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A variation formulation of macro-particle kinetic plasma models is discussed. In the electrostatic

case, the use of symplectic integrators is investigated and found to offer advantages over typical

generic methods. For the electromagnetic case, gauge invariance and momentum conservation are

considered in detail. It is shown that, while the symmetries responsible for these conservation laws

are broken in the presence of a spatial grid, the conservation laws hold in an average sense. The

requirements for exact invariance are explored and it is shown that one viable option is to represent

the potentials with a truncated Fourier basis. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4874338]

I. INTRODUCTION

Often a complete microscopic physical description of a

large dynamical system simply contains too much informa-

tion. This unwanted information can arise from a variety of

sources. For example, many of the degrees-of-freedom may

be devoted to describing small departures from a common

behavior; the system may contain time-scales that are not of

interest; or a complete description results in an unrealistic

computational burden. Variational methods are well suited

to removing information while retaining key structural

aspects of the system (such as conservation laws). Plasma

systems, with their diverse range of phenomena, can possess

any combination of these characteristics. Here, we are con-

cerned primarily with the case of the full description being

computationally infeasible. In particular, we focus on the

Vlasov–Maxwell system, which, on the full six-dimensional

phase space, is computationally intractable.

Macro-particle methods are widely used for modeling

kinetic plasmas with a manageable (in most cases) computa-

tional cost. In the main, these algorithms are formulated

by approximating the continuous equations of motion. For

systems governed by a variational principle (such as colli-

sionless plasmas), approximations of the equations of motion

are known to introduce anomalous behavior especially in

system invariants. Recently, a variational formulation of

macro-particle plasma models, based on a reduction of the

distribution function, has been developed.1 As in the usual

Particle-In-Cell (PIC) formulation,2–4 these macro-particles

have a definite momentum and are spatially extended. The

primary advantage of this approach is the preservation of the

link between symmetries and conservation laws. Further,

the variational formulation allows for constructing models of

arbitrary spatial and temporal order. In contrast, the overall

accuracy of the usual PIC algorithm is at most second due to

the nature of the force interpolation between the gridded field

quantities and the (continuous) particle position. The

variational algorithm has essentially the same computational

cost per particle update as the usual PIC method. However,

the variational method uses the potentials directly to evaluate

forces (as opposed to using the fields) and, empirically,5

appears to have much reduced levels of numerical noise.

Moreover, since the equations of motion are derived from a

finite degree-of-freedom Lagrangian, it is possible to con-

struct a canonical Hamiltonian system, allowing the use of

symplectic integration algorithms. In Sec. III, we demon-

strate the advantages of symplectic integrators for a simple

test case of weak Landau damping.

The extension of the techniques of Ref. 1 to the electro-

magnetic case is relatively straightforward.5 In Sec. IV, we

examine in detail the requirements for gauge invariance and

momentum conservation in the discrete system and show the

connection to the discrete continuity equation. For reductions

representing the potentials on a spatial grid, we show that, in

general, the discrete version of the continuity equation is

only satisfied in an average sense. The continuity equation is

embodied in the reduction of the distribution function and

not obtained from the variational principle; as a result, it typ-

ically suffers truncation errors when a discrete spatial repre-

sentation is introduced. We develop requirements for an

exact discrete representation of the continuity equation and

show that a truncated Fourier expansion of the potentials sat-

isfies these requirements, leading to exact gauge invariance

and momentum conservation.

II. A PHASE SPACE REDUCTION

We begin with a review of the reduction procedure devel-

oped by Evstatiev and Shadwick.1 For simplicity, we consider

a single mobile plasma species and restrict our discussion to

the electrostatic case. We will consider an electromagnetic

extension in Sec. IV below. The central idea is to replace the

phase-space distribution function f with Np spatially extended

macro-particles, each having a definite momentum

f ðx; v; tÞ ¼
XNp

a¼1

wa S½x� naðtÞ� d½v� _naðtÞ�; (1)
a) Paper JI2 5, Bull. Am. Phys. Soc. 58, 144 (2013).
b)Invited speaker.
c)Electronic mail: shadwick@mailaps.org
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where na is the macro-particle location, S is the macro-

particle spatial distribution, normalized by
Ð

dx Sðx� naÞ
¼ 1, wa is the macro-particle weight (the number of real par-

ticles represented by the corresponding macro-particle) with

the total number of particles given by
PNp

a¼1 wa, and dðvÞ is

the Dirac d-function. For a plasma species with charge qs,

we define the charge and current densities N and J , respec-

tively, as

N ¼ qs

ð
dv f ¼ qs

XNp

a¼1

wa S½x� naðtÞ� (2a)

and

J ¼ qs

ð
dv v f ¼ qs

XNp

a¼1

wa
_na S½x� naðtÞ� : (2b)

Now

@N
@t
¼ qs

XNp

a¼1

wa
_na

@

@na
S½x� naðtÞ�

¼ �qs

XNp

a¼1

wa
_na

@

@x
S½x� naðtÞ� ¼ �

@J
@x

; (3)

hence this representation exactly preserves the continuity

equation. The continuity equation is a consequence of

@S=@x ¼ �@S=@na, which trivially follows from the macro-

particle spatial density S[x � na(t)]. It is straightforward to

show that existence of an exact continuity equation guaran-

tees both gauge invariance and, in an unbounded system,

exact momentum conservation. We will return to this point

in Sec. IV.

