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Variational formulations and isogeometric analysis for the dynamics of
anisotropic gradient-elastic Euler-Bernoulli and shear-deformable beams
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aDepartment of Civil Engineering, Aalto University, P.O.Box 12100, FI-00076 Aalto, Finland
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Abstract

The strain and velocity gradient framework is formulated for centrosymmetric anisotropic Euler-Bernoulli
and third-order shear deformable (TSD) beam models, reducible to Timoshenko beams. The governing
equations and boundary conditions are obtained by using a variational approach. The strain energy is
generalized to include strain gradients and a tensor of anisotropic static length scale parameters. The
kinetic energy includes the velocity gradients and a tensor of anisotropic length scale parameters and hence
the static and kinetic quantities of the centrosymmetric anisotropic material are distinguished in microscale
and in the macroscale. Furthermore, the external work is written in the general form. Free vibration of a
simply supported centrosymmetric anisotropic TSD beam is studied by using analytical solution as well as
isogeometric analysis.

Keywords: anisotropic strain and velocity gradient, shear deformable beam, centrosymmetric,
Isogeometric analysis

1. Introduction

Recent developments in nanotechnology necessitates the analysis of structural elements in ultra-small scales.
Micro and nanobeams are frequently used in nano-and micro-sized systems and devices such as sensors
(Takamatsu et al., 2014; Shaat and Abdelkefi, 2015), resonators (Kacem et al., 2009; Chen et al., 2011)
or actuators (Tian et al., 2016) and the accurate prediction of their behavior in micro/nano scales is of
utmost importance. However, it is well-known that the classical theories of continuum mechanics fail to
describe the behavior of micro- or nano-sized structures. The reason for this problem is that the equations
of the standard elasticity theories do not include parameters characteristic for the underlying microstructure,
named as the internal length scale parameters. In order to improve this deficiency, higher-order continuum
theories such as couple stress theory (Mindlin and Tiersten, 1962; Toupin, 1964), non-local elasticity theory
(Eringen, 1972, 1983) and gradient elasticity theory (Mindlin, 1964) were developed. In these size-dependent
continuum theories, one or more internal length scale parameters appear in the constitutive equations and
make the interpretation of the size-effect in the behavior of the structures possible. In this paper, the focus
is on the gradient theory proposed by Mindlin (1964).

Classical Euler-Bernoulli beam theory provides inaccurate interpretation of the statical and dynamical
behavior of the beams when their thickness to length ratio is relatively large (Wang et al., 2000). This
deficiency was first demonstrated by Timoshenko (Timoshenko, 1921). Since in the Timoshenko beam
theory the transverse shear strain and stress are constant on the thickness of the beam, a shear correction
factor is introduced in the equations. Levinson (1981), introduced a third-order shear deformable theory
(TSD) for beams of rectangular cross-section. In this theory, the shear-free conditions on the upper and
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lower surfaces of the beam are satisfied for isotropic beams with no requirement for the shear correction
factor. Bickford (Bickford, 1982) and Reddy (Reddy, 1984) applied the displacement field proposed by
Levinson (1981) and obtained variationally consistent equations of motion for isotropic beams and third-
order laminated composite plates, respectively.

Bending, buckling and vibration of isotropic and functionally graded beams and plates have been in-
vestigated within generalized continuum theories by several investigators (Ansari et al., 2011; Sahmani and
Ansari, 2013; Akgöz and Civalek, 2013; Wang et al., 2014; Mousavi et al., 2015; Yaghoubi et al., 2015; Ansari
et al., 2016; Khodabakhshi and Reddy, 2017; Sahmani and Aghdam, 2017).

Recently, authors such as Gitman et al. (2010); Auffray et al. (2013, 2015) and Lazar and Po (2015a)
generalized the simplified isotropic gradient elasticity for anisotropic materials. In the special case of cen-
trosymmetic anisotropy, the general anisotropic gradient elasticity formulation is simplified such that the
strain energy includes merely even-order tensors. Furthermore, the sixth-rank tensor incorporating material
anisotropy and anisotropic length-scale effect is simplified as a combination of the classical fourth-rank tensor
of elastic constants and a second-rank tensor of anisotropic length scale effects (Gitman et al., 2010; Lazar
and Po, 2015a,b). The static bending and buckling of centrosymmetric anisotropic shear deformable plates
and beams within strain gradient elasticity theory were previously formulated and analysed by Mousavi
et al. (2016) and Yaghoubi et al. (2016, 2017). Recently, Reda et al. (2017) constructed first and second
order gradient models in order to study the size effects in dynamical behaviour of homogenized anisotropic
media for textile composite structures.

In this work, a complete gradient theory is considered which includes the velocity gradients in the
generalized kinetic energy as well as the gradients of strain in the generalized strain energy. A generalization
of the kinetic energy for centrosymmetic anisotropic materials is proposed.

The variational formulation of third-order shear deformable beams and plates within higher-order contin-
uum theories results in complicated differential equations of motion. Furthermore, in addition to the classical
boundary conditions, higher-order boundary conditions are obtained. Similar to the classical boundary con-
ditions, the variational approach leads to two options for the nonclassical boundary conditions (Lam et al.,
2003; Kong et al., 2009; Xu and Deng, 2016; Niiranen and Niemi, 2017). While the analytical solution is not
feasible for some types of boundary conditions, application of numerical methods enables one to obtain the
solution of the differential equations for any types of the boundary conditions. In this work, the equations
of motion of a centrosymmetric anisotropic TSD strain and velocity gradient elastic beam are solved using
the isogeometric analysis which can be considered as a generalization of finite element analysis.

Equations of motion within the framework of the gradient elasticity theory are partial differential equa-
tions with high-order derivatives. The most common way of solving continuum mechanics problems nu-
merically is to use finite element methods (FEM). But classical FEM with Lagrange basis functions is not
suitable because it can provide only C0 continuity from element to element. Solution spaces for problems
of gradient elasticity theory must provide at least C1 continuity from element to element.

This paper is organized as follows. In the next section, a general three-dimensional variational formulation
for a homogeneous and centrosymmetric anisotropic material in the framework of strain and velocity gradient
elasticity theory is reviewed. In section (3), the dimension reduction is applied to the three-dimensional
formulation and the equations of motion and boundary conditions for Euler-Bernoulli and TSD beams are
determined. Moreover, the analytical solution for the free vibration of a simply supported TSD beam is
derived. A numerical solution of the differential equations of motion is obtained in section (4) and the
results obtained by the numerical and analytical solutions are compared. Finally, some concluding remarks
are presented in section (5).

2. Theory and formulations

In the framework of first strain gradient theory proposed by Mindlin (1964), the strain energy density (U)
of a homogeneous and centrosymmetric material takes the form (Auffray et al., 2013; Lazar and Po, 2015a)

U =
1

2
Cijklεijεkl +

1

2
Dijmklnεij,mεkl,n, i, j, k, l,m, n ∈ {x, y, z} . (2.1)

2



where comma denotes the partial derivative, Cijkl is the fourth rank tensor of elastic constants and εij
represents the infinitesimal elastic strain components in terms of displacement components uj as

εij = εji =
1

2
(uj,i + ui,j) . (2.2)

Furthermore, in equation (2.1), the sixth-rank constitutive tensor Dijmkln, incorporates material anisotropy
and static anisotropic length scale effects. For centrosymmetric materials, it is assumed that the tensor
Dijmkln can be decomposed into a product of the second-rank tensor of anisotropic length scale coefficients
Ψs
mn (Gitman et al. (2010); Lazar and Po (2015a)) and the tensor of elastic parameters Cijkl

Dijmkln = CijklΨ
s
mn. (2.3)

The tensor Ψs
mn is symmetric and positive definite and has the dimension of [m2]. Appendix A presents the

tensor Ψs
mn for different classes of crystal symmetry.

