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Abstract

We consider criteria for variational representations of non-Gaussian la-
tent variables, and derive variational EM algorithms in general form. We
establish a general equivalence among convex bounding methods, evi-
dence based methods, and ensemble learning/Variational Bayes methods,
which has previously been demonstrated only for particular cases.

1 Introduction

Probabilistic methods have become well-established in the analysis of learning algorithms
over the past decade, drawing largely on classical Gaussian statistical theory [21, 2, 28].
More recently, variational Bayes and ensemble learning methods [22, 13] have been pro-
posed. In addition to the evidence and VB methods, variational methods based on convex
bounding have been proposed for dealing with non-gaussian latent variables [18, 14]. We
concentrate here on the theory of the linear model, with direct application to ICA [14],
factor analysis [2], mixture models [13], kernel regression [30, 11, 32], and linearization
approaches to nonlinear models [15]. The methods can likely be applied in other contexts.

In Mackay’s evidence framework, ”hierarchical priors” are employed on the latent vari-
ables, using Gamma priors on the inverse variances, which has the effect of making the
marginal distribution of the latent variable prior the non-Gaussian Student’st [30]. Based
on Mackay’s framework, Tipping proposed the Relevance Vector Machine (RVM) [30] for
estimation of sparse solutions in the kernel regression problem. A relationship between the
evidence framework and ensemble/VB methods has been noted in [22, 6] for the partic-
ular case of the RVM witht hyperprior. Figueiredo [11] proposed EM algorithms based
on hyperprior representations of the Laplacian and Jeffrey’s priors. In [14], Girolami em-
ployed the convex variational framework of [16] to derive a different type of variational
EM algorithm using a convex variational representation of the Laplacian prior. Wipf et al.
[32] demonstrated the equivalence between the variational approach of [16, 14] and the ev-
idence based RVM for the case oft priors, and thus via [6], the equivalence of the convex
variational method and the ensemble/VB methods for the particular case of thet prior.

In this paper we consider these methods from a unifying viewpoint, deriving algorithms in
more general form and establishing a more general relationship among the methods than
has previously been shown. In§2, we define the model and estimation problems we shall
be concerned with, and in§3 we discuss criteria for variational representations. In§4 we
consider the relationships among these methods.



2 The Bayesian Linear Model

Throughout we shall consider the following model,

y = Ax + ν (1)

whereA ∈ Rm×n, x ∼ p(x) =
∏

i p(xi), andν ∼ N (0,Σν), with x andν independent.
The important thing to note for our purposes is that thexi are non-Gaussian.

We consider two types of variational representation of the non-Gaussian priorsp(xi), which
we shall callconvex typeandintegral type. In the convex type of variational representation,
the density is represented as a supremum over Gaussian functions of varying scale,

p(x) = sup
ξ
N (x; 0, ξ−1) ϕ(ξ) (2)

The essential property of “concavity inx2” leading to this representation was used in [29,
17, 16, 18, 6] to represent the Logistic link function. A convex type representation of the
Laplace density was applied to learning overcomplete representations in [14].

In the integral type of representation, the densityp(x) is represented as an integral over the
scale parameter of the density, with respect to some positive measureµ,

p(x) =
∫ ∞

0

N (x; 0, ξ−1) dµ(ξ) (3)

Such representations with a general kernel are referred to as scale mixtures [19]. Gaussian
scale mixtures were discussed in the examples of Dempster, Laird, and Rubin’s original
EM paper [9], and treated more extensively in [10]. The integral representation has been
used, sometimes implicitly, for kernel-based estimation [30, 11] and ICA [20]. The distinc-
tion between MAP estimation of components and estimation of hyperparameters has been
discussed in [23] and [30] for the case of Gamma distributed inverse variance.

We shall be interested in variational EM algorithms for solving two basic problems, cor-
responding essentially to the two methods of handling hyperparameters discussed in [23]:
the MAP estimate of the latent variables

x̂ = arg max
x

p(x|y) (4)

and the MAP estimate of the hyperparameters,

ξ̂ = arg max
ξ

p(ξ|y) (5)

The following section discusses the criteria for and relationship between the two types of
variational representation. In§4, we discuss algorithms for each problem based on the
two types of variational representations, and determine when these are equivalent. We also
discuss the approximation of the likelihoodp(y;A) using the ensemble learning or VB
method, which approximates the posteriorp(x, ξ|y) by a factorial densityq(x|y)q(ξ|y).
We show that the ensemble method is equivalent to the hyperparameter MAP method.

3 Variational representations of Super-Gaussian densities

In this section we discuss the criteria for the convex and integral type representations.

