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Abstract A unified variational theory is proposed for a
general class of multiscale models based on the concept
of Representative Volume Element (RVE). The entire
theory lies on three fundamental principles: (i) kine-
matical admissibility, whereby the macro- and micro-
scale kinematics are defined and linked in a physically
meanigful way; (ii) duality, through which the natures
of the force- and stress-like quantities are uniquely iden-
tified as the duals (power-conjugates) of the adopted
kinematical variables; and (iii) the Principle of Multi-
scale Virtual Power, a generalization of the well-known
Hill-Mandel Principle of Macrohomogeneity, from which
equilibrium equations and homogenization relations for
the force- and stress-like quantities are unequivocally
obtained by straightforward variational arguments. The
proposed theory provides a clear, logically-structured
framework within which existing formulations can be
rationally justified and new, more general multiscale
models can be rigorously derived in well-defined steps.
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Its generality allows the treatment of problems involv-
ing phenomena as diverse as dynamics, higher order
strain effects, material failure with kinematical disconti-
nuities, fluid mechanics and coupled multi-physics. This
is illustrated in a number of examples where a range
models is systematically derived by following the same
steps. Due to the variational basis of the theory, the for-
mat in which derived models are presented is naturally
well suited for discretization by finite element-based or
related methods of numerical approximation. Numeri-
cal examples illustrate the use of resulting models, in-
cluding a non-conventional failure-oriented model with
discontinuous kinematics, in practical computations.

Keywords Multi-scale formulations - RVE - Duality -
Constitutive theory - Hill-Mandel - Heterogeneous
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1 Introduction
1.1 RVE-based multiscale methods. A brief review

Multiscale theories, i.e. theories that link the macro-
scopic behaviour of continua to phenomena occurring
at smaller spatial scales, date back at least to the mid-
twentieth century. Fundamental early contributions are
found in the seminal series of papers by Kirkwood and
co-workers [52,54,55,56], where continuum governing
equations are derived from statistical molecular me-
chanics arguments in the context of transport phenom-
ena. In solid mechanics, significant theoretical devel-
opments in the estimation of macroscopic properties
of heterogeneous materials began with the pioneering
work of Hashin and Shtrikman [41], Hill [42,43,44,45],
Budiansky [17], Mandel [72] and Gurson [40], among
others. A further stream of significant developments
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in this direction took place beginning in the mid- to
late 1970’s, based on the asymptotic analysis of par-
tial differential equations with periodic coefficients in
the modelling of periodic media. Fundamental contri-
butions in this context are the books by Bensoussan
et al. [10] and Sanchez-Palencia [105]. Common across
the range of different approaches is the fact that macro-
scopic continuum quantities (often referred to as ho-

mogenized quantities) are invariably linked to their micro-

scale counterpart fields by means of some kind of aver-
aging process.

Over the last two decades or so, a surge in the use
of multiscale theories has been seen especially within
the context of computational mechanics. Attention has
been focused particularly on theories that rely on the
concept of Representative Volume Element (RVE) where
stresses and strains at the macro-scale are obtained as
volume averages of their micro-scale counterparts over
the RVE. The RVE itself is usually modelled as a con-
tinuum, but may also be described in terms of dis-
crete interactions. The use of RVE-based theories in
situations of practical interest relies almost exclusively
on techniques of computational homogenization, based
on finite element methods [30,57,64,77,78,79,80,81,82,
93,115,121]. In solid mechanics, reported applications
encompass at present the modelling of a wide range
of phenomena, including plasticity, thermomechanical
coupling, size effects, material failure and dynamics,
among others.

In plasticity, for example, the recent review by Mc-
Dowell [76] presents a comprehensive account of the use
of multiscale theories not only in the continuum setting,
but also at the molecular and atomistic scales. The liter-
ature in this area provides clear evidence of the ability
of the multiscale approach to overcome several chal-
lenges in the modeling of the plastic response resulting
from complex phenomena such as dislocation dynam-
ics, crystal plasticity and phase transformation under
complex strain histories. However, many fundamental
problems, related both to the understanding and mod-
eling of micro-scale mechanisms and to the development
of suitable multiscale theories, remain open, even in this
relatively classical field of research (see [76] and refer-
ences therein).

Multiscale formulations have proved useful also in
deriving higher order constitutive models [58,59,65, 66,
114]. These formulations are suitable for modeling ma-
terial behavior when the scales are not sufficiently sep-
arated and size-dependent behaviour becomes relevant.
An appealing aspect of RVE-based strategies in this
case is that they are capable of endowing the macro-
scale with higher order constitutive models that are re-
trieved from conventional micro-scale descriptions with

first-order kinematics. The associated length-scale here
arises as a natural consequence of the kinematical trans-
fer between scales, which includes a contribution of
the second-order macro-scale gradient to the first order
micro-scale deformation gradient field. This approach
was shown to be an interesting alternative to phenomeno-
logical models in addressing problems such as strain lo-
calization, as a length-scale parameter does not need to
be artificially introduced.

In the field of thermoelasticity, the use of thermo-
mechanically coupled multiscale formulations has led to
the development of more refined constitutive descrip-
tions. Early work exploring RVE-based theories in this
case embraced the standard scales separation assump-
tion, which is typical of the asymptotic analysis ap-
proach to the problem [10,25,33,106]. For example, in
[91,92,107,118] the problem is addressed under the hy-
pothesis of scales separation, requiring the use of a uni-
form temperature field in the micro-scale mechanical
problem. This is consistent with a standard thermody-
namics setting at the macro-scale. Alternatively, in [15],
a thermomechanical multiscale formulation is proposed
to account for temperature fluctuations in the micro-
scale mechanical problem. This approach is based on
purely variational arguments to define the kinematic
transfer between scales and to naturally derive homog-
enization rules for the flux quantities (stress and heat
flux in this case). The formulation proposed in [15] is
in line with [31,51,83,84] in the sense that the contin-
uum model at the macro-scale features a higher order
thermal behavior, with the stress depending on the tem-
perature gradient. This is consistent with an extended
thermodynamics framework at the macro-scale.

Another interesting area where multiscale theories
have a clear potential to promote significant advances
in modeling, is failure mechanics. Macro-scale failure,
i.e. loss of load carrying capacity leading to eventual
fracturing of the material, is the result of a number of
complex interacting micro-scale mechanisms whose na-
ture depends crucially on the specific material in ques-
tion. One of the main challenges here is the formulation
of objective models, i.e. models for which the energy
dissipated by the failure mechanisms is well-defined —
unaffected by RVE size and convergent with mesh re-
finement. Classical, standard RVE-based formulations
are inherently non-objective in this sense as the in-
herent size-effect associated with strain localization [6]
at the micro-scale translates into a lack of objectiv-
ity of the macro-scale response with respect to RVE
size [37]. To circumvent this problem several strate-
gies have been developed. For instance, in [9,8,109] a
specific stress homogenization procedure has been pro-
posed which excludes strain localization zones from the
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stress averaging domain. In addition, a dependence of
numerical parameters (such as finite element size) on
RVE domain size has been introduced. In [19,20] a
second-order framework has been adapted to model ma-
terial failure, with classical boundary conditions par-
tially modified to account for strain localization, but
without a strict direct relation between the macro-scale
strain and the localized strain. Verhoosel et al. [125]
proposed a method for deriving a homogenized macro-
scale cohesive model from micro-structures with pos-
sible nucleation of micro-cohesive cracks and adhesive
micro-interfaces. In [87] this approach was extended
to include RVEs with a gradient-enhanced regularized
damage material model (see also [85,86,88]).

1.2 Current trends and perspectives

It is clear from the above that the range of applications
of RVE-based formulations is very wide. It should be
added here that, at present, the interest in such ap-
proaches is growing at a faster pace than ever. This is
confirmed by the shear number of papers published on
the subject over the last few years as well as on the num-
ber of conferences and conference sessions organized on
the topic. One of the main driving forces behind the
advancement of multiscale techniques is the pressing
need for more accurate computational tools for predic-
tion of material response in situations where the macro-
scale effects of complex micro-scale mechanisms cannot
be easily captured by the conventional phenomenologi-
cal modelling approach. In this context, computational
RVE-based methods can be used either in the simula-
tion of macroscopic structures by a coupled multiscale
approach (often referred to as FE?) or as a basis for
the development of new phenomenological models, or
calibration of material parameters of existing models,
by means of so-called numerical material testing [32,
38,94,113,119,120,129]. An interesting application in
this context is the development of constitutive laws for
micromorphic materials [27,28,31,50,51]. In this field,
the lack of practicality lies in the development of ex-
periments to aid the identification of constitutive laws.
Multiscale formulations can be employed to create the
link between high-order continua at macro-scale and
first-order continua at micro-scale.

Another key reason for the growing interest in RVE-
based multiscale methods is the need to better under-
stand how micro-scale mechanisms affect macro-scale
behavior [122,126]. This understanding, together with
the ability to numerically predict their impact on macro-
scale behaviour, is crucial to optimize the use of existing
materials as well as to assist the design of new materials
in a rational, scientifically-based manner.

The design of new materials, in particular, is an area
of research where significant resources have been in-
jected in recent years. The wider availability of equip-
ment at relatively low cost, allied to recent advances
in sophisticated manufacturing processes, such as ad-
ditive layer manufacturing, are creating great expec-
tations for the development of materials with bespoke
mecanical, thermal, optical, chemical and electromag-
netic properties. This includes the promising develop-
ment of new alloys, composites in general, bio-inspired
and bio-compatible materials. Of particular interest are
the so-called metamaterials — materials with useful ex-
otic behavior [26]. Auxetic materials — materials with
negative Poisson’s ratio [62,63,128] — are a typical ex-
ample. But exotic, counterintuitive behavior, can be
associated with thermodynamical, electromagnetic [13,
12,11] and other mechanical properties [18,29,67,68,
70,130]. The unusual behavior displayed by such mate-
rials is a consequence of their micro-structural arrange-
ment. Del Vescovo and Giorgio [23] provide an interest-
ing overview covering a range of exotic materials and
the tools currently available to model them. The ability
to design micro-scale architectures that produce a spe-
cific material behaviour is of utmost importance in this
context [39,75,108]. RVE-based computational multi-
scale methods aiming, for instance, the optimization of
certain material properties [3,53,124] have shown to of-
fer a solid tool to assist the material design process.

In summary, the track record of RVE-based compu-
tational multiscale methodologies in dealing with com-
plex phenomena, allied to the current trends in the de-
velopment and design of new materials, makes it rea-
sonable to expect that the demand for more general,
refined and accurate computational multiscale methods
will only increase in the years to come.

1.3 Critical appraisal of the state-of-the-art

Despite the widespread use of RVE-based multiscale
theories, a general unified framework for the develop-
ment and treatment of theories of this class appears
to be lacking at present. In fact, the RVE-based ap-
proach to classical multiscale solid mechanics — with
both macro- and micro-scales described in terms of con-
ventional kinematics — is very well understood and lies
on the solid theoretical grounds set in the works of Hill
[45] and Mandel [72]. However, any attempts to extend
this approach beyond the classical scenario is likely to
face challenges. This is due mainly to the fact that the
classical theory (and existing extensions) evolved with-
out a clear distinction being highlighted between funda-
mental assumptions and their consequences. Hence, it
is not straightforward in general to ascertain precisely
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what changes will be required to the classical theory
if, for instance, dissimilar physical regimes are to be
linked across the scales or, in the case of the purely me-
chanical theory, more complex loading systems become
relevant or more sofisticated kinematical descriptions
are adopted to model phenomena such as strain local-
ization, fracturing or higher order strain effects.

In the treatment of higher order strain effects, for
example, the homogenization formulae for stress-like
quantities is derived from a modified Hill-Mandel prin-
ciple in [58,59]. More recently, in [71], a similar ap-
proach was adopted with kinematical conditions based
on orthogonality restrictions proposed to construct a
consistent kinematical transfer between scales. The re-
sulting boundary conditions in the latter work are slightly
different from those of the former, raising questions
about the validity range and limitations of each for-
mulation, and about what ultimately drives the kine-
matical transfer between the two scales. As they stand,
it is not easy to compare these two theories and find a
definite answer to these questions.

A rather blurred scenario emerges in the multiscale
modeling of material failure — possibly one of the most
challenging applications of RVE-based theories. An in-
teresting point to observe here is that failure kinemat-
ics differs considerably from the classical case due to
the inherent discontinuities that characterize the phe-
nomenon. Hence, an appropriate extension of classical
principles of kinematical transfer across scales requires
very careful consideration and may not be easily estab-
lished correctly on the basis of physical intuition alone.
Note that this is a determining factor in the defini-
tion of RVE boundary conditions. Like the kinemati-
cal transfer (or the RVE boundary conditions), the ho-
mogenization formulae for the stress-like quantities are
also generally postulated [8,9,109], without an under-
lying fundamental principle. More recently, in [104,123]
a failure-oriented multiscale theory has been proposed
where, rather than postulated, the RVE boundary con-
ditions are derived from a robust kinematical princi-
ple and homogenization formulae for stress-like quanti-
ties (including the traction vector associated with the
macro-scale displacement jump) are, in turn, derived
from solid variational arguments based on a suitably ex-
tended Hill-Mandel Principle. This model extends the
classical theory by accommodating a non-uniform in-
sertion of macro-scale strain into the micro-scale under
a strain localization regime in a way that the magnitude
of the kinematical quantities involved are preserved in
the micro-macro transition. This was shown to offer a
possible solution to open problems, such as the con-
struction of objective formulations, even when the pro-
cess evolves from initially continuous media to domains

featuring strong macro-scale discontinuities caused by
micro-scale strain localization. At a closer look, this the-
ory reveals an emerging pattern containing all the nec-
essary ingredients that allow the problem to be dealt
with using a minimum set of fundamental assumptions.
This structure will be explored and generalized in the
present paper.