The decomposition (2.3), separates the two sources of anisotropy represented in the Mindlin’s anisotropic
gradient elasticity theory, that is the anisotropy of the elastic moduli and the anisotropy of gradient length
scale parameters (Gitman et al. (2010); Lazar and Po (2015a)). It is noteworthy that the decomposition
(2.3) is an approximate constitutive law which is proposed in order to simplify the formulation and reduces
the maximum number of independent material parameters from 171 in tensor Dijmkln to 27 in CijklΨ

s
mn

(Po et al., 2017).
In the framework of strain gradient elasticity, the Cauchy-like stress tensor components σij and double-

stress tensor components τijk are given by

σij =
∂U

∂εij
, τijk =

∂U

∂εij,k
. (2.4)

Considering equations (2.3) and (2.4), the variation of strain energy δU in a region Ω occupied by elastically
deformed material reads

δU =

∫
Ω

(σijδεij + τijkδεij,k) dv =

∫
Ω

(σijδui,j + Ψs
klσij,lδui,jk) dv. (2.5)

Moreover, the variation of the external work reads

δW =

∫
Ω

fiδuidv +

∫
∂Ω

(tiδui + qinjδui,j) da (2.6)

where ∂Ω is the bounding (closed) surface of Ω, fi is body force and ti and qi are Cauchy traction vector
and double stress traction vector on the boundary, respectively.

As pointed out by Rossi and Auffray (2016), the kinetic energy density is given by

K =
1

2
(ρδipu̇p + κipqu̇p,q) u̇i +

1

2
(κijpu̇p + Jijpqu̇p,q) u̇i,j , (2.7)

where ρ is the mass density, upper dot denotes the time derivative and κijk, Jijpq, δij are the components of
coupling inertia, second order inertia and the unit second-order (i.e. Kronecker delta) tensors, respectively.
For centrosymmetric media, the odd order-tensor κ is vanished. Hence the kinetic energy is reduced to

K =
1

2
ρδipu̇pu̇i +

1

2
Jijpqu̇p,qu̇i,j . (2.8)

The tensor J is assumed as
Jijpq = ρδipΨ

d
jq. (2.9)

Above, Ψd
jq is a symmetric second rank anisotropic internal length scale tensor regarding the velocity gra-

dient. The assumption (2.9)is motivated in line with the assumption (2.3). Of course such simplification

3



should be validated against experimental results one available. Hence the density of the kinetic energy is
written as

K =
1

2
ρu̇iu̇i +

1

2
ρΨd

jku̇i,j u̇i,k. (2.10)

In equation (2.10), the term
1

2
ρΨd

jku̇i,j u̇i,k can be written in the form
1

2
ρcTMc where

cT =
[
u̇x,x u̇x,y u̇x,z u̇y,x u̇y,y u̇y,z u̇z,x u̇z,y u̇z,z

]
(2.11)

and

M =

 Ψd 0 0
0 Ψd 0
0 0 Ψd

 (2.12)

For the positive definiteness of the kinetic energy, matrix M and consequently the tensor Ψd must be positive
definite (see Appendix A).

The variation of the kinetic energy in a region Ω occupied by the elastically deformed material is

δK =

∫
Ω

ρ
(
u̇iδu̇i + Ψd

jku̇i,jδu̇i,k
)

dv. (2.13)

According to Hamilton’s principle ∫ t1

t0

(δK − δU + δW ) dt = 0, (2.14)

Substitution of the variations of the strain energy, external work and kinetic energy (2.5, 2.6, 2.13) into the
Hamilton’s principle (2.14) and application of the fundamental lemma of calculus of variation leads to the
governing equilibrium equations and boundary conditions in three dimensional form. In order to simplify
the 3-D formulation for a specific case of beam structures, the dimension reduction is applied to the general
formulation.

3. Anisotropic beam models

Let us consider a prismatic body in 3D space which can be represented by a beam model:

B = A× Ω, (3.15)

with Ω = (0, L) denoting the central axis (or neutral fibre) piercing the middle points of cross sections with
constant area A. We fix a Cartesian coordinate system such that x-axis coincide with the beam’s central
axis. Loadings and material parameters distribution are chosen to cause uni-axial bending in xz-plane. The
beam length L is assumed to prevail over two other dimensions: L� diam(A).

3.1. Euler-Bernoulli beam

Taking all the foregoing in this section into account, one can assume the displacement field u = (ux, uz) of
the Euler-Bernoulli beam as

ux(x, z) = −zw,x(x), uz(x) = w(x). (3.16)

Here, ux(x, z) and uz(x) denote the displacements along the coordinates x and z, respectively and w(x)
represents the transverse deflection of a point on the beam axis. According to equation (2.2), the only
nonzero component of the strain tensor is

εxx = −zw,xx, (3.17)

and the only non-zero components of the gradient of stress tensor are

εxx,x = −zw,xxx, εxx,z = −w,xx. (3.18)

4



The Cauchy and the double stress tensor components read

σij = −zCijxxw,xx,
τijk = −zΨs

kxCijxxw,xxx −Ψs
kzCijxxw,xx. (3.19)

Using equations (3.17) and (3.19), the first variation of the strain energy (2.5) takes the form

δU =

∫
Ω

{−zσxxδw,xx − z [Ψs
xxσxx,x + Ψs

xzσxx,z] δw,xxx

− [Ψs
xzσxx,x + Ψs

zzσxx,z] δw,xx} dv.

(3.20)

In order to apply dimension reduction, the stress resultants are defined as

{Nxx,Mxx} =

∫
A

{1, z}σxxdA (3.21)

Moreover, the gradient-of-stress resultants are defined as

{Nz
xx,M

z
xx} =

∫
A

{1, z}σxx,zdA (3.22)

These resultants can be written in terms of the displacement field as

Nxx = Mz
xx = −A∗xxw,xx, Mxx = −Dxxw,xx, N

z
xx = −Axxw,xx (3.23)

where

(Axx, Dxx) =

∫
A

Cxxxx
(
1, z2

)
dA, A∗xx =

∫
A

CxxxxzdA. (3.24)

It is noted that in equations (3.21) and (3.22), the only classical stress resultant is Mxx. Obviously, for a
beam with a rectangular cross-section the resultants Nxx and Mz

xx vanish.
Using equations (3.21), (3.22), the variation of the strain energy of the Euler-Bernoulli beam takes the

form

δU =

∫ L

0

{−Mxxδw,xx −Ψs
xxMxx,xδw,xxx

+Ψs
xz (−Mz

xxδw,xxx −Nxx,xδw,xx)−Ψs
zzN

z
xxδw,xx} dx.

(3.25)

Green’s theorem is applied to equation (3.25) and the variation of the strain energy is written as

δU =

∫ L

0

[
−Mxx,xx + Ψs

xxMxx,xxxx −Ψs
zzN

z
xx,xx

]
δwdx

+
[
Mxx,x −Ψs

xxMxx,xxx + Ψs
zzN

z
xx,x

]
δw|L0

+ [−Mxx + Ψs
xxMxx,xx −Ψs

zzN
z
xx] δw,x|L0

+ [−Ψs
xxMxx,x −Ψs

xzM
z
xx] δw,xx|L0 .

