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Abstract

We have designed an energy decomposition analysis (EDA) to gain deeper under-

standing of single chemical bonds, that is, those in which the interacting fragments

are doublet open-shell systems but the supersystem is closed-shell. The method is a

spin-pure extension of the absolutely localized molecular orbital (ALMO) EDA to the

one-pair perfect pairing energy (equivalently to an active space of two electrons in two

orbitals). The total interaction energy is broken up into four terms: frozen interactions,

spin-coupling, polarization, and charge-transfer. A variety of single bonds are analyzed

and in addition we use this method to show how solvation changes the nature of bonds,

producing different results in the gas-phase and with explicit solvent molecules.
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1 Introduction

Practical chemistry relies on the qualitative application of physical and chemical principles

(e.g. electrostatics, polarizability, electronegativity, etc.) to understand the interaction of

molecules when investigating the synthesis and reactivity of molecular systems. Theoretical

chemistry, on the other hand, does away with these principles in favor of a quantitative

quantum mechanical treatment with no specific appeal to any of these ideas. The success of

the former approach suggests that there is value in thinking about chemistry in the context

of these heuristics. At the heart of the matter is the question: What is the nature of the

chemical bond1–3?

Since the advent of quantum mechanics, there has been over eighty years of work on this

problem, which we shall attempt to very briefly summarize. At the level of the role of

different terms in the Hamiltonian, there were originally two possibilities that could explain

the origin of the stability of the covalent bond. Since chemical bonding in elementary systems

such as the one-electron bond in H+

2 is associated with an increase in electron density in the

bonding region, it was suggested4 that this was electrostatically favored (i.e. lowered the

potential energy). However, detailed analysis has supported the competing possibility that

delocalization of previously localized electrons in the molecule in fact lowers the kinetic

energy and that this is the principal origin of stabilization in covalent bonds. This result

has been established for simple systems by Ruedenberg and co-workers,2,5 Kutzelnigg,6 and

others.7–9 Ruedenberg et al.,10 as well as others11–13 have also reported progress towards

extracting similar information from more complex molecules.

Numerous other methods have also been developed to analyze chemical bonds, from a variety

of complementary perspectives. One of the most widely used is Weinhold et al.’s Natural

Bond Orbital (NBO) analysis,14 which yields localized orbitals, information on hybridization,

chemical bonds, atomic charges, and predominant Lewis structures. Topological analysis of

2
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the electron density, as developed in the quantum theory of atoms-in-molecules (QTAIM)15

is another well-developed method for diagnosing the presence of chemical bonds (via so-

called bond critical points), as well as partitioning an energy into intra-atomic and inter-

atomic terms. Other topological methods involve increasingly complicated functions of the

density and the kinetic energy density, of which the electron localization function (ELF) is

a prominent example. A variety of other methods exist for partitioning a bond energy into

sums of terms that are physically interpretable.16,17

At the same time, much progress has been made in analyzing non-bonded interactions

into contributions that include dispersion, permanent and induced electrostatics which are

well-defined in the non-overlapping regime, as well as Pauli repulsion and charge transfer.

These schemes include perturbative methods such as Symmetry Adapted Perturbation The-

ory (SAPT)18–25 method and Natural Energy Decomposition Analysis (NEDA),26–28 and

methods based on variationally optimized, constrained, intermediate wavefunctions, such as

Kitaura and Morokuma (KM) EDA,29 the Ziegler-Rauk approach for the Xα method30–32

and the Block-Localized Wavefunction (BLW-EDA)33,34 of Mo and Gao and the related

Absolutely Localized Molecular Orbital (ALMO-EDA) of Head-Gordon et al.35–40 Such en-

ergy decomposition analysis (EDA) schemes have had considerable success at describing the

interactions of closed-shell fragments as well as open-shell–closed-shell interactions.41–43

A number of the general EDA schemes mentioned for non-bonded interactions above have

been applied to bonded interactions.30–32,44,45 These schemes usually group all of the terms

assignable to the bond (polarization, charge-transfer, etc.) into a single orbital interactions

term, possibly separable into different wavefunction symmetries (e.g. σ, π bonding).46 We

are interested in developing methods specifically for the variational energy decomposition

analysis of chemical bonds relative to radical fragments. Motivated by earlier work in our

group on the ALMO-EDA for non-bonded interactions, the objective is to define a sequence

of constraints which can be ascribed to deletion of specific physical effects, such as charge

3
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transfer, polarization, and spin coupling. Our perspective of a sequence of progressively

weaker variational constraints contrasts with energy partitioning methods that do not define

optimized intermediate states.

