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The isoelectronic series of Be, Ne, and Si are investigated using a variational determination of the second-

order density matrix. A semidefinite program was developed that exploits all rotational and spin symmetries in

the atomic system. We find that the method is capable of describing the strong static electron correlations due

to the incipient degeneracy in the hydrogenic spectrum for increasing central charge. Apart from the ground-

state energy, various other properties are extracted from the variationally determined second-order density

matrix. The ionization energy is constructed using the extended Koopmans’ theorem. The natural occupations

are also studied, as well as the correlated Hartree-Fock-like single-particle energies. The exploitation of sym-

metry allows to study the basis set dependence and results are presented for correlation-consistent polarized

valence double, triple, and quadruple zeta basis sets.

DOI: 10.1103/PhysRevA.80.032508 PACS number�s�: 31.15.A�, 31.15.xt

I. INTRODUCTION

The idea of a variational determination of the ground-state

energy for a nonrelativistic many-body problem based on the

second-order density matrix �2DM� has a long history �1–3�
and several highly appealing features. The energy of a sys-

tem is a known linear functional of the 2DM. N-particle

wave functions never need to be manipulated since the en-

ergy is minimized directly in terms of the 2DM. However,

the minimization is constrained because the variational

search should be done exclusively with 2DMs that can be

derived from an N-particle wave function �or an ensemble of

N-particle wave functions�. Such a 2DM is called N repre-

sentable and the complexity of the many-body problem is in

fact shifted to the characterization of this set of

N-representable 2DMs. The complete �necessary and suffi-

cient� set of conditions for N representability of a 2DM is not

known in a constructive form, but it is clear that the energy

from a minimization constrained by a set of necessary

N-representability conditions is a strict lower bound to the

exact energy. Therefore this approach is highly complemen-

tary to the usual variational procedure based on a wave-

function ansatz, which produces upper bounds. In addition,

the method is in principle exact, in the sense that as increas-

ingly accurate set of N-representability conditions are im-

posed in the minimization, the resulting energy converges to

the exact one.

These are fascinating ideas for any many-body theorist, as

it comes close to the “ultimate reduction” of an interacting

many-particle problem to solving a sequence of two-particle

problems. In practice, however, implementing the method

turns out to be very difficult and it is only in the last decade

that serious attempts have been undertaken to turn the idea

into a practical calculational scheme. The massive efforts by

Mazziotti et al. �4–6� and Nakata et al. �7,9� are particularly

notable. The main difficulty is of a technical nature: stringent
N-representability conditions require the positive semidefi-
niteness of matrix functionals of the 2DM, which turns the
variational problem into a so-called semidefinite program
�SDP�. Even applying the simplest “two-index” conditions, a

direct energy minimization using Newton-Raphson methods

requires a matrix operation scaling as M12 �where M is the

number of single-particle states� in each Newton-Raphson

step. This can be circumvented in various ways, so that only

matrix operations scaling as M6 are needed. While these are

nominally M6 methods, the number of iterations required to

reach convergence is very high and seems to rise with system

size; in practice, present implementations are probably about

100–1000 times slower than comparable methods such as

coupled-cluster calculation with single and double excita-

tions �CCSD�. Still, one has the feeling that there is potential

to turn it into a genuine M6 method and it is of interest to

investigate the properties of SDP applied to various systems.

Up to now, most applications covered electronic structure

calculations in atoms and molecules. Attention has been

given primarily to the resulting energy. In this paper, we

focus on three issues: �i� the performance of SDP in multi-

reference situations �strong static correlations�, �ii� the qual-

ity of the variationally obtained 2DM, and �iii� the depen-

dence of the results on M �the size of the basis set�. We do

this by investigating three well-known examples in elec-

tronic structure theory: the isoelectronic series of Be, Ne, and

Si. It is well known that the correlation energy for N elec-

trons in the field of a positive point charge Z has a Z depen-

dence that strongly depends on N. For an increasing central

charge Z, the Hartree-Fock spectrum tends to the hydrogenic

one, which has an “accidental” degeneracy related to a spe-

cial symmetry in the Coulomb Hamiltonian. For the four-

electron series, the incipient degeneracy of the 2p and 2s

orbitals leads to a vanishing particle-hole gap, inducing

strong correlation effects with a correlation energy propor-

tional to Z. For the ten-electron series, this does not happen

because a major shell is closed and the correlation energy*brecht.verstichel@ugent.be
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becomes flat for increasing Z. The 14-electron series again

shows degeneracy effects and in addition is a spin triplet.

In Sec. II, we provide theoretical and calculational back-

grounds on the SDP implementation that is used. �Note that

the techniques developed in this section have been used pre-

viously to study molecular dissociation �10,11�.� In particu-

lar, we pay attention to the way spin and rotational symmetry

are exploited, enabling the use of quite large �correlation-

consistent polarized valence quadruple zeta, cc-pVQZ� basis

sets. In Sec. III, the SDP results for the isolectronic series of

Be, Ne, and Si are discussed. A summary is provided in Sec.

IV. Atomic units are used throughout the paper.

II. THEORY

A. N-representability conditions

We will use second-quantized notation where a�
†�a�� cre-

ates �annihilates� an electron in a single-particle �sp� state �.

The Hamiltonian can be written as

Ĥ = �
��

t��a�
†
a� +

1

4
�

����

V��;��a�
†
a�

†
a�a�, �1�

where t�� is the matrix element of the one-body part of the

Hamiltonian �kinetic energy plus external potential� and

V��;�� is the antisymmetrized matrix element of the Coulomb

interaction. The problem of finding the ground state of a

quantum-mechanical many-body system can be reformulated

in terms of the second-order density matrix

���;�� = ��N�a�
†
a�

†
a�a���N� . �2�

In principle, � is a complex Hermitian matrix, but for a

Coulomb Hamiltonian, it is sufficient to consider real-

symmetric matrices

���;�� = ���;��. �3�

In addition, � obeys the fermionic relations for antisymmetry

in the sp indices

���;�� = − ���;�� = − ���;�� = ���;��. �4�

The density matrix � can be determined variationally

through the minimization of the energy functional

E��� = Tr��H�2�� =
1

4
�

��;��

���;��H��;��
�2� , �5�

where the reduced two-particle �tp� Hamiltonian is defined as

H��;��
�2� =

1

N − 1
�t����� − t����� − t����� + t������ + V��;��.