(3.26)

where L is the length of the beam. Moreover, substituting equation (3.16) into the variation of kinetic
energy (2.13), integrating over time and applying Green’s theorem leads to∫ t1

t0

δKdt =ρ

∫ t1

t0

∫ L

0

[
Iẅ,xx −Aẅ + Ψd

xx (−Iẅ,xxxx +Aẅ,xx) + Ψd
zzAẅ,xx

]
δwdxdt

+ ρ

∫ t1

t0

[
−Iẅ,x + Ψd

xx (Iẅ,xxx −Aẅ,x)−Ψd
zzAẅ,x

]
δw|L0 dt

+ ρ

∫ t1

t0

[
−Ψd

xxIẅ,xx −Ψd
xzA

∗ẅ,x
]
δw,x|L0 dt

(3.27)
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where

(A∗, I) =

∫
A

(
z, z2

)
dA. (3.28)

In obtaining equation (3.27), the initial conditions are set equal to zero.
Using equation (2.6) the variation of external work is written as

δW =

∫ L

0

∫
A

(fxδux + fzδuz) dAdx+

∫
A

[txδux + tzδuz + qxδux,x + qzδuz,x] |L0 dA. (3.29)

Considering the displacement field (3.16) and using Green’s theorem, the variation of external work can
be expressed as

δW =

∫ L

0

(
F 1
x,x + Fz

)
δwdx+

[(
Tz − F 1

x

)
δw +

(
−T 1

x +Qz
)
δw,x −Q1

xδw,xx
]
|L0

=

∫ L

0

(
F 1
x,x + Fz

)
δwdx+

[
V̄ Eδw + M̄Eδw,x + M̄E

h δw,xx
]
|L0 ,

(3.30)

where {
F 1
x , T

1
x , Q

1
x

}
=

∫
A

{fx, tx, qx} zdA, {Fz, Tz, Qz} =

∫
A

{fz, tz, qz} dA (3.31)

In order to derive the equations of motion, Hamilton’s principle (2.14) is used. Substituting (3.26), (3.27)
and (3.30) into Hamilton’s principle (2.14) and taking advantage of the fundamental lemma of calculus of
variation yields the governing equation of motion and the boundary conditions. The governing equation of
motion is

−Mxx,xx + Ψs
xxMxx,xxxx −Ψs

zzN
z
xx,xx

− ρIẅ,xx + ρAẅ + ρΨd
xx (Iẅ,xxxx −Aẅ,xx)− ρΨd

zzAẅ,xx −
(
F 1
x,x + Fz

)
= 0

(3.32)

which can be written in terms of displacement as

(Dxxw,xx),xx −Ψs
xx (Dxxw,xx),xxxx + Ψs

zz (Axxw,xx),xx

− ρIẅ,xx + ρAẅ + ρΨd
xx (Iẅ,xxxx −Aẅ,xx)− ρΨd

zzAẅ,xx −
(
F 1
x,x + Fz

)
= 0

(3.33)

The total order of the governing differential equation (3.33) in terms of displacement is six. Therefore,
three boundary conditions in terms of w are expected at the boundaries (at each end of the beam). These
conditions are

Mxx,x −Ψs
xxMxx,xxx + Ψs

zzN
z
xx,x

+ ρIẅ,x − ρΨd
xx (Iẅ,xxx −Aẅ,x) + ρΨd

zzAẅ,x − V̄ E = 0 or w = w0

−Mxx + Ψs
xxMxx,xx −Ψs

zzN
z
xx + ρΨd

xxIẅ,xx + ρΨd
xzA

∗ẅ,x − M̄E = 0 or w,x = β̄

−Ψs
xxMxx,x −Ψs

xzM
z
xx − M̄E

h = 0 or w,xx = κ̄

(3.34)

In accordance to the conventional classification, the boundary conditions of a beam can be grouped such
that they form 4 different types of boundaries. In order to obtain the clamped boundary ΓC one needs to
prescribe deflection w̄ and rotation β̄, for simply supported ΓSS – deflection w̄ and moment M̄E , for elastically
supported (sliding) ΓES – rotation β̄ and force V̄ E , and finally for free ΓF – force V̄ E and moment M̄E .
Gradient elasticity theory introduces the non-classical boundary condition (3.34-3) which duplicates the
number of possible boundary types. Following (Niiranen et al., 2017) we call them singly for applied double
moment M̄E

h and doubly if instead curvature κ̄ is prescribed. In such a manner, we have the boundaries
which are singly and doubly clamped (ΓCS

and ΓCD
resp.), singly and doubly simply supported (ΓSSS

and
ΓSSD

), and so on. Selection of the non-classical boundary condition (3.34-3) affects on the behaviour of the
beam near boundaries and can cause appearance of the so-called boundary layers in the solution.

6



3.2. Anisotropic third-order shear-deformable beam

According to the TSD beam theory (Levinson (1981), Bickford (1982), Reddy (1984)), the displacement
field of the TSD beam is

ux (x, z) = zβ (x)− αz3

[
β(x) +

∂w(x)

∂x

]
,

uz (x, z) = w (x) .

(3.35)

In equation (3.35), β(x) denotes the rotation of the beam cross section and α is a constant (α is a constant
for a rectangular cross section and is approximated as a constant for other types of cross sections). By
substituting the displacement field (3.35) into the strain-displacement relation (2.2), the nonzero components
of the strain tensor are obtained to be

εxx = zβ,x − αz3 (β,x + w,xx) ,

εxz =
1

2

(
1− 3αz2

)
(w,x + β) .

(3.36)

The nonzero components of the gradient of the strain tensor are

εxx,x =
(
z − αz3

)
β,xx − αz3w,xxx, εxx,z =

(
1− 3αz2

)
β,x − 3αz2w,xx,

εxz,x =
1

2

(
1− 3αz2

)
(w,xx + β,x) , εxz,z = −3αz (w,x + β) .

(3.37)

According to equations (2.4) and (3.36), the Cauchy and higher stress components read

σij = Cijxx
[(
z − αz3

)
β,x − αz3w,xx

]
+ Cijxz

(
1− 3αz2

)
(w,x + β)

τijk = Ψs
kxCijxx

[(
z − αz3

)
β,xx − αz3w,xxx

]
+ Ψs

kxCijxz
(
1− 3αz2

)
(w,xx + β,x)

+ Ψs
kzCijxx

[(
1− 3αz2

)
β,x − 3αz2w,xx

]
− 6αzΨs

kzCijxz (w,x + β)

(3.38)

Using a similar procedure described in the previous section, the variation of the strain energy can be written
in terms of the resultants as

δU =

∫ L

0

[−M̂xx,x + N̂xz + Ψs
xx

(
M̂xx,xxx − N̂xz,xx

)
+ Ψs

xz

(
M̂z
xx,xx − N̂z

xz,x − N̂xx,xx − 6αMxz,x

)
−Ψs

zz

(
N̂z
xx,x + 6αMz

xz

)
]δβdx

+

∫ L

0

[−αPxx,xx − N̂xz,x + Ψs
xx

(
αPxx,xxxx + N̂xz,xxx

)
+ Ψs

xz

(
αP zxx,xxx + N̂z

xz,xx − 3αRxx,xxx + 6αMxz,xx

)
+ Ψs

zz

(
−3αRzxx,xx + 6αMz

xz,x

)
]δwdx+BC,

(3.39)
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where

BC =[M̂xx + Ψs
xx

(
−M̂xx,xx + N̂xz,x

)
+ Ψs

xz

(
−M̂z

xx,x + N̂z
xz + N̂xx,x

)
+ Ψs

zzN̂
z
xx]δβ|L0

+
[
Ψs
xxM̂xx,x + ΛxzM̂

z
xx

]
δβ,x|L0

+ [αPxx,x + N̂xz + Ψs
xx

(
−αPxx,xxx − N̂xz,xx

)
+ Ψs

xz

(
−αP zxx,xx − N̂z

xz,x + 3αRxx,xx − 6αMxz,x

)
+ Ψs

zz

(
3αRzxx,x − 6αMz

xz

)
]δw|L0

+ [−αPxx + Ψs
xx

(
αPxx,xx + N̂xz,x

)
+ Ψs

xz

(
αP zxx,x + N̂z

xz − 3αRxx,x

)
− 3αΨs

zzR
z
xx]δw,x|L0

− α [Ψs
xxPxx,x + Ψs

xzP
z
xx] δw,xx|L0 .