The study of multiscale dynamics is of particular
relevance to the development of a range of materials
(including metamaterials), as well as to the analysis of
multiscale problems involving high impact loads. Curi-
ously, this topic has so far received relatively little at-
tention in the context of RVE-based formulations and
it is only recently that contributions to this area be-
gan to appear in the literature [69,98]. Similarly to
multiscale material failure theories, a robust theoretical
framework for the treatment of RVE-based multiscale
dynamics appears to be missing at present. This be-
comes clear when we observe some potential shortcom-
mings in the (currently scarce) available literature. For
example, in [98] a split of the micro-scale displacement
fluctuation into a steady-sate and a dynamic contri-
bution is proposed, with each component subjected to
a different kinematical constraint. Interesting numer-
ical results are reported in this contribution, but the
variational consequences of such constraints to the cor-
responding equilibrium equations are not easy to as-
certain within the framework the theory is presented.
Neither is the range of validity of the adopted micro-
macro kinematical transfer which, in principle, should
preserve the magnitude of the displacements involved.
A related problem is briefly discussed in [100] where
body forces (which could also be seen as arising from
micro-scale inertia effects) are added to the classical for-
mulation and then the corresponding macro-scale force
is shown to vanish as a consequence of variational con-
siderations. The conclusions in this case are reached
in a variationally consistent manner, but the lack of a
clear principle of kinematical transfer beween scales ap-
pears to lead to an erroneous conclusion. Inconsistencies
of this type are obviously quite understandable, given
that such theories are just starting to spring. With the
above comments we only wish to emphasize that the
modeling of multi-scale dynamics can also benefit sig-
nificantly if a framework is established, based on clear
fundamental principles, whereby multiscale theories of
this type can be more easily derived in a systematic
manner, free from potential inconsistencies.

Fluid mechanics is an area where, to the authors’
knowledge, RVE-based theories have not been reported
so far in the modeling of multiscale phenomena. This
is probably a consequence of the natural difficulties in
identifying an RVE in fluid flow. Depending on the de-
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scription, the RVE could be understood as a represen-
tative volume of flowing particles (Lagrangian descrip-
tion) or as a representative volume window through
which particles flow (Eulerian description). To date,
multiscale fluid mechanics has been approached mainly
from two points of view: (i) the celebrated two-scale
convergence method, based on asymptotic expansions
[2]; and (ii) the variational multiscale method [47]. The
first approach is largely associated with the develop-
ment of multiscale formulations for flow through porous
media (see [117]). In [1] a basis was set to analyze,
using the two-scale convergence method, the limit of
Navier-Stokes equations in the presence of obstacles
in the micro-scale. A very recent contribution [46] ad-
dressed the problem of multiscale modeling in turbu-
lence based on asymptotic expansions for the Navier-
Stokes equations. The interesting result is that, by mod-
eling the convection of additional quantities at macro-
scale (proper convection of small-scale information), it
is possible to achieve a closed-form representation of
the Reynolds stress for arbitrary geometries. The vari-
ational multiscale method, has also been successfully
employed to model turbulence [7,48,49]. This approach
proposes a direct link between the role of the micro-
scale (called subgrid scale) and the discretization of the
equations at the macro-scale. Despite their success, a
limiting factor of both the two-scale convergence and
the variational multiscale method is that they assume
the problem to be governed by the same phenomenology
at both scales. Distinct physical models at macro- and
micro-scale, such as, for example, a macro-scale high-
order formulation linked to a first-order micro-scale for-
mulation — an approach that has been successfully em-
ployed in solid mechanics [58] — cannot in principle be
treated by such methods. In this sense, an RVE-based
framework could provide a interesting alternative, with
a rather general setting, particularly for problems in
which complete scale separation cannot be assumed.

1.4 Contribution of the present work

In response to the issues highlighted above — the current
lack of a general framework and the pressing need for
development of more sophisticated multiscale models —
the present paper proposes a unified variational theory
for a very broad class of RVE-based multiscale mod-
els. Our main purpose is to create a sufficiently general
framework within which new multiscale models, incor-
porating more general mechanical settings and capable
of accounting for more complex micro-scale phenom-
ena, can be developed in clear, systematic steps. The
proposed theory should be capable of handling multi-
physics problems, material failure due to micro-scale

strain localization or fracturing, dynamical effects and
fluid mechanics, among other phenomena, and we shall
limit ourselves to the use of a single temporal scale com-
mon to both spatial scales.

The work reported here builds on the authors’ past
experience in the axiomatization of the classical theory
[97,110,111,112] and in the treatment of problems in-
volving kinematical discontinuities at both micro- and
macro-scales [104]. Within the proposed framework, named
method of multiscale virtual power, the entire theory
sits on the three fundamental axioms/principles of: (i)
kinematical admissibility'; (ii) mathematical duality, and
(iii) multiscale virtual power. The idea of kinematical
admissibility establishes a link between the macro- and
micro-scale kinematics by means of two operators named
the insertion operator and the kinematical homogeniza-
tion operator, respectively. These effectively define the
kinematical transfer between the scales and must im-
pose constraints on admissible kinematical fields so as
to ensure that, in some sense, their magnitude is pre-
served in the micro-macro transition. In addition, these
kinematical constraints automatically prescribe the func-
tional sets within which the solution of the associated
equilibrium problems is to be sought. The concept of
duality, in turn, plays a fundamental role in the correct
definition of the generalized external force-like and gen-
eralized internal stress-like (or flux) quantities compat-
ible with a given model. That is, force- and stress-like
quantities cannot be defined a priori, independently of
the underlying kinematics. Rather, they are seen here
as consequences of the adopted kinematics. Once the
kinematics is defined by postulating a sound principle
of kinematical admissibility for a particular problem at
hand, the corresponding force- and stress-like quantities
emerge unequivocally as a result of considerations based
on their mathematical duality (power-conjugacy) with
respect to the adopted kinematical variables. Finally,
the principle of multiscale virtual power is a general-
ization of the classical Hill-Mandel Principle of Macro-
homogeneity [45,72], here extended and stated in vari-
ational form in terms of the total virtual power at the
micro- and macro-scales. As we shall see, once this prin-
ciple is applied to a particular problem in question, all
equations of the theory, including equilibrium and ho-

! Within the generalized setting of the present paper, the
term kinematics (and corresponding kinematical variables,
etc) should be understood, in a broader sense, as relating to
the primal variables of a given formulation. That is, we refer
to kinematical variables as those whose rates produce power
with the corresponding fluxes (stress- or force-like variables).
In mechanical problems — the main motivation of our work —
it has obviously the conventional meaning of generalized dis-
placements and strains and their rates. In thermal problems,
it refers to temperature, temperature gradient, and so on.
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mogenization relations for the relevant force- and stress-
like variables are naturally derived in a straighforward
manner by means of simple variational arguments. This
is in contrast with the usual approach, where such rela-
tions are often postulated instead, and makes the causal
relations between the fundamental assumptions and their
consequences very clear. This, in our view, endows the
proposed framework with a logical structure and a de-
gree flexibility that, not only provides a rational justifi-
cation for many existing models but, more importantly,
significantly facilitates the rigorous development of a
wide range of new, more refined, multiscale theories in
systematic, well-defined steps.

A crucial consequence of this rational structure is
that, in developing any particular model within the
present framework, the only degree of arbitrariness one
has lies in the definition of: (a) the kinematical variables
adopted at macro- and micro-scales; and (b) how these
kinematical variables are linked (subject to the condi-
tion that their magnitudes are preserved in the micro-
macro kinematical transfer). Once these have been pos-
tulated — ideally, so as to capture the kinematics of the
corresponding real physical phenomena in the best pos-
sible way — the remainder of the model equations will
be unequivocally derived on the basis of duality and
multiscale virtual power. Also crucial is the fact that,
as a result of the Principle of Multiscale Virtual Power
any derived RVE equilibrium equations are presented
in a variational format that is naturally well-suited for
discretization by finite element or related methods of
numerical approximation. Through this, a clear separa-
tion and differentiation between the fundamental the-
oretical aspects of the formulation and its numerical
approximation is well-established, something which is
confusing in many scientific publications.

1.5 Article overview

In presenting the proposed theory we have opted to fol-
low a format where all derivations are first presented
in a very general setting. For this purpose, a rather ab-
stract notation is adopted. The need for an abstract
notation is justified by the fact that, as mentioned in
the preceding text, our intention here is to show a very
general framework, capable of dealing with a wide range
of problem descriptions — including, among others, con-

ventional solid mechanics formulations, higher order strain

theories, generalized stresses and strains, structural ele-
ments, discrete formulations in general, potential prob-
lems, and so on. To avoid an excessive level of abstrac-
tion, as the building blocks of the theory are presented,
the meaning of the adopted notations is made clearer

by showing how they specialize in the case of the clas-
sical infinitesimal solid mechanics. Once the complete
theory is set, a number of examples of specializations
are presented. These include existing theories — casting
them within this framework gives, in our view, an inter-
esting insight — as well as the derivation of new models,
including problems involving solid dynamics, distinct
physical models across the scales, fluid mechanics and
thermo-mechanics.

The paper is organized as follows. As the proposed
theory relies heavily on the concept of virtual power, a
brief historical account of the Method of Virtual Power
(MVP) is presented in Section 2 together with a review
of its use in the modelling of general (single-scale) phys-
ical systems. The main purpose here is to emphasize
that the modelling by means of the MVP is a three-
step procedure consisting of: (i) definition of kinemat-
ics; (i) the use of mathematical duality to character-
ize the virtual power functionals and the corresponding
flux (force- and stress-like) variables consistent with the
theory in question; and (iii) a statement of the Princi-
ple of Virtual Power (PVP) for the problem in question.
With an appropriate PVP at hand, the Euler-Lagrange
form of the equilibrium equations for the system under
consideration can be derived straightaway.

Our main contribution — the proposed general uni-
fied RVE-based multiscale theory — is presented in Sec-
tion 3. The proposed theory is an extension of the PVP-
based modeling approach of Section 2 to problems in-
volving two spatial scales. This extension is devised,
effectively, by generalizing the three-step procedure of
the MVP to problems involving two scales. This exten-
sion is named the Method of Multiscale Virtual Power
(MMVP). It requires the definition of the kinematics at
each of the two scales as well as of how the micro- and
macro-scale kinematics are linked in a physically consis-
tent manner. Another essential feature is the Principle
of Multiscale Virtual Power (PMVP) — an extension
of PVP — linking the virtual power of the macro-scale
to that of the micro-scale. The PMVP proposed here
generalizes the well-known Hill Mandel Principle, upon
which the classical RVE-based multiscale theory lies.

In Section 4, the general model of Section 3 is spe-
cialized to the case where only the internal (macro-
and micro-) virtual powers are accounted for in the
MMVP. Most standard multiscale models available in
the current literature fit within this class. In particu-
lar, multiscale descriptions of this class define macro-
scale constitutive functionals relating the macro-scale
flux (stress-like) variables to the history of the associ-
ated kinematical variables alone.

Section 5 presents an abstract derivation of tangent
operators for the general framework developed in Sec-



Variational foundations and generalized unified theory of RVE-based multiscale models 7

tion 3. Such operators are fundamental in the compu-
tational implementation of the associated theories. For
instance, in the case of non linear multiscale problems
discretized by finite element methods, they provide the
tangential stiffness matrices required by Newton-type
iterative schemes for solution of the associated equilib-
rium problems.

In Section 6 several specializations of the general
theory of Section 3 are presented, involving solid me-
chanics, fluid dynamics and thermomechanical prob-
lems. These illustrate the suitability of the proposed
multiscale framework to model a wide range of physical
phenomena. In addition, they show that the theory pro-
vides a rigorous justification to some otherwise intuitive
postulates and can highlight inconsistencies present in
some existing RVE-based models.

Computational application of the theory is illus-
trated in Section 7 where two finite element-based nu-
merical examples are presented — one describing the
use of a finite plasticity-based phase change model for
polycrystals and another one describing material fail-
ure. In particular, the latter example illustrates how
the present theory can be used with confidence in situ-
ations where the usual, unstructured approach to mul-
tiscale problems has failed to provide a consistent and
clearly justified formulation.

The paper ends in Section 8, where some concluding
remarks are made.

2 Method of virtual power

This section presents a method of primal (kinematical)
variational modeling of a general physical system (of
single scale) based on the Principle of Virtual Power.
Our main aim is to review all essential definitions, math-
ematical operators, functional spaces and principles re-
quired to formulate models of physical systems by means
of the PVP. The concepts reviewed here will be general-
ized in Section 3, where we propose a multiscale exten-
sion of the virtual power-based framework. We remark
that a rather general, abstract notation will be adopted
throughout the text. To avoid an excessive level of ab-
straction in the presentation, as the concepts and the
corresponding abstract notation are introduced, their
specialization to the well-established case of classical in-
finitesimal continuum solid mechanics is also presented.
We begin below with a brief historical review of the
Method of Virtual Power and then move on to the ac-
tual presentation of the PVP-based framework for gen-
eral physical systems.

2.1 Brief historical review

With origins dating back to ancient Greece, the Prin-
ciple of Virtual Power appears to have been formalized
only in the eighteenth century in the work of d’Alembert
[22]. In more modern times, the method of virtual power
(or, equivalently, method of virtual work) has been ac-
knowledged as a systematic, rational and intuitive ap-
proach to formulate models of continua [35,74]. It can
be argued that the concept of virtual velocity or vir-
tual power itself is a very intuitive one to most people.
For example, to estimate the weight of a suitcase, one
usually tries to lift it up instinctively and assess the
“work” required to do so. That is, we intuitively es-
timate a force (the weight of the suitcase) by means
the “work” or “power” expended when it is subjected
to a kinematical action (lifting motion in this case). In
this sense, the concept of work- or power-duality be-
tween forces and displacement or velocities appears to
be somewhat ingrained in human mind.

On one hand, the application of this method to con-
tinuum physics modeling is more mathematically elabo-
rate than the more classical approach deriving from vec-
torial rational mechanics — an approach largely followed
in the undergraduate teaching of mechanics at present.
On the other hand, the method of virtual power has
an extremely appealing aspect in that it provides, in a
most natural, axiomatic way, all the fundamental ingre-
dients required in the formulation of a given problem,
such as natural boundary conditions, jump conditions
and the variational form of the equilibrium equations,
regardless of the constitutive behavior of the underlying
continuum. These advantages become more pronounced
as the physical system under study increases in com-
plexity and this, in our view, significantly outweighs
the seemingly greater mathematical demands of the
method. For example, the method completely avoids
any ambiguities that could otherwise be present in the
definition of force- and stress-like quantities compati-
ble with a given physical system. In fact, the nature of
force- and stress-like quantities associated with a sys-
tem is not a fundamental assumption of the method
but, rather, a derived concept resulting from mathemat-
ical duality. That is, forces are representations of the so-
called external virtual power functional and stresses are
representations of the so-called internal virtual power
functional — they are fully characterized by the virtual
power (or work they exert) and emerge unequivocally
as a result of this duality once the kinematics of the
system in question has been defined.

We remark that, in the context of the present pa-
per, the terms force and stress should be understood
in a generalized sense. This lack of potential ambigu-
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ity in the derivation of force- and stress-like variables is
particularly welcome in the development of new, more
complex continuum models. In addition, it should be
noted that the PVP naturally leads to governing equa-
tions stated in a variational format that is particularly
well-suited for discretization by means of finite element
(in the case of continuum models) or related methods
of numerical approximation.