The problem with this method is that the complete set of

conditions that the density matrix has to fulfill to be deriv-

able from a physical wave function �the so-called

N-representability conditions� is not known in a constructive

form �12�. Therefore one minimizes the energy functional

under a limited set of N-representability conditions. Three

simple conditions, known as the P, Q, and G conditions

�2,3�, are known to give quite good results. The P condition

expresses the fact that the 2DM has to be positive semidefi-

nite. The physical interpretation of the Q condition is that the

two-hole matrix, Q, has to be positive semidefinite; using

basis anticommutation relations, Q can be written as a ho-

mogeneous linear mapping, from the tp matrix space onto

itself:

Q��;�� = ��N�a�a�a�
†
a�

†��N�

= ���;�� +
1

n
������� − �������Tr � − ������

+ ������ − ������ + ������. �6�

Here the particle number constraint has been used

Tr � =
N�N − 1�

2
= n ,

as well as the definition of the sp density matrix

��� =
1

N − 1
�
�

���;��. �7�

The G condition demands that the particle-hole �ph� matrix

G is positive semidefinite; again, G can be written as a ho-

mogeneous linear mapping, from the tp matrix space onto

the ph matrix space

G��;�� = ��N�a�
†
a�a�

†
a���N� = ������ − ���;��. �8�

Recently there has been progress on improved

N-representability conditions using the positive semidefinite-

ness of higher-order density matrices, e.g., the three-

positivity conditions known as the T1 and T2 conditions

�5,8�. Also some attempts have been made to improve N

representability while remaining strictly in tp space by con-

sidering Hamiltonian dependent positivity conditions �13� or

sharp bounds on the P, Q, and G operators �14�. However, in

the present paper, we restrict ourselves to the standard P, Q,

and G conditions.

B. Inclusion of spin symmetry

1. General case

When the Hamiltonian of the system is invariant under

rotations in spin space, the eigenstates can be characterized

by their total spin 	 and spin projection 
. Explicitly intro-

ducing the electron spin, a sp state is written as

	���
�asa��, where a is the spatial orbital index and

sa= �
1

2
is the spin projection. Two sp states can couple to a

pair with total spin S=0 or S=1. The corresponding pair-

creation operator is

Bab;SM
† = �aa

†
� ab

†�M
S �9�

=�
sasb

� 1

2
sa

1

2
sb�SMaasa

†
absb

† �10�

and the density matrix � in spin-coupled tp space is defined

as
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�ab;cd
SM;S�M� = ��	


N �Bab;SM
†

Bcd;S�M�
��	


N � . �11�

The B†B operator in Eq. �11� can now be further coupled to

an object with good total spin. First one has to introduce B̃,

B̃cd;SM = �− 1�S+MBcd;S−M , �12�

which is again a good spherical tensor operator. Equation

�11� can now be rewritten as

	
�ab;cd
SM;S�M� = �− 1�S�−M��

ST

�SMS� − M��ST0�

���	

N ��Bab;S

†
� B̃cd;S�

�0
ST��	


N � . �13�

The density matrices on the right of Eq. �13� are classified by

ST=0,1 ,2 and provide an equivalent representation of the

2DM of the 
th member of the spin multiplet. Note that the

2DMs of different members are trivially related through the

Wigner-Eckart theorem,

��	

N ��Bab;S

†
� B̃cd;S�

�0
ST��	


N �

=
�− 1�	−


�ST�
�	
	 − 
�ST0�

���	
N���Bab;S

†
� B̃cd;S�

�ST���	
N� , �14�

in terms of reduced matrix elements. Here, �S�=�2S+1.

2. Singlet ground state

If the ground state has 	=0 �spin singlet�, the number of

matrices involved in the minimization procedure is signifi-

cantly reduced. Obviously for a singlet ground state, the op-

erator in Eq. �13� has to be scalar, i.e., only the ST=0 part is

nonzero, and Eq. �13� reduces to

00�ab;cd
SM;S�M� = �SS�

�MM�
�ab;cd

S , �15�

where

�ab;cd
S = ��00

N �Bab;SM
†

Bcd;SM��00
N � �16�

is independent of M. This shows that, for a singlet ground

state, the density matrix in a coupled tp basis is diagonal in S

and M and independent of the spin projection M. Instead of

having to work with the full density matrix, all matrix ma-

nipulations can be performed on only two diagonal blocks,

the S=0 and S=1 matrices, which are, respectively, symmet-

ric and antisymmetric in the indices related to the spatial

orbitals.

We now reformulate the minimization problem in the

spin-coupled representation. The Q matrix in the coupled

representation is similarly defined as

Qab;cd
S = ��00

N �Bab;SMBcd;SM
† ��00

N � . �17�

It is clear that the Q matrix has an identical block-diagonal

structure as �. After some recoupling, one can write the Q

mapping, from coupled tp space onto coupled tp space, as

Qab;cd
S = �ab;cd

S +
1

n
��ac�bd + �− 1�S�ad�bc�Tr �

− �ac�bd − �− 1�S�bc�ad − �bd�ac − �− 1�S�ad�bc,

where the sp matrix �,

�ac = �sasc
��00

N �aasa

†
acsa

��00
N � �18�

=
1

2

1

N − 1
�

S

�S�2�
l

�al;cl
S �19�

and the trace

Tr � =
1

2
�

S

�S�2�
ab

�ab;ab
S �20�

can be expressed in terms of the coupled �S.

The G matrix is a bit more involved. The coupled ph

creation operator reads

Aab;SM
† = �aa

†
� ãb�M

S

= �
sasb

�− 1�1/2−sb� 1

2
sa

1

2
− sb�SMaasa

†
absb. �21�

The G matrix in coupled ph space can now be written as

Gab;cd
S = ��00

N �Aab;SM
†

Acd;SM��00
N � . �22�

Again, one can prove that this matrix has the same block

structure as the � and Q matrices. After some angular-

momentum recoupling, we get the expression for the G map

in the coupled representation

Gab;cd
S = �bd�ac − �

S�

�S��2�
1

2

1

2
S

1

2

1

2
S���ad;cb

S� . �23�

3. Nonsinglet states

For higher-spin multiplets, the same block decomposition

is possible, provided a spin-averaged ensemble is considered.

