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Abstract

Clustering is among the most fundamental tasks in
machine learning and artificial intelligence. In this
paper, we propose Variational Deep Embedding
(VaDE), a novel unsupervised generative cluster-
ing approach within the framework of Variational
Auto-Encoder (VAE). Specifically, VaDE models
the data generative procedure with a Gaussian Mix-
ture Model (GMM) and a deep neural network
(DNN): 1) the GMM picks a cluster; 2) from which
a latent embedding is generated; 3) then the DNN
decodes the latent embedding into an observable.
Inference in VaDE is done in a variational way: a
different DNN is used to encode observables to la-
tent embeddings, so that the evidence lower bound
(ELBO) can be optimized using the Stochastic Gra-
dient Variational Bayes (SGVB) estimator and the
reparameterization trick. Quantitative comparisons
with strong baselines are included in this paper, and
experimental results show that VaDE significantly
outperforms the state-of-the-art clustering methods
on 5 benchmarks from various modalities. More-
over, by VaDE’s generative nature, we show its ca-
pability of generating highly realistic samples for
any specified cluster, without using supervised in-
formation during training.

1 Introduction

Clustering is the process of grouping similar objects to-
gether, which is one of the most fundamental tasks in ma-
chine learning and artificial intelligence. Over the past
decades, a large family of clustering algorithms have been
developed and successfully applied in enormous real world
tasks [Ng et al., 2002; Ye et al., 2008; Yang et al., 2010;
Xie et al., 2016]. Generally speaking, there is a dichotomy of
clustering methods: Similarity-based clustering and Feature-
based clustering. Similarity-based clustering builds models
upon a distance matrix, which is a N × N matrix that mea-
sures the distance between each pair of the N samples. One
of the most famous similarity-based clustering methods is
Spectral Clustering (SC) [Von Luxburg, 2007], which lever-
ages the Laplacian spectra of the distance matrix to reduce
dimensionality before clustering. Similarity-based clustering

Figure 1: The diagram of VaDE. The data generative process of
VaDE is done as follows: 1) a cluster is picked from a GMM model;
2) a latent embedding is generated based on the picked cluster; 3)
DNN f(z;θ) decodes the latent embedding into an observable x. A
encoder network g(x;φ) is used to maximize the ELBO of VaDE.

methods have the advantage that domain-specific similarity
or kernel functions can be easily incorporated into the mod-
els. But these methods suffer scalability issue due to super-
quadratic running time for computing spectra.

Different from similarity-based methods, a feature-based
method takes a N ×D matrix as input, where N is the num-
ber of samples and D is the feature dimension. One popular
feature-based clustering method is K-means, which aims to
partition the samples into K clusters so as to minimize the
within-cluster sum of squared errors. Another representative
feature-based clustering model is Gaussian Mixture Model
(GMM), which assumes that the data points are generated
from a Mixture-of-Gaussians (MoG), and the parameters of
GMM are optimized by the Expectation Maximization (EM)
algorithm. One advantage of GMM over K-means is that
a GMM can generate samples by estimation of data den-
sity. Although K-means, GMM and their variants [Ye et al.,
2008; Liu et al., 2010] have been extensively used, learning
good representations most suitable for clustering tasks is left
largely unexplored.

Recently, deep learning has achieved widespread success
in numerous machine learning tasks [Krizhevsky et al., 2012;
Zheng et al., 2014b; Szegedy et al., 2015; Zheng et al., 2014a;
He et al., 2016; Zheng et al., 2015; 2016], where learning
good representations by deep neural networks (DNN) lies in
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the core. Taking a similar approach, it is conceivable to con-
duct clustering analysis on good representations, instead of
raw data points. In a recent work, Deep Embedded Clus-
tering (DEC) [Xie et al., 2016] was proposed to simultane-
ously learn feature representations and cluster assignments
by deep neural networks. Although DEC performs well in
clustering, similar to K-means, DEC cannot model the gen-
erative process of data, hence is not able to generate sam-
ples. Some recent works, e.g. VAE [Kingma and Welling,
2014], GAN [Goodfellow et al., 2014] , PixelRNN [Oord et
al., 2016], InfoGAN [Chen et al., 2016] and PPGN [Nguyen
et al., 2016], have shown that neural networks can be trained
to generate meaningful samples. The motivation of this work
is to develop a clustering model based on neural networks
that 1) learns good representations that capture the statistical
structure of the data, and 2) is capable of generating samples.

