Consider an initial distribution, pt(x) = δ(x − x0), propagated
forward in time by Pm. Let p̃(m)

τ = Pm(τ) ◦ δ(x − x0). Then,
Eq. (B11) simplifies to

p̃(m)
τ (x) =

m−1
n=0

1
2nn!
√
π

e−2nτ e−x
2
Hn(x)Hn(x0). (B12)

Consider now the specific case of m = 2. Using the
explicit expansion H0(x) = 1 and H1(x) = 2x, we have

p̃(2)τ (x) = 1
√
π

e−x
2 �

1 + 2xx0e−2τ�
. (B13)

Note that Eq. (B13) has a zero when x = −e2τ/2x0, and
that

p̃(2)
τ (x) < 0, when




x < −e2τ/2x0 if x0 > 0
x > −e2τ/2x0 if x0 < 0

. (B14)

Because of this non-positivity, p̃(2)τ (x) is not a valid probability
distribution.

This example demonstrates that the rank-m truncated
propagator need not, in general, preserve the positivity of
distributions it acts on. Therefore, if such a model of the
dynamics are fit or assessed via maximum-likelihood methods
on datasets consisting of observed transitions, despite being
optimal by spectral norm, the true rank-m truncated propagator
may appear to give a log likelihood of −∞. The variational
and probabilistic approaches to modeling molecular kinetics
can indeed be very different.

APPENDIX C: DOUBLE-WELL POTENTIAL
INTEGRATOR AND EIGENFUNCTIONS

To discretize the Brownian dynamics stochastic differen-
tial equation in Eq. (25) with reflecting boundary conditions

at −π and π, we used the Euler integrator,

xt+1 = bc
(
xt +

(
∇V (xt) +

√
2DR(t)) ∆t

)
, (C1)

where steps that went outside the boundaries by a given
distance were reflected back into the interval with a matching
distance to the boundary

bc(x) =



2π − x, if x > π,

−2π − x, if x < −π,
x, otherwise.

(C2)

We computed the propagator eigenvalues by discretizing
the interval into n MSM states {si}ni=1, following Eq. (27) and
computing the matrix elements without stochastic sampling.
This calculation is more straightforward by working with the
transition matrix T ∈ Rn×n,

Ti j = P
�
xt+τ ∈ s j |xt ∈ si

�
, (C3)

instead of the correlation and overlap matrices, C and S,
directly. Note that as shown by Nüske et al.41 and Prinz
et al.,28 T = S−1C. Thus, the eigenvalues of T are identical
to the generalized eigenvalues of (C,S).

To calculate the matrix elements of T , we consider each
state, si, represented by its left endpoint, xi. For each pair of
states (i, j), we calculate the probability of the random force
required to transition between them in one step, from Eq. (C1),
taking into account the fact that because of the reflecting
boundary conditions, the transition could have taken place
via a transition outside the interval followed by a reflection.

Let δx be the width of the states, δx = n−12π. For each
i ∈ {1, . . . n} and k ∈ {−n, . . . ,n}, we calculate the action for
a step from xi to xi + kδx,

aik =
1
√

2π
exp

( ((xi + kδx) − xi + ∇V (xi)∆t)
√

2D

)
. (C4)

Let j ′
ik
∈ {1, . . . ,n} be the index of state which contains

bc(xi + kδx). We calculate Ti j by summing the appropriate
action terms which, because of the boundary conditions, get
reflected into the same ending state,

Ti j =

n
k=−n

aik δ j′
ik
, j, (C5)

where δi, j is the Kronecker delta. This calculation is im-
plemented in the file brownian1d.py in the MSMBuilder3
package. The eigenvalues of T converge rapidly as n increases.
Our results in Fig. 1 use n = 500.

APPENDIX D: LANDMARK UPGMA CLUSTERING

Landmark-based UPGMA (Unweighted Pair Group
Method with Arithmetic Mean) agglomerative clustering is a
simple scalable hierarchical clustering which does not require
computing the full matrix of pairwise distances between all
data points. The procedure first subsamples l “landmark”
data points at regular intervals from the input data. These
data points are then clustered using the standard algorithm,
resulting in n clusters.81 Let Sn be the set of landmark data
points assigned by the algorithm to the cluster n and d(x, x ′)
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be the distance metric employed. Then, each remaining data
point in the training set as well as new data points from the
test set, x∗, are assigned to cluster, s(x∗) ∈ {1, . . . ,n}, whose
landmarks are on average closest to

s(x∗) = argmin
n

1
|Sn |


x∈Sn

d(x∗, x). (D1)

APPENDIX E: SIMULATION SETUP

We performed all-atom molecular dynamics simulations
of terminally blocked octaalanine (Ace-(Ala)8-NHMe) in
explicit solvent using the GROMACS 4 simulation package,82

the AMBER ff99SB-ILDN-NMR forcefield,83 and the TIP3P
water model.84 The system was energy minimized, followed
by 1 ns of equilibration using the velocity rescaling thermostat
(reference temperature of 298 K, time constant of 0.1 ps),85

Parrinello-Rahman barostat (reference pressure of 1 bar, time
constant of 1 ps, isotropic compressibility of 5 × 10−5 bar),86

and Verlet integrator (time step of 2 fs). Production simulations
were performed in the canonical ensemble using the same
integrator and thermostat. Nonbonded interactions in all cases
were treated with the particle mesh Ewald method, using
a real space cutoff distance for Ewald summation as well
as for van der Waals interactions of 10.0 Å.87 Twenty six
such simulations were performed, with production lengths
between 20 and 150 ns each. The total aggregate sampling was
1.74 µs.
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