The density matrix for such an ensemble is defined in spin-

coupled representation as

	�ab;cd
SS�;M =

1

2	 + 1
�



��	

N �Bab;SM

†
Bcd;S�M��	


N � . �24�

Note that the minimal energy can be reached for such an

ensemble, since all members of the multiplet are degenerate.

Performing the same manipulation as leading to Eq. �13� and

using the Wigner-Eckart theorem as in Eq. �14�, one obtains

	�ab;cd
SS�;M = �




�− 1�S�−M

�	�2 �
ST

�SMS� − M�ST0�
�− 1�	−


�ST�

��	
	 − 
�ST0���	
N���Bab;S

†
� B̃cd;S�

�ST���	
N� .

�25�
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Since �−1�	−

/ �	�= �	
	−
 �00�, one can use orthogonal-

ity of the Clebsch-Gordan coefficients to work out the sum

over 
 in Eq. �25�. The result

	�ab;cd
SS�;M =

�SS�

�S��	�
��	

N���Bab;S
†

� B̃cd;S�0���	
N� �26�

implies that the ensemble 2DM is again block diagonal in

spin and the same formulas can be used as for the singlet

case.

C. Inclusion of rotational symmetry

In atomic systems, the rotational symmetry of the Hamil-

tonian further reduces the dimension of the blocks involved

in the density matrix. In exactly the same way as for spin,

one can show that the density matrix of an ensemble, when

averaged over the third component of angular momentum, is

diagonal in the two-particle angular momentum L and its z

component ML and completely independent of the value of

ML. What is more, for atomic systems, there is also the parity

�= �1� of the two-particle states. In the end, one gets a

density matrix that is composed out of blocks with fixed

values for LS, enabling one to solve the variational problem

in large basis sets. The sp basis for systems with rotational

and spin symmetry is written as �amasa�, where a is short-

hand for the radial basis state nala. The tp density matrix in

spin-and-angular-momentum-coupled representation is de-

fined as

�ab;cd
�LS� = ��N�B

ab;LS

†
Bcd;LS��N� , �27�

where

B
ab;LS

†
= �aa

†
� ab

†�MLMS

LS

= �
mamb

�
sasb

�lamalbmb�LML�

�� 1

2
sa

1

2
sb�SMSanalamasa

†
anblbmbsb

† . �28�

In an analogous way as for spin coupling, the spin-and-

angular-momentum-coupled Q matrix is defined as

Qab;cd
�LS� = ��N�Bab;LSB

cd;LS

† ��N� , �29�

out of which the coupled Q map can be derived

Qab;cd
�LS� = �ab;cd

�LS� +
Tr �

n
��ac�bd + �− 1�L+S+lc+ld�ad�bc�

− �bd�lalc
�nanc

�la�
− �ac�lbld

�nbnd

�lb�
, �30�

with the sp density matrix defined as

�nanc

�la�
=

1

2

1

2la + 1

1

N − 1
�

�LS�

�L�2�S�2�
nblb

�nalanblb;nclanblb

�LS� .

�31�

The G matrix is defined as

Gab;cd
�LS� = ��N��aa

†
� ãb��LS���ac

†
� ãd��LS��†��N� , �32�

where again ã is a spherical tensor operator defined as

ãbmbsb
= �− 1�lb+mb+1/2+sbab−mb−sb

. �33�

The spin-and-angular-momentum-coupled G map from tp

space on ph space becomes

Gab;cd
�LS� = �bd�lalc

�nanc

�la�
− �

�LS��

�S��2�L��2�ld lc L

lb la L�
�

��
1

2

1

2
S

1

2

1

2
S���ad;cb

�LS��. �34�

D. Energy optimization with a semidefinite program

1. Interior point method

The variational problem for the 2DM can be formulated

as a so-called semidefinite program �15�, a constrained opti-

mization program where it is demanded that certain matrices,

which are functions of the variables being optimized, remain

positive semidefinite. In our case, there is a convex subspace

of the matrix space, which is called the feasible region,

where �, Q���, and G��� are positive semidefinite. In �
space, the direction of energy decrease is given by �−H�2��
�see Eq. �5��. If the energy is to be minimized, the objective

is to go as far as possible in this direction, without leaving

the feasible region. The optimized density matrix is on the

edge of the feasible region. Computationally, this problem is

solved with an interior point method by optimizing the fol-

lowing cost function:

���,t� = Tr �H�2� − t ln det P��� + C , �35�

with

P��� = �
� 0 0

0 Q��� 0

0 0 G���
� . �36�

The constant C has no influence on the solution but is added

here in order to take into account the possibility that the

matrices have certain explicit zero eigenvalues connected

with imposing spin constraints �see the discussion following

Eq. �50�; in this case, C can be considered an infinite con-

stant�. Starting from a large value of t �e.g., t=1�, the cost

function is minimized and the resulting density matrix is

used as a seed vector for the next minimization program with

a smaller value of t. This procedure continues until conver-

gence is reached for t→0, when the density matrix is at the

edge of the feasible region.

2. Implementation

In addition to the positive semidefinite constraints, there

are a number of linear constraints which the density matrix

has to fulfill �e.g., particle number�. These conditions are
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imposed by direct substitution. Suppose there are a number

of linear constraints of the form

Tr �K�i� = k�i�. �37�

The way to impose these conditions is to limit the variations

to the subspace orthogonal to the K�i�’s. Suppose the set of

symmetric tp matrices 	f i� is an orthogonal basis of the sub-

space

Tr f if j = �ij Tr f iK�j� = 0. �38�

The tp density matrix can be expanded in the basis

� = �
i

�if
i + C , �39�

where C is a constant matrix obeying the inhomogeneous

conditions

Tr CK�i� = k�i�. �40�

For the minimization of the cost function at a certain value of

t, Newton’s method is used. At a given point �0 in matrix

space, the gradient of the cost function is

��

��i

= Tr f iH�2� − t�Tr f i	�0
−1 + Q�Q��0�−1� + G�G��0�−1��� .