Some interesting fundamental developments based
on the method of virtual power are particularly worth
of mention. The method was used, for example, in [36]
in the derivation of high order models of continua, mak-
ing the role of kinematics in the modeling of force- and
stress-like quantities very clear. These dual quantities
were introduced exclusively through the characteriza-
tion of wvirtual power functionals in the context of an
extended kinematics of higher order. In the same spirit,
the method of virtual power was employed in [74] to de-
rive governing equations for electromagnetic high order
continua. The axiomatic framework adopted in this case
had the same goal: the modeling of forces by means of
the mathematical duality between the functional spaces
of forces and velocities. Similarly, in [21] the method of
virtual power was used to deal with the presence of
singular interfaces in continuum media. More recently,
the same approach had its applicability extended to
the field of thermomechanics [99] and thermodynamics
[101]. These are further examples of the success and
enormous potential of the method in dealing with the
modeling of a wide range of physical phenomena.

However, to the authors’ knowledge, the concepts
of virtual power and duality have not been fully ex-
plored yet in the formulation of RVE-based multiscale
theories. Given the current interest in RVE-based ap-
proaches and the demand for more complex models; it
seems to us that it is high time now for the PVP to be
explored in this context. However, before we proceed
to do so, we shall review below the use of this concept
to general physical systems in a conventional (single
scale) setting. These ideas will form the basis for the
multiscale extension of the PVP proposed in Section 3

2.2 Kinematics

The main kinematical concepts required to formulate
models of physical systems in the context of the method
of virtual power are reviewed here. For simplicity, we
shall focus the presentation on continuum models. We
remark, however, that the same concepts can be eas-
ily adapted for use in the modeling of discrete systems.
Let B be a body occupying a domain {2 with sufficiently
smooth boundary I" and let x € {2 denote any point in
this domain. The set of generalized displacements that

characterize the kinematics of the physical model de-
scribing B, belongs to a functional space U. Elements
u € U are n-tuples of tensor fields, regular enough to
yield mathematically well-posed formulations. Compo-
nents of the n-tuple of an element v € U are denoted
ul,i=1,...,n, so that u = (u',...,u™). Each compo-
nent u’ can be a zeroth-, first-, second-order (and so on)
tensor field. Each component u? is described through r?
scalar fields. Thus, the total number of scalar descrip-
n

tors for an element u is R = Y., r’. Each u’ has a
domain of definition 2% := Dom(l4;),i =1,...,n, i.e.

’LLi : Qui —)Z/{Z

X»—>ui(x),

(1)

with 2% C (2. Each domain 2% can be a set of points,
surfaces or volumes. In compact form, we write

w: Q¥ U
x — u(x),

(2)

where QY := Dom(U) = (Dom(U),...,Dom(U,)), or
U = (" OUn),

Classical solid mechanics In this case, the domain {2
18 a region of the Fuclidean space, the generalized dis-
placement contains one single field — the conventional
displacement vector field of the solid, u = u (a tensor
field of order 1), and U is an appropriate Sobolev space
of functions defined in (2. Usually, it is considered that
such space is U = H(£2) of vector functions is with
square integrable gradient in (2. Hereafter we take put
all the examples and functional spaces in this standard
setting. Here we have QY = 2. A more elaborate case
arises when multi-physics interactions are considered.
In electro-mechanically coupled problems the general-
ized kinematics is characterized as uw = (u, ), com-
prising the displacement vector field u of the solid — a
tensor field of order 1 — and by the electrostatic (scalar)
potential field ¢ — a tensor field of order 0 (see [24]).
For a general class of micromorphic fluids, the general-
ized displacement u = (v,v) contains the velocity vector
field v, a tensor field of order 1, and the rate of defor-
mation tensor field v, a tensor field of order 2 (see [27,
28]). Further examples will be given in Section 6. W

Next, we define the set Kin,, C U of kinematically
admissible generalized displacements. Elements u € Kin,,
satisfy some kinematical constraint (for example, pre-
scribed boundary conditions or possible distributed con-
straints). A schematic diagram of the functional sets
and relevant operators is shown in Figure 1. It is within
Kin, that we shall look for the solution of the equi-
librium problem (to be defined later) associated with
the physical system under consideration. For simplicity
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we assume Kin, to be a linear manifold (translation of
a subspace). As a consequence, it is possible to char-
acterize the subspace Var,, of kinematically admissible
generalized virtual displacements or velocities as

Var, = {0 €U, O = vy — va, v1,v2 € Kiny}. (3)

Classical solid mechanics For a body occupying a
region {2, with boundary I' subject to the kinematical
constraint u = u* on I, C I', for a given u*, we have
Kin, = {u € HY(2), u|r, = u*}, and Var, = {u €
H(2), u|r, = 0}. |

Another kinematical concept fundamental to the state-

ment of the PVP is that of generalized virtual strain ac-
tion. Generalized virtual strain rate fields belong to the
space of gemeralized strain actions, denoted £. In gen-
eral, any field D € £ is an m-tuple of tensor fields. That
is, D = (D',..., D™), where each component D can be
a scalar, a first-order, a second-order tensor field, and
so on. Each component D?, i = 1,...,m, is described
by s’ scalar fields, so that the total number of scalar
descriptors of D is S = > | s'. Each components D*
has a domain of definition 2% := Dom(&;), i.e.

D' 0% & n

x — D'(x).
Each 2% C 2 can be a set of points, surfaces or vol-
umes. In compact notation, we have

D: 0 =& )
x — D(x),
and ¢ := Dom(€) = (Dom(&;),...,Dom(E,,)), that
is 2F = (0%, ..., 0%,
The spaces U and £ are related by a linear operator,
denoted D,

D:U—E,

u+— D =D(u), (©)

that introduces the concept of generalized strain ac-
tions (and generalized virtual strain rates). This opera-
tor plays a fundamental role in the definition of duality.

Classical solid mechanics In this case, D is the sym-
metric gradient operator, so that D(u) = Vu, n = 1,
R=3,m=1andS = 6. The field V°u is defined over
the entire body, so that 2° = 2, and belongs to the
function space € = Lgym(()) ={e e L’(N),e =T}
(recall we are in a standard mathematical setting). It
is worth showing here more general examples in addi-
tion to the solid mechanics case. For eletro-mechanical

coupled problems the generalized strain action is given

by D((u,¢)) = (Vou, Ve), where u and ¢ are the dis-
placement (a vector) and the electrostatic potential (a
scalar), respectively. Then, in this case,

V50
»=(0 )
n=2 R=4, m=2 and S = 9. For micromorphic
fluids (see [36]), the generalized strain action is given
by the triad D((v,v)) = (Vv,Vv — v, Vv), where v is

the wvelocity (vector) and v the micro-velocity gradient
(a second-order tensor). Then,

Vo
v -1],
0V

D =

n=2 R=12, m =3 and S = 45. It should be noted
that the meaning of V depends on the configuration cho-
sen to describe the problem. In micromorphic fluids, the
adopted configuration is a spatial configuration. Hence,
V s the gradient relative to the spatial coordinates. M

An element D € £ is said to be a kinematically com-
patible generalized strain action if there exists an ele-
ment u € U such that D = D(u). The domain of defini-
tion of kinematically compatible generalized strain ac-
tions is ¢ and can be expressed as 2° = Dom(D(U)).

Remark 1 Since D is linear, it has a well-defined (rect-
angular) matrix representation of the form

Dll D12 Dln

D21 D22 D2n
D= . . . .| (7)

Dml Dm2 ... Dmn
With this representation, we have 2% = Dom(D (u!)) =
... =Dom(D™(u")),i=1,...,m.

Another important subspace of U is the kernel of
the operator D, denoted N(D) C U, defined as

N(D) = {u € U, D(u) = 0}. (8)

That is, the subspace with null generalized strain ac-
tion.

Classical solid mechanics The kernel of the D — the
symmetric gradient operator — is the space of all rigid
infinitesimal displacements, i.e. displacements that ad-
mit the representation u(x) = u, + W(x — x,), with
u, a uniform field, W a skew-symmetric second-order
tensor and X, a point. |

Also important is the image, D(Var,) C &, of Var,
under the operator D. This is the space of kinematically
compatible generalized virtual strain actions.
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Ny
>}

Pext :<f7ﬁ>u’><u @

'Dl

Pint = (3, D(4))e xe

Fig. 1 Virtual Power Method for physical systems. Schematic diagram of basic functional sets and operators.

2.3 First hypothesis. Mathematical duality.

The first hypothesis of the MVP-based modeling ap-
proach is that the generalized (external) forces and gen-
eralized (internal) stresses admissible by a given phys-
ical system are duals of the kinematical variables cho-
sen to describe that system. This allows the nature of
admissible generalized stresses, denoted X, and forces,
denoted f, to be determined solely as a consequence
of duality arguments. That is, the nature of force- and
stress-like variables cannot be postulated a priori. They
are, rather, direct comsequences of the adopted kine-
matics. With £ and U’ denoting, respectively, the dual
spaces of £ and U, the first hypothesis is stated as
follows:

— The nature of the admissible generalized internal
stresses X € &' is characterized through a linear
(and continuous) functional in &, defined by the du-
ality pairing denoted (X, D) ¢/ ¢-

— Similarly, the nature of the admissible generalized
external forces f € U’ is characterized through a
linear (and continuous) functional in U, defined by
the duality pairing denoted (f, ), .y

These duality products must satisfy the well-known prop-
erties:

- <<EaD>>g/><g:0 VDe&=X=0,
(5,D), .. =0 VEEE = D=0,
— (fru iy =0 YuelU = f=0,
7<<f7u>>1/{/><u:0 VfGU'éu:O

The first step in the characterization of the model of
a real physical system is the definition of an appropri-

ate duality pairing (-, )¢/ . Obviously, the definition
of this duality pairing will depend on the physical na-
ture of the phenomena described by the model. And it
will also play a fundamental role in the characterization
of the duality pairing (-, -));, ., With the notation in-
troduced in the previous section, for the duality pairing
between generalized stresses and strain actions, we have

m

(2, D(u)erxe = > (I, (D(u))erxe, 9)

i=1

or, equivalently, by using (7),

(Z.D()erxe = Y > (& DY (w))gxe,

i=1 j=1

(10)

where (-, -) &rxg, denotes a generalized internal product
over the domain of definition of component i. For exam-
ple, if 2% is a surface or a volume in Euclidean space,
we could have

(X%, (D(w)")erxe, = e ' (D(w))'dR*, (11)
whereas, if 2% is a set of points, it could be
NE
(Z% (D) )erne, = X' (D)), (12)
i=1

with N% denoting the cardinality of the set £25¢. Once
this pairing is defined one should be able to promptly
identify the nature of X', as in the following example.
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Classical solid mechanics In this case, this dual-
ity pairing reads (X, D(u))erxe = [, 0 - Vouds2. The
stress o here is the dual object of the considered strain
rate — the symmetric gradient of u — and, hence, can be
identified as a symmetric second-order tensor, readily
recognized as the Cauchy stress. |

In the PVP-based formulation, the product (-, )¢/, ¢
is restricted to the reduced set D(Var,) of kinemati-
cally compatible generalized virtual strain actions and
is known as the internal virtual power, denoted P™*.
That is,

P™(D(a)) = (2,D(0))erxe @ € Var,. (13)

In summary, once the kinematics of a particular
physical system model is defined, together with a cor-
responding duality pairing, the internal virtual power
functional is defined and the nature of the generalized
stresses admissible by the system in question is uni-
vocally identified. It should be noted that the internal
virtual power functional must be defined such as to be
invariant under changes in observer (superimposed rigid
kinematical actions). We shall now see that the adop-
tion of a specific form of duality pairing between gener-
alized stresses and strain actions also defines the gener-
alized external forces, f € U', admissible by the model
and the corresponding external virtual work functional.
Indeed, from the definition of the adjoint operator [89]

(also referred to as the equilibrium operator), we have
D& =U,

, (14)
Y= f=D'(%),

where D’ is the adjoint of D, i.e. the operator that sat-
isfies

<27D(u)>5’><8 = <D,(2)7u>1/l’><l/l~

The above functional form characterizes the nature of
the external load f, admissible by the adopted kinemat-
ical model. That is, (15) implies that

(15)

f has the structure of D'(X) € U'. (16)

The form (D'(X), Gy x4 has the expanded representa-
tion

n

(D'(2), W xu = Z«D/(E))i,ﬁimlfxu“ (17)
i=1

or, equivalently, by using (7),

(D'(X), Wy xuu = Z Z(D/ij(zj)vﬂi>u;xui~ (18)
i=1 j=1

As in the identification of X', the actual nature of f for
a specific model can be identified promptly once the

adjoint operator D’ has been obtained for the model in
question, as in the following.

Classical solid mechanics In this case, the adjoint
operator D' follows from integration by parts of the
stress-strain rate duality pairing, i.e. (X, D(u))gxs =
Joo - Voud? = — [,dive - ud2 + [pon-udl =
be -udf? + th -udl’, where n is the outward unit
normal to I'. The admissible forces identified in this
case are: a vector field, denoted b, of force per unit vol-
ume acting in 2 and a vector field, denoted t, of force
per unit area acting on the boundary I. |

Having identified the nature of f € U’, whose struc-
ture is prescribed by (15), we can now introduce the
external virtual power functional by restricting the eval-
uation of the corresponding duality pairing to the re-
duced space Var,,. That is, we define

PEXt(ﬁ) = <fa ﬁ>U/XU U € Varua (19)
or, equivalently
PN @) = (f i)y, € Vary,. (20)

=1

The functional P®** must also be defined such that it
is invariant under changes in observer.

Finally, with the above definitions we introduce the
total virtual power functional, defined as

P4, D(1)) = P™(D(0)) — P™Y(4) 4 € Var,. (21)

2.4 Second hypothesis. The Principle of Virtual Power

The second hypothesis in the variational formulation
— the Principle of Virtual Power — establishes the con-
dition under which a system of admissible generalized
stresses and a system of admissible generalized external
forces are in equilibrium. This is stated in the following.

Principle of Virtual Power The generalized stress
X € & and the generalized external force f € U’ are
i equilibrium if and only if the following variational
equation is satisfied:?

P4, D(4)) =0 Va kinematically admissible.  (22)
FEquivalently, we may write
P™(D(4)) = P™(4) Vi € Var,, (23)

2 The term equilibrium here is not limited to static equilib-
rium. If the force system f includes generalized inertia forces
associated to the physical problem at hand, then dynamic
equilibrium is automatically accounted for by the Principle
of Virtual Power.
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or
(X, D(@))erxe = (f. Wurxu

Further, from (22), we have that f must also satisfy

Vi € Var,,. (24)

(f,@0wxu=0 Vi€ Var, NN(D). (25)

Application of the PVP is illustrated in the follow-
ing example.