In this paper, we propose a clustering framework,
Variational Deep Embedding (VaDE), that combines
VAE [Kingma and Welling, 2014] and a Gaussian Mixture
Model for clustering tasks. VaDE models the data generative
process by a GMM and a DNN f : 1) a cluster is picked
up by the GMM; 2) from which a latent representation
z is sampled; 3) DNN f decodes z to an observation x.
Moreover, VaDE is optimized by using another DNN g to
encode observed data x into latent embedding z, so that the
Stochastic Gradient Variational Bayes (SGVB) estimator and
the reparameterization trick [Kingma and Welling, 2014]

can be used to maximize the evidence lower bound (ELBO).
VaDE generalizes VAE in that a Mixture-of-Gaussians prior
replaces the single Gaussian prior. Hence, VaDE is by design
more suitable for clustering tasks1. Specifically, the main
contributions of the paper are:

• We propose an unsupervised generative clustering
framework, VaDE, that combines VAE and GMM to-
gether.

• We show how to optimize VaDE by maximizing the
ELBO using the SGVB estimator and the reparameteri-
zation trick;

• Experimental results show that VaDE outperforms the
state-of-the-art clustering models on 5 datasets from var-
ious modalities by a large margin;

• We show that VaDE can generate highly realistic sam-
ples for any specified cluster, without using supervised
information during training.

The diagram of VaDE is illustrated in Figure 1.

2 Related Work

Recently, people find that learning good representations plays
an important role in clustering tasks. For example, DEC [Xie
et al., 2016] was proposed to learn feature representations and
cluster assignments simultaneously by deep neural networks.
In fact, DEC learns a mapping from the observed space to a
lower-dimensional latent space, where it iteratively optimizes

1Although people can use VaDE to do unsupervised feature
learning or semi-supervised learning tasks, we only focus on clus-
tering tasks in this work.

the KL divergence to minimize the within-cluster distance of
each cluster. DEC achieved impressive performances on clus-
tering tasks. However, the feature embedding in DEC is de-
signed specifically for clustering and fails to uncover the real
underlying structure of the data, which makes the model lack
of the ability to extend itself to other tasks beyond clustering,
such as generating samples.

The deep generative models have recently attracted much
attention in that they can capture the data distribution by
neural networks, from which unseen samples can be gener-
ated. GAN and VAE are among the most successful deep
generative models in recent years. Both of them are ap-
pealing unsupervised generative models, and their variants
have been extensively studied and applied in various tasks
such as semi-supervised classification [Kingma et al., 2014;
Maaløe et al., 2016; Salimans et al., 2016; Makhzani et
al., 2016; Abbasnejad et al., 2016], clustering [Makhzani
et al., 2016] and image generation [Radford et al., 2016;
Dosovitskiy and Brox, 2016].

For example, [Abbasnejad et al., 2016] proposed to use
a mixture of VAEs for semi-supervised classification tasks,
where the mixing coefficients of these VAEs are modeled
by a Dirichlet process to adapt its capacity to the input
data. SB-VAE [Nalisnick and Smyth, 2016] also applied
Bayesian nonparametric techniques on VAE, which derived
a stochastic latent dimensionality by a stick-breaking prior
and achieved good performance on semi-supervised classifi-
cation tasks. VaDE differs with SB-VAE in that the cluster
assignment and the latent representation are jointly consid-
ered in the Gaussian mixture prior, whereas SB-VAE sepa-
rately models the latent representation and the class variable,
which fails to capture the dependence between them. Addi-
tionally, VaDE does not need the class label during training,
while the labels of data are required by SB-VAE due to its
semi-supervised setting. Among the variants of VAE, Adver-
sarial Auto-Encoder(AAE) [Makhzani et al., 2016] can also
do unsupervised clustering tasks. Different from VaDE, AAE
uses GAN to match the aggregated posterior with the prior of
VAE, which is much more complex than VaDE on the training
procedure. We will compare AAE with VaDE in the experi-
ments part.