This paper reports the design and implementation of an EDA for single bonds, the simplest

case. The homolytic separation of a single bond into two doublet radical fragments cannot

be accomplished in a spin-pure way using single determinant theory. The simplest spin-pure

wavefunction involves recoupling two electrons in two orbitals, which is variously known

as CAS(2,2),47 one-pair perfect pairing,48 and two-configuration SCF.49 The EDA reported

here defines a sequence of constraints that yield three intermediate variational energies in

addition to the final CAS(2,2) energy. A descriptive and non-mathematical discussion of

the design principles is given in the following section on Design Principles, followed by

the mathematical framework which enables the constraints to be exactly satisfied. After

mentioning some computational details, we present results and discussion for a variety of

single bonds, whose characters vary considerably, including some consideration of the effect

of solvation.

2 Design principles

Our objective is to construct a bonded energy decomposition analysis that adheres to the

following criteria (these are the essential parts of a longer list one of us suggested for a non-

bonded EDA37): 1) all energies should be calculated using valid fermionic wavefunctions,

2) all such wavefunctions should be spin-pure, 3) the method should qualitatively correctly

describe the interaction over the entire potential energy surface, 4) the method should be

variational with respect to a well-defined total interaction energy.

In this work, the absolutely localized molecular orbital (ALMO) EDA is extended to accom-

plish these goals by decomposing the one-pair perfect pairing (PP1) energy (or, equivalently,

4
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the CAS(2,2) energy). Two (non-orthogonal) fragments are defined as the two halves of the

bond of interest and the orbitals are optimized in isolation as restricted open-shell fragments.

These fragments are then brought together with frozen orbitals to form a high-spin supersys-

tem (giving rise to a frozen orbital term, FRZ). The unpaired electrons in this supersystem

are then used to generate the singlet configuration state function, in which the ALMO con-

straint prevents charge-transfer between the fragments (giving a term due to spin-coupling of

the bond electrons, SC). This CSF is allowed to relax subject to the CT-preventing ALMO

constraint (giving a polarization term, POL). Finally, the ALMO constraint is relaxed to

give the one-pair perfect pairing solution (giving a term assignable to charge-transfer, CT).

We therefore partition the single bonded interaction of interest into five terms:

∆Einteraction = ∆EGEOM +∆EFRZ +∆ESC +∆EPOL +∆ECT (1)

The first term, ∆EGEOM is the energy penalty associated with distorting each radical frag-

ment to the geometry it adopts in the interacting complex. Each radical fragment is described

by a spin-pure
(

S = 1

2
;MS = +1

2

)

single determinant (i.e. restricted open shell Hartree-

Fock).

The second term, ∆EFRZ, is the energy change associated with bringing the two radical

fragments together from infinite separation to form a spin-pure triplet single determinant

wavefunction (S = 1;MS = +1). The triplet wavefunction is constructed without allow-

ing the orbitals to relax. By design, ∆EFRZ is entirely a non-bonded interaction, and for

this reason will typically be repulsive for a chemical bond. It includes contributions from

inter-fragment electrostatics, Pauli repulsion, exchange-correlation, and dispersion (although

dispersion is not present in the current implementation since it is based on Hartree-Fock the-

ory). Being analogously defined to the existing ALMO frozen term, it may be decomposed

into those contributions if desired using the ALMO frozen decomposition scheme.38,39

5

Page 5 of 39

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



The third term, ∆ESC, is the only term that has no analog in the ALMO-EDA for non-bonded

interactions, and is the energy difference due to changing the coupling of the two radical

electrons from high-spin triplet to low-spin singlet. It accounts for the delocalization effects

associated with singlet coupling of two electrons forming the single bond, while continuing

to use the frozen orbitals. ∆ESC is expected to often be a dominant term in covalent bond

formation.

The fourth term, ∆EPOL, is the energy change associated with the orbitals of each fragment

relaxing in the presence of the field of the other fragment, without any charge transfer, sub-

ject to singlet spin coupling. ∆EPOL is the term that includes the effect of atomic orbital

contraction that has been discussed for simple homonuclear diatomics.10 It also includes

contributions from polarization in the bond. The original atomic-orbital based ALMO-EDA

polarization term does not have a well-defined basis set limit;50 as the basis set gets larger,

there is sufficient flexibility that orbitals can contort to approximate the final wavefunction,

including charge-transfer. The use of fragment electric response functions (FERFs) as an al-

ternative ALMO basis resolves this issue.37,40 In this scheme, the virtual orbitals available for

polarization are only those which are necessary for describing the response of each fragment

to an applied electric field. We will use the dipole and quadrupole (DQ) FERFs to define the

fragment virtual spaces within which the polarization energy is minimized. This guarantees

a well-defined basis set limit: the polarization term describes how much the fragments relax

due to the dipole-quadrupole field generated by the other fragments.