�41�

Using the Hermiticity of the Q and G mappings

�e.g. Tr Q���A=Tr Q�A���, the gradient in matrix form

reads

�� = �
i

��

��i

f i

= P̂�H�2� − t	�0
−1 + Q�Q��0�−1� + ÂG�G��0�−1��� ,

�42�

where P̂ is the operator that projects onto the space spanned

by the f i’s and Â is the antisymmetrizer that projects ph

space on tp space. The Hessian at �0 can be written as

Hij =
�

2�

��i � � j

= t	Tr�f i�0
−1f j�0

−1� + Tr�Q�f i�Q��0�−1Q�f j�Q��0�−1�

+ Tr�G�f i�G��0�−1G�f j�G��0�−1�� . �43�

In Newton’s method, the search direction � is found by solv-

ing the linear system

�
j

�
2�

��i � � j

� j = −
��

��i

. �44�

This system is solved using the linear conjugate gradient

method �16�. In this method, only one matrix-vector multi-

plication is needed per iteration. The special structure of the

Hessian can be exploited to construct a fast matrix-vector

multiplication. The action of the Hessian on a tp matrix � is

�
j

Hij� j = t	Tr�f i�0
−1��0

−1� + Tr�Q�f i�Q��0�−1Q���Q��0�−1�

+ Tr�G�f i�G��0�−1G���G��0�−1�� , �45�

which can be written in matrix form as

H� = tP̂	�0
−1��0

−1 + Q�Q��0�−1Q���Q��0�−1�

+ ÂG�G��0�−1G���G��0�−1�� . �46�

It is clear that each conjugate gradient step can be calculated

using only manipulations in the tp and ph matrix spaces.

After the convergence of the conjugate gradient cycle, the

direction of the Newton-Raphson step � is known. A line

search in this direction is then performed in order to obtain

the minimum of the cost function. Note that one always stays

in the feasible region since the cost function goes to +� at

the edge.

3. Imposing the spin constraints for �=0

The spin-coupled form of the 	̂z operator can be written

as

	̂z =
1

�2
�

a

�aa
†

� ãa�0
1. �47�

This operator lives in ph space and we can force the vector

		̂z�ab
S =

1

�2
�S1�ab �48�

to be an eigenvector of G��� with eigenvalue zero. In doing

this, we automatically impose the same constraints on G���
for 	x and 	y due to the threefold degeneracy of the S=1

block of the 2DM. It can be easily seen that in this case, the

expectation value of the total spin is zero

��N�	̂2��N� = ��N�	̂x
2 + 	̂y

2 + 	̂z
2��N� = 0. �49�

So the condition to be imposed on the density matrix be-

comes

�
S

�S�2�1

2

1

N − 1
− �− 1�S�

1

2

1

2
1

1

2

1

2
S���

b

�ab;cb
S = 0.

�50�

For the projection of a tp density matrix on a spin singlet

state, there are as many constraint matrices as there are sp

matrix dimensions. Because of the zero eigenvalues in the G

matrix, the projected density matrix is on the edge of the

feasible region during the whole of the minimization process

and as a result, the cost function is infinity. This can be

circumvented by taking the pseudoinverse of the G matrix,

which excludes the 	z state from the inversion process. This

will not alter the result of the program because the contribu-

tion of this state to the cost function is constant.
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4. Imposing the spin constraints for �Å0

For higher-spin multiplets, we use the spin-averaged en-

semble �see Sec. II B 3�, in which the 2DM has the same

simple structure as for the singlet case. The expectation value

of the 	̂2 spin operator is forced to be exact using the linear

constraint

Tr �		̂2� = 	�	 + 1� , �51�

where 		̂2� is the tp matrix representation of the 	̂2 operator

		̂2�ab;cd
S = �3

2

2 − N

N − 1
+ S�S + 1����ac�bd + �− 1�S�ad�bc� .

�52�

There is only one linear constraint for nonzero spin, in con-

trast to the numerous constraints for the projection onto a

singlet state. It can therefore be expected that the spin con-

straints �i.e., the constraints on the 2DM ensuring that it is

derivable from a wave function with good total spin� are less

accurate than those for the singlet case. It is, in fact, known

how to cure this situation �17� by considering not the spin-

averaged ensemble but rather the 2DM derived from the

highest-weight member �
=	� of the multiplet. Similar to

the spin singlet projection, one can then impose the condition

that, since the spin-raising ladder operator 	̂+ destroys the

wave function, the G��� matrix must have a zero eigenvalue

�with an eigenvector in ph space corresponding to the 	̂+

operator�. In such a highest-weight scheme, the spin restric-

tions for the 	�0 case are put on the same footing as for the

singlet case; in fact, the highest-weight and the spin-

averaged ensemble schemes are equivalent for the singlet

case. However, the highest-weight scheme for 	�0 requires

one to keep track of more matrices and is computationally

more demanding by about a factor of 10. We therefore used

the ensemble scheme even for the nonsinglets �i.e., the Si

atom�, though we checked some cases with the highest-

weight method for the spin.