Similar to VaDE, [Nalisnick et al., 2016] proposed DL-
GMM to combine VAE and GMM together. The crucial dif-
ference, however, is that VaDE uses a mixture of Gaussian
prior to replace the single Gaussian prior of VAE, which is
suitable for clustering tasks by nature, while DLGMM uses
a mixture of Gaussian distribution as the approximate pos-
terior of VAE and does not model the class variable. Hence,
VaDE generalizes VAE to clustering tasks, whereas DLGMM
is used to improve the capacity of the original VAE and is not
suitable for clustering tasks by design. The recently proposed
GM-CVAE [Shu et al., 2016] also combines VAE with GMM
together. However, the GMM in GM-CVAE is used to model
the transitions between video frames, which is the main dif-
ference with VaDE.
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3 Variational Deep Embedding

In this section, we describe Variational Deep Embedding
(VaDE), a model for probabilistic clustering problem within
the framework of Variational Auto-Encoder (VAE).

3.1 The Generative Process

Since VaDE is a kind of unsupervised generative approach to
clustering, we herein first describe the generative process of
VaDE. Specifically, suppose there are K clusters, an observed
sample x ∈ R

D is generated by the following process:

1. Choose a cluster c ∼ Cat(π)

2. Choose a latent vector z ∼ N
(

µc,σ
2
cI
)

3. Choose a sample x:

(a) If x is binary

i. Compute the expectation vector µx

µx = f(z;θ) (1)

ii. Choose a sample x ∼ Ber(µx)

(b) If x is real-valued

i. Compute µx and σ2
x

[µx; logσ
2
x] = f(z;θ) (2)

ii. Choose a sample x ∼ N
(

µx,σ
2
xI
)

where K is a predefined parameter, πk is the prior proba-

bility for cluster k, π ∈ R
K
+ , 1 =

∑K

k=1 πk, Cat(π) is the

categorical distribution parametrized by π, µc and σ2
c are

the mean and the variance of the Gaussian distribution cor-
responding to cluster c, I is an identity matrix, f(z;θ) is
a neural network whose input is z and is parametrized by
θ, Ber(µx) and N (µx,σ

2
x) are multivariate Bernoulli dis-

tribution and Gaussian distribution parametrized by µx and
µx,σx, respectively. The generative process is depicted in
Figure 1.

According to the generative process above, the joint prob-
ability p(x, z, c) can be factorized as:

p(x, z, c) = p(x|z)p(z|c)p(c), (3)

since x and c are independent conditioned on z. And the
probabilities are defined as:

p(c) = Cat(c|π) (4)

p(z|c) = N
(

z|µc,σ
2
cI
)

(5)

p(x|z) = Ber(x|µx) or N (x|µx,σ
2
xI) (6)

3.2 Variational Lower Bound

A VaDE instance is tuned to maximize the likelihood of the
given data points. Given the generative process in Section 3.1,
by using Jensen’s inequality, the log-likelihood of VaDE can
be written as:

log p(x) = log

∫

z

∑

c

p(x, z, c)dz

≥ Eq(z,c|x)[log
p(x, z, c)

q(z, c|x)
] = LELBO(x) (7)

where LELBO is the evidence lower bound (ELBO), q(z, c|x)
is the variational posterior to approximate the true posterior
p(z, c|x). In VaDE, we assume q(z, c|x) to be a mean-field
distribution and can be factorized as:

q(z, c|x) = q(z|x)q(c|x). (8)

Then, according to Equation 3 and 8, the LELBO(x) in
Equation 7 can be rewritten as:

LELBO(x) = Eq(z,c|x)

[

log
p(x, z, c)

q(z, c|x)

]

= Eq(z,c|x) [log p(x, z, c)− log q(z, c|x)]

= Eq(z,c|x)[log p(x|z) + log p(z|c) (9)

+ log p(c)− log q(z|x)− log q(c|x)]

In VaDE, similar to VAE, we use a neural network g to
model q(z|x):

[µ̃; log σ̃2] = g(x;φ) (10)

q(z|x) = N (z; µ̃, σ̃2
I) (11)

where φ is the parameter of network g.
By substituting the terms in Equation 9 with Equations 4,

5, 6 and 11, and using the SGVB estimator and the reparam-

eterization trick, the LELBO(x) can be rewritten as: 2

LELBO(x) =
1

L

L
∑

l=1

D
∑

i=1

xi logµ
(l)
x |i + (1− xi) log(1− µ

(l)
x |i)

−
1

2

K
∑

c=1

γc

J
∑

j=1

(logσ2
c |j +

σ̃2|j
σ2

c |j
+

(µ̃|j − µc|j)
2

σ2
c |j

)

+

K
∑

c=1

γc log
πc

γc
+

1

2

J
∑

j=1

(1 + log σ̃2|j) (12)

where L is the number of Monte Carlo samples in the SGVB

estimator, D is the dimensionality of x and µ
(l)
x , xi is the

ith element of x, J is the dimensionality of µc, σ2
c , µ̃ and

σ̃2, and ∗|j denotes the jth element of ∗, K is the number of
clusters, πc is the prior probability of cluster c, and γc denotes
q(c|x) for simplicity.