The final term, ∆ECT, contains charge-transfer contributions relating to electrons from one

fragment being transferred to the other fragment. It is clearly the dominant term in ionic

bonds, and is also expected to be important in bonds of the so-called charge-shift type.51–53

6
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3 Theory

We employ the tensor formulation for working with non-orthogonal orbitals54 and use the

following notation in this work: total wavefunction: Ψ; Slater determinant: φ; determinant

indices: Hebrew letters ,ב,א . . .; fragment indices: capital Roman X, Y, . . .; AO indices: lower

case Greek µ, ν, . . .; occupied MO indices: i, j, . . .; generic MO indices r, s, . . .. Large dots

are used as placeholders to clarify index ordering. Covariant indices are given as subscripts

and contravariant indices as superscripts.

3.1 Frozen energy

For readers unfamiliar with the ALMO scheme,35,36,40 we outline the method below. The

system of interest is partitioned into some number of interacting fragments (in this case, the

two sides of the bond of interest). Separate restricted open-shell single-point calculations

are performed on each of the fragments in isolation (at the geometry of interacting system).

The resulting fragment MO coefficients are assembled into a high-spin (triplet for a single-

bond), unrestricted supersystem MO coefficient matrix by block-diagonal concatenation.

The orbitals are thus said to be absolutely localized on a given fragment. Note that, while

orbitals within a fragment are orthogonal, between fragments, this is generally not the case.

The supersystem wavefunction is still spin-pure because the fragment blocks are restricted

open-shell and are high-spin coupled.

The concatenated MO coefficients of the supersystem give rise to a supersystem “frozen”

density matrix, PFRZ for both alpha and beta spins, defined by the subspace spanned by the

frozen occupied orbitals:

PXµY ν
α,FRZ = (Tα,FRZ)

Xµ •

• Xi (σα)
XiY j(Tα,FRZ)

Y ν •

• Y j (2)

7
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where (σα)
XiY j is the contravariant alpha occupied MO metric and is needed to form a

valid projector. This matrix is identity only when the fragments are orthogonal and there

is no overlap between them. Hence, in general, the frozen density is not the sum of the

non-interacting densities. The contravariant alpha occupied MO metric is the inverse of the

occupied, occupied block of the covariant alpha MO overlap matrix, (σα)XiY j:

(σα)XiY j = (Tα)
Xµ •

• Xi SXµY ν(Tα)
Y ν •

• Y j (3)

Where SXµY ν is the covariant atomic orbital overlap matrix. We then calculate the frozen

contribution by the difference between the sum of single point energies for the separated

fragments and the energy of the supersystem, that is, the trace of the frozen density with

the supersystem core Hamiltonian and Fock matrices, formed from the frozen density:

EFRZ =
1

2
tr [(Hcore + F α,FRZ)P α,FRZ + (Hcore + F β,FRZ)P β,FRZ] (4)

∆EFRZ = EFRZ −

Frgm
∑

Z

EZ (5)

In highly symmetric systems, the unpaired spin-orbital on each fragment resides in a degen-

erate energy eigenspace, and so there are many degenerate solutions for the fragments (see

Figure 1). While these different solutions may be degenerate for the fragments, the super-

systems assembled from these different fragments solutions are not, in general, degenerate.

To resolve this ambiguity, the initially formed high-spin supersystem energy is spin-flipped

to a spin-coupled wavefunction (see following sections), which is optimized with respect to

orbital rotations subject to the ALMO constraint. These polarized fragments are then used

as the initial guess for new fragment calculations which are minimized, subsequently, with

respect to doubly occupied-virtual orbital rotations, singly occupied-virtual rotations, and

finally all orbital rotations. We thus obtain unpolarized fragments that have had their spins

8
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reoriented to be consistently and appropriately aligned for bonding. The stepwise relaxation

procedure is to ensure that the polarized fragments unpolarize without the singly-occupied

orbital rotating away from the correct (that is, energetically optimal) orientation. These

unpolarized fragments are then used to construct the true frozen supersystem wavefunction.