Substituting (1) into Low’s Lagrangian6 yields

L ¼ ms

2

XNp

a¼1

wa
_n

2

a � qs

XNp

a¼1

wa

ð
dx Sðx� naÞuðxÞ

þ 1

8p

ð
dx ruð Þ2; (4)

where ms is the species mass and uðxÞ is the electrostatic

potential (the reader is directed to Ref. 1 for the details of

this calculation). It is desirable to introduce a grid to aid in

computing the potential but this necessarily requires con-

structing the potential between the grid points to evaluate the

coupling term
Ð

dx Sðx� naÞuðxÞ. This can be done to any

desired accuracy using finite-elements. We take a uniform

spatial grid xi with i � [1, Ng] and grid spacing Dx and

denote the numerical approximation of uðxiÞ by ui. Let

Wi(x), i¼ 1,…,Ng be a finite-element basis of some order.

With this basis, we approximate u as

ûðxÞ ¼
XNg

i¼1

uiWiðxÞ: (5)

By construction, the basis vectors are only non-zero at a sin-

gle grid-point, Wi(xj)¼ dij, and thus this representation of u

preserves the values at the grid-points, i.e., ûðxkÞ ¼ uk.

With this approximation, the coupling term in L becomes

ð
dx Sðx� naÞ ûðxÞ ¼

XNg

i¼1

ui

ð
dx Sðx� naÞWiðxÞ

¼
XNg

i¼1

ui qiðnaÞ; (6)

where

qiðnaÞ ¼
ð

dx Sðx� naÞWiðxÞ (7)

is the projected shape of the macro-particle. For a given

choice of basis and particle shape S, the expression for qi can

be computed analytically.

It remains to approximate the field energy term in (4).

Here, we may either use the same finite element representa-

tion used to compute the coupling7 or we can employ finite

differences. In either case, we can write1

ð
dx ruð Þ2 � �Dx

XNg

i;j¼1

uiKij uj : (8)

When this term is approximated using finite elements, Kij is

naturally symmetric. When using finite differences, it is rea-

sonable to first integrate by parts; one must then introduce a

finite difference representation for the second derivative.

There is no particular reason to use central differencing to

approximate this derivative; however, from the structure of

(8), we see that only the symmetric part of K contributes to

the Lagrangian. Thus regardless of the nature of the finite

difference approximation, the effective differencing operator

in the Lagrangian always corresponds to some central differ-

ence approximation. Thus the discrete equations retain the

self-adjoint property of the continuous system. This observa-

tion holds even if one chooses not to integrate-by-parts.5 To

avoid ambiguity, henceforth we assume that K corresponds

to a central difference.

We now arrive at the finite degree-of-freedom Lagrangian

L ¼ ms

2

XNp

a¼1

wa
_n

2

a � qs

XNp

a¼1

XNg

i¼1

waqiðnaÞui

�Dx

8p

XNg

i;j¼1

uiKij uj: (9)

The equations of motion are obtained in the usual way by

demanding the action be stationary, viz.

€na ¼ �
qs

ms

XNg

i¼1

@qiðnaÞ
@na

ui (10a)

and

XNg

j¼1

Kijuj ¼ �
4pqs

Dx

XNp

a¼1

wa qiðnaÞ : (10b)
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From Poisson’s equation, we see that wa qi(na) represents the

density on the grid due to each macro-particle. If the Wi(x)

used in the interpolation are constructed from Lagrange pol-

ynomials, then
PNg

i¼1 WiðxÞ ¼ 1 and

XNg

i¼1

qiðnaÞ ¼
XNg

i¼1

ð
dx Sðx� naÞWiðxÞ

¼
ð

dx Sðx� naÞ ¼ 1 : (11)

That is, at any instant, the total system charge (represent by

the Np macro-particles) is fully deposited onto the grid.

Since our discrete Lagrangian is time independent, this sys-

tem has a conserved energy that takes the form1

WL ¼
ms

2

XNp

a¼1

wa
_n

2

a �
Dx

8p

XNg

i;j¼1

uiKij uj: (12)

In the electrostatic approximation, u is not dynamical,

i.e., _ui does not appear in the Lagrangian; and hence, ui is

completely determined by the instantaneous charge density.

Thus, we may view ui as a known function of na, defined by

(10b). As a result, we can perform the Legendre transform to

obtain a canonical Hamiltonian system. The macro-particle

momentum is defined as pa ¼ @L=@ _na ¼ mswa
_na leading to

the Hamiltonian

H ¼
XNp

a¼1

pa
_na � L

¼ 1

2ms

XNp

a¼1

p2
a

wa
þ qs

XNp

a¼1

XNg

i¼1

wa qiðnaÞui þ
Dx

8p

XNg

i;j¼1

uiKij uj

¼ 1

2ms

XNp

a¼1

p2
a

wa
� Dx

8p

XNg

i;j¼1

uiKij uj; (13)

where in the last step we have used (10b). This Hamiltonian

is equivalent to the energy expression in (12) (of course, H
is a function of na and pa while WL depends on na and _na).

From the Hamiltonian, we find

_na ¼
pa

mswa
; (14a)

_pa ¼
Dx

4p

XNg

i;j¼1

uiKij

@uj

@na

¼ Dx

4p

XNg

i¼1

ui �
4pqs

Dx

� �
wa@qiðnaÞ

@na

¼ �qswa

XNg

i¼1

ui

@qiðnaÞ
@na

: (14b)

One can readily see that (14a) and (14b) are equivalent

to (10a).