In Equation 12, we compute µ
(l)
x as

µ(l)
x = f(z(l); θ), (13)

where z
(l) is the lth sample from q(z|x) by Equation 11 to

produce the Monte Carlo samples. According to the repa-

rameterization trick, z(l) is obtained by

z
(l) = µ̃+ σ̃ ◦ ǫ(l), (14)

where ǫ(l) ∼ N (0, I), ◦ is element-wise multiplication, and
µ̃, σ̃ are derived by Equation 10.

We now describe how to formulate γc , q(c|x) in Equa-
tion 12 to maximize the ELBO. Specifically, LELBO(x) can

2This is the case when the observation x is binary. For the real-
valued situation, the ELBO can be obtained in a similar way.
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Figure 2: Clustering accuracy over number of epochs during training
on MNIST. We also illustrate the best performances of DEC, AAE,
LDMGI and GMM. It is better to view the figure in color.

be rewritten as:

LELBO(x) = Eq(z,c|x)

[

log
p(x, z, c)

q(z, c|x)

]

=

∫

z

∑

c

q(c|x)q(z|x)

[

log
p(x|z)p(z)

q(z|x)
+ log

p(c|z)

q(c|x)

]

dz

=

∫

z

q(z|x) log
p(x|z)p(z)

q(z|x)
dz−

∫

z

q(z|x)DKL(q(c|x)||p(c|z))dz

(15)

In Equation 15, the first term has no relationship with c
and the second term is non-negative. Hence, to maximize
LELBO(x), DKL(q(c|x)||p(c|z)) ≡ 0 should be satisfied. As
a result, we use the following equation to compute q(c|x) in
VaDE:

q(c|x) = p(c|z) ≡
p(c)p(z|c)

∑K

c′=1 p(c
′)p(z|c′)

(16)

By using Equation 16, the information loss induced by the
mean-field approximation can be mitigated, since p(c|z) cap-
tures the relationship between c and z. It is worth noting
that p(c|z) is only an approximation to q(c|x), and we find
it works well in practice3.

Once the training is done by maximizing the ELBO w.r.t
the parameters of {π,µc,σc,θ,φ}, c ∈ {1, · · · ,K}, a latent
representation z can be extracted for each observed sample x

by Equation 10 and Equation 11, and the clustering assign-
ments can be obtained by Equation 16.

3.3 Understanding the ELBO of VaDE

This section, we provide some intuitions of the ELBO of
VaDE. More specifically, the ELBO in Equation 7 can be fur-
ther rewritten as:

LELBO(x) = Eq(z,c|x)[log p(x|z)]−DKL(q(z, c|x)||p(z, c))
(17)

The first term in Equation 17 is the reconstruction term,
which encourages VaDE to explain the dataset well. And

3We approximate q(c|x) by: 1) sampling a z
(i) ∼ q(z|x); 2)

computing q(c|x) = p(c|z(i)) according to Equation 16

(a) Epoch 0 (11.35%) (b) Epoch 1 (55.63%) (c) Epoch 5 (72.40%)

(d) Epoch 50 (84.59%) (e) Epoch 120 (90.76%) (f) Epoch End (94.46%)

Figure 3: The illustration about how data is clustered in the latent
space learned by VaDE during training on MNIST. Different colors
indicate different ground-truth classes and the clustering accuracy at
the corresponding epoch is reported in the bracket. It is clear to see
that the latent representations become more and more suitable for
clustering during training, which can also be proved by the increas-
ing clustering accuracy.