Classical solid mechanics A Cauchy stress field o
and an external load system (b, t) are said to be in equi-
librium if and only if [,o - VadQ = [,b-0d +
th -adl’ Va4 € Var,. Obuviously, this equation ex-
presses dynamic equilibrium if, for example, b is an in-
ertia force field, b = —pu, with p the mass density and
u the acceleration field. Also note that, in the present
context, (25) implies that any system of balanced exter-
nal forces (surface tractions and body forces — including
inertia forces, if dynamical effects are considered) pro-
duces no virtual power under rigid virtual velocities. B

2.5 The equilibrium problem

To complete the description of the physical system model,
a constitutive law must be introduced that determines
X as a function of the history of the kinematical vari-
ables of the system. In a rather general constitutive set-
ting, we consider the generalized stress to be a function
of the history, denoted u?, of the generalized displace-
ment field to which the body was subjected up to the
present time, t. Then, we write

3= D(uh). (26)

For all instants 7 € [0,¢] the corresponding displace-
ment u(7) is kinematically admissible, i.e. u(7) € Kin,,.
We shall use the notation u! € Kin, to denote a his-
tory of displacements of B kinematically admissible at
all instants in [0, ¢].

With the above at hand, we can now state the equi-
librium problem for the physical system in question as
follows.

Problem 1 (The equilibrium problem) For a given
constitutive law of the type (26) and a given history of
admissible generalized external force, ft, find the his-
tory ut € Kin, of kinematically admissible displace-
ments such that

(Z(uT), D(@))erxe = (f(7), Wurxu

Vi € Var,, V7 € [0,t].  (27)

(iii)

3 Method of multiscale virtual power

In this section we propose a unified variational frame-
work, named Method of Multiscale Virtual Power, for
the development of RVE-based multiscale models of
physical systems. This is the main contribution of the
present paper. The family of multiscale theories ad-
dressed here is based on the idea that any point of a
macro-scale body occupying a domain 2, is associ-
ated with a representative volume element (RVE) with
domain (2, of characteristic length ¢, much smaller
than the characteristic length ¢5; of 25 (refer to Fig-
ure 2). The domains {2); and (2, are referred to as
the macro-scale and micro-scale, respectively. Points or
coordinates of the macro-scale are denoted x € 2y,
while points or coordinates ao the micro-scale are de-
noted y € {2,,. Here and in what follows we shall use
the subscripts M and p to denote, respectively, macro-
and micro-scale entities.

Within the proposed framework, multiscale models
are derived by following steps analogous to those de-
scribed of Section 2 in the conventional (single-scale)
setting. In particular, the concepts of duality and vir-
tual power are explored and extended so that a princi-
ple of virtual power involving more than one scale — the
Principle of Multiscale Virtual Power — can be formu-
lated. The method lies on three fundamental principles:

(i) Principle of Kinematical Admissibility, whereby the
macro- and micro-scale kinematics are defined and
the associated variables linked across the scales. The
scale-transition link is defined through appropriate
definitions of insertion (macro-to-micro) and homog-
enization (micro-to-macro) operators, and must en-
sure a physically meaningful transfer of the relevant
kinematical variables across the scales;
Mathematical duality, through which the nature of
the force- and stress-like quantities are uniquely iden-
tified as the duals (power-conjugates) of the adopted
kinematical variables. This concept has been used in
Section 2. Here it is applied individually to each of
the two scales involved; and

Principle of Multiscale Virtual Power (PMVP), a
generalization of the well-known Hill-Mandel Prin-
ciple of Macrohomogeneity, from which equilibrium
equations and homogenization relations for the force-
and stress-like quantities are unequivocally obtained
by straightforward variational arguments.

(i)

As we shall see, the proposed theory provides a clearly
and logically structured framework within which exist-
ing formulations can be rationally justified and new,
more general multiscale models can be rigorously de-
rived in well-defined steps. The rationality of the pro-
posed approach is entirely akin to that of the Method of



Variational foundations and generalized unified theory of RVE-based multiscale models 13

Macro-scale

Insertion of macro-scale
kinematical quantities

Micro-scale

Homogenization of dual
(power-conjugate) quantities

Fig. 2 RVE-based multiscale modeling. The RVE concept.

Virtual Power, reviewed in Section 2, in the derivation
of single-scale physical system models. In particular,
we shall see that, once the kinematical variables at the
two scales are postulated, kinematical admissibility is
established for the system under consideration, and the
corresponding generalized force- and stress-like quanti-
ties are identified by means of duality arguments, all
relevant equations of the model are derived from the
PMVP following standard variational considerations.
Similiarly to the format adopted in Section 2, as
the theory is presented in this section we shall show, in
parallel, its specialization to the case of classical RVE-

based multiscale infinitesimal solid mechanics. This should

help make the newly-introduced concepts clearer.

3.1 Multiscale kinematics. Kinematical admissibility

In considering a two-scale physical system, we assume
at the outset that the kinematics describing the rele-
vant phenomena at the macro-scale may, in general, dif-
fer from the kinematics of the micro-scale. However, the
ideas and definitions presented in Section 2.2 remain ap-
plicable individually to each of the two scales and analo-
gous steps will be followed. In postulating the kinemat-
ics of a given two-scale physical system, one will, ulti-
mately, establish a functional set of kinematically ad-
missible micro-scale displacement fields, denoted Kin,,,
which is itself dependent upon the kinematical variables
of the macro-scale.

This process of establishing Kin,, is what we refer
to as the Principle of Kinematical Admissibility and
comprises four steps: (i) Definition the governing kine-
matics at the macro- and micro-scales; (ii) Definition of
insertion operators that prescribe how the macro-scale
kinematical variables are inserted into the micro-scale;
(iii) Definition of homogenization operators that specify

how the micro-scale kinematical fields are averaged to
yield the macro-scale kinematical quantities. The kine-
matical homogenization process must be defined so as
to ensure that the magnitude of the kinematical vari-
ables involved are, in some sense, preserved in the scale
transition; and (iv) Kinematical admissibility. Finally,
obtain the functional set Kin,,, of kinematically admis-
sible micro-scale displacement fields.

It should be noted here that steps (i)-(iii) above are
rather arbitrary with the only constraint being that the
postulated kinematical transfer must ensure that the
magnitude of the variables involved are preserved. The
definition of the kinematical variables themselves will
depend fundamentally on what phenomena (and level of
detail) one is trying to capture with the model and will,
also, be largely influenced by the preferences and back-
ground of the investigator. Here lies the only degree of
arbitrariness of the proposed theory. Once kinematical
admissibility has been established, the nature of the as-
sociated stress- and force-like variables at both scales
will be determined from mathematical duality consider-
ations and their homogenization relations together with
the micro-scale equilibrium equations will be derived
from the Principle of Multiscale Virtual Power

8.1.1 Macro-scale kinematics

Following the material presented in Section 2, the kine-
matics of the macro-scale is characterized by the gen-
eralized displacement ups € Ups, an nps-tuple of tensor
fields, with each component u’, described by r%, scalar
fields (the total number of scalar fields describing up,
is Ry = > ;M ri;). These components have a domain
of definition QZ]({/} :=Dom(Up;), i =1,...,npp, ie.

uﬁvf : .Qzl/\l/} — uMi (28)
x = ub; (%),
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where QAM4 C 2y, with QAMJ being a set of points,
surfaces or volumes, accordingly. In compact form, we
write

Up - QIZ{/I —>UM (29)
X = upr(x),

and, as in Section 2, we have 4 := Dom(Uy) =
(Dom(Uns1), - - - Dom(Unr,,,,)), or equivalently, 24, =
(... Q)

The set of kinematically admissible generalized dis-
placements is Kin,,, and the associated space of kine-
matically admissible generalized virtual actions is Var,,,, .
The space of generalized macro-scale strain actions is
denoted &;. Each element Djy; € &y is a mys-tuple
of tensor fields where each component DY, is described
by s%, scalar fields (the total number of scalar fields
describing Dy is Sy = Y4 s%,). The domain of
definition of these components is (2]5\/[ := Dom(Exry),
1 =1,...,my, that is

P05 s En
M M Mz (30)
x — Dy, (x),

where QJSV} C 2 can be a set of points, surfaces or
volumes. In compact form, we write

D]V[ : Qfd — SM
x — Dy (x), (31)
and 24, := Dom(Eyr) = (Dom(Enry), - -, Dom(Enrpm,, )
or equivalently 25, = (Qi}, ce Qf}”“ ).
The macro-scale kinematically compatible general-
ized strain actions (and generalized virtual strain rates)
are characterized by the linear operator

UNr > DM = DM(UM)

The domain of definition of the kinematically compat-
ible strain actions is denoted 2§, = Dom(Dxs(uar)).

Remark 2 As in (7), since Dy is linear, we have the
representation

DI} Dy Dy
D3} DY ... DM
py=| T (33)
Dg}Ml DﬁMQ DW”M
and 25 = Dom(Di;(u},)) = ... = Dom(DM (uh)),
1= 1, o.My,

Figure 3 is the counterpart of Figure 1 showing the
macro-scale entities in a multiscale setting. It should
be noted that additional sets and operations are intro-
duced in the multiscale setting which relate to individ-
ual points of the macro-scale domain. The value of any
entity () at an arbitrary point x of the macro-scale is
denoted (-)|x. As we shall see later, point values of rel-
evant macro-scale entities will be associated with the
problem defined at the micro-scale level (the RVE).

3.1.2 Micro-scale kinematics

The fundamental assumption in RVE-based theories is
that each point x of the macro-scale body is associated
with a micro-scale domain (an RVE). Here we shall de-
fine the kinematics of one such general RVE. The do-
main of the RVE is denoted {2, and points of the RVE
will be denoted y € §2,,. The space of generalized micro-
scale displacements is denoted U/,, with each element
u, € U, an n,-tuple of tensor fields, and each compo-
nent u:‘ described by rft scalar fields (the total number
of scalar fields describing u, is R, = Y%, TL) The
domain of definition of each field is 2 := Dom(U,,,),
i=1,...,mn,, that is
Uy, .Q/Zf — Z/{-M ”
y = w,(y),

with each Qﬁi C 2, a set of points, surfaces or volumes.
In compact notation,

. Ou
uM.QM — U,

(35)
y— uu(Y)a
and 4 := Dom(U,) = (Dom(Uy, ), - ., Dom(Uy,, ),
or alternatively, _fo = (_lefl s Qﬁl"“ ).

Without loss of generality, it is convenient to split
the generalized micro-scale displacements u,, € U, as a
sum,

wy = Uy + Uy, (36)

of a field %,, that depends on the macro-scale kine-
matics at point x, and a field u,, named the general-
ized displacement fluctuation. The field ,, is generally
a non-uniform field (it may depend on y). The collec-
tion of all generalized displacements u,, at micro-level,
forms a subspace which we will denote Z/_IM, and the col-
lection of all 7, forms the subspace Z;l,“ of generalized
displacement fluctuations.

We also define the space £, of micro-scale general-
ized strain actions. Each D, € £, is a m,-tuple of ten-
sor fields with components denoted by th' Each com-
ponent is described by s), scalar fields (the total num-
ber of scalar fields describing D, is S, = Y./ s%).

1=1°p
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¢ N
Pyt = (fum, uMM;W XUy

Q

.
Drlx

x
Re M

Pyt = Fulx @ Garlx

Pyt = (Zm, Du(am))er wey,

Fig. 3 Method of Multiscale Virtual Power. Basic sets and operations at the macro-scale level.

The components have a domain of definition .Q;fi =

Dom(Ey;),i=1,...,m,, ie.
D 025 — &,
H M /*;7, (37)
y — D (y),

where _Qf: C {2, can be a set of points, surfaces or
volumes. In compact form,

D,: 0% ¢
et (38)
Yy = DH(Y)a
S0 .Qﬁ = Dom(&,) = (Dom(é'm),...,Dom(é'#m“))7 or

Em,
05 = (05,2,

Further, we define the (linear) micro-scale general-
ized strain action operator,
Dy Uy — Ep,

(39)
uy, — Dy, =D, (uy,).

Its domain of definition is £25 = Dom(D,,(uy,)).

Remark 3 Analogously to (33) we have the following
representation for Dy, :

1in,
DH

Dll D12
H © o
DM n

21 22
p—| T

mﬂnu
Dy

my, 1 m 2
Dyt Dt

D}y
Znrlx
P}v'}t = Zmlx ® Darlx RE Y/
x ( SJLI) Q
and 25 = Dom(Di}(u})) = ... = Dom(D}™ (u")),

t=1,...,my.

3.1.8 Insertion operators

As mentioned at the beginning of this section, the kine-
matics of an RVE (micro-scale kinematics) associated
with an arbitrary point x € 2); of the macro-scale is
linked to the kinematics at the macro-scale by means of
insertion operators, defining the macro-to-micro kine-
matical transfer, and homogenization operators, defin-
ing the micro-to-macro kinematical transfer. These two
operators are linear in their arguments and must be
adequately constructed to account for a consistent me-
chanical/physical transfer of generalized displacements
and strain actions between the scales. The definition of
such operators will depend on the particular physical
system in question.

Remark 4 For simplicity, we shall assume in what fol-
lows that all macro-scale kinematical variables take part
i the kinematical transfer between scales. In a more
general scenario, we could have only a subset of the
set of macro-scale kinematical variables involved in this
transfer.
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Then, let us define the set Ry
evaluated at a given point x € 2/,

of elements of U

1

x n % ri, -
RL{M:{w:(w g, W M)vw GRM,Z:]_,...,TLM,

w = u\x, u e UM}, (41)
s
i — .

where R = R x - -+ x R, with 7}, the number of scalar
descriptors in the ith tensor field within the n,/-tuple.
Note that dim(Ry, ) = Ra. We will refer to Ry —as
the set of point-valued generalized macro-displacements
of x.

Similiarly, we define the set of point-valued general-
ized macro-strain actions as the set of elements of &y
evaluated at point x € 2,

= V= (VL V) Ve R =1, may,
V =Dlx, D€ &n}, (42)

where R®M =R x - -+ x R, with s, the number of scalar
descriptors of the ith tensor field in the my;-tuple. Note
that dim(R¥, ) = Sy

Further, within the sets of point-valued generalized
macro-displacements and macro-strain actions we can
distinguish the sets of point-valued virtual generalized
macro-displacements, w, and Virtgal\ macro-strain rates,
V. We denote these two sets as Ry, and RE , respec-
tively. It is interesting to note that, depending on the
final application of the present multiscale theory, com-
ponents of such virtual macro-displacements and vir-
tual macro-strain actions may be taken as the null ele-
ment, even though the real kinematics at point x is not
necessarily null.