Evstatiev and Shadwick1 also derive a noncanonical

Hamiltonian formulation in terms of the electric field, result-

ing in the equations of motion

_na ¼
pa

mswa
; (15a)

_pa ¼ qs wa

XNg

i¼1

Ei qiðnaÞ; (15b)

_Ei ¼ �
4pqs

Dx

XNp

a¼1

pa

ms
qiðnaÞ; (15c)

where Ek is the numerical approximation to the electric field

at xk. In this case, the conserved energy (the non-canonical

Hamiltonian) is

WH ¼
1

2ms

XNp

a¼1

p2
a

wa
þ 1

8p

XNg

i¼1

E2
i : (16)

III. TIME INTEGRATION

The above formulation treats time as a continuous vari-

able. Of course, performing numerical computations with

these models naturally requires discretization in time. By

keeping time continuous in the variational principle (as

opposed, say, to fully discretizing the action8), the flexibility

to tailor the time-integration to the problem at hand is

retained. This is particularly important in the electromagnetic

case,5 where stability considerations9 typically dictate the

temporal integration order depending on the spatial approxi-

mation. Here, we consider various integration schemes, pro-

viding numerical examples for two explicit methods and

exploring properties of an implicit method. We assume a

fixed time-step Dt and denote the numerical approximation to

the macro-particle trajectory at tn¼ nDt by nn
a.

A. Time-explicit methods

The most straightforward approach to integrating (10) is

to use some Runge–Kutta method; here, we will consider a

second-order method. The full update involves two steps:

~na ¼ nn
a þ

1

2
Dt vn

a;

~va ¼ vn
a �

1

2
Dt

qs

ms

XNg

i¼1

q0iðnn
aÞui½nn�;

nnþ1
a ¼ nn

a þ Dt ~va;

vnþ1
a ¼ vn

a � Dt
qs

ms

XNg

i¼1

q0ið~naÞui½~n�;

(17)

where va ¼ _na; q0i ¼ @qi=@n, and the notation ui½n� denotes

the potential, obtained from (10b), based on a particular set

of macro-particle coordinates. Assuming the potential is cor-

rect at the beginning of the update, (17) requires two force-

interpolations, two charge-depositions, and two field solves

per step. (The last field solve necessary so that the potential

is correct at the beginning of the next time-step.) This

method does not exactly conserve energy, but as was shown

in Ref. 1, the energy error is a function only of time-step

(since the continuous-time equations are exactly
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conservative). Empirically, one finds that with small enough

Dt, the energy growth is approximately linear in time.

Since we can construct a canonical Hamiltonian system, it

is also possible to use a symplectic integrator10 for the time-

advance. For example, applying the velocity-Verlet method11,12

to (14), we have the following second-order time-advance:

~va ¼ vn
a �

1

2
Dt

qs

ms

XNg

i¼1

q0iðn
n
aÞui½nn� ;

nnþ1
a ¼ nn

a þ Dt ~vn
a;

vnþ1
a ¼ ~va �

1

2
Dt

qs

ms

XNg

i¼1

q0iðnnþ1
a Þui½nnþ1� :

(18)

Assuming the potential is correct at the beginning of the

update, (18) requires two force-interpolations, one charge-

deposition, and one field solve per step. This is more efficient

than the Runge–Kutta method of the same order by saving a

charge-deposition and field-solve. In addition, no intermedi-

ate storage is needed for the macro-particle phase-space,

which leads to a significant reduction in memory usage. This

method does not exactly conserve energy, but the energy

error oscillates about the correct value (as is typical of sym-

plectic integrators). We have verified that the amplitude of

the energy oscillation scales, as expected, with Dt2.

To illustrate the advantages of the symplectic integrator

over the generic method, we consider the problem of weak

(linear) Landau damping13 where the wave-particle reso-

nance occurs at velocities much greater than the thermal

velocity. This is a particularly hard problem for a macro-

particle method as only macro-particles in the tail of the

distribution participate in the wave-particle resonance; the

majority of the macro-particles are consigned to representing

the thermal state and are not resonant. Since all macro-

particles represent the same number of electrons,14 when

only a small number of macro-particles are involved in the

resonance, it is challenging to correctly capture the energy

transfer from fields to particles (and thus the correct damping

rate). Initially, the plasma has a uniform density n0 and is

in thermal equilibrium with temperature T0 satisfying

kB T0=msc
2 ¼ 1=5, where kB is Boltzmann’s constant. We

take periodic boundary conditions in space, a domain size of

L ¼ 4pc=xp spanning 1024 cells, where xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pq2

s n0=ms

p
is the plasma frequency. These parameters were chosen

to allow only a single weakly damped mode. The

macro-particles are loaded in the center of the cell while the

velocities are chosen randomly from a Gaussian distribution

with variance kBT0=msc
2. At each spatial location, the

macro-particle velocity distribution is shifted and scaled to

have zero mean and variance exactly corresponding to T0.

The macro-particle spatial distribution S is taken to be a

two-cell wide tent-function, giving cubic qk (see Table A.1

of Ref. 1 for the corresponding expressions for qk). Initially,

we excite the n¼ 2 spatial mode of the electric field with ini-

tial amplitude E0 given by qsE0=ðmsc xpÞ ¼ 0:05 by perturb-

ing the macro-particle positions.