(3.40)

Above, L is the length of the beam and

M̂xx = Mxx − αPxx, N̂xz = Nxz − 3αRxz, N̂xx = Nxx − 3αRxx,

M̂z
xx = Mz

xx − αP zxx, N̂z
xz = Nz

xz − 3αRzxz, N̂
z
xx = Nz

xx − 3αRzxx.
(3.41)

In equations (3.39)-(3.41), the stress resultants are defined as

{Nxx,Mxx, Rxx, Pxx} =

∫
A

{1, z, z2, z3}σxxdA,

{Nxz,Mxz, Rxz} =

∫
A

{1, z, z2}σxzdA.
(3.42)

Moreover, the gradient-of-stress resultants are defined as

{Nz
xx,M

z
xx, R

z
xx, P

z
xx} =

∫
A

{1, z, z2, z3}σxx,zdA,

{Nz
xz,M

z
xz, R

z
xz} =

∫
A

{1, z, z2}σxz,zdA.
(3.43)

These resultants can be written in terms of the displacement and rotation as

Nxx = Ā∗xxβ,x − αD∗xxw,xx + Âzz (w,x + β) , Mxx = D̄xxβ,x − αFxxw,xx + Â∗zz (w,x + β) ,

Rxx = D̄∗xxβ,x − αF ∗xxw,xx + D̂zz (w,x + β) , Pxx = F̄xxβ,x − αHxxw,xx + D̂∗zz (w,x + β) ,

Nxz = Ā∗zzβ,x − αD∗zzw,xx + Âxz (w,x + β) , Mxz = D̄zzβ,x − αFzzw,xx + Â∗xz (w,x + β) ,

Rxz = D̄∗zzβ,x − αF ∗zzw,xx + D̂xz (w,x + β) , Nz
xx = Âxxβ,x − 3αDxxw,xx − 6αA∗zz (w,x + β) ,

Mz
xx = Â∗xxβ,x − 3αD∗xxw,xx − 6αDzz (w,x + β) , Rzxx = D̂xxβ,x − 3αFxxw,xx − 6αD∗zz (w,x + β) ,

P zxx = D̂∗xxβ,x − 3αF ∗xxw,xx − 6αFzz (w,x + β) , Nz
xz = Âzzβ,x − 3αDzzw,xx − 6αA∗xz (w,x + β) ,

Mz
xz = Â∗zzβ,x − 3αD∗zzw,xx − 6αDxz (w,x + β) , Rzxz = D̂zzβ,x − 3αFzzw,xx − 6αD∗xz (w,x + β) .

(3.44)
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In resultants (3.44), the coefficients are

Âxx = Axx − 3αDxx, Âxz = Axz − 3αDxz, Âzz = Azz − 3αDzz,

D̄xx = Dxx − αFxx, D̂xz = Dxz − 3αFxz, D̄zz = Dzz − αFzz,
D̂zz = Dzz − 3αFzz, D̂xx = Dxx − 3αFxx, F̄xx = Fxx − αHxx,

Ā∗xx = A∗xx − αD∗xx, Â∗xx = A∗xx − 3αD∗xx, Â
∗
zz = A∗zz − 3αD∗zz,

Ā∗zz = A∗zz − αD∗zz, Â∗xz = A∗xz − 3αD∗xz, D̂
∗
xx = D∗xx − 3αF ∗xx,

D̄∗xx = D∗xx − αF ∗xx, D̂∗zz = D∗zz − 3αF ∗zz, D̄
∗
zz = D∗zz − αF ∗zz

(3.45)

where

(Axx, A
∗
xx, Dxx, D

∗
xx, Fxx, F

∗
xx, Hxx) =

∫
A

Cxxxx
(
1, z, z2, z3, z4, z5, z6

)
dA,

(Azz, A
∗
zz, Dzz, D

∗
zz, Fzz, F

∗
zz) =

∫
A

Cxxxz
(
1, z, z2, z3, z4, z5

)
dA,

(Axz, A
∗
xz, Dxz, D

∗
xz, Fxz) =

∫
A

Cxzxz
(
1, z, z2, z3, z4

)
dA.

(3.46)

In equation (3.42), Mxx, Pxx, Nxz and Rxz are the only classical stress resultants. Furthermore, the resultants
of equation (3.44) and the variation of the strain energy (3.39) reduce to those of a Timoshenko beam by
setting α = 0. It is noted that the equations (3.35), were originally developed for a beam with a rectangular
cross-section (Levinson, 1981) where

α =
4

3L2
Z

. (3.47)

Above, LZ is the height of the beam. Obviously in equation (3.46), the terms related to the integrals of the
odd powers of z vanish for a beam with a rectangular cross-section.

Moreover, for a beam with rectangular cross-section and in a similar manner as the Euler-Bernoulli
beam, substitution of equation (3.35) into the variation of the kinetic energy (2.13), integrating over the
time domain (t0, t1) and applying Green’s theorem leads to∫ t1

t0

δKdt = ρ

∫ t1

t0

∫
A

∫ L

0

{
[
−
(
z2 + α2z6 − 2αz4

)
β̈ −

(
α2z6 − αz4

)
ẅ,x

]
δβ

+
[
α2z6ẅ,xx +

(
α2z6 − αz4

)
β̈,x − ẅ

]
δw}dxdAdt

+ ρ

∫ t1

t0

∫
A

∫ L

0

{Ψd
xx

[(
z2 + α2z6 − 2αz4

)
β̈,xx +

(
α2z6 − αz4

)
ẅ,xxx

]
+ Ψd

zz

[
−
(
1 + 9α2z4 − 6αz2

)
β̈ −

(
9α2z4 − 3αz2

)
ẅ,x

]
}δβdxdAdt

+ ρ

∫ t1

t0

∫
A

∫ L

0

{Ψd
xx

[
−α2z6ẅ,xxxx + ẅxx −

(
α2z6 − αz4

)
β̈,xxx

]
+ Ψd

zz

[(
9α2z4 − 3αz2

)
β̈,x + 9α2z4ẅ,xx

]
}δwdxdAdt+BC,

(3.48)
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where

BC =− ρ
∫ t1

t0

∫
A

[
α2z6ẅ,x +

(
α2z6 − αz4

)
β̈
]
δw|L0 dAdt

+ ρ

∫ t1

t0

∫
A

Ψd
xx

[
−
(
z2 + α6 − 2αz4

)
β̈,x −

(
α2z6 − αz4

)
ẅ,xx

]
δβ|L0 dAdt

+ ρ

∫ t1

t0

∫
A

{Ψd
xx

[(
α2z6 − αz4

)
β̈,xx + α2z6ẅ,xxx − ẅ,x

]
+ Ψd

zz

[
−
(
9α2z4 − 3αz2

)
β̈ − 9α2z4ẅ,x

]
}δw|L0 dAdt

+ ρ

∫ t1

t0

∫
A

Ψd
xx

[
−
(
α2z6 − αz4

)
β̈,x − α2z6ẅ,xx

]
δw,x|L0 dAdt.