the second term is the Kullback-Leibler divergence from the
Mixture-of-Gaussians (MoG) prior p(z, c) to the variational
posterior q(z, c|x), which regularizes the latent embedding z

to lie on a MoG manifold.
To demonstrate the importance of the KL term in Equa-

tion 17, we train an Auto-Encoder (AE) with the same net-
work architecture as VaDE first, and then apply GMM on
the latent representations from the learned AE, since a VaDE
model without the KL term is almost equivalent to an AE. We
refer to this model as AE+GMM. We also show the perfor-
mance of using GMM directly on the observed space (GMM),
using VAE on the observed space and then using GMM on
the latent space from VAE (VAE+GMM)4, as well as the per-
formances of LDMGI [Yang et al., 2010], AAE [Makhzani
et al., 2016] and DEC [Xie et al., 2016], in Figure 2. The
fact that VaDE outperforms AE+GMM (without KL term)
and VAE+GMM significantly confirms the importance of the
regularization term and the advantage of jointly optimizing
VAE and GMM by VaDE. We also present the illustrations of
clusters and the way they are changed w.r.t. training epochs
on MNIST dataset in Figure 3, where we map the latent rep-
resentations z into 2D space by t-SNE [Maaten and Hinton,
2008].

4 Experiments

In this section, we evaluate the performance of VaDE on 5
benchmarks from different modalities: MNIST [LeCun et al.,
1998], HHAR [Stisen et al., 2015], Reuters-10K [Lewis et
al., 2004], Reuters [Lewis et al., 2004] and STL-10 [Coates
et al., 2011]. We provide quantitative comparisons of VaDE
with other clustering methods including GMM, AE+GMM,

4By doing this, VAE and GMM are optimized separately.
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Dataset # Samples Input Dim # Clusters

MNIST 70000 784 10
HHAR 10299 561 6
REUTERS-10K 10000 2000 4
REUTERS 685071 2000 4
STL-10 13000 2048 10

Table 1: Datasets statistics

VAE+GMM, LDGMI [Yang et al., 2010], AAE [Makhzani et
al., 2016] and the strong baseline DEC [Xie et al., 2016]. We
use the same network architecture as DEC for a fair compar-
ison. The experimental results show that VaDE achieves the
state-of-the-art performance on all these benchmarks. Ad-
ditionally, we also provide quantitatively comparisons with
other variants of VAE on the discriminative quality of the
latent representations. The code of VaDE is available at
https://github.com/slim1017/VaDE.

4.1 Datasets Description

The following datasets are used in our empirical experiments.

• MNIST: The MNIST dataset consists of 70000 hand-
written digits. The images are centered and of size 28 by
28 pixels. We reshaped each image to a 784-dimensional
vector.

• HHAR: The Heterogeneity Human Activity Recogni-
tion (HHAR) dataset contains 10299 sensor records
from smart phones and smart watches. All samples are
partitioned into 6 categories of human activities and each
sample is of 561 dimensions.

• REUTERS: There are around 810000 English news
stories labeled with a category tree in original Reuters
dataset. Following DEC, we used 4 root categories: cor-
porate/industrial, government/social, markets, and eco-
nomics as labels and discarded all documents with mul-
tiple labels, which results in a 685071-article dataset.
We computed tf-idf features on the 2000 most frequent
words to represent all articles. Similar to DEC, a ran-
dom subset of 10000 documents is sampled, which is
referred to as Reuters-10K, since some spectral cluster-
ing methods (e.g. LDMGI) cannot scale to full Reuters
dataset.

• STL-10: The STL-10 dataset consists of color images
of 96-by-96 pixel size. There are 10 classes with 1300
examples each. Since clustering directly from raw pix-
els of high resolution images is rather difficult, we ex-
tracted features of images of STL-10 by ResNet-50 [He
et al., 2016], which were then used to test the perfor-
mance of VaDE and all baselines. More specifically, we
applied a 3×3 average pooling over the last feature map
of ResNet-50 and the dimensionality of the features is
2048.

4.2 Experimental Setup

As mentioned before, the same network architecture as DEC
is adopted by VaDE for a fair comparison. Specifically, the

architectures of f and g in Equation 1 and Equation 10 are
10-2000-500-500-D and D-500-500-2000-10, respectively,
where D is the input dimensionality. All layers are fully con-
nected. Adam optimizer [Kingma and Ba, 2015] is used to
maximize the ELBO of Equation 9, and the mini-batch size
is 100. The learning rate for MNIST, HHAR, Reuters-10K
and STL-10 is 0.002 and decreases every 10 epochs with a
decay rate of 0.9, and the learning rate for Reuters is 0.0005
with a decay rate of 0.5 for every epoch. As for the generative
process in Section 3.1, the multivariate Bernoulli distribution
is used for MNIST dataset, and the multivariate Gaussian dis-
tribution is used for the others. The number of clusters is fixed
to the number of classes for each dataset, similar to DEC. We
will vary the number of clusters in Section 4.6.