5. Spin and angular-momentum projection

When angular momentum is taken into account, every-

thing becomes a bit more complicated, but the principles are

the same as in the last paragraph. It can be shown that in a

spin-and-angular-momentum-coupled basis, the z projections

of 	 and � become

	z =
1

�2
�
nl

�l��anl
†

� ãnl�
�0+1�, �53�

�z =�2

3
�
nl

�l�l̂�anl
†

� ãnl�
�1+0�. �54�

Following the same argument as before, it can be imposed

that the density matrix is derivable from an eigenstate with

zero eigenvalue of, respectively, the 	 and � operators when

�
c

�lc�G���ab;cc
�0+1� = 0, �55�

�
c

�lc�l̂cG���ab;cc
�1+0� = 0. �56�

This can be translated into linear constraints on the 2DM,

which are given in the Appendix. The projection on spin and

angular momentum not equal to zero is again a less strict

condition. The expectation values of � and 	 are projected

on the desired values

Tr �		̂2� = 	�	 + 1� , �57�

Tr �	�̂2� = ��� + 1� , �58�

where the 		̂2� and 	�̂2� are the tp matrix representations of

the 	2̂ and �2̂ operators, respectively,

		̂2�ab;cd
�LS� = �3

2

2 − N

N − 1
+ Ŝ2���ac�bd + �− 1�L+S+la+lb�ad�bc� ,

�59�

	�̂2�ab;cd
�LS� = �2 − N

N − 1
�l̂a

2 + l̂b
2� + L̂2�

���ac�bd + �− 1�L+S+la+lb�ad�bc� . �60�

III. RESULTS AND DISCUSSION

Using the method explained in the previous section, the

isoelectronic series of Be, Ne, and Si were calculated from

the neutral atom up to a central charge Z=28. Beryllium and

neon are both elements with a singlet ground state. In the

silicon ground state, the total spin and angular momentum

are both one, which allows us to assess the quality of the spin

and angular-momentum constraints for 	 ,��0. In order to

study the basis set dependence, the properties of the ground

state of the Be and Ne series were calculated in a cc-pVDZ,

a cc-pVTZ, and a cc-pVQZ basis set �18�. The Si series was

only calculated in a cc-pVDZ and a cc-pVTZ basis set �19�.
We used spherical harmonic �and not Cartesian� basis func-

tions throughout. With the density matrices obtained from

the SDP, several properties were studied. These are com-

pared to estimates for nonrelativistic energies based on ex-

perimental data �20,21� and to the results of coupled cluster

�CCSD� calculations, and in some cases, with full-

configuration-interaction �CI� calculations.

The basis functions used were those of the neutral atom,

but with a rescaling r→rZ /N for the positive ions with

Z�N. The CCSD and full-CI results were obtained using the

MOLPRO program �22�.

A. Ground-state energy

The ground-state energies, calculated with various basis

sets and methods, are shown in Tables I–III for the Be, Ne,

and Si isoelectronic series, respectively. Even in the best case

�Be in cc-pVQZ�, the calculated energies are at least 20

mhartree removed from the experimental estimate in �20,21�.
This is due to the difficulty of describing the interelectronic

cusp in the exact wave function using finite sp basis sets.
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TABLE I. The ground-state energies �in hartree� of the Be series in the cc-pV�DTQ�Z basis sets using different methods.

Z

cc-pVDZ cc-pVTZ cc-pVQZ basis

Expt.SDP HF CCSD Full CI SDP HF CCSD Full CI SDP HF CCSD Full CI

4 −14.617473 −14.572338 −14.617369 −14.61741 −14.625431 −14.572873 −14.623559 −14.62381 −14.642807 −14.572968 −14.639589 −14.640124 −14.66736

5 −24.275712 −24.216056 −24.27566 −24.275684 −24.300695 −24.234557 −24.299207 −24.29943 −24.321254 −24.236385 −24.317643 −24.31822 −24.34892

6 −36.387458 −36.316267 −36.387421 −36.387439 −36.473162 −36.394215 −36.471944 −36.47214 −36.500934 −36.40257 −36.497178 −36.497761 −36.53493

7 −50.940925 −50.860695 −50.940896 −50.940909 −51.137349 −51.045734 −51.136311 −51.136486 −51.177145 −51.065945 −51.173335 −51.173918 −51.22284

8 −67.931909 −67.844323 −67.931884 −67.931896 −68.290965 −68.186797 −68.290046 −68.290206 −68.347448 −68.22364 −68.343621 −68.344203 −68.41171

9 −87.358767 −87.265015 −87.358746 −87.358755 −87.932793 −87.816285 −87.931958 −87.932107 −88.010503 −87.87405 −88.00667 −88.007254 −88.10113

10 −109.22078 −109.12175 −109.22076 −109.22077 −110.06209 −109.93353 −110.06132 −110.06146 −110.16555 −110.01625 −110.16171 −110.1623 −110.29089

11 −133.51761 −133.414 −133.51759 −133.5176 −134.67837 −134.53811 −134.67764 −134.67778 −134.81213 −134.64967 −134.8083 −134.80889 −134.98088

12 −160.24908 −160.14145 −160.24906 −160.24907 −161.7813 −161.62969 −161.78061 −161.78074 −161.95 −161.77398 −161.94616 −161.94677 −162.17102

13 −189.41511 −189.30392 −189.41509 −189.4151 −191.37066 −191.20808 −191.37 −191.37011 −191.57899 −191.38895 −191.57514 −191.57575 −191.86127

14 −221.01564 −220.90129 −221.01563 −221.01564 −223.44627 −223.27309 −223.44563 −223.44574 −223.699 −223.49443 −223.69514 −223.69577 −224.0516

15 −255.05067 −254.93347 −255.05066 −255.05066 −258.00801 −257.82461 −258.0074 −258.00751 −258.30998 −258.09031 −258.3061 −258.30675 −258.742

16 −291.52018 −291.4004 −291.52017 −291.52017 −295.05582 −294.86255 −295.05522 −295.05533 −295.4119 −295.17653 −295.40801 −295.40867 −295.93244

17 −330.42417 −330.30206 −330.42416 −330.42416 −334.58961 −334.38682 −334.58904 −334.58913 −335.00476 −334.75303 −335.00085 −335.00153 −335.62293

18 −371.76264 −371.63841 −371.76263 −371.76263 −376.60935 −376.39737 −376.60879 −376.60888 −377.08857 −376.81977 −377.08463 −377.08533 −377.81344

19 −415.5356 −415.40942 −415.53559 −415.53559 −421.115 −420.89414 −421.11445 −421.11454 −421.66334 −421.37673 −421.65938 −421.66011 −422.50398

20 −461.74304 −461.61508 −461.74303 −461.74304 −468.10654 −467.87712 −468.106 −468.10609 −468.72912 −468.42388 −468.72513 −468.72588 −469.69455

21 −510.38498 −510.25537 −510.38498 −510.38498 −517.58394 −517.34625 −517.58342 −517.5835 −518.28593 −517.96121 −518.28191 −518.28269 −519.38513

22 −561.46143 −561.3303 −561.46142 −561.46142 −569.5472 −569.30152 −569.54669 −569.54677 −570.33383 −569.9887 −570.32977 −570.33058 −571.57572

23 −614.97237 −614.83983 −614.97237 −614.97237 −623.99631 −623.7429 −623.99581 −623.99589 −624.87286 −624.50634 −624.86877 −624.86961 −626.26633