3.1 Convex Variational bounds

We wish to determine when a symmetric densityp(x) can be represented in the form (2)
for some functionϕ(ξ). Equivalently, when,

− log p(x) = − sup
ξ>0

log N (
x ; 0, ξ−1

)
ϕ(ξ) = inf

ξ>0

1
2 x2ξ − log ξ

1
2 ϕ(ξ)



for all x > 0. The last formula says that− log p(
√

x) is the concave conjugate of (the
closure of the convex hull of) the function,log ξ

1
2 ϕ(ξ) [27, §12]. This is possible if and

only if − log p(
√

x) is closed and concave on(0,∞). Thus we have the following.

Theorem 1. A probability densityp(x) ≡ exp(−g(x2)) can be represented in the convex
variational form,

p(x) = sup
ξ>0

N (x; 0, ξ−1)ϕ(ξ)

if and only if− log p(
√

x) = g(x) is concave on(0,∞). In this case we have,

ϕ(ξ) =
√

2π/ξ exp
(
g∗(ξ/2)

)
.

whereg∗ is the concave conjugate ofg.

Examples of densities satisfying this criterion include: (i) Generalized Gaussian∝
exp(−|x|β), 0 < β ≤ 2, (ii) Logistic ∝ 1/ cosh2(x/2), (iii) Student’s t ∝
(1 + x2/ν)−(ν+1)/2, ν > 0, and (iv) symmetricα-stable densities (having characteristic
functionexp(−|ω|α), 0 < α ≤ 2).

The convex variational representation motivates the following definition.

Definition 1. A symmetric probability densityp(x) is strongly super-gaussianif p(
√

x) is
log-convex on(0,∞), andstrongly sub-gaussianif p(

√
x) is log-concave on(0,∞).

An equivalent definition is given in [5, pp. 60-61], which definesp(x) = exp(−f(x))
to be sub-gaussian (super-gaussian) iff ′(x)/x is increasing (decreasing) on(0,∞). This
condition is equivalent tof(x) = g(x2) with g concave, i.e.g′ decreasing. The property of
being strongly sub- or super-gaussian is independent of scale.

3.2 Scale mixtures

We now wish to determine when a probability densityp(x) can be represented in the form
(3) for someµ(ξ) non-decreasing and bounded on(0,∞). A fundamental result dealing
with integral representations was given by Bernstein and Widder [31]. It uses the following
definition.

Definition 1. A functionf(x) is completely monotonicon (a, b) if,

(−1)nf (n)(x) ≥ 0 , n = 0, 1, . . .

for everyx ∈ (a, b).

That is, f(x) is completely monotonic if it is positive, decreasing, convex, and so on.
Bernstein’s theorem [31, Thm. 12b] states:

Theorem 2. A necessary and sufficient condition thatp(x) should be completely monotonic
on (0,∞) is that,

p(x) =
∫ ∞

0

e−txdα(t)

whereα(t) is non-decreasing on(0,∞).

Thus forp(x) to be a Gaussian scale mixture,

p(x) = e−f(x) = e−g(x2) =
∫ ∞

0

e−
1
2 tx2

dα(t)

a necessary and sufficient condition is thatp(
√

x) = e−g(x) be completely monotonic for
0 < x < ∞, and we have the following (see also [19, 1]),

Theorem 3. A functionp(x) can be represented as a Gaussian scale mixture if and only if
p(
√

x) is completely monotonic on(0,∞).



3.3 Relationship between convex and integral type representations

We now consider the relationship between the convex and integral types of variational
representation. Letp(x) = exp(−g(x2)). We have seen thatp(x) can be represented in the
form (2) if and only ifg(x) is symmetric and concave on(0,∞). And we have seen that
p(x) can be represented in the form (3) if and only ifp(

√
x) = exp(−g(x)) is completely

monotonic. We shall consider now whether or not complete monotonicity ofp(
√

x) implies
the concavity ofg(x) = − log p(

√
x), that is whether representability in the integral form

implies representability in the convex form.

Complete monotonicity of a functionq(x) implies thatq ≥ 0, q′ ≤ 0, q′′ ≥ 0, etc. For
example, ifp(

√
x) is completely monotonic, then,

d2

dx2
p(
√

x) =
d2

dx2
e−g(x) = e−g(x)

(
g′(x)2 − g′′(x)

) ≥ 0

Thus if g′′ ≤ 0, thenp(
√

x) is convex, but the converse does not necessarily hold. That
is, concavity ofg does not follow from convexity ofp(

√
x), as the latter only requires that

g′′ ≤ g′ 2.

Concavity ofg does follow however from the complete monotonicity ofp(
√

x). For exam-
ple, we can use the following result [8,§3.5.2].

Theorem 4. If the functionsft(x), t ∈ D, are convex, then
∫
D eft(x)dt is convex.

Thus completely monotonic functions, being scale mixtures of the log convex function
e−x by Theorem 2, are also log convex. We thus see thatany function representable in the
integral variational form(3) is also representable in the convex variational form(2).