Classical multiscale solid mechanics The set of
point-valued macro-displacements is defined here as Ry
{w € R} w = uplx, uy € HY(2n)}, while the set

of point-valued macro-strain actions is Rf = {e €
2
RBXB, € = 5M|xa ISVES Lsym(QM)}' |

At this point we introduce the concept of inser-
tion operator. In the present theory, insertion operators
are fundamental in that they define the way in which
the macro-scale kinematical quantities contribute to the
micro-scale kinematics, i.e. they define how the macro-
scale kinematics is inserted into the micro-scale. Two
insertion operators are defined:

— The upr-insertion operator,
U . ox 7/
TRy, — Uy,

43
uM|x’_>ﬂp,:j;Z;{(uM|x)a ( )

that maps the point-value ups|x of the macro-scale
generalized displacement into a field u, that con-
tributes to the micro-scale generalized displacement
field according to (36); and

— The Djs-insertion operator,

E . X »
jﬂ (RE, — Uy,

44
DM‘XH'I]NZJE(DM‘)()v ( )

that maps the point-value Djs|x of the generalized
macro-strain action into another field contributing
to the micro-scale generalized displacement accord-
ing to (36).

Both operators are linear in their respective arguments.

Classical multiscale solid mechanics The u,s-insertion

operator in this case is postulated as TH (upr]x) = unrlx,
i.e. it maps unl, into a uniform field over §2,,. The

D r-insertion operator, in turn, is postulated as jf(sM|x) =

emlx(y —¥o), wherey, = ﬁ fQu y df2,, i.e. it maps
the macro-scale strain action (in this case, the infinites-
imal strain measure) at point X into a linear displace-
ment distributed over §2,,. |

Remark 5 The choice of operators \7/;’ and J/f 15 not
entirely arbitrary. This lack arbitrariness stems from
the fact that these operators must preserve the magni-
tude of the macro-scale generalized displacements/strain
actions when inserted into the micro-scale. This issue
will be addressed with the enforcement of an additional
constraint on each operator (see, for example, (59) and
(60) below).

From (43)—(44), the kinematical variables us|x and
Djy|x can be combined to deliver a non-uniform gener-
alized displacement field which depends on y. Particu-
larly, we point out that the domain (lefi, i=1,...,n,
is the domain of insertion in which component i of the
image of the insertion operators 7, Z;’ and J, lf is defined.

Classical multiscale solid mechanics The point-
valued kinematical variables of the macro-scale, uns|x
and €pr|x, contribute to the micro-scale displacement
field through 6, which is contructed as follows:

ﬁM = jﬁ(“M'x) +j;f(€M|x) = uM|x +€M|x(y _YO>'

The domain of insertion at the micro-scale in this case
is, obviously, the whole §2,,. |

Remark 6 The present theory allows for insertion op-
erations far more general than those found in most ex-
isting formulations. The vast majority of existing for-
mulations only consider an affine mapping of the macro-
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scale generalized strain action into the micro-scale gen-
eralized displacement field (such as in the classical mul-
tiscale solid mechanics case referred to above). For ex-
ample, in failure multiscale analysis, a more complex
insertion operation can be used [104] to account for pro-
gressive strain localization, nucleation and evolution of
cracks at the macro-scale level, caused by shear bands,
damage or any other possible failure mechanism at the
micro-level. In this case, the micro-scale subdomain in
which strain localization is taking place is embedded in
the definition of the insertion operator. As shown in
Section 3.4, these insertion operators are functionally
essential in the characterization of the homogenization
of generalized stress and body forces at macro level.

Remark 7 Since jff and j/f are linear, we have the
representations

ull u12 ul’nM
T fr Iy
ju21 ju22 ju2n1\4
v T (45)
n,l n,2 NN M
/AN Y [
and
11 12 lmM
TE e TE
‘.7521 j522 ngmM
s B w Y
ju - . . ) (46)

enpl £np2 ENpMM
I, N RN

We now introduce the following definition. We say
that u,, € U, is linked to the macro-kinematics at point
x € {2y if there exist a ups|x € Ry —and a Dylx €
R¥,, such that

U = U+ T = T (untlx) + T (Datlx) + @ (47)

Then, for any micro-scale generalized displacement, u,, €
Uy, linked to the macro-kinematics, the corresponding
kinematically compatible micro-scale generalized strain
action is given by

D, = Du(u#) = Du(ﬁ#) + D#(ﬂﬂ) =

Du(T5 (wnrlx)) + Du( Ty (D)) + Dyu(i). - (48)

On physical grounds, we impose the following con-
straint on the operator jf[’ to prevent the insertion of
ups from causing generalized straining actions at the
micro-scale,

Du(T  (unmlx) =0 Vuulx € RFY,,. (49)

From the mechanical point of view, this constraint in-
fers that the inserted generalized displacement from the
macro scale must belong to the kernel of D, N(D,,), i.e.

the image of the operator \7,7 is in the space of rigid
generalized micro-displacements fields.

Classical multiscale solid mechanics By writing
u, = up|x + emlx(y — ¥Yo) + U, we ensure that the
micro-scale displacement, u,,, is linked with the macro-
kinematics at point x. Then, since JH (uprlx) = uprlx
18 a uniform field, the corresponding micro-scale strain
action is €, = V5 (up|x+enm|x(Y—Yo) +0y) = enrlx+
Vi, |

Remark 8 From (48), the generalized micro-scale strain
action can be written as

D, =D, +D,, (50)

where Du is a contribution from the macro-scale kine-
matics to the micro-scale strain action, and D,,, the
micro-scale strain action fluctuation, depends only on
micro-scale entities, that is

Du :Du(j,f(DM|X))a (51)
D [T Du(ﬁu)-

Remark 9 The contribution of the macro-scale gener-
alized strain action to its micro-scale counterpart field
can be obtained directly by applying the combined inser-
tion operator, defined as L, = D#Jf, to the point-value
Dy, i-e. we may write

Z,:R¥ =&,
123 Em f (52)
Dlx = Dy = Tu(Daslx)-

3.1.4 Kinematical homogenization operators

Kinematical homogenization operators also play a fun-
damental role in the present multiscale theory. These
operators must be postulated when devising an RVE-
based model, according to the physical nature of the
system/model in question. They define how the micro-
scale kinematical fields are homogenized (averaged) to
yield the corresponding macro-scale point-valued kine-
matical variables. There are two such operators. The
u,,-homogenization operator, mapping the micro-scale
generalized displacement field into the point-value of

the macro-scale generalized displacement,
u . x

Hy Uy = RE,, (53)

wy > MY (u,) € R

and the D, -homogenization operator, that maps the
micro-scale generalized strain action field into the point-
value of the macro-scale generalized strain action,

HE 16— RE,,,

. . (54)
Dy — H, (D) € RE,,.
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Both operators are linear and involve average measures

over the corresponding domains of insertion, Qif,z =
Ei 5

L...yny, and 27,0 =1,...,my.

Remark 11 If not all macro-scale kinematical vari-
ables are inserted into the micro-scale (refer to Remark
4), then the constraints (59) and (60) must hold only

for the inserted variables.

Classical multiscale solid mechanics The u,-homogenization

operator is defined as "Hi’f(uu) = ﬁ fQu u,, df2,,, while
thle D,,-homogenization Qpemtor is defined as Hi (Eu) =
Wfﬂu €,df2,. That is, up|x and en|x are simple
volume averages of their micro-scale counterpart fields
over the RVE. |

Remark 10 From the linearity of operator HILL’, the fol-
lowing matrix representations hold

11 12 In
HZZL{QI H%22 Hl]j? )
u u UTp
T R (55)
unml 5 ,ynm2 UnMny
U U gl
and
11 12 1im
H M H
2P e 242
£ w 0 0
H, = ) (56)

mal emm2 emamy
HE H o H
2 12 12

Now, let us go back to the issue posed in Remark 5
about the constraints on the insertion operators jf[’ and
J%, defined in (43) and (44), respectively. On physical
grounds, we must require that these operators are de-
fined such that the magnitude of the kinematical vari-
ables involved in the transfer across the scales are, in
some sense, preserved. This can be understood as a
principle of conservation of macro-scale generalized dis-
placements and conservation of macro-scale generalized
strain actions. Effectively, we want to ensure that the
homogenization of the insertion of each component u’ |«
of upr|x results in u’, |« itself. The same applying to the
components D, |x. To formally state this requirement,

we define uJ{\Z} S ]REM and D}{Vif} € R’gM such that

(u{i})j _ ué\/['x ifj=i (57)
M 0 ifj#1,

(D{i})j: D?\/[‘x ifj=1 (58)
M 0 ifj#i.

Then, the postulated kinematics conservation principle
holds if JZL’{ and jug satisfy the constraints

HU(TH W) = uld, =1, (59)
HE(D(TEDH) =D, =1, ma (60)

Classical multiscale solid mechanics In this case,
HZI<-7;7(UM|X)) = ﬁfgu unr|x a2, = up|x. Also,
M (Du(T5 (enlx))) = 17 Jo, Vy (Enlx(y—yo)) di2, =
en|x- Hence, constraints (59) and (60) are satisfied in
the context of the classical theory. |

Remark 12 From (59) we observe that the compound
operation ’Hllfjﬁ’ is the identity map in Ry . Similarly,
the compound operation HﬁDﬂjf is the identity map
in RE .

3.1.5 Kinematical admissibility

Let us now introduce the fundamental concept of kine-
matical admissibility of the kinematical transfer between
scales. A micro-scale generalized displacement u, €
U,,, linked to the macro-kinematics, and its generalized
strain action D, (u,) € &, are kinematically admissible
with respect to ups|x € Ry, and Dylx € R, if the
following relations are satisfied

Hif (w) = Hit (T (unrl),
’Hi(D“(u#)) = Hi(pu(j;f(DM&)))-

The above definition implies additional constraints.
Since u,, € U, is linked to the macro-scale kinematics,
(47) holds and, therefore, the left hand side of (61)
yields

My (up) = Myl (T (untlx))

+ HY(TE (D) + HY (1), (63)

Here, we shall impose the following further constraint
on the operator jlf
Hi{ (T (Darlx)) = 0. (64)
As consequence of (61), (63) and (64), @, must satisfy
the following kinematical constraint:

HY (@1,,) = 0. (65)
Since ’Hi{ represents an averaging operation involving
the measure of the domain related to each component
of the insertion operators, then equations (59) and (61)
establish a relation between ujs|x and the homogeniza-
tion of the micro-displacements u,. In addition, equa-
tion (65) embodies nj; tensorial constraints (i.e. Rpy
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scalar constraints) that must be satisfied by the gen-
eralized displacement fluctuation u, to link the micro-
kinematics to the macro-kinematics.

Classical multiscale solid mechanics With the defi-
nition of the u,-homogenization operator, the kinemati-
cal admissibility of u, implies that 'Hff (u,) =
uyr|x. Since, by construction, the operator J¢ is such
1 1

that m f‘Qu €M|x(y — yo)de, = EM|X(W fgu(y

YO) d‘Q/L) =0, we have WIM fQu (uM|x+€M|x(y*YO)+
U,)d2y = unlx + g7 o, Wud2y = unlx. This is
satisfied if ff?u u,d?,=0. [ |

We can proceed in an analogous manner with equa-
tion (62). By taking equation (49) into account, we have

Hi(Du(uﬂ)) =
HE(Du (T (unrlx))) + 1o (Du(TF (Darlx)))
=0
+ M (Dpu(@,) = Ho(Du(TF (Dalx))).  (66)

This yields

(@) =0 (67)

Then, equations (60) and (62) determine a relation be-
tween Dj/|x and the homogenization of the micro-scale
strain action D,,.

Hiu(Dy

In summary, any kinematically admissible general-
ized micro-scale displacement field u,, must be such that
its fluctuation component, 1, satisfies the kinematical
constraints (65) and (67). This motivates the defini-
tion of the space of kinematically admissible generalized
micro-scale displacement fluctuations:
King, = {ii, € Uy, H(i1,) = 0, H5(Du(ii,)) = 0}

(68)

Elements @, € King, satisfy the minimal kinemati-
cal constraints that render the kinematical transfer be-
tween scales admissible. Further kinematical constraints
may be added leading, in general, to different multiscale
models. Also note that, since the constraints over @,
are linear and homogeneous, it follows that the space
of kinematically admissible virtual micro-scale general-
ized fluctuation displacements is given by

Vara“ = Kin%. (69)
Classical multiscale solid mechanics With the def-
inition of the D,-homogenization operator, the kine-
matical admissibility of D implies that Hi(vguu) =
/Hi(vi(uM‘x +emlx(y — ¥o) + ) = Hi(eM‘x +
Viflu) = 61\/[|x. Then, ﬁfﬂ,l,(lex + Viflu) dQN =

Enlx + ﬁ fn Vﬁﬁu df2, = emlx, which is satisfied
w Iz

if fQ Vsﬁu df2, = 0. Equivalently, after integration

by parts, fr u, ®5 n,dl,, = 0, with n, the unit out-

ward normal to the boundary I, of 2,,. Therefore, the
space of kinematically admzsszble fluctuatzon displace-

HM(jM(UM| y}e.nts at micro scale and the associated space of ad-

mzsszble virtual variations are Klnu Varu ={a, €
1
HY( fQNu#dQ =0, fFuuM@) n,dl, —0}, [ ]

Remark 13 The constraints imposed by the kinemat-
ical admissibility between macro- and micro-scales re-
duces to ny; tensorial constraints given by (65) plus
mys tensorial constraints given by (67). Note that, since
the kinematics at the two scales are allowed to be dif-
ferent, the kinematical fields at micro-scale may not be
properly controlled. That is, some micro-scale kinemati-
cal descriptors may not be visible to the macro-scale. In
such cases, further constraints over i, will be required
to ensure the mathematical well-posedness of the micro-
scale problem. Such extra constraints must be homoge-
neous and depend on the modeling hypotheses based on
physical considerations for the micro-scale problem.

Remark 14 As we will show later, the space King,
plays a fundamental role in the definition of the micro-
scale equilibrium state. If further kinematical constraints
are added to King,, the response produced by the mul-
tiscale model will change in general. An easy way to
construct a more constrained space of admissible gener-
alized micro-scale displacement fluctuations is to force
@ = 0. This leads to the model known as Taylor Model
(or rule of mixtures) in classical multiscale solid me-
chanics. Here, in the general context of the present pa-
per, we shall refer to the space so constrained as the
Taylor Fluctuations Space. It contains only the zero el-
ement of King, :

King " = {it,, € Uy, @, =0 € 24} = {0}. (70)

This is obviously the maximally constrained space of
kinematically admissible generalized micro-scale fluctu-
ations. It is possible to adopt other (less constrained)
subspaces of King,, each choice delivering, in general,
a different model behaviour as illustrated in the follow-
ing example.

