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Abstract

As the first step, variational formulations and governing equations with boundary

conditions are derived for a pair of Euler–Bernoulli beam bending models following

a simplified version of Mindlin’s strain gradient elasticity theory of form II. For

both models, this leads to sixth-order boundary value problems with new types

of boundary conditions which are given additional attributes singly and doubly ;

referring to a physically relevant distinguishment between free and prescribed

curvature, respectively. Second, the variational formulations are analyzed with

rigorous mathematical tools: existence and uniqueness of weak solutions are

established by proving continuity and ellipticity of the associated symmetric bilinear

forms. This guarantees optimal convergence for conforming Galerkin discretization

methods. Third, the variational analysis is extended to cover two other generalized

beam models: another modification of the strain gradient elasticity theory and a

modified version of the couple stress theory. A model comparison reveals essential

differences and similarities in the physicality of these four closely related beam

models: they demonstrate essentially two different kinds of parameter-dependent

stiffening behavior – one of these kinds (possessed by three models out of four)

provides results in a very good agreement with size effects of experimental tests.

Finally, numerical results for isogeometric Galerkin discretizations with B-splines

confirm the theoretical stability and convergence results. Influences of the gradient

and thickness parameters connected to size effects, boundary layers and dispersion

relations are studied thoroughly with a series of benchmark problems for statics and

free vibrations. Size-dependency of the effective Young’s modulus is demonstrated

for an auxetic cellular metamaterial ruled by bending-dominated deformation of cell

struts.
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1. Introduction

Micro- and nano-sized beams, plates and membranes are the key structural components

in sensors and actuators of micro-electromechanical systems (MEMS) and nano-

electromechanical systems (NEMS) of today and the future1–6. In particular,

developments in micro-machining and additive manufacturing at meso-, micro- and

nano-scales intrinsically increase the potential of printed small-scale electro-mechanical

devices7. A specific application field in which micro- and nano-sized beams have a

crucial role is auxetic cellular metamaterials with numerous cell topologies formed by

straight or curved struts8,9. These metamaterials share a common fundamental feature:

auxeticity is governed by bending-dominated deformation of cell struts. From the point

of view of engineering analysis – material science and applied mechanics, primarily

– one of the key challenges in analyzing micro- and nano-sized structures is that the

microstructural lengths of the material such as crystal size become comparable to the

dimensions of the structure itself such as the beam thickness. In general, this means

the necessity of multi-scale mechanics and implies a need for reliable and efficient

multi-scale analysis tools, both analytical and computational methods alongside with

experimental tests4,5,10–12.

Classical continuum mechanics, as a well-established field with reliable and efficient

computational tools, have been applied for modeling even nano-scale structures in

different ways13, besides computationally costly atomistic simulations4,5,10. Most

typically, atomistic lattices are simply replaced by grids of classical springs, rods or

struts with point masses. Or homogenization techniques are used by adopting classical

plate or shell models10,11,14 – even as straightforwardly as by applying commercial

finite element software tools15. However, the classical continuum theory behind the

classical dimensionally reduced structural models is actually not capable of describing

multi-scale phenomena due to the underlying well-defined axioms of the homogenizing

conception of Cauchy’s continuum. Accordingly, the classical continuum theories have

been extended towards multi-scale capabilities in different ways (see16,17 and18–22 for

introductory reviews and further references).

Regarding micro- and nano-sized beams which are of our particular interest23,

it has been experimentally shown that especially the normalized elastic bending

rigidity dramatically increases alongside decreasing thickness. In the elastic range, this
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microstructural size effect has been observed for micro-sized cantilever beams24–26

and nano-sized clamped beams27: for epoxy catilever beams24; for polypropylene

cantilevers25; and very recently for epoxy and epoxy-based SU-8 cantilevers26. Silver

and ZnO nanowires have been studied in27 and28, respectively. Another type of MEMS-

related validation can be found in29.

Alongside the observations on the experimental bending tests of micro-cantilevers,

a number of closely related theoretical works on generalized Euler–Bernoulli beam

bending models exist in the literature: first, Papargyri–Beskou et al.30 (2003) introduced

a model based on a simplified one-parameter strain gradient theory originally proposed

by Vardouolakis et al.31 and Altan and Aifantis32 with a one-parameter surface energy

extension31,33; second, Park and Gao34 (2006) proposed a one-parameter model by

following a modified couple stress theory35, later extended by Gao and Mahmoud36

(2014) by a surface energy part originating from37; third, the three-parameter model

proposed by Kong et al.38 (2009) and Akgös and Civalek39 (2012) is based on

a modified strain gradient elasticity theory24 (following Mindlin’s strain gradient

elasticity theory of form I); fourth, the one-parameter model derived by Lazopoulos

and Lazopoulos40 (2010) and Liang et al.41 (2014) is based on the simplified strain

gradient elasticity theory of31–33,42. Some of these models have been extended to shear-

deformable Timoshenko beams or other higher-order variants, even including anisotropy

(see43–46, for instance). On the other hand, it should be noticed that scale-independent

but microstructure-dependent behavior of beam-like structures have been studied via

homogenization procedures resulting in different non-standard higher-gradient models,

with size-dependent effective stiffness parameters, in particular47–50. Altogether, a

preference seems to clearly be given to simple models of few additional parameters for

two reasons: models should be validable; benchmark problems should be solvable by

analytical means. The four generalized models listed above will be revisited and further

analyzed in the present contribution. Our primary focus is on the pair of beam models

(the first and fourth in the listing above) based on the widely-used simplified theory

of strain gradient elasticity which (without surface energy terms) can be regarded as

a single-parameter version of the Mindlin’s strain gradient elasticity theory of form II

derived in the landmark paper51 in the 1960s. From the mathematical point of view,

the models listed above, except the couple stress one, lead to sixth-order differential

equations in contrast to the fourth-order equation of the classical Euler–Bernoulli beam

model. The mathematical similarity of the models serves as our motivation for the first

part of this work proposing variational formulations and analysis as well as addressing

the differences and similarities in the physicalities of these models.

So far, solely analytical solutions for a limited number of simple benchmark problems

have been presented in the literature concerning generalized beam bending models,

as recently noticed in52 proposing a semi-analytical displacement method. Numerical

methods providing tools for solving complex problems are practically missing as

concluded in a very recent review on generalized beam and plate models53:”...most of

existing size-dependent models focused on analytical solutions...limited to beam and

plate structures subjected to certain loading and boundary conditions and geometries...
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Therefore, further efforts should be devoted to developing finite element models of size-

dependent theories, especially the strain gradient-based models.” Most likely, the lack

of contributions proposing numerical methods for gradient-based models stems from the

fact that the traditional finite element methods with polynomial basis functions, such

as the C0-continuous Lagrange or C1-continuous Hermite ones, are not appropriate for

higher-order problems. This serves as our motivation for the second part of this work

providing a theoretical framework for reliable and efficient general-purpose numerical

methods, including a proposal of such a method with a rigorous numerical analysis of the

method, a verification of the implementation, and finally a series of benchmark problems

for statics and free vibrations. In particular, the benchmarks demonstrate the influences

of the gradient and thickness parameters connected to size effects, boundary layers and

dispersion relations.

It should be mentioned that for micro- and nano-structures such as nanotubes and

graphene sheets, in particular, the so-called non-local continuum theory has raised

attention among reseachers of the field as well (see12,20 for selective but still extensive

lists of references and53 for a more comprehensive review). However, a concern about

the non-local continuum theory – discovered particularly in the context of non-local

beam models – is the fact that a big portion of the literature applies the so-called

differential form of Eringen’s constitutive equation54 which is very recently shown to

be nonequivalent to its integral form in the context of Euler–Bernoulli beam problem20

(see55 as well). As a matter of fact, this nonequivalence is shown to be the reason for

the discrepancy between the results of beam bending problems with different boundary

conditions (see the discussion about the ”paradox” in20 and the references therein).