H

H

F

F

Degenerate fragments Non-degenerate supersystem

F H

Unique supersystem after 
initial polarization

F

F

Figure 1. An example of a case where there are many degenerate solutions for the frag-
ments (the F atom), but the assembled supersystem (HF) is not necessarily degenerate. The
unpaired spin-orbital is shown. To form a unique supersystem, the singlet-coupled supersys-
tem energy is optimized with respect to orbital rotations and then the polarized fragments
form the initial guess for relaxation back to the correctly oriented ground state.

In principal, this reorientation and unpolarization procedure could result in fragments in

a low-lying electronic excited state. We therefore define an electronic distortion energy

analogous to the geometric distortion energy, as the energy difference between the fragments

in the lowest electronic state and the fragments in the electronic state of the interacting

complex. Generally, and in all cases so far studied, this term is zero, but it can, in principle,

be positive. The energy change from not resolving this orientational ambiguity can be

substantial. For example, for the HF molecule, the frozen terms due to different singly-

occupied orientations (of the F atom) can be different by >50 kcal/mol.

Since this method is an extension of the ALMO EDA scheme, it inherits the ALMO scheme’s

ability to further separate the frozen term into terms corresponding to permanent electro-

static interactions, Pauli repulsion, and dispersion.39

9
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3.2 Spin-coupling

In order to generate the singlet CSF from the triplet frozen supersystem wavefunction, a

spin flip is applied to each of the unpaired electrons in each fragment space to form a 2-

configurational wavefunction. Since the two determinants that make up the CSF are spin

complements, the CI coefficients are equal.

|ΨSC〉 = N (|φא〉+ |φב〉) (6)

where N is a normalization factor. The spin-coupling energy is then calculated as the energy

difference between the frozen supersystem energy and the energy of the 2-configurational

wavefunction:

ESC = N2(Eא + Eב + 2Eבא) (7)

∆ESC = ESC − EFRZ (8)

This energy change may be positive or negative depending on which of the triplet or the

singlet is lower in energy. Generally, if a bond is forming, the singlet will be lower in energy

and the energy change is negative.

3.3 Polarization

In order to calculate the variational polarization energy subject to the ALMO constraint

while ensuring spin-purity, we require each fragment to continue to be described by a set of

restricted open-shell orbitals. The spin-coupled determinants are already ALMO wavefunc-

tions due to the block-diagonal nature of the MO coefficients matrix; the ALMO constraint

10
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is maintained by only allowing rotations within a fragment. In this section, we derive expres-

sions for the gradient of the energy with respect to non-orthogonal orbital rotations within

each determinant and also for the interdeterminantal Hamiltonian matrix element.

Recall that the energy of the 2-configurational wavefunction is given by E = N2(Eא +Eב +

2Eבא). Ignoring normalization and differentiating with respect to an orbital rotation in

arbitrary determinant :ג

∂E

ZqגZpג∆∂

=
∂Eא

ZqגZpג∆∂

+
∂Eב

ZqגZpג∆∂

+ 2
∂Eבא

ZqגZpג∆∂

(9)

We first calculate the gradient within each determinant, that is, the first two terms (the

determinant indices will be temporarily elided since they are all the same in this case). The

energy of each determinant is given by

1

2
tr [(Hcore + F α)P α + (Hcore + F β)P β] (10)

We denote an orbital rotation between orbital p and q in fragment Z by ∆Zp,Zq. Then,

∂Eא

∂∆Zp,Zq

= (Fα)BνAµ
∂(Pα)

AµBν

∂∆Zp,Zq

+ (Fβ)BνAµ
∂(Pβ)

AµBν

∂∆Zp,Zq

(11)

The required partial derivatives are:

∂PAµBν

∂∆Zp,Zq

= TAµ •

• Ai (σ)
AiBj

∂TBν •

• Bj

∂∆Zp,Zq

+ TAµ •

• Ai

∂(σ)AiBj

∂∆Zp,Zq

TBν •

• Bj

+
∂TAµ •

• Ai

∂∆Zp,Zq

(σ)AiBjTBν •

• Bj (12)

= TAµ •

• Ai (σ)
AiBjCBν •

• Br (δ
Br
Zpδ

Bj
Zq − δBr

Zq δ
Bj
Zp)− TAµ •

• Ai

∂(σ)AiBj

∂∆Zp,Zq

TBν •

• Bj

11
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+ CAµ •

• Aw(δ
Aw
Zp δ

Ai
Zq − δAw

Zq δ
Ai
Zp)(σ)

AiBjTBν •

• Bj (13)

∂(σ)AiγBjǫ

∂∆Zp,Zq

= −

Frgm
∑

X,Y

(σ)AiγXl

(

∂(σ)Xl,Y m

∂∆Zp,Zq

)