24 −670.91783 −670.78398 −670.91783 −670.91783 −680.93126 −680.67038 −680.93077 −680.93084 −681.90309 −681.51414 −681.89895 −681.89983 −683.45695

25 −729.29781 −729.16274 −729.2978 −729.2978 −740.35204 −740.08394 −740.35156 −740.35163 −741.42459 −741.01206 −741.4204 −741.42132 −743.14758

26 −790.1123 −789.97609 −790.11229 −790.1123 −802.25866 −801.98356 −802.25818 −802.25825 −803.43742 −803.00013 −803.43318 −803.43414 −805.33822

27 −853.36132 −853.22404 −853.36131 −853.36131 −866.65111 −866.36925 −866.65064 −866.65071 −867.94167 −867.47832 −867.93738 −867.93838 −870.02886

28 −919.04486 −918.90659 −919.04486 −919.04486 −933.5294 −933.24098 −933.52894 −933.529 −934.93744 −934.44663 −934.93309 −934.93413 −937.21951
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TABLE II. The ground-state energies �in hartree� of the Ne series in the cc-pV�DTQ�Z basis sets using different methods.

Z

cc-pVDZ cc-pVTZ cc-pVQZ basis

Expt.SDP HF CCSD Full CI SDP HF CCSD SDP HF CCSD

10 −128.70843 −128.48878 −128.67964 −128.68088 −128.86088 −128.53186 −128.81081 −128.92686 −128.54347 −128.87106 −128.9376

11 −161.80049 −161.59591 −161.77283 −161.77411 −161.97703 −161.65496 −161.92829 −162.05038 −161.67155 −161.99595 −162.0659

12 −198.88784 −198.70208 −198.86199 −198.86309 −199.11372 −198.79861 −199.06598 −199.19913 −198.82303 −199.14502 −199.2204

13 −239.97194 −239.80393 −239.94802 −239.94883 −240.26728 −239.9582 −240.22028 −240.36392 −239.98965 −240.30977 −240.3914

14 −285.04223 −284.88894 −285.02004 −285.02061 −285.43166 −285.12786 −285.38525 −285.53886 −285.16605 −285.48453 −285.5738

15 −334.08381 −333.94195 −334.06299 −334.06338 −334.6021 −334.30313 −334.55624 −334.72067 −334.3492 −334.66615 −334.7642

16 −387.08194 −386.94882 −387.06219 −387.06246 −387.77553 −387.48107 −387.73017 −387.90757 −387.53731 −387.85281 −387.9608

17 −444.02427 −443.89781 −444.00531 −444.00551 −444.95002 −444.6598 −444.9051 −445.09826 −444.72921 −445.04331 −445.1622

18 −504.90101 −504.77972 −504.88268 −504.88282 −506.12426 −505.83808 −506.07977 −506.29194 −505.92402 −506.23681 −506.3673

19 −569.70474 −569.58754 −569.68689 −569.68701 −571.29734 −571.01502 −571.25329 −571.48788 −571.12105 −571.43261 −571.5754

20 −638.42981 −638.31595 −638.41239 −638.41248 −640.46864 −640.18995 −640.42496 −640.68561 −640.31973 −640.63013 −640.7891

21 −711.07205 −710.96091 −711.05497 −711.05505 −713.63756 −713.36231 −713.59424 −713.88444 −713.51958 −713.8289 −713.9988

22 −787.6282 −787.51937 −787.61143 −787.6115 −790.80365 −790.53161 −790.76063 −791.08414 −790.72018 −791.02848 −791.2132

23 −868.09589 −867.98895 −868.07932 −868.07938 −871.96637 −871.69743 −871.9237 −872.28418 −871.92117 −872.22853 −872.4291

24 −952.47304 −952.36781 −952.45674 −952.45679 −957.12544 −956.85936 −957.08305 −957.48456 −957.12224 −957.42872 −957.6463

25 −1040.7584 −1040.6545 −1040.7422 −1040.7422 −1046.2804 −1046.0171 −1046.2383 −1046.6846 −1046.3231 −1046.6288 −1046.8646

26 −1132.9505 −1132.8479 −1132.9345 −1132.9345 −1139.431 −1139.1702 −1139.3892 −1139.8845 −1139.5236 −1139.8285 −1140.0838

27 −1229.0485 −1228.9471 −1229.0327 −1229.0328 −1236.5769 −1236.3184 −1236.5353 −1237.0837 −1236.7235 −1237.0277 −1237.3039

28 −1329.0518 −1328.9514 −1329.0361 −1329.0361 −1337.7178 −1337.4616 −1337.6764 −1338.2821 −1337.9226 −1338.2261 −1338.5247
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More relevant is the difference between the SDP �and

CCSD� energies as compared to full-CI in the same basis set.

This is shown in Fig. 1 for the case of the Be series. Note

that the CCSD energy is always above, the SDP energy be-

low, the full-CI energy. For SDP, this simply reflects the

nature of the variational problem. For the smallest cc-pVDZ

basis set, SDP and CCSD have about the same level of ac-

curacy. The difference with full CI grows as the basis set size

increases for both CCSD and SDP, but this effect is worse for

the SDP.

As far as the Z dependence is concerned, the trend differs

markedly for the cc-pV�D,T�Z and for the cc-pVQZ basis

set. As Z increases, there is a growing accuracy for the

smaller basis sets in both CCSD and SDP, whereas for cc-

pVQZ the accuracy decreases for CCSD and becomes con-

stant for SDP. The reason for this difference is not clear,

though it is probably connected to the incipient degeneracy

of the 2s and 2p states and the quality of its description in

the various basis sets, as is more fully described in the next

section. It should be noted that the SDP results are overall

TABLE III. The ground-state energies �in hartree� of the Si series in the cc-pV�DT�Z basis sets using different methods. The results under

SDP were calculated using the ensemble averaged spin projection. Those under SDP� were calculated using the maximal weight method.