Classical multiscale solid mechanics In addition to
Kin?ylor, other choices of subspaces of King, can be
considered. For example, null boundary condition sub-
space, denoted by Kln"bc, which 1s obtained prescrib-

ing 0, = 0, Vy € I,. Another subspace, Km~ , could
be easily constructed for RVEs with periodic geometry
(typical of periodic media). Periodic RVEs have anti-
periodic unit normal vector field n, to the boundary
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I',. In this case, any y € I}, has a one-to-one corre-
spondance a point y* € I, lying on the opposite side
of I, and such that n,(y) = —n,(y*). Kinematical
admissibility is guaranteed if the fluctuation field u,
is periodic on I, i.e. U,(y) = w,(y*). It is easy to
verify that KmTaylor - Km"bC C Kln~ be King, .
From a mechamcal viewpoint, thzs means that the RVE-
based model produces the stiffest behavior for the choice

Kingjylor and the most compliant behavior with the choice

Kinﬁ“ . |

It is now possible to characterize the subspace Kin,,
of kinematically admissible generalized micro-scale dis-
placements. This subspace is formed by all generalized
displacements, u,, € U,,, linked to the macro-kinematics
at point x € (2); and kinematically admissible with re-
spect to unr|x € Ry and Dy|x € R, ie.

Kinu“ = {uy € Uy, uy = jﬁ(“M|X) "‘jf(DM‘X) + Uy,

’U,]\/[|x S RZM, D]yj‘x € R?M,ﬂﬂ S Kina“}. (71)

The corresponding space of kinematically admissible
generalized micro-scale virtual displacements, Var,,, is
given by

. . 1 2
Var,, = {t, € Uy;t, = u, —u

b~ u,ul, € King, } (72)

o

or, in view of (69),

Var,,, = Kin,,, . (73)

3.2 Multiscale duality

In this section we proceed to explore the duality con-
cepts reviewed in Section 2.3 in each of the two scales.
In the present multiscale setting, particular attention
is focused on the assessment of the virtual power at a
generic point x of the macro-scale. At the micro-scale,
special attention is given the identification of admissible
genralized forces and stresses.

8.2.1 Macro-scale virtual power

Following Section 2, the macro-scale internal virtual
power is given by

Py (Dar(inr)) = (Zar, Daa () e, e
tp € Vary,, (74)
or
. mm
Py (D (iiar)) = > (Z5p, (Puliian)*)er, xenrs
k=1

iy € Vary,,. (75)

In the present context, we are interested in evaluat-
ing the virtual power associated with a generic point
x of the macro-scale, so that it can be related to the
virtual power of the corresponding RVE by means of
the Principle of Multiscale Virtual Power that will be
established later. Then, note that at a point x € {2)y,
the kinematical quantity associated with internal power
is Dps(tips)|x- With the notation DM|x = ’DM(uM)|x7
the macro-scale internal virtual power, Py, (Darlx), a

a point x can be expressed as

ma

Piit(Darlx) Zwk Sutlx) " (Darlx) =t SarlxeDorlx

Dulx € RE . (76)

Enm

where wi, k = 1,...,my, are dimensional scalars (see
Remark 18) that guarantee the dimensional compatibil-
ity of the products (Zns|x)* - (Darlx)®, k= 1,...,mar,
taking part in the summation of internal power con-
tributions above. It should be noted here that (76) has
unit of power, whereas each product (2] ) - (Darlx)*
is a power density, i.e. power per unit measure of a
corresponding RVE subset whose measure is wy. Each
such subset may be of a different dimensionality (e.g.
a volume, surface or point). We remark that this level
of generality is crucial to model physical systems that
feature simultaneously phenomena defined over distinct
RVE subdomains, such as continuum straining, strain
localization, cohesive cracks or even discrete phenom-
ena. The operation denoted (-) e (-) above is then a
duality product defined as

(e (): (RE,) xRg,, — R,
(Zmlx, Damlx) = Zarlx © Darlx =

mm
> wi (D)
k=1

(77)
£ (Durlo)*.

Classical multiscale solid mechanics The internal
macro-scale virtual power is, as usual, given by the prod-
uct between the virtual strain action (a virtual strain
rate in this case) and the Cauchy stress fields: P =
f-QM o V;fﬁM d2p;. The virtual power of a point x
(which is to be linked to an RVE) is Pyj', = oux e
éM|x:LU1U]\/[|x‘éM|x. |

Similarly, we define the macro-scale external virtual
power as

Py (tar) = (far, Gar)us, <y, Unr € Vary,,, (78)
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where fa; has the structure of D}, (X). The external
virtual power at point x is expressed by

nm
PJG\Z(;:(@M|X) = Z’Yk (fM|X)k : (QM‘X)}C =t fulx @ dnrx
k=1

inlx € RS . (79)

The dimensional parameters v, k = 1,...,nys, are en-
tirely analogous to the parameters wy of (76). Note that
in (79) we have used the same pairing product notation,
(-)e(-), as in (76) but the exact meaning of the product
will be dictated by the context. In this case, the duality
product (-) e (-) is defined as

() e (): (Rg,) xRy, —R,

(fM|X7uM‘x) = fM|x.uM|x -

naM

Z'Yk (Furls)™ - (unrlx)®.
k=1

(80)

Classical multiscale solid mechanics The external
macro-scale virtual power is Pf\’/}‘t = fQM far-tn dQ2y+
fFM tar-Ups dlyy . The external virtual power of a point
XE.QM 18 P]?/}()tx:fMlx.ﬁM|x:’YlfM|x'ﬁ]M|x~ ||

With the above definitions at hand, we can now de-
fine the total macro-scale virtual power at point x. Using
(76) and (79), we define

PJt\th(’O’M|X7DJV[‘X) = 2M|x i D]V[‘x - fM|x o ’ELM|X
tnrlx € Ry, Dulx € R%,, . (81)

The schematic diagram of Figure 3 shows a repre-
sentation of the various concepts used in the definition
of the macro-scale variational setting that is part of the
present multiscale theory.

Remark 15 Point x is a point belonging to some ge-
ometrical object of the macro-scale body. In general, it
can be a point in a volume, a point on a surface or sim-
ply a point on its own. Thus, the external virtual power,
PT, of that point is associated to generalized external
forces defined over the geometric object the point belongs
to, and is characterized by means of duality. In the case
of a point in the bulk of a three-dimensional solid body,
we will have the notion of generalized body forces. This
notion includes generalized passive body forces per unit
volume (e.g. force due to gravity in classical mechan-
ics) and generalized inertia forces (e.g. due to accel-
eration in classical mechanics). The term generalized
body force will be used here to refer to these two kinds
of generalized forces (passive and inertia). Hence, dy-
namic phenomena are automatically taken into account
within the present framework. Note, however, that in
the present theory the macro- and micro-scale share the
same time scale.

3.2.2 Micro-scale virtual power

With the duality concepts already presented in Sec-
tion 2, the internal micro-scale virtual power can be
expressed as

P;ﬂt(pﬂ(ﬁ#)) = (X, Dullip))ey xe, Uy € Vary,. (82)

By considering (47) and (49), and with a slight abuse
of notation, we obtain the equivalent expression

P;nt(DMl:mDu(ﬁu)) = <EmDu(Jf(ﬁM&)"’ﬁu»S,ﬁX&
Dulx € RX,,, @, € Varg,, (83)

in terms of virtual macro-scale strain actions, bM|x,
and virtual micro-scale displacement fluctuations, ﬁ#.
The macro-scale kinematics is mapped into the micro-
scale by the insertion operator jf . The schematic dia-
gram of Figure 4 illustrates the basic concepts of the
variational formulation at the micro-level, which are
fundamental within the proposed unified variational mul-
tiscale formulation.

Classical multiscale solid mechanics By taking into
account the split of the micro-scale virtual strain action,
the micro-scale virtual power can be expressed as Pjtm =

f(z“ Op- Vﬁﬁu A2, = fgu o (Emlx + Viﬁu) 2, =
fnﬂ, o Emlxdf2, + fnu, Opu- Vgﬁu ds2,. u

The external macro-scale virtual power is defined as
a linear functional on the subspace Var,, = Kin,,:

PﬁXt(au) = <fu7'&u>u"‘ XUy, ﬂu € Varu“. (84)

From (82) and the definition of the adjoint operator D;,
we can fully characterize the nature of the admissible
generalized micro-scale external force f,, € U,,. Indeed,
we have

(s Duli)) ey xe, = (Dp(Z)s W )ur, xu, =
(s jg(ﬁM|x) + jf(DM‘:J + ﬁﬁu‘gxuu
i, € Var,,, (85)

that is,

P (tiar s Do |y ) =
(fus T (@t ) + T (Dar ) + e xaa,

inrlx € R, Durlx € RE | i, € Varg,. (86)
Again, note the contributions from kinematical enti-
ties defined at the macro-scale and kinematical entities

of the micro-scale to the micro-scale external virtual
power.
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Classical multiscale solid mechanics The micro-
scale external virtual power in this case reads Pﬁ"t =

fnu fu : ﬁudg,u = fQ“ fp, ! (ﬁM‘x + éM|x(y - YO) +
ﬁu>d9u = fQM fu ) ﬁM|deu + fn,b(f ®S (y - }’o)) :
Entlxd 2+ [ £ 0, d02,. u

With the above at hand, we can now define the total
micro-scale virtual power,

P (g, D |x, ) =
P (D e Dyu(itg)) — B (s [, Do e, )
Giarlx € R . Dulx € Rg i, € Varg,, (87)
given as a sum of (linear) functionals in Var,, .
The contribution of the macro-scale virtual quan-
tities, dpr|x and Djslx, to the micro-scale total virtual

power (87) has fundamental implications to the present
theory. To see this, we begin by evaluating Pi°* for

G =0,
P (ting|x, Darlx, 0) =
P (Darlx, 0) = PO (duas |, Darlx, 0) =
=(X.,D (jg([jM|x))>£;bx5,b
— (fur T (@t %) + T (D) )ty <,
= (D}, 2 = fu), TE (D))t xua,
—<f;u~7g(ﬂM\x)>u;xu“~ (88)

From this expression, dual (stress- and force-like) enti-
ties, which we shall denote X}, |x € (R¥, )" and fj;|x €
(R,,)’, associated respectively with the macro-scale
virtual actions 4y |x and D M |x, can be promptly iden-
tified as follows. By making use of the adjoint operators

(JE) U, — (R¥,) and (JY) : U, — (RX,,)", from
(88) we obtain
EK/[‘X.-bM|x Zwk (DM| )

= <( fu) (DM| )>M’ xU,,

((»75) (

" ()"

farlx @ dnrlx = Z'Yk (frlx)

k=1

= (fur T (nr|x) g, xaa,

= ((jff) Fus tinrle) g,y <, - (90)

Then, by substituting expressions (89) and (90) into
(88) we have

P;EOt(ﬁM|Xa DM|xa O) =

Zhtlx ® Darlx — fylx ® dnrlx. (91)

— fu): D« >(]R" 'ng%?)

In summary, by means of duality considerations it
has been shown in the above that as a result of the
kinematical admissibility link postulated between the
macro- and micro-scales, the micro-scale total virtual
power has contributions from the macro-scale virtual
actions. Comparison between (91) and (81) suggests
that a further link — between the macro- and micro-scale
virtual powers — can be postulated. This is addressed
in the following.

3.3 Principle of Multiscale Virtual Power

The Principle of Multiscale Virtual Power, stated in
this section, establishes a consistency link between the
macro- and micro-scale virtual powers. This principle
lies at the heart of the Method of Multiscale Virtual
Power proposed in this paper and, as we shall see,
yields the following consequences:

— Micro-scale variational equilibrium equation (n,, vari-
ational equations);

— Homogenization formulae for the macro-scale inter-
nal generalized stresses (mjys homogenization for-
mulae); and

— Homogenization formulae for the macro-scale exter-
nal generalized forces (njy; homogenization formu-
lae).

The principle itself can be regarded as a variational
statement of an extended version of the well-known
Hill-Mandel Principle of Macrohomogeneity [45,72]. It
is postulated in the following.

Principle of Multiscale Virtual Power The total
macro-scale virtual power at a point X must be equal to
the total micro-scale virtual power at the corresponding
RVE for all kinematically admissible macro- and micro-
scale virtual actions. That is,

PtOt (a]\/f|xa DM|x) = P;;Ot (’&M|xy EM|xy ﬁp,)

Y(anr|x, Darlx, U,) kinematically admissible.  (92)

or, equivalently, in a more explicit form

Surlx ® Darlx — farlx @ tar|x =

<Zu7Du(~7;f(bM|x) + ﬁ#»r‘:Lx‘su

— (fur T (nr|x) + T (D) + e xaa,
V(@nrlx Darlxs @) € R x RE % Varg,. (93)

At variance with the classical Hill-Mandel Principle,
where only internal powers are considered, the PMVP
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P = (fu, ~7,lf{(ﬁM\x) + Jf(bM‘x) + ﬁ“h"[txuu

.
Drlx

x
Re M

Pyt = Fulx @ Garlx

P}C}fx = Zmlx ® Darlx

Tz

D’

"

.
Ymlx

®5,,)

P[il,nt =(Z,, ’Du(j;f(f)M‘X)) + Du(ﬁu»gflxgu

Fig. 4 Method of Multiscale Virtual Power. Basic sets and operations at the micro-scale level.

implies a balance of both the internal and external vir-
tual powers at a point x of the macro-scale with the
total virtual power of the associated RVE.

Classical multiscale solid mechanics The Princi-
ple of Multiscale Virtual Power in this case states that:
The macro-scale stress and body force (o arlx, far|x) and
their micro-scale counterpart fields (o, f,) satisfy the
Principle of Multiscale Virtual Power if and only if
the following variational equation holds: o nr|x ®€nr|x —
f]\4|x.ﬁJW|x = fQu U/}..éM|X dQ/L+fQ“ U/L.v)sflﬁlt dQlLf
f(z# £ - Qarlx dS2, — fn# (fu @5 (y = ¥o)) - émlx A2, —

Joo, 00y A2, Y (Qarlxs Earlx, 1) € RY XRE X Varg, .
u

Remark 16 The Principle of Multiscale Virtual Power
will also provide the definition of the scalars wg,k =
1,....,mp and v,k = 1,...,np, which appear in the
left hand side of (93) (following the identities (77) and
(80)).