We provide an independent (and presumably more

accurate) solution to this problem using an Eulerian

Vlasov–Poisson solver known to have excellent conservation

properties.15 We take identical initial conditions and spatial

grid, a velocity grid spanning �2 < v=c < 2 with 401 grid-

points with the distribution function vanishing at the limits

of the velocity domain, and time-step xpDt¼ 0.1. With these

parameters, the Vlasov–Poisson solution was sufficiently

well converged that further refinements led to much smaller

changes in this solution than the differences between this so-

lution and any of the macro-particle solutions considered.

Figure 1 shows the amplitude of the n¼ 2 spatial

Fourier mode of the electric field, j ~E2j, in units of msc
2/qs

obtained from three methods [Vlasov–Poisson solver,

(black); symplectic integrator, (18), (red); and the

Runge–Kutta integrator, (17), (blue)], where the number of

macro-particles is varied. Each panel is labeled with the

number of macro-particles used at each point in space, nv, to

represent the velocity distribution. While the cases with

nv¼ 400 and nv¼ 800 show disagreement between the

Runge–Kutta and symplectic integrator solution, the discrep-

ancies are not significant as they are smaller than the overall

disagreement with the Vlasov solution. For nv¼ 1600 (bot-

tom), the macro-particle results closely track each other and

the full kinetic solution through xpt¼ 30 and give good

qualitative agreement over the remainder of the evolution.

Not only is this more macro-particles per cell than velocity

grid-points used in the Eulerian method, the computational

cost of the macro-particle solution is approximately 4 times

greater than that of the fully kinetic solution. (In all cases,

FIG. 1. Amplitude of the n¼ 2 spatial Fourier mode of the electric field in

the weak Landau damping problem, computed with all three methods:

Vlasov–Poisson solver, (black); symplectic integrator, (18), (red); and the

Runge–Kutta integrator, (17), (blue). Each panel is labeled with the number

of macro-particles, nv, used at each point in space to represent the velocity

distribution. The Vlasov–Poisson solution (black) is identical in all panels.

In all cases, xpDt¼ 0.1 and the mode amplitude is plotted in units of

msc
2/qs.
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the codes have been carefully optimized, so we believe this

ratio reflects the intrinsic costs of the algorithms and is not

significantly influenced by implementation details.) By fur-

ther increasing nv, it is reasonable to expect that the

macro-particle solutions will exhibit better agreement with

the Vlasov solution for xpt> 30.

Figure 2 shows j ~E2j in units of msc
2/qs obtained from the

three methods [Vlasov–Poisson solver, (black); symplectic in-

tegrator, (18), (red); and the Runge–Kutta integrator, (17),

(blue)], where nv¼ 1600 and the value of Dt used in the

macro-particle integrators is varied. As the time-step is

increased, the disparity between the symplectic integrator

solution and the Vlasov solution increases only slightly,

whereas the Runge–Kutta integrator shows marked disagree-

ment for xpDt � 0.4. This significant disagreement between

the macro-particle methods is rather surprising since symplec-

tic integrators are commonly held to be only strictly necessary

when following a very large number of orbits; here we con-

sider less than 10 plasma periods. It is likely that the energy

behavior of the symplectic method (i.e., oscillation versus sec-

ular growth), more than its phase-space preserving properties,

is responsible for the method’s superior performance. Taking

into account the relative sizes of Dt needed by each method to

give accurate solutions and the effort per time-step, the

symplectic method is approximately 5–10 times more compu-

tationally efficient than the generic Runge–Kutta method.

B. Time-implicit methods

Time-implicit methods for macro-particle simulations

are of interest due to the prospect of exact energy conserva-

tion even with discrete time.16,17 Applying the mid-point rule

to (15), we obtain the following second-order time-advance:

nnþ1
a � nn

a ¼ Dt
pnþ1

a þ pn
a

2mswa
; (19a)

pnþ1
a � pn

a ¼
Dt

4
qswa

XNg

i¼1

Enþ1
i þ En

i

� �
� qiðnnþ1

a Þ þ qiðnn
aÞ

� �
; (19b)

Enþ1
i � En

i ¼ �p
Dt

Dx

qs

ms

XNg

i¼1

pnþ1
a þ pn

a

� �
� qiðnnþ1

a Þ þ qiðnn
aÞ

� �
; (19c)

where En
j is the numerical approximation to E(tn, xj).

Considering the difference in energy at tnþ1 and tn, we find

Wnþ1
H �Wn

H

¼ 1

2ms

XNp

a¼1

ðpnþ1
a þ pn

aÞðpnþ1
a � pn

aÞ
wa

þ Dx

8p

XNg

i¼1

Enþ1
i þ En

i

� �
Enþ1

i � En
i

� �

¼ 1

2ms

XNp

a¼1

pnþ1
a þ pn

a

� �
wa

Dt

4
qswa

XNg

i¼1

Enþ1
i þ En

i

� �

� qiðnnþ1
a Þ þ qiðnn

aÞ
� �

� Dx

8p

XNg

i¼1

Enþ1
i þ En

i

� �
p

Dt

Dx

� qs

ms

XNg

i¼1

pnþ1
a þ pn

a

� �
qiðnnþ1

a Þ þ qiðnn
aÞ

� �

¼ Dt
qs

8ms

XNp

a¼1

pnþ1
a þ pn

a

� �XNg

i¼1

Enþ1
i þ En

i

� �

� qiðnnþ1
a Þ þ qiðnn

aÞ
� �

�Dt
qs

8ms

XNg

i¼1

Enþ1
i þ En

i

� �

�
XNg

i¼1

pnþ1
a þ pn

a

� �
qiðnnþ1

a Þ þ qiðnn
aÞ

� �
¼ 0: (20)

That is, the mid-point rule exactly conserves the system

energy; this is an example of the well-known property of the

mid-point rule regarding quadratic invariants. With the mid-

point rule, there is some freedom in discretizing nonlinear

terms; had we written the right-hand sides of (19b) and (19c)

as Enþ1
i qiðnnþ1

a Þ þ En
i qiðnn

aÞ and pnþ1
a qiðnnþ1

a Þ þ pn
aqiðnn

aÞ,
respectively, then WH would not have been exactly conserved.