Similar to other VAE-based models [Sønderby et al., 2016;
Kingma and Salimans, 2016], VaDE suffers from the problem
that the reconstruction term in Equation 17 would be so weak
in the beginning of training that the model might get stuck in
an undesirable local minima or saddle point, from which it is
hard to escape. In this work, pretraining is used to avoid this
problem. Specifically, we use a Stacked Auto-Encoder to pre-
train the networks f and g. Then all data points are projected
into the latent space z by the pretrained network g, where a
GMM is applied to initialize the parameters of {π,µc,σc},
c ∈ {1, · · · ,K}. In practice, few epochs of pretraining are
enough to provide a good initialization of VaDE. We find that
VaDE is not sensitive to hyperparameters after pretraining.
Hence, we did not spend a lot of effort to tune them.

4.3 Quantitative Comparison

Following DEC, the performance of VaDE is measured by
unsupervised clustering accuracy (ACC), which is defined as:

ACC = max
m∈M

∑N

i=1 1{li = m(ci)}

N

where N is the total number of samples, li is the ground-
truth label, ci is the cluster assignment obtained by the model,
and M is the set of all possible one-to-one mappings be-
tween cluster assignments and labels. The best mapping can
be obtained by using the KuhnMunkres algorithm [Munkres,
1957]. Similar to DEC, we perform 10 random restarts when
initializing all clustering models and pick the result with the
best objective value. As for LDMGI, AAE and DEC, we
use the same configurations as their original papers. Table 2
compares the performance of VaDE with other baselines over
all datasets. It can be seen that VaDE outperforms all these
baselines by a large margin on all datasets. Specifically, on
MNIST, HHAR, Reuters-10K, Reuters and STL-10 dataset,
VaDE achieves ACC of 94.46%, 84.46%, 79.83%, 79.38%
and 84.45%, which outperforms DEC with a relative increase
ratio of 12.05%, 5.76%, 7.41%, 4.96% and 4.75%, respec-
tively.

We also compare VaDE with SB-VAE [Nalisnick and
Smyth, 2016] and DLGMM [Nalisnick et al., 2016] on the
discriminative power of the latent representations, since these
two baselines cannot do clustering tasks. Following SB-VAE,
the discriminative powers of the models’ latent representa-
tions are assessed by running a k-Nearest Neighbors classi-
fier (kNN) on the latent representations of MNIST. Table 3
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Method MNIST HHAR REUTERS-10K REUTERS STL-10

GMM 53.73 60.34 54.72 55.81 72.44
AE+GMM 82.18 77.67 70.13 70.98 79.83
VAE+GMM 72.94 68.02 69.56 60.89 78.86
LDMGI 84.09† 63.43 65.62 N/A 79.22
AAE 83.48 83.77 69.82 75.12 80.01
DEC 84.30† 79.86 74.32 75.63† 80.62
VaDE 94.46 84.46 79.83 79.38 84.45

†: Taken from [Xie et al., 2016].

Table 2: Clustering accuracy (%) performance comparison on all datasets.

Method k=3 k=5 k=10

VAE 18.43 15.69 14.19
DLGMM 9.14 8.38 8.42
SB-VAE 7.64 7.25 7.31
VaDE 2.20 2.14 2.22

Table 3: MNIST test error-rate (%) for kNN on latent space.

shows the error rate of the kNN classifier on the latent rep-
resentations. It can be seen that VaDE outperforms SB-VAE
and DLGMM significantly5. Note that although VaDE can
learn discriminative representations of samples, the training
of VaDE is in a totally unsupervised way. Hence, we did not
compare VaDE with other supervised models.

4.4 Generating Samples by VaDE

One major advantage of VaDE over DEC [Xie et al., 2016] is
that it is by nature a generative clustering model and can gen-
erate highly realistic samples for any specified cluster (class).
In this section, we provide some qualitative comparisons on
generating samples among VaDE, GMM, VAE and the state-
of-art generative method InfoGAN [Chen et al., 2016].