(σ)Y m,Bjǫ (14)

= −
∑

X,Y

[

(σ)Aiγ,XlCXλ •

• Xs (δ
Xs
Zp δ

Xl
Zq − δXs

Zq δ
Xl
Zp)SXλ,Y ξT

Y ξ •

• Y m(σ)
Y m,Bjǫ

+(σ)Aiγ,XlTXλ •

• Xl SXλ,Y ξC
Y ξ •

• Y t (δ
Y t
Zpδ

Y l
Zq − δY t

Zqδ
Y l
Zp)(σ)

Y m,Bjǫ
]

(15)

Combining terms and contracting with FBν,Aµ

FBν,Aµ
∂PAµBν

∂∆Zp,Zq

= CXλ •

• Xs (1− SXλ,Y ξP
Y ξBν)FBν,AµT

Aµ •

• Aiγ(σ)
AiγXl(δXs

Zp δ
Xl
Zq − δXs

Zq δ
Xl
Zp)

+ (σ)Y m,BjǫTBν •

• BjǫFBν,Aµ(1− PAµXλSXλY ξ)C
Y ξ •

• Y t (δ
Y t
Zpδ

Y m
Zq − δY t

Zqδ
Y m
Zp ) (16)

Which gives the matrix equation

∂Eא

∂∆pq

= 2
{[

(σ−1

α
)
m
T T
α
Fα(1 − PαS)Ct

+ (σ−1

β )
m
T T
β
Fβ(1 − PβS)Ct

]

(δtpδ
m
q − δtqδ

m
p )

}

ZZ

(17)

where the superscript m denotes rows of the occupied metric and the subscript t denotes

columns of the MO coefficient matrix.

The gradient for the interdeterminantal matrix element follows a similar derivation. We

define Dבא, the determinant of the overlap matrix between the two determinants, Dאא and

Dבב, the determinants of each determinant’s overlap matrix, Fאµבν , the transition Fock

matrix, P ,µאνב the transition density matrix, and gבBj,אAi is the inverse of the non-symmetric

interdeterminantal occupied MO metric (the interdeterminantal analog of σ above). Let

12
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U = 1/2(hאµבν + Fאµבν)P
.µאνב

∂Eבא

ZqגZpג∆∂

=
∂Dבא/(DאאDבב)

1/2U

ZqגZpג∆∂

(18)

=
Dבא

(DאאDבב)1/2
Fאµבν

∂P µאνב

ZqגZpג∆∂

+ Eבאg
Aiא,BjבAi∂gא,Bjב

ZqגZpג∆∂

−
1

2
Eבא

(

σבCn,בDo∂σבCn,בDo

ZqגZpג∆∂

+ σאEv,אFw ∂σאEv,אFw

ZqגZpג∆∂

)

(19)

P Aµא,Bνב = T Bνב •

• Bj(gב
Ai)Tא,Bjב Aµא •

• Aiא (20)

gבBj,אAi =
[

T Aλא •

• BσTבAλאAiSא
Bσב •

• Bjב

]

−1
(21)

Note that when א = ,ב this expression reduces to the on-determinantal result derived above.

Without loss of generality, we assume that orbital rotations are in the א determinant. The

first term’s derivation is nearly identical to the on-determinantal case and gives the matrix

expression

Dבא

(DאאDבב)1/2

{(

[

(

g−1

α

)T
]l

T T
αב

F T
α
(1 − P T

α
S)C

sא

+
[

(

g
−1

β

)T
]l

T T
βב
F T

β
(1 − P T

β
S)C

sא

)

(δspδ
l
q − δsqδ

l
p)

}

ZZ

(22)

where the superscript l denotes rows of the occupied metric and the subscript s denotes

columns of the MO coefficient matrix. The second and third terms together give the matrix
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expression

Eבא

{(

[

(g−1

α
)T

]i
T T

αב
+
[

(g−1

β )T
]i
T T

βב
−

[

σ
−1

αא

]i
T T

αא
−

[

σ
−1

βא

]i
T T

βא

)

SCאr(δ
r
pδ

i
q − δrqδ

i
p)
}

ZZ

(23)

where the superscript i denotes rows of the occupied metric and the subscript r denotes

columns of the MO coefficient matrix. When א = ,ב this expression is zero.

This gradient expression is used to generate a RO gradient expression, that is, doubly

occupied-singly occupied rotations, doubly occupied-virtual rotations, and singly occupied-

virtual rotation are all carried out independently. This maintains the RO nature of each

fragment and, hence, spin-purity of the total wavefunction. The energy change (which must

be negative) due to this orbital relaxation is defined as the polarization energy term.