In fact, a stronger result holds. The following theorem [7, Thm. 4.1.5] establishes the
equivalence betweenq(x) andg′(x) = d/dx− log q(x) in terms of complete monotonicity.

Theorem 5. If g(x) > 0, thene−ug(x) is completely monotonic for everyu > 0, if and
only if g′(x) is completely monotonic.

In particular, it holds thatq(x) ≡ p(
√

x) = exp(−g(x)) is concave only ifg′′(x) ≤ 0.

To summarize, letp(x) = e−g(x2). If g is increasing and concave forx > 0, thenp(x) ad-
mits the convex type of variational representation (2). If, in addition, the higher derivatives
satisfyg(3)(x) ≥ 0, g(4)(x) ≤ 0, g(5)(x) ≥ 0, etc., thenp(x) also admits the Gaussian
scale mixture representation (3).

4 General Equivalences among Variational Methods

4.1 MAP estimation of components

Consider first the MAP estimate of the latent variables (4).

4.1.1 Component MAP – Integral case

Following [10]1, consider an EM algorithm to estimatex when thep(xi) are independent
Gaussian scale mixtures as in (3). Differentiating inside the integral gives,

p′(x) =
d

dx

∫ ∞

0

p(x|ξ)p(ξ)dξ = −
∫ ∞

0

ξxp(x, ξ) dξ

= −xp(x)
∫ ∞

0

ξp(ξ|x) dξ

1In [10], thexi in (1) are actually estimated as non-random parameters, with the noiseν being
non-gaussian, but the underlying theory is essentially the same.



Thus, withp(x) ≡ exp(−f(x)), we see that,

E(ξi|xi) =
∫ ∞

0

ξip(ξi|xi) dξi = − p′(xi)
xip(xi)

=
f ′(xi)

xi
(6)

The EM algorithm alternates settingξi to the posterior mean,E(ξi|xi) = f ′(xi)/xi, and
settingx to minimize,

− log p(y|x)p(x|ξ) = 1
2 xTAT Σ−1

ν Ax − yT Σ−1
ν Ax + 1

2 xTΛx + const. (7)

whereΛ = diag(ξ)−1. At iterationk, we putξk
i = f ′(xk

i )/xk
i , andΛk = diag(ξk)−1, and

xk+1 = ΛkAT (AΛkAT + Σν)−1y

4.1.2 Component MAP – Convex case

Consider again the MAP estimate ofx. For strongly super-gaussian priors,p(xi), we have,
arg max

x
p(x|y) = arg max

x
p(y|x)p(x) = arg max

x
max

ξ
p(y|x)p(x; ξ)ϕ(ξ)

Now since,

− log p(y|x)p(x; ξ)ϕ(ξ) = 1
2 xTAT Σ−1

ν Ax − yT Σ−1
ν Ax +

n∑

i=1

1
2 x2

i ξi − g∗(ξi/2)

the MAP estimate can be improved iteratively by alternately maximizingx andξ,

ξk
i = 2 g∗′−1(xk 2

i ) = 2 g′(xk 2
i ) =

f ′(xk
i )

xk
i

(8)

with x updated as in§4.1.1. We thus see that this algorithm is equivalent to the MAP
algorithm derived in§4.1.1 for Gaussian scale mixtures. That is, for direct MAP estimation
of latent variablex, the EM Gaussian scale mixture method and the variational bounding
method yield the same algorithm.

This algorithm has also been derived in the image restoration literature [12] as the “half-
quadratic” algorithm, and it is the basis for the FOCUSS algorithms derived in [26, 25].
The regression algorithm given in [11] for the particular cases of Laplacian and Jeffrey’s
priors is based on the theory in§4.1.1, and is in fact equivalent to the FOCUSS algorithm
derived in [26].

4.2 MAP estimate of variational parameters

Now consider MAP estimation of the (random) variational hyperparametersξ.

4.2.1 Hyperparameter MAP – Integral case

Consider an EM algorithm to find the MAP estimate of the hyperparametersξ in the inte-
gral representation (Gaussian scale mixture) case (§4.1.1), where the latent variablesx are
hidden. For the complete likelihood, we have,

p(ξ,x|y) = p(y|x, ξ)p(x|ξ)p(ξ) = p(y|x)p(x|ξ)p(ξ)
The function to be minimized overξ is then,〈− log p(x|ξ)p(ξ)

〉
x
∝

∑

i

1
2 〈x2

i 〉 ξi − log
√

ξi p(ξi) (9)

If we defineh(ξ) =
√

ξi p(ξi), and assume that this function is concave, then the optimal
value ofξ is given by,

ξi = h∗′
(

1
2 〈x2

i 〉
)

This algorithm converges to a local maximum ofp(ξ|y), ξ̂, which then yields an estimate
of x by takingx̂ = E(x|y, ξ̂). Alternative algorithms result from using this method to find
the MAP estimate of different functions of the scale random variableξ.