In this work, by following the simplified strain gradient elasticity theory we first

use the principle of virtual work and derive two variants (cf.40,41 and30) of governing

equations and complete sets of essential and natural boundary conditions distinguishing

fixings singly and doubly; referring to a physically meaningful separation between free

and prescribed curvature, respectively. An analogous separation has been accomplished

by Niiranen and Niemi for Kirchhoff plates18 and Niiranen et al.56 for bars and

plane strain/stress problems. Second, we propose the corresponding displacement form

variational formulations and prove their well-posedness with rigorous mathematical tools

within an H3 Sobolev space setting. For conforming Galerkin discretization methods, in

particular, this guarantees invertible stiffness matrices and optimal convergence. Third,

we accomplish a model comparison between the four model variants and show that

our variational analysis can be extended to the other two generalized beam models as

well (34 and38,39). Furthermore, the analysis can be even extended to the single-variable

locking-free formulation introduced for classical Timoshenko beams in57. The model

comparison reveals that the generalized beam models demonstrate two different kinds

of parameter-dependent stiffening behavior – one of these kinds (possessed by three

models out of four) enables a very good agreement with experimental results. Finally,

we adopt isogeometric B-spline basis functions of order p ≥ 3 for implementing a

Cp−1-continuous, H3-conforming numerical method. An analogous approach has been

very recently adopted for gradient-elastic Kirchhoff plates by Niiranen et al.58. With

numerical benchmarks, we confirm our theoretical convergence results and illustrate the
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most essential features of the beam models. For applying isogeometric analysis (IGA)

to higher-order partial differential equations of structural dimension reduction models,

within both classical and generalized continua, we refer to56,58–62 (including introductory

reviews on IGA). As a special application, size dependency of the effective Young’s

modulus is demonstrated for an auxetic cellular metamaterial relying on bending-

dominated deformation of cell struts. For this example, modified couple stress model

and finite elements with C1-continuous Hermite basis functions are applied.

This paper is organized as follows: In Section 2, we recall the theory of strain gradient

elasticity applied to the Euler–Bernoulli beam bending model. In Section 3, we derive the

strong forms of the problem, whereas Section 4 is devoted to variational formulations,

stability analysis, numerical methods and error analysis. Section 5 is devoted to model

comparisons. In Section 6, we set up an isogeometric Galerkin discretization for

numerical benchmarks and examples. Conclusions are finally drawn in Section 7.

2. Continuum models

This section recalls the strain gradient theory of a linearly isotropic elastic continuum

and its application to the Euler–Bernoulli beam bending model.

Strain gradient elasticity theory

Let us first consider Mindlin’s strain gradient elasticity theory of form II51 giving the

strain energy density in the form (equation (11.3) in51)

WII =
1

2
λεiiεjj + µεijεij + g1γiikγkjj + g2γijjγikk

+ g3γiikγjjk + g4γijkγijk + g5γijkγkji, (1)

where the (third-order) micro-deformation tensor is defined as the strain gradient

γ = ∇ε, (2)

where operator ∇ denotes the third-order tensor-valued gradient and the classical linear

strain tensor is defined as

ε = ε(u) =
1

2

(

∇u+ (∇u)T
)

, (3)

with the nabla operator denoting now the second-order tensor-valued gradient. The

work conjugate quantity of the micro-deformation, the (third-order) double stress tensor,

is defined by a set of five non-classical material parameters g1 = g1(x, y, z), ..., g5 =
g5(x, y, z) (âi in Mindlin’s notation) as τijk = ∂WII/∂γijk = τjik with indices i, j, k =
x, y, z for Cartesian coordinates x, y, z. The classical Cauchy stress tensor σ, in turn, is

related to its work conjugate as σij = ∂WII/∂εij through the generalized Hooke’s law

σ = 2µε+ λtr εI, (4)
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with Lamé material parameters µ = µ(x, y, z) and λ = λ(x, y, z) and I denoting

the identity tensor. The displacement field of body B is denoted by u : B → R
3.

Consequently, the virtual work expression is written in the form (cf. equation (11.7) in51)

δWint =

∫

B

σ : ε(δu) dB +

∫

B

τ
...γ(δu) dB, (5)

where : and
... denote the scalar products for second- and third-order tensors, respectively.

Applying the Einstein summation convention, these products are defined as σ : ε =

σijǫij τ
...γ = τijkγijk.

A one-parameter simplified strain gradient elasticity theory proposed originally by

Altan and Aifantis32 considers from (1) only the non-classical terms which are related to

parameters g3 and g4 by reducing the strain energy density (1) to (equation (5) in32)

WII =
1

2
λεiiεjj + µεijεij + g2

(1

2
λεii,kεjj,k + µεij,kεij,k

)

, (6)

where the non-classical material parameter g describes the length scale of the micro-

structure of the material. Double-stresses

τijk =
∂WII

∂εij,k
= g2(λεll,kδij + 2µεij,k) = τjik (7)

are related to strain derivatives by the Lamé parameters and the gradient parameter

g (g3 = g2λ/2, g4 = g2µ). For constant Lamé parameters, (7) gives the double stress

tensor in the form τ = g2∇σ, (cf.42 and the energy postulate in63) and finally with (2)

the virtual work expression (5) in the form

δW g
int =

∫

B

σ : ε(δu) dB +

∫

B

g2∇σ
...∇ε(δu) dB, (8)

where superscript g refers to to the gradient-elastic modulus as a parameter.

An additional gradient parameter introducing a micro-inertia term has been proposed51

in order to achieve a physically satisfactory dispersion relation for a large range of wave

numbers22. The variation of the kinetic energy is then written in the form (51; Eq. (3.3)

and (2.4) with (10.2))

δ

∫

T

W γ
kin dτ = −

∫

T

(

∫

B

ρü · δu dB +

∫

B

γ2ρ∇ü : ∇δu dB
)

dτ, (9)

with T and ρ denoting a time interval of the time variable τ and mass density,

respectively, and finally upper dot denoting the time derivative and γ standing for the

micro-inertia parameter.

General energy expressions for external loadings (see18,64,65) are omitted here, the

chosen assumptions for the beam bending problem are detailed in the next subsection.
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Gradient-elastic Euler–Bernoulli beam models

Let us consider a three-dimensional beam structure

B = A× Ω, (10)

where Ω = (0, L) denotes the central axis of the structure with L standing for the length

of the structure. A Cartesian coordinate system will be fixed to the structure such that the

central axis follows the x-axis. Accordingly, A = A(x) ⊂ R
2 denotes the cross section

of the structure, with diam(A) ≪ L.

First of all, let us assume that the material properties and cross section of the beam as

well as surface and body loads and (both static and kinematic) boundary conditions on

the end point cross sections are of such a form that they allow us to focus on uni-axial

bending in the xz-plane with displacement field u = (ux, uz). Within these assumptions,

the dimension reduction hypotheses of the Euler–Bernoulli beam bending model imply

the displacement components of the form

ux = −z
∂w(x)

∂x
, uz = w(x), (11)

in the global Cartesian (x, y, z) coordinate system – leaving the transverse deflection

w : Ω → R as the only independent unknown of the problem.