Figure 4 illustrates the generated samples for class 0 to 9
of MNIST by GMM, VAE, InfoGAN and VaDE, respectively.
It can be seen that the digits generated by VaDE are smooth
and diverse. Note that the classes of the samples from VAE
cannot be specified. We can also see that the performance of
VaDE is comparable with InfoGAN.

4.5 Visualization of Learned Embeddings

In this section, we visualize the learned representations of
VAE, DEC and VaDE on MNIST dataset. To this end, we use
t-SNE [Maaten and Hinton, 2008] to reduce the dimensional-
ity of the latent representation z from 10 to 2, and plot 2000
randomly sampled digits in Figure 5. The first row of Fig-
ure 5 illustrates the ground-truth labels for each digit, where
different colors indicate different labels. The second row of
Figure 5 demonstrates the clustering results, where correctly
clustered samples are colored with green and incorrect ones
with red.

5We use the same network architecture for VaDE, SB-VAE in
Table 3 for fair comparisons. Since there is no code available for
DLGMM, we take the number of DLGMM directly from [Nalisnick
et al., 2016]. Note that [Nalisnick and Smyth, 2016] has already
shown that the performance of SB-VAE is comparable to DLGMM.

(a) GMM (b) VAE

(c) InfoGAN (d) VaDE

Figure 4: The digits generated by GMM, VAE, InfoGAN and VaDE.
Except (b), digits in the same row come from the same cluster.

From Figure 5 we can see that the original VAE which used
a single Gaussian prior does not perform well in clustering
tasks. It can also be observed that the embeddings learned by
VaDE are better than those by VAE and DEC, since the num-
ber of incorrectly clustered samples is smaller. Furthermore,
incorrectly clustered samples by VaDE are mostly located at
the border of each cluster, where confusing samples usually
appear. In contrast, a lot of the incorrectly clustered samples
of DEC appear in the interior of the clusters, which indicates
that DEC fails to preserve the inherent structure of the data.
Some mistakes made by DEC and VaDE are also marked in
Figure 5.

4.6 The Impact of the Number of Clusters

So far, the number of clusters for VaDE is set to the number
of classes for each dataset, which is a prior knowledge. To
demonstrate VaDE’s representation power as an unsupervised
clustering model, we deliberately choose different numbers
of clusters K. Each row in Figure 6 illustrates the samples
from a cluster grouped by VaDE on MNIST dataset, where
K is set to 7 and 14 in Figure 6(a) and Figure 6(b), respec-
tively. We can see that, if K is smaller than the number of
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Figure 5: Visualization of the embeddings learned by VAE, DEC and
VaDE on MNIST, respectively. The first row illustrates the ground-
truth labels for each digit, where different colors indicate different
labels. The second row demonstrates the clustering results, where
correctly clustered samples are colored with green and, incorrect
ones with red. GT:4 means the ground-truth label of the digit is 4,
DEC:4 means DEC assigns the digit to the cluster of 4, and VaDE:4
denotes the assignment by VaDE is 4, and so on. It is better to view
the figure in color.

classes, digits with similar appearances will be clustered to-
gether, such as 9 and 4, 3 and 8 in Figure 6(a). On the other
hand, if K is larger than the number of classes, some digits
will fall into sub-classes by VaDE, such as the fatter 0 and
thinner 0, and the upright 1 and oblique 1 in Figure 6(b).

5 Conclusion

In this paper, we proposed Variational Deep Embedding
(VaDE) which embeds the probabilistic clustering problems
into a Variational Auto-Encoder (VAE) framework. VaDE
models the data generative procedure by a GMM model and
a neural network, and is optimized by maximizing the evi-
dence lower bound (ELBO) of the log-likelihood of data by
the SGVB estimator and the reparameterization trick. We
compared the clustering performance of VaDE with strong
baselines on 5 benchmarks from different modalities, and the
experimental results showed that VaDE outperforms the state-
of-the-art methods by a large margin. We also showed that
VaDE could generate highly realistic samples conditioned on
cluster information without using any supervised information
during training. Note that although we use a MoG prior for
VaDE in this paper, other mixture models can also be adopted
in this framework flexibly, which will be our future work.
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