Examining the computational performance of this method will

FIG. 2. Amplitude of the n¼ 2 spatial Fourier mode of the electric field in the

weak Landau damping problem, computed with all three methods:

Vlasov–Poisson solver, (black); symplectic integrator, (18), (red); and the

Runge–Kutta integrator, (17), (blue). Each panel is labeled with the value of Dt
used by the macro-particle integrators in the computation. The Vlasov–Poisson

solution (black) is identical in all panels and was computed with xp Dt¼ 0.1.

In all cases, nv¼ 1600 and the mode amplitude is plotted in units of msc
2/qs.
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be the subject of future investigations. Interestingly, in the rela-

tivistic case, with proper treatment of the nonlinear term, the

mid-point method also exactly conserves energy.

It is also possible to construct an explicit integrator

along the lines of Ref. 18 that exactly conserves WH.19 It

does not appear possible to construct either implicit or

explicit integration schemes that exactly conserved energy

for either the Lagrangian, (10), or canonical Hamiltonian,

(14), equations of motion.

IV. THE ELECTROMAGNETIC CASE: GAUGE
INVARIANCE, CHARGE, AND MOMENTUM
CONSERVATION

We now consider the simplest electromagnetic exten-

sion suitable for the study of intense laser-plasma interac-

tions.5 We adopt the conventions of Ref. 5: we retain a

single spatial dimension (the laser propagation direction), z,

and two particle momenta: one in the direction of the laser

polarization, x, and other in the propagation direction. Here,

we retain the longitudinal component of the vector potential

and do not otherwise impose a gauge-fixing condition.

Although we consider the relativistic case, all of our results

apply in the nonrelativistic limit. Adopting the appropriate

generalization of (1) and following Ref. 5, the Lagrangian

can be written as L ¼ LP þ LI þ LF, where

LP ¼ �msc
2
XNp

a¼1

wa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

_n
a2

x

c2
�

_n
a2

z

c2

s
; (21a)

LI ¼ qs

XNp

a¼1

wa

XNg

i¼1

_n
a
x

c
Ax;i þ

_n
a
z

c
Az;i � ui

� �
qiðna

z Þ; (21b)

LF ¼
Dz

8p c2

XNg

i¼1

ð _A
2

x;i þ _A
2

z;iÞ

þ Dz

8p

XNg

i;j¼1

2

c
_Az;iDij ujþAx;iKij Ax;j � uiKij uj

� �
; (21c)

where na
x and na

z are the x and z coordinates of the macro-

particle positions, respectively, Ax,i and Az,i are numerical

approximations to Ax(Zi) and Az(Zi), respectively, and Dij

and Kij are central difference approximations to the first and

second derivatives in z, respectively.

Consider a gauge transformation on the discretized

potential20 Az;i ¼ A0z;i þ
PNg

k¼1DikKk and ui ¼ u0i � _Ki=c.

Certainly, in the continuous case, the action is invariant

under this transformation. However, this does not imply

invariance in the discrete case. Since the macro-particles are

not directly involved in the transformation, we need only

consider LF and LI. From LF, we obtain the condition

Kij ¼ DikDkj; while from LI, we have

LI ¼LIðA0z;u0Þ þ
qs

c

XNp

a¼1

wa

XNg

i¼1

d

dt
Ki qiðna

z Þ
� �

� qs

c

XNp

a¼1

wa

XNg

i¼1

Ki

XNg

k¼1

Dik qk þ
@qi

@na
z

0
@

1
A _n

a
z : (22)

Gauge invariance requires the last term in (22) to vanish

@qi

@na
z

þDik qk ¼ 0 : (23)

This is equivalent to

0 ¼ qs
@qi

@na
z

_n
a
z þ qsDik qk

_n
a
z ¼ qs

@qi

@t
þDik qs

_n
a
z qk

	 


¼ @N i

@t
þDik J z;k ; (24)

whereN i and J z;i are the numerical approximations at zi toN
and J z [defined as in (2)], respectively.21 It is straightforward

to show that qk defined by (7) cannot satisfy this condition.

(This follows almost immediately from the fact that finite ele-

ment basis functions are not everywhere differentiable.) The

lack of an exact discrete analogue of the continuity equation is

due to the fact that in the continuous case, the continuity equa-

tion is embedded within the reduction (1) and thus suffers

from errors due to truncation when converted to discrete form.