4.2.2 Hyperparameter MAP – Convex case

In the convex representation, theξ parameters do not actually represent a probabilistic
quantity, but rather arise as parameters in a variational inequality. Specifically, we write,

p(y) =
∫

p(y,x) dx =
∫

max
ξ

p(y|x) p(x|ξ)ϕ(ξ) dx

≥ max
ξ

∫
p(y|x) p(x|ξ)ϕ(ξ) dx

= max
ξ

N (
y;0,AΛAT + Σν

)
ϕ(ξ)

Now we define the function,

p̃(y; ξ) ≡ N (
y;0,AΛAT + Σν

)
ϕ(ξ)

and try to findξ̂ = arg max p̃(y; ξ). We maximizep̃ by EM, marginalizing overx,

p̃(y; ξ) =
∫

p(y|x) p(x|ξ)ϕ(ξ) dx

The algorithm is then equivalent to that in§4.1.2 except that the expectation is taken ofx2

as the E step, and the diagonal weighting matrix becomes,

ξi =
f ′(σi)

σi

whereσi =
√

E (x2
i |y; ξi). Thoughp̃ is not a true probability density function, the proof

of convergence for EM does not assume unit normalization. This theory is the basis for the
algorithm presented in [14] for the particular case of a Laplacian prior (where in addition
A in the model (1) is updated according to the standard EM update.)

4.3 Ensemble Learning

In the ensemble learning approach (also Variational Bayes [4, 3, 6]) the idea is to find the
approximate separable posterior that minimizes the KL divergence from the true posterior,
using the following decomposition of the log likelihood,

log p(y) =
∫

q(z|y) log
p(z,y)
q(z|y)

dz + D
(
q(z|y)

∣∣∣∣ p(z|y)
)

≡ −F (q) + D(q||p)

The termF (q) is commonly called thevariational free energy[29, 24]. The posterior
approximating distribution is taken to be factorial,

q(z|y) = q(x, ξ|y) = q(x|y)q(ξ|y).

For fixedq(ξ|y), the free energyF is given by,

−
∫∫

q(x|y)q(ξ|y) log
p(x, ξ|y)

q(x|y)q(ξ|y)
dξ dx = D

(
q(x|y)

∣∣∣∣ e〈log p(x,ξ|y)〉ξ
)

+ const.

(10)
where〈·〉ξ denotes expectation with respect toq(ξ|y). The minimum of the KL divergence
in (10) is attained if and only if

q(x|y) = exp
〈
log p(x, ξ|y)

〉
ξ
∝ p(y|x) exp

〈
log p(x|ξ)〉

ξ

An identical derivation yields the optimal

q(ξ|y) = exp
〈
log p(x, ξ|y)

〉
x
∝ p(ξ) exp

〈
log p(x|ξ)〉

x



whenq(x|y) is fixed. The ensemble (or VB) algorithm consists of alternately updating the
parameters of these approximating marginal distributions.

In the non-Gaussian linear model, the complete likelihood is,

p(y,x, ξ) = p(y|x)p(x|ξ)p(ξ)

The optimal approximate posteriors are given by,

q(x|y; ξ) = N (x; µx|y,Σx|y) , q(ξi|y) = p
(
ξi

∣∣ xi = 〈x2
i 〉1/2

)

where, lettingΛ = diag(〈ξ〉)−1, the posterior moments are given by,

µx|y ≡ ΛAT (AΛAT + Σν)−1y (11)

Σx|y ≡ (AT Σ−1
ν A + Λ−1)−1 = Λ−ΛAT (AΛAT + Σν)−1AΛ

The only relevant fact aboutq(ξ|y) that we need is〈ξ〉, for which we have, using (6),

〈ξi〉 =
∫

ξiq(ξi|y) dξi =
∫

ξip
(
ξi |xi = 〈x2

i 〉1/2
)

dξi =
f ′(σi)

σi

whereσi =
√

E (x2
i |y; ξi). We thus see that the ensemble learning algorithm is equivalent

to the approximate hyperparameter MAP algorithm of§4.2.2. Note also that this shows that
the VB methods can be applied to any Gaussian scale mixture density, using only the form
of the latent variable priorp(x), without needing the marginal hyperpriorp(ξ) in closed
form. This is particularly important in the case of the Generalized Gaussian and Logistic
densities, whose scale parameter densities areα-Stable and Kolmogorov [1] respectively.

5 Conclusion

In this paper, we have discussed criteria for variational representations of non-Gaussian
latent variables, and derived general variational EM algorithms based on these represen-
tations. We have shown a general equivalence between the two representations in MAP
estimation taking hyperparameters as hidden, and we have shown the general equivalence
between the variational convex approximate MAP estimate of hyperparameters and the
ensemble learning or VB method.
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