The only non-zero strain component of the linear strain tensor (3) is now the axial

strain ǫx = −z∂2w/∂x2 giving (8) in the form40

δW g
int =

∫ L

0

∫

A

σxǫx(δux) dA dx+

∫ L

0

∫

A

g2∇σx · ∇ǫx(δux) dA dx

= −

∫ L

0

∫

A

(

σxz + g2
∂σx

∂z

)

dA
∂2δw

∂x2
dx−

∫ L

0

∫

A

g2
∂σx

∂x
z dA

∂3δw

∂x3
dx. (12)

Writing the curvature of the beam axis as

κ(w) = −
∂2w

∂x2
, (13)

with notation δκ = κ(δw), and defining the force resultants, the classical Cauchy type

bending moment and a generalized moment (called couple bending moment in41),

respectively, as

M(x) =

∫

A

σx(x, y, z)z dA, R(x) =

∫

A

∂σx(x, y, z)

∂z
dA, (14)

results in an energy expression over the central axis as

δW g
int =

∫ L

0

(M + g2R)δκ dx+

∫ L

0

g2
∂M

∂x

∂δκ

∂x
dx, (15)
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where we have assumed that the cross-sectional area is constant (cf. (12) and (15)) and

g = g(x). Integration by parts in (15) proposes defining the bending moment of the

gradient-elastic model, or the total bending moment, as

Mg = M + g2R−
∂

∂x

(

g2
∂M

∂x

)

, (16)

which reduces to Mg = M − g2M ′′ + g2R for constant g. Here and in what follows,

prime denotes the x-derivative.

In what follows, we assume, for simplicity, that the material follows the Hooke’s law

in the form σx = Eǫx with Young’s modulus E (assumed to be constant above) giving

the bending moments as

M(x) = −

∫

A

Ez2
∂2w

∂x2
dA = −EI

∂2w

∂x2
, (17)

R(x) = −

∫

A

∂

∂z
(Ez

∂2w

∂x2
) dA = −EA

∂2w

∂x2
, (18)

where I denotes the moment of inertia and is assumed to be constant, for simplicity.

Finally, the internal virtual work expression takes the displacement form

δW g
int =

∫ L

0

(EI + g2EA)
∂2w

∂x2

∂2δw

∂x2
dx+

∫ L

0

g2EI
∂3w

∂x3

∂3δw

∂x3
dx. (19)

Remark 1. We note that the Poisson effect can be easily taken into account by adopting

the generalized Hooke’s law in (4) (see34,39,41,66).

Remark 2. In30, the gradient operators in (15) have been reduced to the x-derivative

(as addressed in40) which drops the generalized moment R from the energy expression

leading to a reduced form

δW g
int =

∫ L

0

Mδκ dx+

∫ L

0

g2
∂M

∂x

∂δκ

∂x
dx

=

∫ L

0

EI
∂2w

∂x2

∂2δw

∂x2
dx+

∫ L

0

g2EI
∂3w

∂x3

∂3δw

∂x3
dx. (20)

From the modeling point of view, this model can be justified in the energy sense by

assuming that g2EA ≪ EI . For a rectangular cross section (with thickness t ≪ L), for

instance, it should hold that 12g2/t2 ≪ 1 (see Sections 3 and 5 for further discussion on

stiffening effects and model comparisons, and67 (Section 9.1) for a reasoning considering

the equilibrium of traction forces).

Regarding body load f : B → R and surface load g : S → R, we assume that a

transversal body loading fz = fz(x, y, z) (even in z for exciting a bending state) is

present and a transversal surface traction gz(x, y) acts on the appropriately defined

upper and lower surfaces S± of the beam at z = ±t/2, together with axial surface
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tractions gx(x, y) at z = t/2 and −gx(x, y) at z = −t/2 (all satisfying the bending state

assumption). Accordingly, the external virtual work is written as

δW 0
ext =

∫

B

f · δu dB +

∫

S±

g · δu dS =

∫ L

0

fδw dx, (21)

with load resultant

f(x) =

∫

A

fz dA+ 2

∫ b

0

gz dy +
∂

∂x

∫ b

0

gx t dy

= Afz(x) + 2bgz(x) + btg′x(x), (22)

where b denotes the width of the beam in the y-direction and we have finally assumed

that fz is independent of y and z, gz and gx are independent of y and t is constant. For

simplicity, we omit more general loading components for which the energy expressions

can be derived by following the procedure introduced for Kirchhoff plates in18.

Finally, for kinetic bending energy, dimension reduction results in

δ

∫

T

W γ
kin dτ = −

∫

T

(

∫

Ω

ρ
(

Aẅ δw + Iẅ′ δw′
)

dΩ

+

∫

Ω

γ2ρ
(

2Aẅ′ δw′ + Iẅ′′ δw′′
)

dΩ
)

dτ, (23)

where both x- and z-components of the gradient have been included.

3. General boundary conditions and governing equations

In this section, the principle of virtual work, or Hamilton’s principle, is applied for

deriving the governing equations and the corresponding sets of boundary conditions.

In particular, the gradient parameter is allowed to be non-constant and the boundary

conditions are stated in terms of Cauchy force quantities, which provides a natural

comparison to their classical counterparts.

First, integration by parts is applied in (15) giving

δW g
int =

∫ L

0

(M + g2R− (g2M ′)′)δκ dx+ [g2M ′δκ]L0 , (24)

which, by substituting δκ = −(δw)′′ and integrating by parts twice, gives

δW g
int = −

∫ L

0

(M + g2R− (g2M ′)′)′′δw dx+ [(M + g2R− (g2M ′)′)′δw]L0

− [(M + g2R− (g2M ′)′)(δw)′]L0 − [g2M ′(δw)′′]L0 . (25)

Now, the energy balance of the internal and external virtual works (15) and (21),

respectively, gives the governing equation of the problem in terms of the bending
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moments as

(M + g2R− (g2M ′)′)′′ = f in Ω, (26)

or shortly (Mg)′ = f according to (16), and can be naturally written in terms of

deflection according to (17) as

(

(EI + g2EA)w′′ − (g2EIw′′′)′
)′′

= f. in Ω. (27)

With constant material parameters, this reduces to (EI + g2EA)w(4) − g2EIw(6) = f
(cf. equation (23) in40). According to (26) and (16), the total shear force is of the form

Qg = (Mg)′ = (M + g2R− (g2M ′)′)′ (28)

reducing to Qg = Q− g2Q′′ + g2R′ for constant g with Q = M ′ denoting the standard

Cauchy shear force.

Remark 3. Ignoring the z-derivative in the gradient term (see the physical reasoning

in Remark 2) leads to a reduced governing equation of the form (cf. equation (11) in30

derived for constant material parameters)

(M − g2M ′′)′′ = f or (EIw′′ − (g2EIw′′′)′)′′ = f in Ω. (29)

From the mathematical point of view, however, the presence of the sixth-order derivative

makes the most significant difference to the classical beam equation which follows from

both (26) (or (27)) and (29) by setting g = 0.

For vibration problems, the governing equation (27) takes the form

(

(EI + g2EA)w′′ − (g2EIw′′′)′
)′′

+ ρA(ẅ − 2γ2ẅ′′)− ρI(ẅ′′ − γ2ẅ′′′′) = f in Ω,
(30)

where the last two terms in the left hand side (multiplied by ρI) represent the so-called

rotatory inertia terms. It should be noticed that the term with factor 2 (multiplied by

ρA) originates from the energy expression related to the x-derivative of δuz and the z-

derivative of δux.

Remark 4. The rotatory inertia terms are typically ignored (as in the examples of22)

as higher order terms (I ∼ bt3 ≪ bt ∼ A for small t). However, in the strain gradient

models they are crucial for obtaining physical dispersion relation as noted in67 and

demonstrated in Section 6.

The boundary conditions, both essential and natural ones, corresponding to (26) are

implied by the balance of virtual works in the following form:

w = w or (M + g2R− (g2M ′)′)′ = Q
g

on ∂Ω, (31)

w′ = β or (M + g2R− (g2M ′)′) = M
g

on ∂Ω, (32)

− w′′ = κ or g2M ′ = G
g

on ∂Ω. (33)
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The overlines denote prescribed boundary variables: deflection w and normal rotation β
and their conjugate quantities, shear force Q

g
and bending moment M

g
, are already

present in the classical case with g = 0 as V and M , respectively. In the current

gradient-elastic model, however, additional given boundary quantities, curvature κ and

its conjugate variable, double bending moment G
g
, appear.