Z

cc-pVDZ cc-pVTZ

Expt.SDP SDP� HF CCSD SDP HF CCSD

14 −288.93962 −288.92921 −288.84644 −288.91895 −289.02515 −288.85215 −288.9835 −289.359

15 −340.36765 −340.27338 −340.34709 −340.50472 −340.33467 −340.46205 −340.872

16 −396.10801 −396.01679 −396.08749 −396.43974 −396.27384 −396.39711 −396.869

17 −456.09635 −456.00926 −456.0759 −456.80372 −456.64236 −456.7617 −457.337

18 −520.29362 −520.27860 −520.21067 −520.27348 −521.58 −521.42294 −521.53858 −522.269

19 −588.68067 −588.60149 −588.66097 −590.75683 −590.60373 −590.7159 −591.66

20 −661.24791 −661.17202 −661.22871 −664.32396 −664.17433 −664.28328 −665.507

21 −737.99017 −737.91714 −737.97148 −742.2714 −742.12467 −742.23072 −743.808

22 −818.90446 −818.88808 −818.83388 −818.88621 −824.58949 −824.44532 −824.54882 −826.559

23 −903.98889 −903.92042 −903.97105 −911.27007 −911.12778 −911.22912 −913.762

24 −993.24222 −993.1756 −993.22475 −1002.3054 −1002.1648 −1002.2643 −1005.413

25 −1086.6636 −1086.5986 −1086.6465 −1097.6895 −1097.5501 −1097.6482 −1101.513

26 −1184.2525 −1184.2381 −1184.1889 −1184.2357 −1197.4173 −1197.2789 −1197.3759 −1202.061

27 −1286.0084 −1285.9461 −1285.9919 −1301.4847 −1301.347 −1301.4431 −1307.057

28 −1391.9311 −1391.8699 −1391.9147 −1409.8882 −1409.7512 −1409.8466 −1416.5

FIG. 1. Difference between

approximate �CCSD or SDP� and

full-CI energies for the Be series

in all three basis sets.
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very accurate, even in the worst case �Z=28, cc-pVQZ�, dif-

fering less than 3 mhartree from full CI.

For the Ne series, full-CI calculations were only possible

in the cc-pVDZ basis. From the results collected in Table II,

it is seen that the SDP accuracy is significantly less than for

Be, the largest deviation �28 mhartree� appearing for the neu-

tral atom. This is actually consistent with PQG-condition

SDP results for molecules, so it is likely that because of the

small number of electrons, the Be results are not representa-

tive. This is also borne out by the Si results in Table III,

showing a maximal deviation between CCSD and SDP ener-

gies of 21 mhartree for the neutral atom.

B. Correlation energy

The correlation energies were calculated by taking the

difference of the SDP and CCSD energies with the Hartree-

Fock results in the same basis set. The results labeled “ex-

perimental” are the estimates in �21�.

1. Beryllium series

In Fig. 2, the SDP correlation energy is shown as a func-

tion of central charge Z for the different basis sets. Note that

on the plot, the difference between the CCSD and full-CI

correlation energies would not be visible. The experimental

curve is linear in Z, as a direct consequence of the near

degeneracy of the ground state �21�. One can calculate a

perturbative series expansion of the exact and Hartree-Fock

energy in powers of
1

Z
; the corresponding series for the cor-

relation energy starts with a constant if the hydrogenic

ground state is nondegenerate or with a linear term in Z in

case of degeneracy. The SDP correlation energy does not

follow this trend: it goes linear in the beginning, but becomes

concave in the cc-pVDZ and cc-pVTZ basis or convex in the

cc-pVQZ basis. This failure, however, is not related to the

SDP method as the trend is the same in full CI. It simply

reflects the fact that the incipient degeneracy is not well de-

scribed in these basis sets. This can also be seen by calculat-

ing the Z=1 hydrogen spectrum �corresponding to the

Z→� situation, when the electron-electron interaction can

be neglected� in the basis sets: the 2s and 2p energies are not

degenerate, but differ by 5.8 mhartree �cc-pVDZ�, 2.0 mhar-

tree �cc-pVTZ�, and −2.3 mhartree �cc-pVQZ�. Note that for

CC-pVQZ, the 2p energy actually drops below the 2s energy,

explaining the different �convex or concave� behavior of the

curves. To make sure, we also performed calculations in the

cc-pVDZ basis after rescaling �r→�r� it in such a way that

the hydrogenic 2s-2p degeneracy is exact. In this basis, the

SDP correlation energy �also shown in Fig. 2� indeed has the

correct linear behavior. It is clear from the above discussion

that SDP is indeed capable of providing accurate correlation

energies in the presence of near degeneracies, when other

many-body techniques �such as density-functional theory or

second-order Moller-Plesset theory, MP2� can fail.

2. Neon series

In Fig. 3, the correlation energy is shown for all three

basis sets as a function of Z. Because Ne is a closed-shell

atom, there is no near degeneracy for large Z values and the

exact correlation should be asymptotically constant in Z, as

is indeed visible in the experimental curve. Due to basis set

effects, this constant behavior is imperfectly realized, but the

SDP follows the same trends as CCSD for all basis sets. Note

that the approximation to a constant behavior at large Z is

best for the largest basis set. The decrease in correlation en-

ergy for increasing Z, in contrast to the slight rise in the

experimental correlation energy, can be attributed to the fact

that the basis sets were optimized for the neutral atom. While

the rescaling procedure fixes the nuclear cusp, the resulting

FIG. 2. The SDP correlation

energy for the Be series in all

three basis sets and in a rescaled

basis set that exhibits hydrogen-

like behavior �degeneracy be-

tween the 2s and 2p levels�. For

comparison, the CCSD and ex-

perimental values are also shown.
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basis set is obviously far from optimal for highly charged

ions.

3. Silicon series

For silicon, only the cc-pVDZ and cc-pVTZ basis have

been used �Fig. 4�. As was the case for Be, the theoretical

linear rise with Z is thwarted by imperfections in the basis

sets. However the SDP correlation energy closely tracks the

CCSD one. The Si ground state is a spin triplet. The results

in Table III have been obtained using the spin-averaged en-

semble as explained in Sec. II. In order to assess the quality

of the spin constraints, we have also performed calculations
using the highest-weight method for Z=14, 18, 22, and 26
with the cc-pVDZ basis set. The resulting energies are also
reported in Table III. The energy differences between the
approaches are sizeable, with differences as large as 20
mhartree, reflecting the weaker nature of the spin constraints
imposed in the spin-averaged scheme. However, the discrep-
ancy between the two approaches is stable for increasing Z.