Consider the average discrepancy in (23) as the macro-

particle moves across a cell (ignoring the possible change

in _n
a
z )

ðxiþDx=2

xi�Dx=2

dn
@qi

@n
þ
XNg

k¼1

Dik qkðnÞ

2
4

3
5

¼ qi

����
xiþDx=2

xi�Dx=2

þ
XNg

k¼1

Dik

ðxiþDx=2

xi�Dx=2

dn qkðnÞ : (25)

Put n¼ xi þ D, then from (7),

qiðxi þ DÞ ¼
ð

dx WiðxÞ Sðx� xi � DÞ

¼
ð

dl Wiðxi þ lÞ Sðl� DÞ : (26)

If Wi is symmetric about x¼ xi (which is the case for linear

and quadratic Lagrange elements), then W(xi � l)¼W(xi

þ l) and

qiðxi þ DÞ ¼
ð

dl Wiðxi � lÞ Sðl� DÞ

¼
ð

dl Wiðxi þ lÞ Sð�l� DÞ : (27)

Further, if S(x) is symmetric about x¼ 0, then

qiðxi þ DÞ ¼
ð

dl Wiðxi þ lÞ Sðlþ DÞ ¼ qiðxi � DÞ (28)

and the first term on the right in (25) vanishes. The basis

functions for linear and quadratic elements are simple

replications of a fixed set of shapes with period one (linear)

or period two (quadratic). As a result, Wiþlðxi þ lÞ
¼ Wi�lðxi � lÞ for l¼ 1,2,… and
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qiþlðxi þ DÞ ¼
ð

dl Wiþlðxi þ lÞ Sðl� DÞ

¼
ð

dl Wi�lðxi � lÞ Sðl� DÞ

¼
ð

dl Wi�lðxi þ lÞ Sð�l� DÞ

¼
ð

dl Wi�lðxi þ lÞ Sðlþ DÞ

¼ qi�lðxi � DÞ ; (29)

leading to

ðxiþDx=2

xi�Dx=2

dn qiþlðnÞ

¼
ðDx=2

�Dx=2

dD qiþlðxi þ DÞ ¼
ðDx=2

�Dx=2

dD qiþlðxi � DÞ

¼
ðDx=2

�Dx=2

dD qi�lðxi þ DÞ ¼
ðxiþDx=2

xi�Dx=2

dn qi�lðnÞ : (30)

By assumption, Dik is some central difference approximation

to the first derivative and thus has the form

Dik ¼
X

l

al di;kþl � di;k�lð Þ: (31)

Combining (30) and (31) gives

XNg

k¼1

Dik

ðxiþDx=2

xi�Dx=2

dn qkðnÞ

¼
X

l

al

ðxiþDx=2

xi�Dx=2

dn qiþlðnÞ �
ðxiþDx=2

xi�Dx=2

dn qi�lðnÞ
" #

¼ 0

(32)

and thus

ðxiþDx=2

xi�Dx=2

dn
@qi

@n
þ
XNg

i¼1

Dik qkðnÞ

2
4

3
5 ¼ 0 : (33)

Hence, as a macro-particle traverses a cell, provided the ve-

locity is nearly constant, the discrepancy averages to zero.

Thus, it is reasonable to expect that in a time-averaged sense,

the condition for gauge invariance (also momentum and

change conservation) is satisfied. Furthermore, this result is

for a single macro-particle; as the number of macro-particles

per cell increases, we expect the discrepancy in (23), when

summed over all macro-particles in a cell (each of which is

likely to be at a distinct location), to decrease.

From the Lagrangian (21), we obtain the equations of

motion5

_pa
x ¼ �

qs

c

d

dt

XNg

k¼1

Ax;i qiðna
xÞ; (34a)

_pa
z ¼ �qs

XNg

i¼1

1

c
_Az;i qiðna

z Þ þ ui �
_n
a
x

c
_Ax;i

� �
@qi

@na
z

" #
; (34b)

XNg

j¼1

Kij uj þ
1

c
Dij

_Az;j

� �
¼ � 4pqs

Dz

XNp

a¼1

wa qiðna
z Þ; (34c)

€Ax;i � c2
XNg

j¼1

Kij Ax;j ¼
4pqsc

Dz

XNp

a¼1

wa
_n
a
x qiðna

z Þ; (34d)

€Az;i þ c
XNg

j¼1

Dij _uj ¼
4pqsc

Dz

XNp

a¼1

wa
_n
a
z qiðna

z Þ; (34e)

where pa
x � ms ca

_n
a
x and pa

z � ms ca
_n
a
z are the usual relativ-

istic particle momenta with ca ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c2 þ pa

x
2 þ pa

z
2

p
=mc.

The equation of motion for _pa
x , (34a), is just a statement of

conservation of the momentum conjugate to a cyclic coordi-

nate (na
x). Since our Lagrangian is time-independent, there is

a conserved energy given by5

W ¼msc
2
XNp

a¼1

wa ca þ
Dz

8pc2

XNg

i¼1

_A
2

x;i þ _A
2

z;i

	 


�Dz

8p

XNg

i;j¼1

uiKijuj þ AiKijAj �
2

c
_Az;iDij uj

� �
: (35)

The remaining conservation law from the continuous system

(assuming the system is unbounded) is momentum conserva-

tion. The components of the total momentum (particle plus

fields) are

Px ¼
XNp

a¼1

wa pa
x �

Dz

4pc

XNg

i;j¼1

_Ax;iDij
1

c
_Az;j þ

XNg

k¼1

Djk uk

0
@

1
A;
(36a)

Pz ¼
XNp

a¼1

wa pa
z �

Dz

4pc2

XNg

i;j¼1

_Ax;iDij Ax;j : (36b)