It should also be observed that some of this polarization is “constant-density” polarization,38

which relieves some Pauli-repulsion and may be thought of as a deficiency in the initially

defined spin-coupled wavefunction. However, based on previous results, we neglect this

relatively minor component of the polarization energy.

3.4 Charge-transfer

The relaxation of the ALMO constraint on the above 2-configurational wavefunction is the

one-pair perfect pairing energy or, equivalently, CAS(2,2). The energy difference between

the unconstrained PP energy and the polarized wavefunction energy is always negative and

attributed to charge-transfer, a process that is formally forbidden before due to the ALMO

constraint. As a result, the EDA described in this paper is therefore equivalently described

as a PP-EDA or a CAS(2,2)-EDA. This final interaction energy is typically about 85% of

the exact result, owing to the lack of dynamical correlation (vide infra).
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4 Computational Details

A development version of Q-Chem 4.3 was used for all calculations.55 Geometries for each

system were optimized at the HF/aug-cc-pVTZ level. The aug-cc-pVTZ basis was also

used for all EDA calculations, which decompose the bond energy evaluated at the CAS(2,2)

(equivalently 1-pair perfect pairing) level relative to ROHF fragments.

5 Results and Discussion

The EDA scheme introduced here is designed to follow the formation of a bond via a se-

quence of constrained variational calculations that bring together the two sides of the bond

from infinite separation of the fragments. The initial supersystem wavefunction (from which

the frozen energy term derives) corresponds to bringing together fragments with doublet-

optimized orbitals in which no bond has formed. The spin-coupled wavefunction then repre-

sents the jump to the singlet surface and so reports on the singlet-triplet gap of the doublet-

optimized orbitals. We argue that this energy difference then indicates how “covalent” a

bond is, as covalency loosely corresponds to the idea that electrons would rather be coupled

than not coupled. The polarization term allows the orbitals to relax in the field of the other

fragment and hence large numbers correspond to how polar a bond is, or rather, how much

energy is released by the density distorting to respond to the field of the other fragment. The

final charge-transfer term corresponds to the energy stabilization due to charge flow between

fragments. As one would expect, this term is dominant for ionic molecules, but still plays

an important, if smaller, role for classical covalent molecules.

Though this method is a MO-based method, it has clear connections to valence-bond descrip-

tions of molecules. The ALMO-constrained, spin-coupled and polarized wavefunctions, with

their non-orthogonal interacting valence doublet fragments, are analogous to the valence-
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bond covalent picture (see Figure 2). The unconstrained, final wavefunction then corre-

sponds to the 4-configurational extension of this VB wavefunction to include ionic terms in

which both electrons of the bond lie on one fragment. Hence, the charge-transfer term in

this method also includes what has been described as “charge-shift bonding”.51–53

Frag 1 Frag 2 Frag 1 Frag 2

VB pictureMO picture

With ALMO constraint

Frag 1 Frag 2 Frag 1 Frag 2 Frag 1 Frag 2 Frag 1 Frag 2

Without ALMO constraint

Spin-coupled and
Polarized wavefunction

Final wavefunction

Figure 2. MO vs. VB picture of EDA intermediate wavefunctions

To verify that the EDA behaves as expected, we investigated a few representative and patho-

logical bonds (Figure 3a and Table 1). Classic, non-polar covalent bonds such as H2 and

ethane are indeed dominated by spin-coupling. Polarization and charge transfer make up

only a small portion of the interaction energy (bond energy). As we move to more polar

bonds, as in HCl, polarization becomes highly important to the interaction in addition to

spin-coupling, giving what we would call a typical polar covalent bond. Molecules which fea-

ture charge-transfer contributions that are similar in magnitude to the spin-coupling term

are considered “charge-shift bonds”, as exemplified by F2, a canonical “charge-shift” bond.

One of the strongest single bonds, the Si−F bond of SiF4, which has high spin-coupling,

polarization, and charge-transfer could be equivalently thought of as a polar covalent bond

with ionic character or a polar charge-shift bond. When the bond is truly ionic, as in LiF,

neither spin-coupling nor polarization are significant and the bond energy is dominated by

the charge transfer term. Hence, the consideration of the terms of this EDA gives a “finger-

print” for classical chemical concepts of bonding. This fingerprint was obtained without any

explicit reference to these concepts and the method gives a quantitative description of these

16

Page 16 of 39

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



qualitative chemical heuristics.

(a) (b)

Figure 3. a) EDA of some representative bonds. b) EDA of some representative bonds
with the frozen and spin-coupling terms summed.