From the physical point of view, the boundary conditions above should be now

grouped such that they describe at least the three standard types: clamped, simply

supported and free. Let us follow18,56 and distinguish the clamped and simply supported

boundaries into two different types according to the curvature: singly and doubly

refering to unprescribed and prescribed curvature, respectively – with subscripts s and d,

respectively. In this way, five different boundary condition types can be defined: doubly

clamped and singly clamped boundaries, respectively,

w = w and w′ = β and − w′′ = κ on ΓCd
, (34)

w = w and w′ = β and g2M ′ = G
g

on ΓCs
, (35)

doubly simply supported and singly simply supported boundaries, respectively,

w = w and (M + g2R− (g2M ′)′) = M
g

and − w′′ = κ on ΓSd
, (36)

w = w and (M + g2R− (g2M ′)′) = M
g

and g2M ′ = G
g

on ΓSs
, (37)

and free boundaries,

(M + g2R− (g2M ′)′)′ = Q
g

and

(M + g2R− (g2M ′)′) = M
g

and

g2M ′ = G
g

on ΓF, (38)

where B = g2M ′ can be considered as a beam counterpart to the so-called surface

stresses encountered within the corresponding three-dimensional strain gradient

continuum67. Finally, we note that setting g = 0 results in the classical boundary

conditions of Euler–Bernoulli beams.

In principle, one could even call (38) doubly free and introduce singly free as a

boundary on which the curvature alone would be prescribed, which is not considered

important here, however.

4. Variational formulation, solvability and Galerkin methods

In this section, the beam bending problem is first formulated in a variational form of a

functional-analytic setting enabling to prove the solvability of the problem by continuity

and ellipticity of the associated bilinear form. Error estimates for Galerkin discretizations

follow as a natural consequence.

In what follows, we use notation L2(Ω) for square-integrable real-valued functions

defined on Ω and Hs(Ω) for a real Sobolev space of order s consisting of square-

integrable real-valued functions defined on Ω with square integrable weak derivatives
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up to order s. The corresponding Sobolev norm is denoted by || · ||s and the seminorm

by | · |s.

The following variational formulations correspond to energy expressions (19) and

(20) – entitled as the full strain gradient model and the reduced strain gradient model,

respectively:

Problem 1. For f ∈ L2(Ω), find w ∈ W ⊂ H3(Ω) such that

a(w, v) = l(v) ∀v ∈ V ⊂ H3(Ω), (39)

where the bilinear form a : W × V → R, a(w, v) = ac(w, v) + a∇(w, v), and the load

functional l : V → R, respectively, are defined as

ac(w, v) =

∫

Ω

EIw′′v′′ dΩ, (40)

a∇(w, v) =

∫

Ω

g2EAw′′v′′ dΩ +

∫

Ω

g2E(Iw′′)′v′′′ dΩ, (41)

l(v) =

∫

Ω

f v dΩ. (42)

The trial function set

W = {v ∈ H3(Ω) | v|ΓS∪ΓC
= w̄, v′|ΓC

= β̄, −v′′|ΓCd
∪ΓSd

= κ̄} (43)

consists of functions satisfying the essential boundary conditions, with given Dirichlet

data w̄, β̄, κ̄, whereas test function space V consists of H3 functions with the

corresponding homogeneous Dirichlet boundary conditions.

Problem 2. For f ∈ L2(Ω), find w ∈ W ⊂ H3(Ω) such that

a(w, v) = l(v) ∀v ∈ V ⊂ H3(Ω), (44)

where the bilinear form a∇(·, ·) of Problem 1 is redefined as

a∇(w, v) =

∫

Ω

g2E(Iw′′)′v′′′ dΩ, (45)

whereas other notation remains unchanged.

Remark 5. The bilinear form of Problem 2 is form-identical to the weak form of

the single-variable locking-free formulation for the classical Timoshenko beam model

introduced in57 (cf. equation (35)): the bending displacement wb of57 can be identified

with deflection w, whereas ratio Kb/Ks of bending stiffness Kb and shear stiffness Ks

can be identified with g2. Therefore, the following theoretical analysis can be extended

to the variational formulation of57 as well.
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The energy norm induced by the bilinear form of Problem 1, defined as

‖v‖2a = a(v, v) =

∫

Ω

(EI + g2EA)(v′′)2 dΩ +

∫

Ω

g2EI(v′′′)2 dΩ, (46)

for constant bending stiffness EI , is equivalent to the H3-norm whenever W = V , which

can be seen in the proofs below. In addition, the symmetry of the bilinear form is clearly

guaranteed: a(u, v) = a(v, u) ∀u, v ∈ V . For Problem 2, the energy norm reduces to the

form

‖v‖2a = a(v, v) =

∫

Ω

EI(v′′)2 dΩ +

∫

Ω

g2EI(v′′′)2 dΩ. (47)

In the limit case g = 0, both bilinear forms reduce to the classical one ac(·, ·) of H2-

regular functions.

The continuity and ellipticity of the bilinear form – for each positive g – guarantee

the well-posedness of the problem. For simplicity, the proof is provided here for constant

material values and fully clamped beams with ∂Ω = ΓCs
and W = V .

Theorem 1. Let us assume that ∂Ω = ΓCs
and W = V . For any g, there exists a

positive constant C = C(g) such that

a(u, v) ≤ C‖u‖3‖v‖3 ∀u, v ∈ V. (48)

Proof. First, for the classical part the elementary proof of the one-dimensional Cauchy–

Schwartz inequality gives the bound

ac(u, v) ≤ EI|u|2|v|2.

In an analogous way, for the non-classical part (of Problem 1) it holds that

a∇(u, v) ≤ g2EA|u|2|v|2 + g2EI|u|3|v|3, (49)

for constant bending stiffness EI . Altogether, we get the upper bound

a(u, v) ≤ (EI + g2EA)|u|2|v|2 + g2EI|u|3|v|3 ≤ C‖u‖3‖v‖3,

where C = EI + g2(EA+ EI) reduces to C = EI(1 + g2) for Problem 2. This

guarantees the continuity of the bilinear form a(·, ·) with respect to the H3-norm.

Theorem 2. Let us assume that ∂Ω = ΓCs
and W = V . For any g > 0, there exists a

positive constant α = α(g) such that

a(v, v) ≥ α‖v‖23 ∀v ∈ V. (50)

Proof. First, for the classical part we recall the elementary one-dimensional Poincaré–

Friedrichs inequality in order to keep track on the constants involved in the analysis.

With v(0) = 0, the fundamental theorem of calculus and the Cauchy–Schwartz inequality
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imply that

‖v‖20 ≤ L2|v|21. (51)

Hence, ‖v‖21 ≤ (1 + L2)|v|21. In an analogous way, with v′(0) = 0, it holds that |v|21 ≤
L2|v|22 and hence it holds that ‖v‖22 ≤ (1 + L2 + L4)|v|22 implying the bound

ac(v, v) = EI|v|22 ≥
EI

1 + L2 + L4
‖v‖22. (52)

Second, for the non-classical part it trivially holds that

a∇(v, v) = g2EA|v|22 + g2EI|v|23, (53)

which gives (for Problem 1) the lower bound

a(v, v) ≥
EI + g2EA

1 + L2 + L4
‖v‖22 + g2EI|v|23 ≥ α‖v‖23. (54)

where α = min((EI + g2EA)/(1 + L2 + L4), g2EI) reduces to α = EImin((1 +
L2 + L4)−1, g2) for Problem 2. This quarantees that the bilinear form a(·, ·) is elliptic

over space V endowed with the H3-norm.