First consider Pz. A long calculation yields

_Pz¼ �
Dz

4pqsc

XNg

i;j¼1

_Az;i Kij�
XNg

l¼1

DilDlj

0
@

1
Auj

�qs

XNg

i¼1

XNp

a¼1

wa ui�Ax;i

_n
a
x

c

� �
@qk

@na
z

�
XNg

j¼1

Dij qj

0
@

1
A

� Dz

4pqs

XNg

i;j¼1

ui KDð Þij ujþAx;i KDð Þij Ax;j

h i
: (37)

If we take K ¼ D2 (as required for LF to be gauge invariant),

then KD ¼ D3 is antisymmetric and terms of the formPNg

i;j¼1 ai KDð Þij aj ¼
PNg

i;j¼1 ai DDDð Þij aj vanish. Using

these results, (37) becomes

_Pz ¼ �qs

XNg

i¼1

XNp

a¼1

wa ui � Ax;i

_n
a
x

c

� �
@qk

@na
z

þ
XNg

j¼1

Dij qj

0
@

1
A:

(38)
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We see that (23) is also required for momentum conserva-

tion. While this cannot be achieved exactly in the presence

of a spatial grid, we expect that on average momentum will

be well conserved by the arguments leading to (33). In the

electrostatic case, it is straightforward to show that this con-

dition is also required for exact momentum conservation.

From Px we find, with K ¼ D2,

_Px ¼ �
qs

c

XNp

a¼1

wa
_n
a
z

XNg

i¼1

Ax;i
@qi

@na
z

þ
XNg

j¼1

Dij qj

0
@

1
A; (39)

which has the same form as (38). Thus even though we

have exact translation invariance in the x-direction, the

continuity equation is still required for momentum

conservation.

As is well known, the connection between Gauss’ and

Ampere’s Laws also involves the continuity equation.

Consider Gauss’ Law with the assumption that K ¼ D2. In

this case, we can write (34c) as

XNg

j¼1

Dij

XNg

k¼1

Djk uk þ
1

c
_Az;j

0
@

1
A ¼ � 4pqs

Dz

XNp

a¼1

waqiðna
z Þ: (40)

Differentiating with respect to time and multiplying by

cD�1 gives

€Az;j þ c
XNg

k¼1

Djk _uk

¼ 4pqsc

Dz

XNp

a¼1

wa
_n
a
z qj �

4pqsc

Dz

XNg

i¼1

D�1
ji

�
XNp

a¼1

wa
_n
a
z

@qi

@na
z

þ
XNg

k¼1

Dik qk

0
@

1
A: (41)

Thus we see that Gauss’s Law and the z-component of

Ampere’s Law are only consistent to the extent that

@qi

@na
z

þ
XNg

k¼1

Dik qk (42)

vanishes. This is the same condition, (23), required for gauge

invariance.

As we have seen, gauge invariance and momentum

conservation all hinge on the discrete form of the continu-

ity equation, (23). Using finite elements for interpolation

(in this context, it is immaterial whether finite elements or

finite differences are used to evaluate LF), we have seen

that this condition is only satisfied on average. Following

Ref. 1, we now consider a general discrete spatial represen-

tation using a truncated basis. Let Um(x), m¼ 1, 2, …, M
be the first M elements of a complete basis. Clearly, we

cannot expect to expand arbitrary functions with this col-

lection of basis elements as that would necessarily require

completeness. Instead, consider a mapping from functions

f(x) to

f̂ ðxÞ ¼
XM

m¼1

fmUmðxÞ; (43)

with

fm ¼
ð

dx f ðxÞU†

mðxÞ; (44)

where U
†

kðxÞ is the dual to Uk(x) and satisfiesð
dx UiðxÞU

†

j ðxÞ ¼ dij : (45)

This mapping is a projection and provides a discrete repre-

sentation, fm, for any f(x). (Since it is a projection, many

functions may have the same discrete representation.) Let

.ðxÞ ¼
XM

m¼1

.m UmðxÞ (46)

and

.m ¼
ð

dx Sðx� naÞU
†

mðxÞ; (47)

i.e, .ðxÞ is the projection of S(x � na). For .ðxÞ to satisfy the

continuity equation, the projection must preserve @S=@x
¼ �@S=@na, thus we require @.=@x ¼ �@.=@na. If our basis

was complete, this property would be automatic, otherwise

this condition implies a significant restriction on Um(x). Now

@.
@na
¼
XM

m¼1

@.m

@na
UmðxÞ

¼
XM

m¼1

UmðxÞ
ð

dx0
@Sðx0 � naÞ

@na
U

†

mðx0Þ

¼ �
XM

m¼1

UmðxÞ
ð

dx0
@Sðx0 � naÞ

@x0
U

†

mðx0Þ

¼
XM

m¼1

UmðxÞ
ð

dx0 Sðx0 � naÞ
dU

†

mðx0Þ
dx0

(48)

and

@.
@x
¼
XM

m¼1

.m

dUmðxÞ
dx

: (49)

Thus, our requirement on . implies

XM

m¼1

dUmðxÞ
dx

ð
dx0 Sðx0 � naÞU

†

mðx0Þ

¼ �
XM

m¼1

UmðxÞ
ð

dx0 Sðx0 � naÞ
dU

†

mðx0Þ
dx0

; (50)

which must hold for any S. This is equivalent to the condi-

tion found in Ref. 1 for the Lagrangian to be translation

invariant [see (55) therein]. Since translation invariance

implies momentum conservation and momentum
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conservation, in turn, relies on charge conservation, it is rea-

sonable that the condition for translation invariance should

be the selfsame condition for the continuity equation to be

exactly satisfied.