Table 1. EDA of representative bonds. All energies in kcal/mol. Numbers in parenthesis
are the percentage of the total stabilizing interaction energy each term represents. Exact is
CCSD(T)/aug-cc-pVTZ.

GEOM FRZ SC POL CT Sum Exact

H–H 0.0 196.9
-267.9 -2.9 -20.8

-94.7 -107.4
(91.9) (1.0) (7.1)

H3C–CH3 19.9 293.7
-351.6 -19.5 -29.6

-87.1 -91.4
(87.8) (4.9) (7.4)

H–Cl 0.0 217.2
-231.0 -54.7 -21.5

-90.0 -106.4
(75.2) (17.8) (7.0)

F–F 0.0 108.5
-70.3 -11.7 -42.9

-16.4 -30.4
(56.3) (9.4) (34.4)

F–SiF3 1.3 295.1
-166.3 -173.2 -97.1

-140.1 -166.0
(38.1) (39.7) (22.2)

Li–F 0.0 35.9 4.2
-6.3 -136.8

-103.0 -137.4
(4.4) (95.6)

We can compare this EDA to other (broken-symmetry) schemes that have been used for

bonded interactions, such as the Bickelhaupt-Baerends implementation of the Ziegler-Rauk

EDA, in which the energy is decomposed into electrostatics, Pauli repulsion, and orbital

response terms.56 To compare to this ZR-EDA, we calculated the electrostatics and Pauli

repulsion terms for the broken symmetry ethane and fluorine molecules and grouped them as

a broken symmetry frozen orbital term (BS-FRZ). In Table 2, the BS-FRZ term is compared
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against the spin-pure (triplet) frozen interaction (FRZ) and the sum of FRZ+SC, which

is the entire energy change associated with frozen orbitals. It is evident that the BS-FRZ

values lie somewhere between FRZ and FRZ+SC. Thus BS-FRZ captures part of the spin-

coupling energy, which is not fully satisfactory. In particular, FRZ represents electrostatics

and Pauli repulsion in the absence of spin coupling, where the kinetic energy delocalization

stabilization described by Ruedenberg is prohibited. SC then directly measures the strength

of that delocalization. By contrast BS-FRZ cannot be cleanly interpreted either way because

it captures just part of SC. By implication, the orbital response term in ZR-EDA (which is

subtractively determined as -152.0 and -88.3 kcal/mol for ethane and fluorine respectively)

contains the remainder of the spin coupling, plus any POL and CT effects, rendering its

interpretation difficult. Our new EDA has increased detail relative to the ZR-EDA, being

able to separate spin-coupling, polarization, and charge-transfer contributions, which contain

a great deal of information about the nature of different bonds.

Table 2. Comparison of the broken symmetry (Sz = 0) frozen interaction (BS-FRZ), as
used in the Bickelhaupt-Baerends implementation of the Ziegler-Rauk EDA against the pure
spin Sz = 1 frozen interaction, and the sum of that term plus the spin-coupling term (which
is the total interaction associated with the frozen fragment orbitals for C2H6 and F2. All
energies are in kcal/mol. The broken symmetry S2 value is given in the last column.

FRZ FRZ+SC BS-FRZ BS-S2

H3C–CH3 293.7 -58.0 45.0 0.585
F–F 108.5 38.2 71.9 0.959

One feature of our new EDA is that, unlike some methods,45 each relevant energy term is

relatively similar in magnitude to the total interaction energy. By avoiding large changes

in large numbers, trends can be more easily seen, as evidenced by the gradual decrease

in the importance of simple spin-coupling and concomitant increase in the importance of

charge-transfer in first row element–H bonds (Figure 4a and Table 3). First-row atoms are

highly electronegative and not very polarizable and so the move rightward along the first row

leads principally to charge-shift bonds rather than polar covalent bonds except in the case

of ammonia. One way to see this trend more clearly is to sum the frozen term and the spin-
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coupling term. When spin-coupling dominates the bonding (i.e. when the bond is simply

covalent), the spin-coupling stabilization makes up for all of the frozen term’s destabilization

and much of the bond strength. Moving to the right, spin-coupling is insufficient to solely

account for both the frozen term and the bond strength. Polarization and charge-transfer

effects are required, culminating in the charge-shift bonds in H2O and HF where the spin-

coupling can’t even fully overcome the frozen destabilization. Of course, this is not to say

that spin-coupling is unimportant in these molecules; this FRZ+SC way of the looking at

the bond is biased against spin-coupling by forcing that term alone to account for all of the

frozen destabilization, but it is a convenient way to investigate trends amongst the three

main bonding contributors.