(3.49)

By using equation (3.29), considering the displacement field (3.35) and using Green’s theorem, the variation
of external work can be expressed as

δW =

∫ L

0

[(
Fz + αF 3

x,x

)
δw +

(
F 1
x − αF 3

x

)
δβ
]

dx+ [
(
Tz − αF 3

x

)
δw

+
(
−αT 3

x +Qz
)
δw,x − αQ3

xδw,xx +
(
T 1
x − αT 3

x

)
δβ +

(
Q1
x − αQ3

x

)
δβ,x]|L0

=

∫ L

0

[(
Fz + αF 3

x,x

)
δw +

(
F 1
x − αF 3

x

)
δβ
]

dx

+
[
V̄ Sδw + M̄Sδw,x + M̄S

h δw,xx + P̄Sδβ + P̄Sh δβ,x
]
|L0 ,

(3.50)

where

{Fmx , Tmx , Qmx } =

∫
A

{fx, tx, qx} zmdA, m ∈ {1, 3} (3.51)

and Fz, Tz and Qz are defined in equation (3.31).
Substitution of equations (3.50), (3.39) and (3.48) into Hamilton’s principle (2.14) and the application of

the fundamental lemma of calculus of variation, result in the governing equations of motion and boundary
conditions for the anisotropic gradient elastic TSD beam. These governing equations are

− M̂xx,x + N̂xz + Ψs
xx

(
M̂xx,xxx − N̂xz,xx

)
+ Ψs

xz

(
M̂z
xx,xx − N̂z

xz,x − N̂xx,xx − 6αMxz,x

)
−Ψs

zz

(
N̂z
xx,x + 6αMz

xz

)
+ ρ

(
I + α2H − 2αF

)
β̈ + ρ

(
α2H − αF

)
ẅ,x

+ ρΨd
xx

[
−
(
I + α2H − 2αF

)
β̈,xx −

(
α2H − αF

)
ẅ,xxx

]
+ ρΨd

zz

[(
A+ 9α2F − 6αI

)
β̈ +

(
9α2F − 3αI

)
ẅ,x

]
−
(
F 1
x − αF 3

x

)
= 0,

(3.52)

− αPxx,xx − N̂xz,x + Ψs
xx

(
αPxx,xxxx + N̂xz,xxx

)
+ Ψs

xz

(
αP zxx,xxx + N̂z

xz,xx − 3αRxx,xxx + 6αMxz,xx

)
+ Ψs

zz

(
−3αRzxx,xx + 6αMz

xz,x

)
+ ρAẅ − ρα2Hẅ,xx − ρ

(
α2H − αF

)
β̈,x

+ ρΨd
xx

[
α2Hẅ,xxxx −Aẅ,xx +

(
α2H − αF

)
β̈,xxx

]
+ ρΨd

zz

[
−
(
9α2F − 3αI

)
β̈,x − 9α2Fẅ,xx

]
−
(
Fz + αF 3

x,x

)
= 0

(3.53)

where

(I, F,H) =

∫
A

(
z2, z4, z6

)
dA. (3.54)
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The order of equation (3.52) with respect to β and of equation (3.53) with respect to w is four and six
respectively. Therefore, two boundary conditions with respect to β and three boundary conditions with
respect to w is expected at each end of the beam (at x = 0, x = L). These boundary conditions are

M̂xx + Ψs
xx

(
−M̂xx,xx + N̂xz,x

)
+ Ψs

xz

(
−M̂z

xx,x + N̂z
xz + N̂xx,x

)
+ Ψs

zzN̂
z
xx

+ ρΨd
xx

[(
I + α2H − 2αF

)
β̈,x +

(
α2H − αF

)
ẅ,xx

]
− P̄S = 0 or δβ = 0

Ψs
xxM̂xx,x + Ψs

xzM̂
z
xx − P̄Sh = 0 or δβ,x = 0

αPxx,x + N̂xz + Ψs
xx

(
−αPxx,xxx − N̂xz,xx

)
+ Ψs

xz

(
−αP zxx,xx − N̂z

xz,x + 3αRxx,xx − 6αMxz,x

)
+ Ψs

zz

(
3αRzxx,x − 6αMz

xz

)
+ ρα2Hẅ,x + ρ

(
α2H − αF

)
β̈

+ ρΨd
xx

[
−
(
α2H − αF

)
β̈,xx − α2Hẅ,xxx +Aẅ,x

]
+ ρΨd

zz

[(
9α2F − 3αI

)
β̈ + 9α2Fẅ,x

]
− V̄ S = 0 or δw = 0

− αPxx + Ψs
xx

(
αPxx,xx + N̂xz,x

)
+ Ψs

xz

(
αP zxx,x + N̂z

xz − 3αRxx,x

)
− 3αΨs

zzR
z
xx

+ ρΨd
xx

[(
α2H − αF

)
β̈,x + α2Hẅ,xx

]
− M̄S = 0 or δw,x = 0

−αΨs
xxPxx,x − αΨs

xzP
z
xx − M̄S

h = 0 or δw,xx = 0

(3.55)

Different combinations of classical boundary conditions (3.55-1), (3.55-3), (3.55-4) result in eight boundary
types of TSD beam in the framework of classical elasticity. Their relations to four conventional boundary
types of a beam are worth separate discussion. The selection of non-classical boundary conditions (3.55-2,
3.55-5), splits each of eight aforementioned types by four subtypes (from singly to fourthly) yielding in that
way all together 32 combinations. We do not present the full classification of all possible boundary types
and note that physical meaning for many of them needs a more accurate study on the behaviour of the
beam.

For a beam with rectangular cross-section, the governing equations (3.52) and (3.53) can be written in
terms of deflection and rotation as

−
(
D̃xxβ,x − αF̄xxw,xx

)
,x

+ Ãxz (w,x + β)

+ Ψs
xx

[(
D̃xxβ,x − αF̄xxw,xx

)
,xxx
− Ãxz (w,x + β),xx

]
+ Ψs

xz

[
−
(
Ãzz + 6αD̄zz

)
(w,x + 2β),xx + 3αD̄zzw,xxx

]
−Ψs

zz

[(
Ãxxβ,x − 3αD̂xxw,xx

)
,x
− 36α2Dxz (w,x + β)

]
+ ρ

(
I + α2H − 2αF

)
β̈ + ρ

(
α2H − αF

)
ẅ,x

+ ρΨd
xx

[
−
(
I + α2H − 2αF

)
β̈,xx −

(
α2H − αF

)
ẅ,xxx

]
+ ρΨd

zz

[(
A+ 9α2F − 6αI

)
β̈ +

(
9α2F − 3αI

)
ẅ,x

]
−
(
F 1
x − αF 3

x

)
= 0,

(3.56)
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and

− α
(
F̄xxβ,x − αHxxw,xx

)
,xx
− Ãxz (w,x + β),x

+ Ψs
xx

[
α
(
F̄xxβ,x − αHxxw,xx

)
,xxxx

+ Ãxz (w,x + β),xxx

]
+ Ψs

xz

[
−6αD̄zzw,xxxx +

(
Ãzz + 3αD̄zz

)
β,xxx

]
+ Ψs

zz

[
−3α

(
D̂xxβ,x − 3αFxxw,xx

)
,xx
− 36α2Dxz (w,x + β),x

]
+ ρAẅ − ρα2Hẅ,xx − ρ

(
α2H − αF

)
β̈,x

+ ρΨd
xx

[
α2Hẅ,xxxx −Aẅ,xx +

(
α2H − αF

)
β̈,xxx

]
+ ρΨd

zz

[
−
(
9α2F − 3αI

)
β̈,x − 9α2Fẅ,xx

]
−
(
Fz + αF 3

x,x

)
= 0.