According to Riesz Representation Thorem, the gradient-elastic Euler–Bernoulli beam

problem with fully clamped boundaries has a unique solution:

Theorem 3. Let us assume that ∂Ω = ΓCs
, W = V and g > 0. For a given loading

f ∈ L2(Ω), Problems 1 and 2 have unique solutions in V .

Proof. By continuity and ellipticity, the bilinear form a(·, ·) is an inner product on V
and hence the pair (V, a(·, ·)) is a Hilbert space. In addition, by the Cauchy–Schwartz

inequality the load functional l(·) belonging to the dual space V ′ is linear and continuous

on V :

l(v) =

∫

Ω

f v dΩ ≤ ‖f‖0‖v‖3 ∀v ∈ V. (55)

Riesz Representation Thorem implies unique solutions for Problems 1 and 2.

For free bending vibrations of the beam problem, the inertia terms corresponding to

(30) are of the form (cf. (23))

mc(w, v) =

∫

Ω

ρAẅ v dΩ +

∫

Ω

ρIẅ′ v′ dΩ, (56)

m∇(w, v) =

∫

Ω

2γ2ρAẅ′v′ dΩ +

∫

Ω

γ2ρIẅ′′v′′ dΩ. (57)

Let us solve Problems 1 and 2 by conforming Galerkin methods giving approximation

wh converging to the exact solution w with grid size h:
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Method 1. For f ∈ L2(Ω), find wh ∈ Wh ⊂ W such that

a(wh, v) = l(v) ∀v ∈ Vh ⊂ V. (58)

With the conformity of the method, i.e., Vh ⊂ V , requiring C2-continuous basis

functions, the continuity and ellipticity of the continuous problem are inherited by the

discrete problem. This implies the following error estimates which can be proved in a

standard way by imitating the steps for proving the so-called Cea’s lemma68 (first, use

ellipticity; second, use Galerkin orthogonality implied by conformity and consistency;

third, use continuity):

Proposition 1. Let us assume that ∂Ω = ΓCs
, W = V and g > 0. For a given loading

f ∈ L2(Ω), it holds that

‖w − wh‖3 ≤
C

α
inf

0 6=v∈Vh

‖w − v‖3. (59)

Approximation properties of B-splines or the corresponding classical ones for

polynomials imply a more quantitative error estimate in terms of basis function order

p and mesh size h:

Corollary 1. With the assumptions of Proposition 1, it holds that

‖w − wh‖3 ≤
C

α
chp−2|w|p+1. (60)

where the exact solution of the problem is assumed to be smooth enough, i.e., w ∈
Hp+1(Ω), and interpolation constant c is independent on w and h.

Finally, we note that since constants C and α depend on g the error estimates depend

on g as well. However, numerical results in Section 6 show that convergence results are

very good for a wide range of parameter values. Due to boundary layers of the solution,

in turn, regularity assumption w ∈ Hp+1(Ω) might not be realistic for large values of p.

Numerical examples of boundary layers are given in Section 6.

5. Model comparisons

This section is devoted to a model comparison between the two strain gradient beam

models of the previous sections (Problems 1 and 2; cf.40,41 and30) and other two beam

models based on modified strain gradient and couple stress theories (34 and38,39) – and

the corresponding classical beam model. In particular, the comparison reveals that our

variational analysis is extendable to the other two generalized beam models, and that

the generalized beam models demonstrate two different kinds of parameter-dependent

stiffening behavior – one of these kinds (possessed by three models out of four) provides

capturing experimental results.
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Formulations for modified strain gradient and couple stress models

Let us consider Mindlin’s strain gradient elasticity theory of form I51 giving strain energy

density (equation (9.11) in51; cf. (1))

WI =
1

2
λεiiεjj + µεijεij + a1ηiikηkjj + a2ηijjηikk

+ a3ηiikηjjk + a4ηijkηijk + a5ηijkηkji, (61)

where the (third-order) micro-deformation tensor is defined by the second gradient of the

displacement as (cf. (2))

η = ∇u. (62)

The work conjugate (third-order) double stress tensor is now defined by a set of five

non-classical material parameters a1 = a1(x, y, z), ..., a5 = a5(x, y, z) (ãi in Mindlin’s

notation) as τijk = ∂WI/∂ηijk = τjik.

Within the modified version proposed in24, the strain energy density is written as (cf.

(6))

WI =
1

2
λεiiεjj + µεijεij + l0εmm,iεnn,j + l1γ

(1)
ijkγ

(1)
ijk + l2χ

s
ijχ

s
ij , (63)

with three length scale parameters l0, l1 and l2 associated to the dilatation gradients,

deviatoric stretch gradients and symmetric parts of rotation gradients, respectively.

The last two are defined as follows: γ
(1)
ijk = γs

ijk − (δijγ
s
mmk + δjkγ

s
mmi + δijγ

s
mmj)/5

with γs
ijk = (ui,jk + uj,ki + uk,ij)/3 and χs

ij = (χij + χij)/2 with χij = eimnγjmn =
eimnun,jm. Without giving further details, we simply recall that for the Euler–Bernoulli

beam problem this modification leads to a sixth-order governing equation ((21) in39 with

a simplyfying assumption ν = 0):

(

EI + EA(l20 +
4l21
15

+
l22
2
)
)

w(4) − EI
(

l20 +
2l21
5

)

w(6) = f, (64)

with boundary conditions very similar to the ones presented in (34)–(38). This differential

equation is clearly form-equivalent to equation (27).

The corresponding bilinear form can be obtained by identifying the terms in energy

expression (13) of39 with the gradient part of the bilinear form of Problem 1 (by assuming

constant material parameters, for simplicity):

a∇(w, v) =

∫

Ω

EA
(

l20 +
4l21
15

+
l22
2

)

w′′v′′ dΩ +

∫

Ω

EI
(

l20 +
2l21
5

)

w′′′v′′′ dΩ. (65)

The stability results for this formulation follow by modifying the corresponding steps of

the proofs of Theorems 1 and 2.

Another closely related beam model has been introduced and analyzed in34 by

following a modified couple stress theory proposed by35 . The strain energy density and
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governing equation of the model can be, however, obtained as a special case of (63) and

(64), respectively, by simply setting l0 = l1 = 0 giving a one-parameter model leading to

a fourth-order governing equation, in particular ((26) in34 with a simplyfying assumption

ν = 0):
(

EI + EA
l2

2
)
)

w(4) = f. (66)

The corresponding bilinear form can be obtained by simply setting a∇(·, ·) = 0 in

Problem 1 and then augmenting the classical H2-part ac(·, ·) by an l2-dependent

addendum, and finally modifying the energy norm accordingly. The stability results

follow by modifying the steps corresponding to the classical parts of the proofs of

Theorems 1 and 2. In this case, a C1(Ω)-continuous disretization (with Hermite shape

functions, for instance) provides an H2(Ω)-conforming method (see Section 6.5). This

model has been later extended in36 by a surface energy term according to37, which leads

to including a second-order term in (66), essentially.

Model comparisons with a cantilever beam

In this subsection, we compare the four models presented above – full strain gradient

(SG) model of Problem 140,41, reduced strain gradient model of Problem 230, modified

strain gradient model38,39 and modified couple stress (CS) model34,36 – both to each other

and to the classical Euler–Bernoulli beam model. For this purpose, we solve a problem

of a transversely point-loaded cantilever beam by analytical means. The beam is clamped

(singly clamped for the sixth-order models) at one end (x = 0) and a point load Q
g

acts

at the other end (x = L).