3.4 Dual homogenization operators and micro-scale
equilibrium

The dual homogenization operators (for the macro-scale
generalized stresse- and force-like quantities) and the

micro-scale equilibrium equations are derived here as
natural consequences of the Principle of Multiscale Vir-
tual Power. As we shall see, they are the Euler-Lagrange
equations associated with the variational statement (93).

3.4.1 Micro-scale equilibrium

By setting Dyslx = 0 and dpz]x = 0 in (93), we ob-
tain the variational form of the micro-scale equilibrium
equation:

<EM’D;L(§#)>£,QX€“ - <fwf‘u>u,’bxuu =0

Vi, € Varg,. (94)

Obviously, this equation has the same format as the
standard equilibrium of a general physical system writ-
ten as the Principle of Virtual Power, here applied to
an RVE with the corresponding generalized applied ex-
ternal forces and kinematical constraints embedded in
the definition of Varg,.

Classical multiscale solid mechanics In this zase,
when we choose Uprlx = 0 and &prlx = 0 in the cor-
responding PMVP, the RVE equilibrium is obtained as
the following variational equation: fﬂu ou ~V§ﬁu s, —

Jo, £ 0. dS2, =0 Y, € Varg, . |



24

P.J. Blanco et al.

By making use of the adjoint operator D, in (94),
we obtain the alternative form
(DL(Z) = fus g xu, =0 Vi, € Varg,, (95
or, equivalently,
D, (2,) — fu € (Varg,)" CU,. (96)
Further, we recall that f,, must satisfy (25), i.e
<f/1«7 13,”>1,{L xU, = 0 V?fbu S Vara“ m N('DM) (97)
which implies
fu € (Varg, [\N(D,))* (98)

where (-)* denotes the orthogonal complement of (-).
That is, the system f,, of generalized forces is orthogo-
nal to micro-scale rigid admissible virtual fluctuations
of the RVE.

Classical multiscale solid mechanlcs If we decom-
pose fu = f'quf , wheref = \Q i fn f,df,, andfu =

£, — £, we have that fQ £, uMdQ fQ f, uudQ

Hence, only fluctuations of the body force, f , which are
not orthogonal to Varg,, play a role in the mzcm—scale
equilibrium problem. |

Finally, we remark that the micro-scale equilibrium
problem is completely defined by the variational equa-
tion (94) once the external load f, is known (a given
datum) and a constitutive law X, = X7, (ul,), express-
ing the stress X, as a function of the history uL of
the field u,, is assigned to each point of the RVE. The
problem is stated in the following.

Problem 2 (Micro-scale equilibrium) For a given
constitutive law %, = X, (ul,), a given history ufy;|x
and DY |x, of macro-scale generalized displacement and
strain actions, and a given history of micro-scale admis-
sible generalized external force, fﬁ, find the history “Z €
Kin,, of kinematically admissible generalized micro-scale
displacements such that

<2ﬂ(u;)7DM(ﬂu)>g/X€ = <f(7—)7ﬂu>l/l'><lxl

Vi, € Var,,, V7 € [0,t]. (99)

8.4.2 Generalized stress homogenization formulae

Now, we set dp|x = 0 and @, = 0 in (93) (see also
(89)) and obtain

E]M‘x L4 ﬁM|x = <E;u

Du(TS (Darlx)))e xe,

—(f0, T (Dt )tz xua,
= (D2 = fus jj(DM|x)>Z/1L><I/{“
= <(Jf)/(pl X — fﬂ)’ﬁ]ﬂ‘ > o) <RE
= il Dulx ¥Durlx €RE,,. (100)

From the above, we can promptly identify the general
(linear) X'ps-homogenization operator as

Ay U — ( ?M)/ (101)
(D,Zn = fu) = hrlx = 92(DL 20 — fu),
such that
EN/
(T @5 ). Dbz e,
= ﬁZ(DIL m f/L) L4 DI\/I|x vDM‘x S RgM
From (100) and the above definition, we have
(Zntlx — H(D) Sy — fu)) ® Darlx =0
VDylx € RE, . (103)

This gives the homogenization formula for the macro-
scale generalized stress:

— fu) € (RE, )" < (RE,,)"

Remark 17 The X'y -homogenization operator and the
corresponding homogenization formula for stress-like quan-
tities is consistently derived here as a consequence of
the proposed PMVP. This is in contrast with most of
the existing literature in the field, where stress homog-
enization formulae are postulated a priori instead.

Yulx —Hs(D,X (104)

Classical multiscale solid mechanics In this case,
by setting tpr|x = 0 and 1:1“ = 0 in the PMVP, we
obtain: O'Mlx (] éM|x = f_Q” g, éM|delJ« — fQ;t(f# ®S
(Y—¥o0)) Emlx df2, Yér|x € H@S‘; The homogenization
formula is obtained by first identifying o nr|x ® Enr|x =
|2,] 0 v |x-Ene|x, which results in o n|x = ﬁ ffh -
(£, ®% (y — yo)) df2,. In this case, we have identified
w1 = [£2,] so that the stress homogenization is physi-
cally consistent. Note that this is the Xy -homogenization
formula that naturally results from the formulation. This
was found using a shortcut. To see this the long way,
we consider the operator D, = V§ explicitly as fol-
lows: o pr|x ®Epr|x = fﬂu o, Vg(éM|x(y —Yo))df2, —
Jo, 62 ®5 (v = y0)) - enlx d2y Veulx € RE,,. Then,
mtegmtwn by parts of the ﬁrst term on the right hand
side gives o pr|x ® Enrlx = ‘[Qu divy o, @ (y —yo)] -
Entlxdf2u+ [, (0,1, @5 (y—¥o)] €0 ar,—[o £.®
(¥ — ¥o)] - €mlxdf2, Veu|x € H@; Now, by using the
strong form of the micro-scale equilibrium, we have that
o M|x®En|x = (fpH o5 (y—yo)dl,) Enlx VEm|x €
Rx_
Em
we conclude that the Xy -homogenization formula reads
ouMlx = ﬁfn‘ o,m, @° (y —yo)d2,. This form is
completely analogous to the previous one. The advan-
tage of the latter formula over the former is that the

. Then, by proceeding in the same way as before,
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homogenized variable depends only on RVE boundary
fields — something that has been pointed out by Hill [45]
as of fundamental practical importance in RVE-based
theories. However, note that the former formula is re-
quires less reqularity of the fields involved and, as such,
18 better suited for problems tackled in weak form at all
levels. ]

Remark 18 According to expression (100), the coef-
ficients w, k = 1....,myp;, appearing on its left hand
side (refer to (77)), are identified from the homogeniza-
tion procedure given by operator 5 so as to render the
homogenization operation physically consistent (refer to
the above example of classical multiscale solid mechan-
ics). In Section 6 this is illustrated in further practical
examples.

8.4.8 Generalized force homogenization formulae

Now, we specialize (93) by choosing Dyslx = 0 and
u, = 0 (see also (90)). This gives
Iarlx @ tarlx = <fu7jl7(ﬁ/M|x)>M[l><Z/{u

= <('~7;ZL/I)/(f#)7 ’&M|x>(R§M)/><RX

(105)

Similarly to the derivation of the stress homogeniza-
tion operator, from the above variational equation we
identify the fys-homogenization operator,

Sﬁf :Z/[;L — (RZ’/({M)/,

—
= fx[‘x.ﬂM|x Vﬂ'M|x ER1§M~

m (106)
Ju = farlx =95 (fu)s
such that
<(\7u)/(ft);ﬁM|x> RX /' RX
o ) (107)
=95(fu) o tnlx Van|x € Ry, .
With the above defined $¢, (105) gives
(farlx = Hp(fu)) @tnr|x =0 Vi e]lf;;;, (108)

Then, we arrive at the homogenization formula for the
generalized macro-scale force:

Fulx = 95(fu) € Ry, S (Ry,,)"- (109)
Classical multiscale solid mechanics By consider-
ing Enplx = 0 and u, = 0 in the corresponding PMVP,
we get f]y[|x Ofl]y[|x = fQu f:u ﬁM|x dQu Vﬁjy[|x c RZ)/(IM'
Here we identify: far|x®0nr|x = |£2,] farlx-0ar|x, so that
we have f]x = ﬁ fQ f,d(2,. This defines the far-
" w
homogenization operator. Note that 1 has been identi-
fied here as y1 = |£2,| so as to guarantee the physical
consistency of the homogenization operation. |

Remark 19 According to (105), the coefficients vy, k =
1....,npr, taking part in its left hand side (refer to(80)),
are identified from the homogenization process defined
by $7 so as to make the operation physically consistent
(refer to the above example on classical multiscale solid
mechanics). This will be further illustrated in other ex-
amples presented in Section 6.

3.5 Summary and discussion

In summary, we have established in the above a com-
plete variational theory of RVE-based multiscale mod-
eling of physical systems. Within the proposed theory,
RVE-based models are devised in a systematic way by
means of well-defined steps according to the proposed
Method of Multiscale Virtual Power. Once the kinemat-
ics at both macro- and micro-scales are established, and
the link between kinematical variables across the scales
is defined, the nature of stress- and force-like quanti-
ties at both scales is identified through mathematical
duality and the micro-scale equilibrium equation and
homogenization relations for the stress- and force-like
quantities are univocally derived from the Principle of
Multiscale Virtual Power entirely by means of straight-
forward variational arguments. The overall procedure is
summarized in Box 1 where a recipe for the consistent
derivation of general RVE-based multiscale models is
presented.

An interesting point to note, made clear when the
theory is presented within the proposed framework, is
that the concepts of internal and external virtual pow-
ers are not entirely distinct form each other as in the
conventional single-scale theory. That is, in general, the
macro-scale internal stress, X'y, which produces macro-
scale internal virtual power, has contributions from both
the micro-scale internal stress X, (that produces micro-
scale internal virtual power), and the micro-scale exter-
nal force f, (that produces external micro-scale virtual
power). The effects of ¥, and f,, on X' are combined
in a non-linear way, through the micro-scale equilib-
rium problem defined by (92). These interactions alter
the standard notion of constitutiveness of the material
behavior in that internal forces (e.g. micro-scale iner-
tia forces in dynamical problems) may contribute to
the macro-scale stress. However, one situation where
the standard notion of constitutiveness of the RVE-
based model is retained is when the physical transfer
between scales involves only the balance of internal vir-
tual power. That is, when only Pyj', and Pi" are con-
sidered in the Principle of Multiscale Virtual Power and
the macro- and micro-scale external virtual powers are
disregarded. In this case, a purely constitutive modeling
framework is obtained. This is the case of all multiscale
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models based on the Hill-Mandel Principle of Macroho-
mogeneity [72,45]. The interesting aspect in this case is
that the generalized macro-scale stress, Xps|x, derives
only from micro-scale constitutive and mechanical in-
teractions, for which only the generalized micro-scale
stress X, is responsible. While f,, can exist, it is or-
thogonal to the corresponding space of admissible vir-
tual generalized displacements and hence does not gen-
erate virtual power. That is, f, in this case is a reactive
force to the kinematical constraints embedded in the
definition of Varg, [112]. As such, f,, cannot be arbi-
trarily modeled. This particular case will be considered
in detail in Section 4.

4 Multiscale constitutive modeling

Following the above discussion, we present here the spe-
cialization of the general MMVP to the case where only
the virtual powers of the macro- and micro-scale gen-
eralized stresses are accounted for in the PMVP. The
motivation to present this specialization in detail is that
the vast majority of publications on multiscale model-
ing falls into this category of RVE-based theories. For
example, the classical RVE-based theories in continuum
solid mechanics do fall into this category. In this case,
the multiscale model defines a macro-scale constitutive
model where the macro-scale stress Xj/|x is a func-
tion (implicitly defined by means of the operations of
kinematical insertion, micro-scale equilibrium solution
and stress homogenization) of the history D%,|x of the
macro-strain actions. That is, Y |x=X1s|x (DY |x)-

4.1 On the insertion operators

As in the general case of Section 3, the insertion of ele-
ments uyr|x € R’L‘{M into the micro-scale U, is performed
by the insertion operator JX defined in (43).

For the present case, where external virtual powers
play no role, the insertion of elements Dy |x € R?M into
the micro-scale is understood to be directly performed
into £,, by means of the linear operator

I, =D.J : RE,, —

! (110)
DM|x — DH = IM(DM|X))

which is the composition D, 7, ;f of operators (defined by
(39) and (44), respectively), as highlighted in Remark 9
(see (52)). The mapping of Dys|x through Z,, may result
in a non-uniform field (dependent on y) in the micro-
scale.

From the developments of Section 3 we observe that
in the present case micro-scale generalized strain ac-
tions are the sum of a macro-scale contribution inserted

through the operator Z,, and a strain action fluctuation
field intrinsically related to the kinematics and equilib-
rium of the micro-scale. That is,
D, =Z,(Dulx) + Du(ty). (111)
Remark 20 The linearity of operator I,, allows matriz
the representation

Illtl I:LQ IlmM
I21 1'22 I2mM
w u w
I, = . , (112)
myl 7m,2 T T M
A WA i
where
11 12 1mas
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20 72 . 1
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The concepts involved in the kinematical transition
between scales (i.e. the kinematical admissibility con-
cept) follow those presented in the general context of
Section 3.

4.2 Multiscale duality

The internal virtual powers at macro- and micro-scales
are exactly as defined in Section 3.2. For the macro-
scale we then have

Py (Das(iar)) = (Znr, D (nr))er, e

Unm € Vary,,. (114)

At point x € 2, we have

mnr

Pyt (Dulx) =Y wi(Zarlx)* (Durlx)* = ZarlxoDarlx
k=1

Dulx € RE, . (115)
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For the micro-scale, the internal virtual power is given
by

Ppitnt(Du) = <2/uf)#>5ﬁ><5u Z)M given by (111), (116)

or, equivalently, with a slight abuse of notation, we
write

PLnt(ﬁM|X7Du(ﬁu)) = <Z;MI#(DM|x) + D#(ﬁu»%ﬁx&
Dulx € RE,, @, € Varg,. (117)

As in Section 3.2.2, we now set fcu = 0 in the above
formula to assess the contribution of the macro-scale
quantity D |x to the micro-scale internal virtual power.
Then, we obtain

P,Litnt(‘DM|X70) = <2qu(ﬁM‘X)>S,Qx€u~ (118)

Further, by making use of the adjoint operator (Z,) :
&, — (RE,,)" we obtain (see also (77))

ma

Zhylx ® Darlx = D w* (Zhlx)* - (Darle)*
k=1

= <ZuaIM(El\/llx)>£;xé’“
= ((Z)'(Z): Darl) gy, - (119)

Finally, by substituting (119) into (118) we arrive at
the particularization of expression (91) for the purely
constitutive multiscale formulation, in which external
forces play no role in the scale transition,

P (Darlx; 0) = Zhylx @ Dar . (120)

4.3 Principle of Constitutive Multiscale Virtual Power

In the present case we state a Principle of Constitutive
Multiscale Virtual Power, whose consequences will be:

— Micro-scale variational equilibrium problem (n,, vari-
ational equations); and

— Homogenization formulae for the macro-scale inter-
nal generalized stresses (mjys homogenization for-
mulae).