(3.57)

where

D̃xx = D̄xx − αF̄xx, Ãxz = Âxz − 3αD̂xz,

Ãxx = Âxx − 3αD̂xx, Ãzz = Âzz − 3αD̂zz.
(3.58)

The governing equations and boundary conditions of a Timoshenko beam can be simply obtained by setting
α = 0 in equations (3.55), (3.56) and (3.57) giving:

−Dxxβ,xx +Axz (w,x + β) + Ψs
xx

[
Dxxβ,xxxx −Axz (w,x + β),xx

]
−Ψs

xzAzz (w,x + 2β),xx −Ψs
zzAxxβ,xx + ρIβ̈ − ρΨd

xxIβ̈,xx + ρΨd
zzAβ̈ − F 1

x = 0,
(3.59)

−Axz (w,x + β),x + Ψs
xxAxz (w,x + β),xxx + Ψs

xzAzzβ,xxx + ρAẅ − ρΨd
xxAẅ,xx − Fz = 0. (3.60)

Mxx + Ψs
xx (−Mxx,xx +Nxz,x)

+ Ψs
xz

(
−Mz

xx,x +Nz
xz +Nxx,x

)
+ Ψs

zzN
z
xx + ρΨd

xxIβ̈,x − T 1
x = 0 or δβ = 0

Ψs
xxMxx,x + Ψs

xzM
z
xx −Q1

x = 0 or δβ,x = 0

Nxz −Ψs
xxNxz,xx −Ψs

xzN
z
xz,x + ρΨd

xxAẅ,x − Tz = 0 or δw = 0

Ψs
xxNxz,x + Ψs

xzN
z
xz −Qz = 0 or δw,x = 0

(3.61)

3.2.1. Simplifications for particular kinds of materials

The formulation can be readily simplified for materials of more practical use such as orthotropic and isotropic
materials. For this purpose, Voigt notation is employed (Voigt, 1928):

Cijkl → Cst, s, t→ 1, 2, ..., 6 : 11→ 1, 22→ 2, 33→ 3, 23→ 4, 13→ 5, 12→ 6. (3.62)

According to equation (5.93) of Appendix (A), the tensor of static anisotropic length scale for orthotropic
materials (which are composed of orthorhombic crystals) is

Ψs
mn =

 Ψs
xx 0 0
0 Ψs

yy 0
0 0 Ψs

zz

 Ψs
xx > 0, Ψs

yy > 0, Ψs
zz > 0. (3.63)
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Similarly; the tensor of kinetic length scale for orthotropic materials is considered to be

Ψd
mn =

 Ψd
xx 0 0
0 Ψd

yy 0
0 0 Ψd

zz

 Ψd
xx > 0, Ψd

yy > 0, Ψd
zz > 0. (3.64)

By using Voigt notation, the elastic modulus tensor for orthotropic material is given by

C =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 . (3.65)

Therefore, in order to obtain the equilibrium equations and boundary conditions of a beam made of or-
thotropic material, it is sufficient to simplify the equations (3.56), (3.57) and (3.55) by using equations
(3.63), (3.64) and (3.65).

By setting Ψs
xx = Ψs

zz = l2s and Ψd
xx = Ψd

zz = l2d and considering the elastic modulus tensor of isotropic
materials, the governing equations and boundary conditions of an isotropic gradient elastic TSD beam will
be obtained (Yaghoubi et al., 2015).

3.2.2. Free vibration of a simply supported TSD beam

A doubly simply supported anisotropic TSD beam with a rectangular cross section is considered. In order
to study the free vibration of the beam, the external loads are assumed to be zero. The boundary conditions
for a doubly simply supported rectangular beam are

M̂xx + Ψs
xx

(
−M̂xx,xx + N̂xz,x

)
+ Ψs

xz

(
−M̂z

xx,x + N̂z
xz + N̂xx,x

)
+ Ψs

zzN̂
z
xx

+ ρΨd
xx

[(
I + α2H − 2αF

)
β̈,x +

(
α2H − αF

)
ẅ,xx

]
= 0

β,x = 0

w = 0

− αPxx + Ψs
xx

(
αPxx,xx + N̂xz,x

)
+ Ψs

xz

(
αP zxx,x + N̂z

xz − 3αRxx,x

)
− 3αΛzzR

z
xx

+ ρΨd
xx

[(
α2H − αF

)
β̈,x + α2Hẅ,xx

]
= 0

w,xx = 0

(3.66)

The governing equations (3.56) and (3.57) together with the boundary conditions (3.66) when the external
loads are zero have a serial solution of the form

w(x, t) =
∞∑
n=1

wdn sin(
nπx

L
)eiωnt, β(x, t) =

∞∑
n=1

βdn cos(
nπx

L
)eiωnt (3.67)

Above, ωn is the vibrational frequency and i is the imaginary number defined by i2 = −1. Substitution of
(3.67) into (3.56) and (3.57) results in[

k1 − k4ω
2
n k2 − k5ω

2
n

k2 − k5ω
2
n k3 − k6ω

2
n

] [
βdn
wdn

]
=

[
0
0

]
(3.68)
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where 

k1 = (1 + Ψs
xxγ

2)a1 + a2 + a3 + 2a8,
k2 = (1 + Ψs

xxγ
2)a4 + γa3 + a5 + γa8 + a9,

k3 = (1 + Ψs
xxγ

2)a6 + γ2a3 + a7 + 2γa9

k4 =
(
1 + Ψd

xxγ
2
)
b1 + Ψd

zzb3,
k5 =

(
1 + Ψd

xxγ
2
)
γb2 + Ψd

zzγb4,
k6 =

(
1 + Ψd

xxγ
2
)
γ2b5 + b6 + b7

(3.69)


a1 = γ2D̃xx + Ãxz, a2 = Ψs

zzγ
2Ãxx,

a3 = 36α2Ψs
zzDxz, a4 = −αγ3F̄xx + γÃxz,

a5 = −3αΨs
zzγ

3D̂xx, a6 = α2Hxxγ
4 + γ2Ãxz,

a7 = 9α2Ψs
zzγ

4Fxx, a8 = Ψs
xzγ

2(Ãzz + 6αD̄zz),
a9 = −3αΨs

xzγ
3D̄zz.

(3.70)


b1 = ρ

(
I + α2H − 2αF

)
, b2 = ρ

(
α2H − αF

)
,

b3 = ρ
(
A+ 9α2F − 6αI

)
, b4 = ρ

(
9α2F − 3αI

)
,

b5 = ρα2H, b6 = ρA,
b7 = ργ2

(
Ψd
xxA+ 9α2Fψdzz

) (3.71)

For the existence of a nontrivial solution, the determinant of the coefficient matrix of (3.68) has to vanish.
This condition leads to

R1ω
4
n +R2ω

2
n +R3 = 0 (3.72)

while
R1 = k4k6 − k2

5, R2 = 2k2k5 − k1k6 − k3k4, R3 = k1k3 − k2
2. (3.73)

Hence, by solving the bi-quadratic equation (3.72) one can obtain two branches of eigenspectrum:

ωn1,2 =

√
−R2 ±

√
R2

2 − 4R1R3

2R1
. (3.74)

The second spectral brunch also exists in the numerical solution considered in subsequent section. Discussion
about the physical meaning of this brunch (with ”+” in front of discriminant in (3.74)) is out of scope of
the present contribution.