In order to clarify the essential differences of the solutions, we write the governing

equation of the problem in a generic form (by assuming constant material parameters)

EI(cgw(4) − dgw(6)) = f, (67)

with constants cg and dg specified below for each model (cg = 1 and dg = 0 for the

classical beam model). First of all, we note that for a rectangular cross section, for

instance, with the thickness t ≪ L, it holds that EA/EI = 12/t2, whereas for circular

cross sections EA/EI = 16/t2. Therefore, we use notation EA/EI = α/t2 with

constant α depending on the cross section, in order to study the thickness dependence

of the models.

For the full and reduced SG-models, constants cg and dg are determined, respectively,

by (27) and (29) giving

dg = g2, cg = 1 + αg2/t2 (full SG model), (68)

dg = g2, cg = 1 (reduced SG model). (69)

For the modified SG-model, setting l0 = l = l1 = l2 in (64) implies that cg and dg are

replaced by

dl = dl2, d = 7/5, cl = 1 + cαl2/t2, c = 53/30 (modified SG). (70)

Prepared using sagej.cls



18 Journal Title XX(X)

For the modified CS-model, it holds that

dl = 0, cl = 1 + cαl2/t2, c = 1/2 (modified CS model). (71)

Let us consider the maximum deflection at the free end of the beam denoted by wL

giving bending rigidity D = Q
g
/wL which for the classical beam model is of the form

D0 = 3EI/L3.

First, for studying the differences of the reduced and full strain gradient models, the

normalized bending rigidity D/D0 (see the Appendix) is plotted against the thickness

parameter t in Figure 1 (left), with 0 ≤ t ≤ 0.15L = 150 µm, for two gradient parameter

values, g = 5 µm (solid lines) and g = 50 µm (dashed lines) with a fixed length L =
1000 µm. As can be deduced from (69) and seen in the figure, the normalized bending

rigidity of the reduced SG-model is independent of the thickness and very close to the

classical value: for g = 5 µm (grey solid line) D/D0 = 1.000007, whereas for g = 50
µm (black dashed line) D/D0 = 1.007. This demonstrates the first kind of stiffening

effect which stems from g2 factoring the sixth-order term in (67). On the contrary, the

normalized bending rigidity of the full SG-model increases dramatically with decreasing

thickness values (red solid line for g = 5 µm and red dashed line for g = 50 µm). As

indicated by (68) as well, this demonstrates the combination of the first and second

kinds of stiffening effect; the second one stemming from g2/t2 factoring the fourth-order

term. The modified SG-model (blue lines) shares the same feature (see (70)), whereas

the modified CS-model (green lines) demonstrates the (almost invisible) second kind

stiffening effect alone (cf. (71)).

Second, for comparing the stiffening behavior to experimental results taken from24

(including a comparison to the modified SG model), the corresponding curves for the

full SG model are plotted in Figure 1 (right) for g = 4, 6.5 (the best fit), 8, 10 µm. As

a conclusion, we can state that the second kind stiffening effect is qualitatively different

and drastically stronger than the first kind effect and enables capturing the experimentally

observed stiffening effect observed for the epoxy materials of the experiment (cf. the

coresponding comparisons to experiments for the modified CS model in26,34).

Third, we compare the stiffening behavior of the full SG model to the experimental

results taken from27 studying elastic properties of silver nanowires with outer diameters

ranging from 20 to 140 nm. In Figure 2, one can observe a clear diameter dependence

in both the experimental results (black circles) and the fitting curve (black dashed

line) based on a theoretical analysis for the size dependence of the ”apparent Young’s

modulus” attributed to the surface effect, the oxidation layer and the surface roughness.

Surprisingly, the stiffening behavior of the strain gradient model (red solid line) is quite

close to the observed size dependence – although the fundamental physical reasonings

for nano- and micro-scales are different and hence this comparison should be primarily

taken as a demonstration of the similarity of the stiffening effects of these two scales.

6. Isogeometric implementation and numerical examples

In this section, we first introduce an isogeometric, C2-continuous B-spline discretization

of Method 1 and confirm the theoretical convergence results of Corollary 1 by studying
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Figure 1. Singly clamped cantilever micro-beam: thickness dependence of bending rigidity

D/D0 for four different strain gradient models (left) and a comparison to experimental results

(right).
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Figure 2. Singly simply supported nano-beam: effective experimental Young’s modulus

versus the thickness dependence of the bending rigidity.

numerical benchmark problems of statics with analytical exact solutions. Second, we

illustrate some essential differences between the two model variants of strain gradient

elasticity and the one of classical elasticity. Third, we study the accuracy of natural

frequencies and eigenmodes provided by the numerical method.

Finally, we demonstrate the size dependency of the effective Young’s modulus

of an auxetic cellular metamaterial in which auxeticity is governed by bending-

dominated deformation of cell struts, which is a typical fundamental feature for auxetic

metamaterials relying on a cell architecture8,9. The struts are modelled by incorporating
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the modified couple stress beam formulation into a commercial finite element software

providing a C1-continuous discretization for beam bending.

Isogeometric B-spline implementation

Method 1 has been implemented by using isogeometric discretizations56,58,60,61,69:

Associated to an open knot vector {0 = x1, . . . , xn+p+1 = L}, with n denoting the

number of basis functions and L = 1, B-splines of order p ≥ 1 are defined recursively

by Cox–de Boor recursion (by definition 0/0 = 0) as

Ni,p(x) =
x− xi

xi+p − xi
Ni,p−1(x) +

xi+p+1 − x

xi+p+1 − xi+1
Ni+1,p−1(x), (72)

where the zeroth order ones are defined as follows: Ni,0(x) = 1 for xi ≤ x <
xi+1 and Ni,0(x) = 0 elsewhere. For the corresponding approximation wh(x) =
∑n

i=1 Ni,p(x)ŵi, with (unknown) control variables ŵi, these functions provide regularity

Cp−1 over the mesh. In particular, since Cp−1(Ω) ⊂ H3(Ω) with p ≥ 3 this approach

provides H3(Ω)-conforming discretizations for Problems 1 and 2.

Our implementation follows the standard Galerkin approach essentially described in57

(Sections 3.1 and 3.2) giving the element stiffness matrix (for Problem 1 with I assumed

to be constant) and force vector, respectively, as

Ke =

∫

e

(EI + g2EA)N ′′TN ′′ dx+

∫

e

g2EIN ′′′TN ′′′ dx, (73)

fe =

∫

e

f NT dx, (74)

where N denotes, as usual, the row vector of the shape functions.

Convergence study of a singly simply supported beam

Let us consider a thin beam of a square cross section with thickness t = L/20, length

L = 1 and Young’s modulus E = 210000. Loading

f(x) = f0e
x/L (75)

is applied along the beam axis with f0 = 0.1/(EI). The analytical solution following

the beam equation (27), with singly simply supported boundary conditions (37), can be

written in the form

w(x) = c0 + c1x+ c2x
2 + c3x

3 + c4g
4 sinh(x/g) + c5g

4 cosh(x/g)

+
f0L

4

EI(1− g2/L2)
ex/L, (76)

with constants ci, i = 0, ..., 5 determined by the boundary conditions.

First, the convergence properties of the method are studied with respect to different

norms for the gradient parameter value g/L = 0.05 = t/L. In Figure 3 (left), the relative

Prepared using sagej.cls



Niiranen et al. 21

error in the H3-norm is plotted against the mesh size (in logarithmic scales) for B-

spline orders p = 3, 4, 5 with continuity Cp−1. Solid lines refer to the full SG-model,

dashed lines refer to the reduced SG-model. It can be seen that the convergence rates

fairly strictly follow the theoretical order O(hp−2) predicted by Corollary 1. It should be

noticed that the H3-norm (with third-order derivatives) measures the error in the bending

energy (46).