C. Ionization energies

Other properties can be used to gauge the quality of the

2DM, e.g., the ionization energies of the different atomic

FIG. 3. The SDP correlation

energy for the Ne series in all

three basis sets. For comparison,

the CCSD and experimental val-

ues are also shown.

FIG. 4. The SDP correlation

energy for the Si series in the cc-

pVDZ and cc-pVTZ basis sets.

For comparison, the CCSD and

experimental values are also

shown.
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ions, which can be easily calculated using the extended

Koopmans’ theorem �EKT� �23–25�. The EKT provides a

single-particle picture of the ground state, with sp energies

and spectroscopic factors. The ionization energies are shown

in Fig. 5; the agreement between calculated and experimental

values is very good, pointing to the realistic nature of the

variationally obtained 2DM. The good agreement with ex-

periment reflects the fact that the error in the description of

the interelectronic cusp largely cancels since the ionization

energy is an energy difference. For Be and Ne, it is clear that

the basis set limit is nearly reached at the cc-pVTZ–cc-

pVQZ level. Even for Si, the experimental ionization energy

is closely reproduced.

D. Correlated Hartree-Fock-like single-particle energies

A different sp picture is given by the correlated Hartree-

Fock-like sp orbitals and energies. These are constructed by

diagonalizing the sp Hamiltonian

h�� = �T + U��� + �
��

V��;�����, �61�

where the first-order density matrix �1DM� ��� is constructed

from the variationally determined 2DM. As an example of

this method, the sp energies for the isoelectronic series of Be

in a cc-pVDZ basis are shown in Fig. 6. Notice that when Z

increases, the energy levels approach those of the hydrogen

FIG. 5. The ionization energy

scaled with
1

Z2 for the Be, Ne, and

Si series in the different basis sets

compared to experimental results.

FIG. 6. The single-particle lev-

els obtained in a correlated

Hartree-Fock-like scheme �see

text� for the Be series in a cc-

pVDZ basis set.
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atom. Similar behavior is present for the other basis sets and

for the Ne and Si isoelectronic series.

E. Natural occupations

The eigenvalues of the sp density matrix �i.e., the natural

orbital occupation numbers� provide insight into the extent

of correlation. The occupation numbers from SDP are always

very close to those from full CI, differing by at most 0.005.

Of particular interest are the occupations of the quasidegen-

erate 2s and 2p orbitals in Be. These are shown in Fig. 7.

The sum of the 2s and 2p occupations is nearly 1 and in-

creasingly so for large Z. This implies that only the 2s and

2p are partially occupied in the large-Z limit. The shapes of

the curves reflect the aforementioned imperfections in the

basis sets, with the 2s below the 2p for cc-pVDZ and cc-

pVTZ and above the 2p for cc-pVQZ.

IV. SUMMARY

Variational methods based on the second-order density

matrix seem to hold great promise as an ab initio many-body

technique, but there is room for improvement, especially as

regards computational efficiency �improved algorithms� and

accuracy �better characterization of the N-representable set�.
We investigated the isoelectronic series of Be, Ne, and Si

using the P, Q, and G N-representability conditions. A sig-

nificant speedup is obtained when spin and rotational sym-

metry is taken into account. This allowed us to investigate

the properties of the SDP method with increasing basis set

size �cc-pV�D,T,Q�Z�. The energies so obtained are reason-

ably accurate, but the accuracy seems to diminish with in-

creasing basis set size. The SDP method is capable of de-

scribing the strong static electron correlations appearing in

the beryllium and silicon series due to the incipient degen-

eracy in the hydrogenic spectrum for increasing central

charge. The ionization energies, constructed using the ex-

tended Koopmans’ theorem, are surprisingly good. Also the

natural occupations are reproduced very well when com-

pared to full-CI results in the same basis sets. Hence, the

physical content of the variationally determined second-

order density matrix seems to be reliable.

Apart from a study of the potential-energy surface for

some diatomic 14-electron molecules �11�, we intend to in-

vestigate fermionic and bosonic Hubbard models on one-

and two-dimensional lattices. Further work is also needed to

ameliorate the computational cost of the method and to in-

crease the accuracy without introducing three-index condi-

tions.
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APPENDIX: CONSTRAINT MATRICES

The linear constraints for imposing the spin singlet con-

dition are given by

∀k � l : Tr � �kl�K = 0, �A1�

where the constraint matrices �kl�K have the following

form

FIG. 7. The natural occupation

of the 2p orbital and one minus

the occupation of 2s orbital for the

Be series in all three basis sets.
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�kl�Kab;cd
S = �kl�fab;cd

S + �− 1�S�kl�fba;cd
S + �− 1�S�kl�fab;dc

S

+ �kl�fba;dc
S + �kl�fcd;ab

S + �− 1�S�kl�fdc;ab
S

+ �− 1�S�kl�fcd;ba
S + �kl�fdc;ba

S , �A2�

with

�kl�fab;cd
S = �1

2

1

N − 1
− �− 1�S�

1

2

1

2
1

1

2

1

2
S���ak�cl�bd.

�A3�

The constraints for spin and angular-momentum singlet pro-

jections are

∀k � l : Tr � J
�kl�K = 0, �A4�

where the constraint matrices �kl�K have the following form:

J
�kl�Kab;cd

�LS� = J
�kl�fab;cd

�LS� + �− 1�L+S+la+lb
J
�kl�fba;cd

LS + J
�kl�fba;dc

�LS�

+ �− 1�S+L+la+lb
J
�kl�fab;dc

�LS� + J
�kl�fcd;ab

LS

+ �− 1�S+L+la+lb
J
�kl�fdc;ab

LS + J
�kl�fdc;ba

LS

+ �− 1�L+S+la+lb
J
�kl�fcd;ba

LS , �A5�

where J can mean either 	 or � and

	
�kl�fab;cd

�LS� = �lkll�1

2

1

N − 1
−

�− 1�S

�lk� �
1

2

1

2
1

1

2

1

2
S���ak�cl�bd,

�A6�

�
�kl�fab;cd

�LS� = �lkll
� l̂a

2

N − 1
−

1

2
�l̂a

2 + l̂b
2 − L̂2���ak�cl�bd.

�A7�
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