4. Variational formulations and Isogeometric analysis

This section is devoted to variational formulations of eigenvalue problems for the Euler-Bernoulli and TSD
beam models with a short description of the isogeometric Galerkin method used for obtaining numerical
solutions for a benchmark problem.

In what follows, notation L2(Ω) is used for a set of square-integrable real-valued functions defined on
Ω = (0, L) and Hs(Ω) for a real Sobolev space of order s.

4.1. Euler-Bernoulli beam

In order to formulate the eigenvalue problem for the Euler-Bernoulli model, we assume the following form
of the particular variable-separable solution for equation (3.33):

w(x, t) = w(x)e−iωt, (4.75)

where i =
√
−1 stands for the imaginary unit.

Substitution of assumption (4.75) into the strain (3.26), kinetic (3.27), and external (3.30) energies with
subsequent utilisation of Hamilton’s principle (2.14) and integration by parts results in the weak formulation
of the eigenvalue problem (the variation of deflection δw is replaced by test function ŵ):

14



Problem 1. Find all eigenpars {w, λ}, w ∈ W, λ = ω2 ∈ R, such that

a(w; ŵ)− ω2b(w; ŵ) = 0 ∀ŵ ∈ Ŵ, (4.76)

where the components of the bilinear forms a :W × Ŵ → R and b :W × Ŵ → R, are defined as

a(w; ŵ) =

L∫
0

[
Dxxw,xxŵ,xx + Ψs

xx (Dxxw,xx),x ŵ,xxx + Ψs
zzAxxw,xxŵ,xx

]
dx; (4.77)

b(w; ŵ) =

L∫
0

ρ
[
Iw,xŵ,x +Awŵ + Ψd

xx (Iw,xxŵ,xx +Aw,xŵ,x) + Ψd
zzAw,xŵ,x

]
dx. (4.78)

The trial function set

W = {v ∈ H3(Ω) | v|ΓSS∪ΓC
= w̄, v′|ΓES∪ΓC

= β̄, v′′|ΓCd
∪ΓSSd

∪ΓSd
= κ̄} (4.79)

consists of functions satisfying the essential boundary conditions, with given Dirichlet data w̄, β̄, κ̄, while
the test function space ŵ consists of H3 functions satisfying the corresponding homogeneous Dirichlet type
boundary conditions.

An analogue to Problem 1 for the isotropic beam can be derived by making the following substitutions
into the bilinear forms (4.77) and (4.78):

Dxx → EI, Axx = EA, ψsxx → l2s , ψ
s
zz → l2s , ψ

d
xx → l2d, ψ

d
zz → l2d, (4.80)

which leads to

a(w; ŵ) =

L∫
0

[
EIw,xxŵ,xx + l2s (EIw,xx),x ŵ,xxx + l2sEAw,xxŵ,xx

]
dx; (4.81)

b(w; ŵ) =

L∫
0

ρ
[
Iw,xŵ,x +Awŵ + l2dIw,xxŵ,xx + 2l2dAw,xŵ,x

]
dx. (4.82)

As it can be seen, the formed structures of the weak formulations for isotropic and anisotropic cases are
identical and therefore one can use the same numerical method for them. Detailed analysis of isogeometric
Galerkin methods for isotropic case of gradient-elastic Euler-Bernoulli beam model is carried out in Niiranen
et al. (2017) and is not repeated in the present contribution.

4.2. TSD beam

Let us consider an eigenvalue problem of a beam with doubly simply supported boundaries (3.66). Similarly
to subsection 4.1, we assume the following form of the particular variable-separable solution for equations
(3.56) and (3.57):

w(x, t) = w(x)e−iωt; β(x, t) = β(x)e−iωt, (4.83)

and substitute it into the energy expressions (3.39), (3.48), (3.50). Then by utilising integration by parts
and Hamilton’s principle (2.14) one obtains the weak formulation:

Problem 2. Find all eigenpairs {(w, β), λ}, w ∈ W , β ∈ V, λ = ω2 ∈ R, such that

a(w, β; ŵ, β̂)− ω2b(w, β; ŵ, β̂) = 0 ∀ ŵ ∈ Ŵ, ∀ β̂ ∈ V̂, (4.84)
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where the components of the bilinear forms a : (W ×V)× (Ŵ × V̂)→ R, and b : (W ×V)× (Ŵ × V̂)→ R,
and function spaces are defined as

a(w, β; ŵ, β̂) =

L∫
0

[
D̃xxβ,xβ̂,x − αF̄xx(w,xxβ̂,x + β,xŵ,xx) + α2Hxxw,xxŵ,xx + Ãxz(w,x + β)(ŵ,x + β̂)

+ Ψs
xx

[
D̃xxβ,xxβ̂,xx − αF̄xx(w,xxxβ̂,xx + β,xxŵ,xxx) + α2Hxxw,xxxŵ,xxx + Ãxz(w,xx + β,x)(ŵ,xx + β̂,x)

]
+ Ψs

xz

[
Ãzz

(
(w,xx + 2β,x)β̂,x + β,xŵ,xx

)
+ 3αD̄zz

(
(w,xx + 4β,x)β̂,x − (2w,xx − β,x)ŵ,xx

)]
−Ψs

zz

[
(Ãxxβ,x − 3αD̂xxw,xx)β̂,x + 36α2Dxz(w,x + β)(ŵ,x + β̂)− 3α(D̂xxβ,x − 3αFxxw,xx)ŵ,xx

] ]
dx;

(4.85)

b(w, β; ŵ, β̂) =

L∫
0

ρ

[
Awŵ + b1ββ̂ + α2Hw,xŵ,x + b2(w,xβ̂ + βŵ,x)

+ Ψd
xx

[
Aw,xŵ,x + b1β,xβ̂,x + α2Hw,xxŵ,xx + b2(w,xxβ̂,x + β,xŵ,xx)

]
+ Ψd

zz

[
b3ββ̂ + 9α2Fw,xŵ,x + b4(w,xβ̂ + βŵ,x)

] ]
dx;

(4.86)

W = {u ∈ H3(Ω)| u|0,L = 0, u′′|0,L = 0};
V = {v ∈ H2(Ω)| v′|0,L = 0}.

(4.87)

4.3. Basics of Isogeometric analysis

Let us recall the main definitions concerning isogeometric discretizations without going into deep details
(de Falco et al., 2011). For unknown functions of deflection and rotation, we use the following approximations

w(x) =
n∑
i=1

Ni,p(x)dwi ; β(x) =
n∑
i=1

Ni,p(x)dβi , (4.88)

where dwi and dβi denote the control variables and act as problem unknowns. B-spline basis functions Ni,p
of order p are used. They can be defined with the aid of an open knot vector {0 = x1, ..., xi, ..., xn+p+1 = L}
by the use of Cox-de Boor recursion formula:

Ni,p(x) =
x− xi

xi+p − xi
Ni,p−1(x) +

xi+p+1 − x
xi+p+1 − xi+1

Ni+1,p−1(x) for p = 1, 2, 3, ...