Second, for studying the parameter dependence of the convergence rates (see the

remark below Proposition 1), relative errors in the H3-norm with p = 3 are plotted

in Figure 3 (right), for three different values of the gradient parameter: g/L =
0.1, 0.05, 0.035. According to these plots, g does not affect the asymptotic convergence

order as predicted by the theoretical results, whereas it slightly shifts the error level

upwards: decreasing g increases the error.
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Figure 3. Singly simply supported beam: (left) Convergence in the H3-norm for p = 3, 4, 5
with g/L = 0.05; (right) Convergence in the H3-norm for p = 3 with g/L = 0.1, 0.05, 0.035.

Third, convergence rates for the relative error in lower-order norms (H2, H1 and

L2 with H3 as a reference) are plotted in Figure 4 for orders p = 4 and 5 (left and

right, respectively). It should be noticed that as for the classical beam model the H1-

norm measures the error in the rotation, whereas the H2-norm measures the error in the

Cauchy bending moment M or in the Cauchy part of the bending energy. For the H2-

norm, the convergence order is close to O(hp−1). There is a natural decrease in the error

level and improvement in the convergence rate compared to the H3-error. Analogous

improvements hold for the H1-norm as well. For the L2-norm, these improvements are

still clear but not that significant any more.
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Figure 4. Singly simply supported beam: Convergence in the H3, H2, H1 and L2-norms for

p = 4 (left) and p = 5 (right) with g/L = 0.05.

Parameter-dependent stiffening and boundary layers

In this subsection, we demonstrate and compare the parameter-dependent stiffening

effect and boundary layers of the two variants of gradient-elastic Euler–Bernoulli beam

models, the full and reduced SG-models.

First, we illustrate the distributions of the deflection for these two models; for the

singly simply supported beam of Section 6.2 with p = 5 and 128 degrees of freedom. The

deflection distributions in Figure 5, for three different values of the gradient parameter,

g/L = 0.1, 0.01, 0.001, show that the deflection of the full SG-model (solid lines)

distinctly depends on the gradient parameter, whereas for the reduced SG-model (dashed

lines) the parameter dependence is diminutive. For the largest parameter value g/L = 0.1
(green dashed line), however, the reduced model shows a clear parameter dependence

(stiffening) as well.

Second, we compare the deflection distributions of the models with different (extreme)

values of ratio g/t (cf. condition 12g2/t2 ≪ 1 in Remark 2): with g/L = 0.01, the

deflection distributions for g/t = 1 and g/t = 0.2 are plotted in Figures 6 (left and

right, respectively). These plots show that decreasing ratio g/t essentially decreases the

difference between the solutions of the models. In general, the full SG-model implies an

essentially stiffer beam than the reduced SG-model (combining the first and second kind

stiffening) which, in turn, gives a stiffer beam than the classical beam model (the first

kind stiffening alone).

Third, in order to illustrate the boundary layers of the solutions – produced by the sixth-

order term of (29) (or (27) for the full SG model) – we compare the bending moment and

shear force of the reduced SG-model defined in (16) and (28), respectively, to the ones

given by the classical beam model (with g = 0). In Figure 7 (left), the total moment

Mg (dashed line), i.e., the moment corresponding to the total stress, and its classical

part M , i.e., the moment corresponding to the Cauchy stress, are plotted along the beam

axis for parameter values g/L = 0.05, 0.02, 0.01, 0.005 with p = 5. The corresponding
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Figure 5. Singly simply supported beam: Deflection with p = 5 for g/L = 0.1, 0.01, 0.001.

shear forces are plotted in Figure 7 (right). These distributions reveal that the solution

exhibits a boundary layer clearly visible in the classical part (solid lines), already evident

from the hyperbolic functions (with argument x/g for small g) of the analytical solution

for the deflection in (76). However, the boundary layer is not present in the (quadratic)

total moment or in the (linear) total shear force (black dashed lines) which can be solved

for this statically determined model problem from the second-order moment equation of

(29).
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Figure 6. Singly simply supported beam: Deflection p = 5 with g/L = 0.01 for g/t = 1 (left)

and g/t = 0.2 (right).

Finally, the deflection of another singly simply supported beam is studied with L = 1,

t/L = 0.02 and with Young’s modulus of silver. In Figure 8 (left), the location of

the supports (at x = 0 and x = L/2) is depicted with the deflection curves for g/L =
0.01, 0.005, 0.001 with p = 5 and 20 elements demonstrating the parameter dependence.

Different terms of the total bending moment (see (16)) are plotted in Figure 8 (right)
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Figure 7. Singly simply supported beam: Moments M and Mg (left) and shear forces Q and

Qg (right) for g/L = 0.05, 0.02, 0.01, 0.005 with p = 5.

with the corresponding moment of the classical problem as a reference (M0, black

dashed line). Regarding the moment curves, it should be noticed that the due to the

singly simple supports the exact total moment Mg (approximated by the magenta line

of Mg
h ) equals to the exact classical one M0. Some of the curves are smooth since the

deflection is even C4-continuous. We note as well that the support at the middle of the

beam is imposed by the standard penalization technique typically used in isogeometric

methods (not necessarily providing degrees of freedom for nodal values due to the non-

interpolatory nature of the approximation with respect to the internal nodes).
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Figure 8. Singly simply supported cantilever beam: Deflection and bending moment for

g/L = 0.01, 0.005, 0.001.
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Free vibration study of a doubly simply supported beam

Let us next consider a doubly simply supported thin beam for which the full SG model

following equation (30) gives natural frequencies

ω2
g,γ = k4

EI

ρA

1 + g2A/I + g2k2

1 + 2γ2k2 + I(k2 + γ2k4)/A
, k =

πn

L
. (77)

The dimensionless phase velocity of the full SG model

v̂g,γ =
vg,γ
vc

=

√

k̂2(1 + α(g/t)2) + α(g/t)2k̂4

1 + 2α(γ/t)2k̂2 + k̂2 + α(γ/t)2k̂4
, (78)

where vg,γ = ωg,γ/k and vc =
√

E/ρ, is plotted in Figure 9 (left, green line) as a

function of the dimensionless wave number k̂ = k
√

I/A with g/L = 0.01 and γ/L =
0.005. The corresponding quantity for the reduced SG model is plotted in the same figure

(blue line). Furthermore, it can be noticed in the same figure, as already addressed in67,

that including the rotatory terms for beams (not γ 6= 0 alone as for strain gradient models

in general; see22) guarantees avoiding non-physical dispersion curves tending to infinity

(red and magenta lines), meaning unbounded wave velocities for very high wavenumbers

(or frequencies).

Second, in Figure 9 (right), the relative error in the H3-norm for the fifth eigenmode

with g/L = 0.1 = γ/L is plotted against the mesh size (in logarithmic scales) for B-

spline orders p = 3, 4, 5, 6 with continuity Cp−1. The results show that the convergence

rates quite systematically follow order O(hp−1).
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Figure 9. Doubly simply supported beam: (left) Dispersion curves with p = 5 for different

combinations of parameters g and γ; (right) Convergence of the fifth eigenmode in the

H3-norm for p = 3, 4, 5 and 6 with g/L = 0.1 = γ.