(a) (b)

Figure 4. a) EDA of first row element–H bonds. Note the gradual increase in importance of
charge-transfer as the element becomes more electronegative. b) EDA of first row element–
H bonds with the frozen and spin-coupling terms summed to give a clearer view of the
importance of different effects on a more bond-energy relevant scale.

The EDA as bonds are broken also lends insight into the nature of the bonded interaction.

By inspection of the H2 EDA of dissociation (Figure 5a), one can see that the bonding in H2 is

dominated by spin-coupling everywhere on the potential curve. In contrast, the bond in HF

(Figure 5b) at shorter bond lengths (near equilibrium) has higher spin-coupling than charge-

transfer but as the bond is stretched charge-transfer becomes relatively more important and

spin-coupling and charge-transfer are about equal in magnitude. In other words, while the

spin-coupling decays as the bond is stretched, the slower to decay ionic stabilization due to
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Table 3. EDA of first row element–H bonds. All energies in kcal/mol. Numbers in paren-
thesis are the percentage of the total stabilizing interaction energy each term represents.
Exact is CCSD(T)/aug-cc-pvtz.

GEOM FRZ SC POL CT Sum Exact

H–H 0.0 196.9
-267.9 -2.9 -20.8

-94.7 -107.4
(91.9) (1.0) (7.1)

H–Li 0.0 34.3
-51.1 -8.6 -19.0

-44.4 -58.3
(65.0) (10.9) (24.1)

H–BeH 0.2 202.3
-265.6 -4.9 -15.0

-83.0 -97.4
(93.0) (1.7) (5.3)

H–BH2 1.4 285.7
-355.8 -11.8 -15.8

-96.3 -111.2
(92.8) (3.1) (4.1)

H–CH3 8.8 288.0
-348.6 -21.5 -21.6

-94.9 -112.2
(89.0) (5.5) (5.5)

H–NH2 3.3 265.1
-214.2 -100.1 -48.4

-94.3 -114.6
(59.1) (27.6) (13.3)

H–OH 3.2 275.6
-230.4 -58.1 -90.4

-100.2 -124.4
(60.8) (15.3) (23.9)

H–F 0.0 283.6
-217.5 -42.5 -138.0

-114.3 -140.1
(54.7) (10.7) (34.7)

charge-transfer keeps the bond from weakening as much. This observation is reflective of

the oft-cited fact that ionic contributions are important to understanding the strong bond

in HF and that the dipole moment for HF increases as the bond is stretched.

The EDA can be used to study environmental effects on bonded interactions as well. Solva-

tion can play a huge role in the nature of bonds particularly by stabilizing charge-separated

states.57 We investigated the effect of solvent on the HCl molecule. Experimentally, in the

gas phase, HCl is a polar covalent molecule, while it dissociates into ions when dissolved in

water.58 Adding two explicit water molecules to HCl, one near the H and the other near

the Cl (see Figure 6a), dramatically changes the results of the EDA of the H–Cl bond (see

Figure 6b). We can understand changes to the character of the bond by investigating the

percentage of the total stabilizing interactions each term accounts for. Charge-transfer, a

small component of the gas-phase bond (8%), more than doubles in importance (17%) in

the partially solvated case. Simultaneously, the polarization term increases from 17% in the
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(a) (b)

Figure 5. a) EDA of H2 along its dissociation curve. Note that spin-coupling is dominant
along the entire surface. b) EDA of HF along its dissociation curve. Note that spin-coupling
and polarization are small and the bond is dominated by charge-transfer.

gas phase to 23% in the partially solvated case. There is also a drop in the spin-coupling

energy (75% to 60%). The increasing importance of the CT term and decreasing impor-

tance of spin-coupling indicates that the bond is becoming more ionic as water molecules are

added. These results quantitatively describe the transformation of HCl from a polar covalent

molecule to what is ultimately an ionic bond in solution as water molecules are added to the

first solvation shell.

6 Conclusions

We have developed an extension of ALMO-EDA to single bonds in a spin-pure way, which

allows the qualitatively correct bond energy to be decomposed. This method includes a new

EDA term, spin-coupling, to describe the “covalency” of the bond in an energetic way. This

scheme recovers chemical concepts of bonding and furthermore parametrizes these concepts

quantitatively. Encouragingly, the method nicely capture differences in the character of

different single bonds, and in addition the method is sensitive to even subtle environmental

changes, such as solvation.
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Solvated HCl model with two explicit water molecules.  

Figure 6a  
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