Ni,0(x) =

{
1 if xi ≤ x ≤ xi+1;

0 otherwise.

(4.89)

After the substitution of the approximations (4.88) into the weak form (Problem 2), we use the standard
Galerkin approach and calculate the stiffness and mass matrices.

The described method provides Cp−1 global regularity over the mesh. Consequently, in order to guarantee
the desired H3(Ω)-conforming discretization for Problem 2 we have to use functions of order p ≥ 3.

4.4. Numerical results and error estimations

We consider again a beam made of a hypothetical? anisotropic material with doubly simply supported bound-
ary conditions, described in section 3.2.2. Values of all required geometrical and mechanical parameters can
be found in Table 1.
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Recently, Admal et al. (2017) presented a new method for obtaining atomistic definitions for elastic
tensors appearing in the first strain-gradient elasticity theory for an arbitrary multi-lattice. Their method is
based on the condition of energetic equivalence between continuum and atomic representations of a crystal,
when the kinematics of the latter is governed by Cauchy-Born rule. The tensor of elastic moduli as well as
the components of the strain gradient elastic tensor (Dijmkln) are computed for a large class of materials
and the results are available in OpenKIM Repository at https://www.openkim.org (Admal et al., 2017).
Furthermore, in a recent paper by Po et al. (2017), methods for obtaining the tensor of anisotropic length
scale parameters (Ψs

mn) from the tensors Cijkl and Dijmkln are proposed. In this study, the values of
the static and kinetic length scale parameters of Table 1 are assumed in the order of ....scale in order to
demonstrate the size effect and verify the accuracy of the IGA method.

Table 1: Problem parameters.

Parameter Value

beam length L 200 µm
cross section height LZ 4 µm
cross section width LY 10 µm

mass density ρ 4020 kg/m3

Cxxxx 317.5 GPa
Cxxxz 100 GPa
Cxzxz 75.8 GPa
Ψs
xx 2 µm2

Ψs
xz 1.2 µm2

Ψs
zz 0.4 µm2

Ψd
xx 0.8 µm2

Ψd
zz 0.2 µm2

For a verification of the numerical method, we compare results obtained with the aid of IGA and the
analytical solution.

Figure 1 illustrates how the accuracy of the numerical results changes with the increase of the frequency
number. The ratio of the numerically obtained eigen frequencies ωhn to the analytically obtained ones ωn
(see (3.74)) is plotted along the vertical axis. Along the horizontal axis, one can see the frequency number n
divided by the total number of calculated frequencies N (equal to the number of degrees of freedom, DoFs).
Shape and behaviour of the spectral curves do not depend on the number of DoFs.
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Figure 1: Normalized discrete spectra for p=3,4,5
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Figure 2: Error in L2 norm for 3rd eigen mode of deflec-
tion versus element size for p=3,4,5

The problem is solved for three different basis function orders p = 3, 4, 5. There are two spectral branches
for the considered model and both demonstrate separately the typical behaviour for isogeometric Galerkin
methods in full accordance with the results which can be found in literature (e.g. for longitudinal classical
bars see Cottrell et al. (2009).

One should keep in mind the fact of the existence of the second branch and distinguish it carefully. The
easiest way to do it is to choose the number of degrees of freedom in such a manner that the last eigen
frequency from the first spectral branch is less than the first one from the second branch. For the considered
set of problem parameters it is assumed that N = 40.

Solution errors in L2-norm for 3rd vibrational mode of deflection w versus the dimensionless size of the
finite element h/L in logarithmic scales is represented in Figure 2. The study shows that the convergence
rates follow order O(hp+1) for the considered orders of B-spline basis functions.

5. Conclusions

In the current paper, the derivation of the dynamic equations for anisotropic centrosymmetric gradient-
elastic beams is presented. Three widespread beam models, namely Euler-Bernoulli, Timoshenko and third
order shear-deformable are considered. The strain energy is generalized by strain gradients and a tensor of
static length scale parameters. Moreover, the classical kinetic energy is enriched by the velocity gradients
with the aid of introduction of a tensor of anisotropic kinetic length scale parameters which is usually missing
in the papers devoted to gradient elastic theory. The resulting model enables one to study the size effect on
the statical and dynamical behaviour of centrosymmetric anisotropic beams.

In addition to strong formulations, the weak variational formulations are presented. It is shown that the
dynamic equation of a gradient-elastic anisotropic Euler-Bernoulli beam has the same structure as the one
for the isotropic case.

The numerical C2-continuous method based on isogeometric Galerkin discretization is implemented for
the free-vibration problem of anisotropic gradient-elastic TSD beams.

Variational formulation and numerical solutions for the Timoshenko model are not presented in the
present contribution. However, it is noteworthy that they can be easily obtained by a simplification of the
TSD model and separate derivations and considerations are not needed. For TSD and Timoshenko beams,
one can use the same numerical method (for the latter one, the minimal order of the basis functions is p = 2,
though).
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The numerical solution presented works for any kind of boundary conditions although it is tested for one
case of boundary conditions for which an analytical solution can be found. Comparisons between analytical
and numerical solutions show that the numerical method works properly in the sense of convergence.
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Appendix A

For different classes of crystal symmetry (Nye, 1957), the tensors of static and kinetic anisotropic length
scale (Ψg

mn, g ∈ {s, d}) and the corresponding conditions for positive definiteness are listed (Lazar and Po,
2015a). The tensor of kinetic anisotropic length scale Ψd

mn is assumed to have the same structure as Ψs
mn

for different classes of crystal symmetry.
Triclinic crystal:

Ψg
mn =

 Ψg
11 Ψg

12 Ψg
13

Ψg
12 Ψg

22 Ψg
23

Ψg
13 Ψg

23 Ψg
33


Ψg

11 > 0,

∣∣∣∣ Ψg
11 Ψg

12

Ψg
12 Ψg

22

∣∣∣∣ > 0,

∣∣∣∣∣∣
Ψg

11 Ψg
12 Ψg

13

Ψg
12 Ψg

22 Ψg
23

Ψg
13 Ψg

23 Ψg
33

∣∣∣∣∣∣ > 0.

(5.90)

Monoclinic crystal (standard orientation 2||b):

Ψg
mn =

 Ψs
11 0 Ψg

13

0 Ψg
22 0

Ψg
13 0 Ψg

33


Ψg

11 > 0, Ψg
22 > 0, Ψg

33 > 0, Ψg
11Ψg

33 − (Ψg
13)2 > 0.

(5.91)

Monoclinic crystal (orientation 2||c):

Ψg
mn =

 Ψg
11 Ψg

12 0
Ψg

12 Ψg
22 0

0 0 Ψg
33


Ψg

11 > 0, Ψg
22 > 0, Ψg

33 > 0, Ψg
11Ψg

22 − (Ψg
12)2 > 0.

(5.92)
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Orthorhombic crystal:

Ψg
mn =

 Ψg
11 0 0
0 Ψg

22 0
0 0 Ψg

33

 Ψg
11 > 0, Ψg

22 > 0, Ψg
33 > 0. (5.93)

Tetragonal, hexagonal, and trigonal crystal:

Ψg
mn =

 Ψg
11 0 0
0 Ψg

11 0
0 0 Ψg

33

 Ψg
11 > 0, Ψg

33 > 0. (5.94)

Cubic crystal:

Ψg
mn =

 Ψg
11 0 0
0 Ψg

11 0
0 0 Ψg

11

 Ψg
11 > 0. (5.95)
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