Third, in Figure 10 (left), the eigenspectra normalized with the corresponding exact

solutions are plotted for g/L = 0.1 = γ for p = 3, 4, 5, 6 (with n = 1, ..., N indexing

Prepared using sagej.cls



26 Journal Title XX(X)

the eigenvalues). It can be clearly seen that the typical spectral convergence behavior

of isogeometric Galerkin methods is realized in this problem as well. However,

Figure 10 (right) presenting the normalized eigenspectra with p = 3 for different gradient

parameter combinations of g/L = 0, 0.01, 0.02 and γ/L = 0, 0.01, 0.02 shows that the

accuracy level is clearly parameter-dependent. It should be noticed that, as typical in

isogeometric analysis, for B-spline basis functions with open knot vectors there exist

high frequency outliers in Figure 10 (left) (with increasing magnitude and number

along with the order of basis functions, as now visible for p = 4, 5, 6) constituting the

discrete optical branch of the numerical spectrum. Outliers can be, however, eliminated

by spacing control points uniformly (which requires a nonlinear reparametrization,

however)70.
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Figure 10. Doubly simply supported beam: (left) Discrete normalized spectra for

g/L = 0.1 = γ with p = 3, 4, 5 and 6; (right) Discrete normalized spectra with p = 3 for

different gradient parameter combinations.

Size dependency of the effective Young’s modulus for a cellular

auxetic metamaterial

Let us consider a two-dimensional quadrangular strip under a uni-axial tensional loading:

distributed vertical loadings act (in the y-direction) at the top and bottom boundary lines

of the structure. Due to the symmetry of the loading and geometry, only one half of the

model structure is analyzed, as depicted in Fig. 11 (left). The material of the structure

is chosen to be an auxetic metamaterial architectured by using re-entrant (inverse)

honeycomb cells composed of prismatic struts, having rectangular cross-sections with

A = t2, I = t4/12 and E = 110 GPa (Titanium), for simplicity (see Fig. 11).
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Figure 11. (left) Model structure composed of an auxetic metamaterial architectured by

re-entrant honeycomb cells; (right) Size dependency of the relative effective Young’s modulus.

First of all, it is well known that the mechanism of auxeticity in this type of cellular

metamaterial originates from the topology of the re-entrant honeycomb cells exciting

bending-dominated deformation states in the members forming the cell microstructure8,9.

Accordingly, the strain energy of the uni-axially tensioned model structure is known to be

dominated by the bending energy of the members: a numerical verification by standard

finite element methods gives ratio Wb/Ws = 33.1, where Wb and Ws, respectively,

denote the total bending and stretching energies of the members summed over the

cell grid of the structure. The effective Poisson’s ratio is known to be independent

of the properties of the bulk material (ν = −εxx/εyy = −0.966 for the present model

structure), whereas in what follows we show how the effective Young’s modulus of the

strip depends on the scale of the members: with a fixed bulk material length scale l (see

equation (71)), the strip becomes relatively stiffer when decreasing the thickness of the

members and scaling the whole structure accordingly.

Since the model comparison in Section 5 shows that the stiffening of the second kind

produces the thickness dependence of the bending rigidity, we model the structure by

using members following the modified couple stress theory with the bending governing

equation (66), or (67) with (71), in the form EIclw(4) = f with EIcl = EI(1 + 6l2/t2).
The stiffening factor cl = 1 + 6l2/t2 is given as a user-defined material value (connected

to the moment of inertia) for a commercial finite element software (Comsol) using

C1-continuous Hermite elements for beam bending (cf. Section 5.1). Stretching of

the members, decoupled from bending in case of linear elasticity, can be assumed to

follow the classical elasticity theory giving the governing equation EAu′′ = Ab (with

distributed axial loading b) since the sretching energy is negligible and since generalized

bar models do not provide size-dependent stiffening effect of the second kind (see the

derivation of the governing equation EAu′′ − g2EAu(4) = Ab with analytical solutions

and numerical methods in56).
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Size dependency of the effective Young’s modulus Eeff, defined as the ratio between

the tensional loading and strain in the vertical direction, is presented in Fig. 11 (right)

showing the cruciality of the stiffening effect for auxetic metamaterials obeying bending-

dominated deformation.

7. Conclusions

In the theoretical part of the paper, displacement-based variational formulations and

governing equations with boundary conditions are derived for a pair of Euler–Bernoulli

beam bending models following a simplied form of Mindlin’s strain gradient elasticity

theory of form II. This leads to sixth-order boundary value problems with new

types of boundary conditions which are given additional attributes singly and doubly;

referring to a physically relevant distinguishment between free and prescribed curvature,

respectively. By proving the continuity and ellipticity (coercivity) of the associated

symmetric bilinear forms of the variational formulations, existence and uniqueness of

weak solutions is established within an H3 Sobolev space setting. For conforming

Galerkin discretization methods, in particular, this is shown to guarantee invertible

stiffness matrices and optimal convergence. Altogether, these theoretical results serve

as a foundation for the development and analysis of numerical discretization methods as

the one proposed in the second part of the paper.

In order to further disentangle the physicality of the models, the analyzed strain

gradient formulations are next compared to other two generalized beam bending models

which follow another modifed strain gradient elasticity theory and a modifed couple

stress theory. First, it is explained how to extend the results of the variational analysis to

cover these beam model variants. Second, the parameter dependence of the four models

– with respect to the thickness and gradient parameters – is studied in detail by a model

problem describing a cantilever beam. The comparison reveals essential features of these

four closely related beam models: the reduced strain gradient formulation is essentially

independent of the thickness parameter, whereas the other three models are able to

present the thickness-dependent stiffening effect experimentally observed for micro- and

nano-size cantilevers. Altogether, the comparison expresses that the ratio between the

thickness and gradient parameters drastically affects the behavior of the models.

In the computational part of the paper, first the optimal convergence results of the

theoretical part are confirmed by a conforming and isogeometric B-spline Galerkin

discretization. In detail, for static problems the convergence rates in the H3-norm follow

the theoretical order O(hp−2) for a large range of gradient parameter values with Cp−1-

continuous basis functions of order p = 3, 4, 5. Convergence in lower-order norms as

well as convergence of eigenvectors and eigenvalues of free vibrations (for p = 3, 4, 5, 6)

behave as expected as well. Parameter-dependent boundary layers, typical for solutions

of problems following strain gradient elasticity theories, are addressed by numerical

examples. Regarding free vibrations, the effect of gradient parameters and the role of

rotatory inertia terms are shown to be significant for obtaining physically meaningful

dispersion curves, in particular.
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Finally, we demonstrate the cruciality of the stiffening effect for auxetic metamaterials

obeying bending-dominated deformation of cell struts: the effective Young’s modulus is

shown to be prominently size-dependent in the presence of micro- and nano-beams as cell

members. The numerical results – together with the model comparison – call for further

experimental model validations with respect to both different engineering materials

and various micro-structural length scales. Altogether, the modern numerical methods

proposed here provide reliable and efficient general-purpose tools for solving complex

problems which are difficult to solve by analytical means dominating the literature related

to the topic.
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Normalized bending rigidities for model comparison

The normalized bending rigidities plotted in Figure 1 have the following forms: for the

full SG-model, it holds that

(D/D0)
−1 =

g2

L2

α(L2/t2)− 3 + (L2/g2)

(αg2/t2 + 1)2

+
3g3

2L3

α(L2/t2)(g2/t2 + 1) + 4

(αg2/t2 + 1)5/2
cosh

√

α(L2/t2 + L2/g2)− 1

sinh
√

α(L2/t2 + L2/g2)
;

(79)

for the reduced SG-model, it holds that

D/D0 =
sinh(L/g)

sinh(L/g)(1− 3g2/L2) + 6(g3/L3)(cosh(L/g)− 1)
; (80)

for the modified SG-model, it holds that

(D/D0)
−1 =

1 + cαl2/t2 − 3dl/L2

1 + cαl2/t2

+
6l3

L3

d3/2

(1 + cαl2/t2)5/2
cosh

√

(L2/d)(1/l2 + cα/t2)− 1

sinh
√

(L2/d)(1/l2 + cα/t2)
; (81)

for the modified CS-model, the normalized bending rigidity takes the simplest form

D/D0 = 1 +
αl2

2t3
. (82)
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