Consider any f(x) and assume (50) holds. Then,

df̂

dx
¼
XM

m¼1

dUmðxÞ
dx

ð
dx0 f ðx0ÞU†

mðx0Þ

¼ �
XM

m¼1

UmðxÞ
ð

dx0 f ðx0Þ dU
†

mðx0Þ
dx0

¼
XM

m¼1

UmðxÞ
ð

dx0
df ðx0Þ

dx0
U

†

mðx0Þ : (51)

Thus, we see that (50) implies that the spatial derivative

commutes with the projection, i.e., if g(x)¼ df(x)/dx, then

ĝðxÞ ¼ df̂ ðxÞ=dx. Equivalently, the basis must be such that

the derivative operation is represented exactly under the pro-

jection (43). For finite elements, this is simply not the case,

explaining the failure of (23) to hold.

Since (50) must hold for any S, in particular, it must be

true that

XM

m¼1

dUmðxÞ
dx

ð
dx0Unðx0ÞU

†

mðx0Þ

¼ �
XM

m¼1

UmðxÞ
ð

dx0Unðx0Þ
dU

†

mðx0Þ
dx0

: (52)

With (45), this becomes

dUnðxÞ
dx

¼ �
XM

m¼1

UmðxÞ
ð

dx0 Unðx0Þ
dU

†

mðx0Þ
dx0

¼
XM

m¼1

UmðxÞ
ð

dx0U
†

mðx0Þ
dUnðx0Þ

dx0

¼ Dmn UmðxÞ ; (53)

where

Dij ¼
ð

dx U
†

i ðxÞ
dUjðxÞ

dx
; (54)

is the discrete representation of the derivative, viz., if

g(x)¼ df(x)/dx, then gn ¼
PM

m¼1Dnm fm. Now

@.
@x
¼
XM

m¼1

.m

UmðxÞ
dx

¼
XM

n;m¼1

Dmn .n UmðxÞ; (55)

while

@.
@na
¼
XM

m¼1

@.m

@na
UmðxÞ : (56)

Our requirement on . can now be expressed as

@.m

@na
þ
XM

n¼1

Dmn .n ¼ 0; (57)

which is exactly the condition require for gauge invariance

and momentum conservation.

It appears that the only way to satisfy (50) is for Um to

be a truncated Fourier basis.1 Thus, using a Fourier represen-

tation of the fields, we expect the macro-particle model will

have exact gauge invariance as well as charge and momen-

tum conservation. Computationally, the Fourier representa-

tion appears to be sufficiently expensive compared to the

finite-difference representation such as to be unsuitable for

production work. Nonetheless, it is valuable as a benchmark-

ing tool to assess the consequences of the approximate

conservation laws in the finite-difference case.

V. CONCLUSIONS

We have reviewed a recent variational formulation of

macro-particle methods. For the one-dimensional electro-

static case, we have considered both a standard second order

integrator as well as a second-order symplectic integrator.

For the problem of weak Landau damping, the symplectic

integrator yielded acceptably accurate results with a consid-

erably larger time-step than did the standard integrator, lead-

ing to a significant advantage in computational efficiency for

the symplectic integrator. We compared the macro-particle

solutions to a well-converged solution of the Vlasov–Poisson

equation, finding surprisingly good agreement. For the prob-

lem considered, even the symplectic method requires signifi-

cantly more computational effort than does the Eulerian

solver. Ultimately, phase-space must be fully resolved and

the Eulerian method appears to have the advantage. (Of

course, this advantage fades quickly as the dimension of

phase-space increases.) Both macro-particle methods,

despite being initialized with thermal distributions, yielded

solutions low in numerical noise. We analysed an implicit

time-integrator and showed this method exactly conserved

energy in both the nonrelativistic and relativistic cases. Exact

energy conservation required the use of fields rather than

potentials and thus relies on a noncanonical Hamiltonian for-

mulation of the macro-particle model.

We have examined the simplest electromagnetic exten-

sion and considered in detail the affects of spatial discretiza-

tion on the continuity equation. We have found when using

finite elements to interpolate the potential between the grid

points, it is not possible to exactly conserve charge, resulting

in departures from exact gauge invariance and momentum

conservation. We examined these errors and showed they

average to zero as the macro-particle moves across the cell

(assuming small changes in the macro-particle velocity

during the transversal). These results also suggest that such

errors can be reduced by using sufficient macro-particles per

cell. We showed exact charge conservation is possible when

using a truncated basis for the spatial representation. We

derived conditions the basis must satisfy to ensure charge

conservation and showed these conditions amounted to the

requirement that the basis exactly represent spatial deriva-

tives. Although these results were obtained in one spatial

dimension, they readily extent to three dimensions assuming

a Cartesian product of one-dimensional finite elements are

used for interpolation. No further assumptions appear
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necessary to extent the truncated Fourier basis representation

to three dimensions. The Fourier-based method uses the

same reduction as the gridded methods and therefore offers

the opportunity to carefully assess the effects of the approxi-

mate conservation laws in the gridded case. It appears

straightforward to perform the Legendre transformation,

with either the Fourier or gridded representations, yielding a

canonical Hamiltonian system for macro-particles and fields,

which opens the possibility of using symplectic integration

on the combined macro-particle field phase-space.
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