Principle of Constitutive Multiscale Virtual Power

The internal macro-scale virtual power at a point X
must be equal to the internal micro-scale virtual power
at the corresponding RVE for all kinematically admis-
sible macro- and micro-scale virtual actions. That is,

PJi\?fx(f)M|X) = P/int(DM‘mDu(&u))
Y(Dasx, @) kinematically admissible, (121)

or, equivalently, in a more explicit form,

Sntlx  Dutlse = (£, Tu(Dslse) + Do)y e,
V(Datlw, i) € RE x Varg,. (122)

The above principle is a generalized form of the Hill-
Mandel Principle of Macro-Homogeneity which preserves
the idea that only internal virtual powers are to be bal-
anced in the scale transition.

Classical multiscale solid mechanics The PMVP
in this case is stated as follows: The macro-scale stress
ouml|x and the micro-scale stress field o, satisfy the
Principle of Multiscale Virtual Power if and only if
the following variational equationAholds: o Mx oéM|x =
fm o, Enlxd2, + fm oL V?ﬁu a2, V(emlx, ) €
I@f; X Varg,. This is the variational statement of the
classical Hill-Mandel Principle for RVE-based multi-
scale solid mechanics, widely invoked in the current lit-
erature on the subject. |

4.4 Stress homogenization and micro-scale equilibrium

Analogously to Section 3.4, the stress homogenization
relation and the micro-scale equilibrium are derived
here as the Euler-Lagrange equations associated to the
variational statement (122).

4.4.1 Micro-scale equilibrium

By setting, in particular, ﬁM|x = 01in (122), we obtain
the micro-scale variational equilibrium equation:

(X0, Dultiy))ey xe, =0 Vi, € Varg,. (123)

This equation is a particular case of (94) when f, is
orthogonal to the space Varg,. Equivalently, by using
the adjoint operator DL we have

(D} (Z0), i )uy s, =0 Vi, € Varg,, (124)
which implies
D, (X,) € (Varg, )" C U, (125)

The micro-scale external forces, f,, can be identified
from the above as having the structure of Dj,(¥,), as
usual. It should be noted, however, that, in the present
case, they must be purely reactive forces (they do not
generate virtual power) as they are orthogonal to Varg,, .
That is,

Vﬁﬂ IS Varg“.

(fyur Ut xvq,, = O (126)
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The micro-scale equilibrium problem is completely
defined by the variational equation (94) once a con-
stitutive law X, = X, (u!,), expressing the generalized
micro-scale stress Y, as a function of the history uft of
the field w,,, is assigned to each point of the RVE. The
problem is analogous to Problem 2.

4.4.2 Generalized stress homogenization formula

If we choose 1, = 0 in (122), we obtain (see also (119))
ZM‘X L4 DM|x = <E;qu,(DM‘x)>S,’L><E“
— (T (). Dat e,y ez,

= Sl Dulx VDulx € RE . (127)

The (linear) constitutive X'y -homogenization operator
is identified from the above variational equation as

*662 : g,tll. - ( )5('1\/1)/

; . (128)
Y= Yiylx = 95(2,),
such that
c ~ ) ~
HS(XL), DM|x>(R§M)/xR;§M = 28|x ® Darlx (129)

VDM|X S R?M.

With the above defined operator %, equation (127)
gives

(Zarlx — H%(2u) @ Darlx =0 VDyrlx € R, . (130)

This yields the homogenization formula for the macro-
scale generalized stress,

ulx = H5(Z,) € (R, S (RE,,)"- (131)
Remark 21 When the given micro-scale constitutive
function is of the type X,(y) = Y. (D}, (y)) — a stan-
dard local constitutive law (in the strict sense of the
word), where the stress depends solely on the local his-
tory of the generalized strain actions — the multiscale
model above defines a macro-scale constitutive function
of the same type, i.e. Xpr|x = Xn|x(Dhy|x). That this
is indeed true can be established as follows. According
to (111), micro-scale strain actions are a sum of a con-
tribution from the macro-scale strain actions (inserted
by the operator I,,) and a contribution from the micro-
scale generalized displacement fluctuation u,, (the solu-
tion of the micro-scale equilibrium problem). Once the
micro-equilibrium problem is solved (for the history u‘;),
with the micro-scale stress field delivered by the given
micro-scale constitutive equation, the macro-scale stress
Xulx is obtained by means of the homogenization op-
eration (131).

5 Multiscale tangent constitutive operators

The linearization of non-linear problems plays an im-
portant role both in theoretical and computational con-
tinuum mechanics. This issue is particulary relevant in
non-linear solid mechanics [73]. In the theoretical con-
text, linearization can be essential in the determination
of crucial properties, such as the stability of solutions,
for instance. In the computational setting, linearization
becomes especially important in the solution of approx-
imate (discretized) non-linear problems — typically un-
dertaken by iterative numerical methods relying on the
sequential solution of linearized problems. In particular,
the widely used Newton-Raphson iterative algorithm,
whose key advantage is the quadratic rate of asymp-
totic convergence, requires the exact linearization of the
problem at each iteration.

Our main concern here is the derivation of an exact
canonical form for the constitutive tangent operators
arising in multiscale theories of the type discussed in
Section 4, i.e. theories classed here as purely constitu-
tive, for which only the internal virtual powers play a
role in the scale transition. More specifically, the formu-
lae derived here will be restricted to the case alluded
in Remark 21, where the micro-scale constitutive law
is such that the micro-scale generalized stresses at each
point of the RVE are functions of the history of the cor-
responding generalized strain actions at that point. The
tangent operators will be derived by consistently lin-
earizing the corresponding problems in the continuum
setting, i.e. before any temporal or spatial discretization
is introduced. The specific format taken by the tangent
operators under different discretization schemes can be
determined by simply introducing the relevant numeri-
cal aproximations into the continuum canonical expres-
sions.

Firstly, let us briefly review the notion of tangent
operator. To this end, consider a generic functional §
which, for example, depends on a field D and consider
the perturbation

D.=D+¢€AD, (132)

given by a scalar factor ¢, in the direction of an admis-
sible perturbation AD. Then, for sufficiently smooth
functionals, the value of § at D, can be expressed as

§(D) = §(D) + ¢ DF(D)AD + ofe), (133)
where
DF(D)AD = %g(DE) (134)

denotes the directional derivative of the functional § at
D in the direction of AD and o(-) denotes a term such
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that, for any scalar a,

lim ola) =0. (135)
a—0 a

The first two terms on the right hand side of (133)
define the linearization of functional § at D in the di-
rection of AD. If the representation (133) is valid for
any AD, then the functional § is said to be differen-
tiable at D and the operator ©F defined by (134) is the
gradient — or tangent operator - of § at D.

5.1 Homogenized macro-scale constitutive functional

To start with let us recall that the generalized strain
actions D, are related to macro-scale generalized strain
actions Djyl|x and micro-scale generalized displacement
fields w, by means of (111). Also, in the present case
(alluded to in Remark 21), we shall limit ourselves to
local micro-scale constitutive descriptions, represented
by constitutive functions §,, such that

Zu(y) = Fu(Dy(y)), (136)
or, in view of (111), with an obvious notation,
S = Fu(Zu(Diylx) + D(a,)). (137)

With the above considerations, the micro-scale equi-
librium problem (Problem 2), reduces in the present
case to the following: Given a constitutive function g,
of the above type, and a history D},|x of the macro-
scale generalized strain actions at point x, find the his-
tory ﬂz € King, of kinematically admissible micro-scale
generalized displacement fluctuations such that

(Zu(Tu(Diylx) + D(@,)), D)z, e, = 0
Vi, € Varg,, V7 € [0,1].
(138)

Clearly, the solution of the above problem defines a
mapping between histories of generalized macro-scale
displacements D |, and histories @,
scale displacements. This will be represented by a (gen-
erally non-linear) operator, €,, i.e.

ﬂ‘ft = Q:/L(I/L(D§W|x)) (139)
By replacing this definition into (137), we have
2= gM(IM(Dg\/Ax) + DH(Q:M(IM(D%|X))))' (140)

Further, by taking into account the generalized stress
homogenization operator 9% introduced in (128), we
obtain

Tyl = 95T (D) + Dul€, (T, (D))
= §7 (D). (141)

of generalized micro-

where we have defined the homogenized constitutive func-
tional, F"°™, that maps the history the of macro-scale
generalized strain actions at point x into X4 |«.

5.2 Homogenized macro-scale constitutive tangent

The homogenized (macro-scale) constitutive tangent op-
erator is a tangent operator associated with the func-
tional §"°™. To derive it, we first apply the directional
derivative formula (134) to (141), noting that, except
for §, and €,, all operators involved in the definition
of §*°™ are linear. This gives,

DF" ™ (Diylx)[AD|x] =

d om
&gh (ngf|x+€ADM|X) =
e=0

= 95{D(D,)(Z(ADu|x)+

Dyu(D€,(Zu(Dy x)) L (ADw|x)))},  (142)

or, due to the linearity of all operators involved in the
above linearized expression,

gghom(wa&)[ADM‘X] =
HEADF (D)) Dy (DEu( L (D %)) L (ADar |x)) }-
(143)

The first term on the right hand side of the above
expression is the contribution to the directional deriva-
tive when 4, is held fixed. This corresponds to the lin-
earization of the macro-scale generalized stress response
under the assumption of generalized Taylor kinematical
constraint (referred to in Remark 14). This motivates
the following definition:

OF T (Dl ) [ADas ] =

HSADFu(D))Zu(ADlx)}. (144)

With this notation we re-write expression (143) as

DF" ™ (Diy|x)[ADulx] =
DFTwlor (DY) [ADa|x] + £(Dh |x) [AD ],
(145)

where £(DY,|x) is the linear operator defined by

£(Diylx)[ADlx] =
HEADF (D)) Pp(DEu( L (D %)) L (ADar|x)) }-
(146)

This term is the contribution to the directional deriva-
tive stemming from the linearization of the (generally
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non-linear) operator €,, defined by (139) and associ-
ated with the solution of the (generally non-linear) vari-
ational equation (138). Further insight into this contri-
bution can be gained by looking into the linearization
of (138) about an RVE equilibrium state with given
macro-scale generalized strain actions history DY,. The
linearized problem reads: Given a field ADs|x, find
the field Au, € Varg, that solves the following linear
variational equation:

<©3N(DZ)DM(A71M)7Du@u»f;x& =
— (DFu(D})T(ADulx), Dplin)) e xe,
Vu, € Varg,. (147)

The above equation defines the linear (tangent) op-
erator D€, (D},|x) associated to the operator intro-
duced in equation (139). Clearly, D€, (D},|x) also de-
pends on the choice of the space Varg,, i.e. on the cho-
sen kinematical constraints imposed on the RVE-based
model. In the case of the generalized Taylor constraint
(@, = 0), the tangent operator D€, (D%,|x) is the null
operator. Moreover, the above equation has an appeal-
ing interpretation. In fact, its right hand side can be
seen as a virtual power associated to a reactive body
Jorce field b, defined by

<bL,ﬁu>uLxuu =
- <D293H(D;€)IM<ADM|X)> ﬁu>M[L XUy,

Vi, € Varg, (148)
that would result if the RVE (with linearized consti-
tutive equation) were subjected to a prescribed gener-
alized strain action Z,,(ADjs|x). With use of a gener-

alized tensorial canonical basis F;, i = 1,...,my, of
R%,, ADjy|x can be expressed as

ADp|x = (ADyx)i Ei, (149)

with implied summation on the repeated index. Then,
the solution A, of the linear variational equation (147)
can be expressed as

Aty = (ADl)i A, (150)

where AﬂL, here referred to as tangential generalized
displacement fluctuations, are the solutions of the linear
variational problems

<®3M(DZ)DM(A@L)vDu(ﬁu)>8;x€“ =
- <®su(DZ)Iu(Ei)vDu(&u»é’l@xg“
Vi, € Varg,, (151)

fori=1,...,mp.

Now, note that the linearization of (139) gives

A, = DE, (T, (D)) T (ADarl)- (152)

Then, with the solutions of (151) at hand, the contri-
bution £(DY,|x)[ADn|x] to (145) can now be easily
evaluated through the expression

E(Dy|x)[ADylx] = H5A{DFu(D},) Dy (At} (153)

with Adi,, given by (150). The linearized operator DF"o™
can be assembled according to (145).

Finally, by linearizing (154) we find that the homog-
enized tangent constitutive operator at the macro-scale
point x, is the operator D X/|x that satisfies

(DXnmlx — gghom(Dg\/I|X))[ADM|X] hd DM|x =0

VADu|x, Durlx € RE . (154)

Remark 22 The derivation of the tangent operator has
been limited here to what we refer to as the purely
constitutive case, i.e. when the macro-scale generalized
stress response functional obeys a standard local consti-
tutive law. This has been motivated by the fact that the
vast magority of multiscale theories reported in the liter-
ature falls into this category. We remark, however, that
the derivation of more general tangent stress-response
operators, within the broader setting of the theory pro-
posed in Section 3, can be carried out by following the
same steps.

6 Applications

In this section, the Method of Multiscale Virtual Power
is applied to formulate a range of multiscale models. In
this context, some existing models already reported in
the literature are cast within the proposed framework
and new multiscale models, incorporating more com-
plex phenomena, are newly derived. Our main aim here
is to demonstrate by means of practical examples that
the methodology proposed in the present paper offers
indeed a very robust theoretical framework whereby ex-
isting multiscale models can be rigorously justified and
new models can be systematically devised in a clear
manner. In particular, it becomes obvious in the ex-
amples presented here that RVE boundary conditions
as well as the dual homogenization operators (for the
stress- and force-like quantities) — issues that may eas-
ily lead to theoretical inconsistencies if not addressed
properly — can be derived in a most natural way as a re-
sult of duality considerations and the Principle of Mul-
tiscale Virtual Power. Each of the multiscale models is
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discussed in an individual subsection and models are de-
rived by following identical steps: We start with a brief
description of the underlying micro- and macro-scale
kinematics, followed by the definition of kinematical
admissibility and application of the Principle of Mul-
tiscale Virtual Power.

At last, the mathematical setting employed in the
presentation of the mechanical models throughout this
section follows the standard choice of Sobolev function
spaces.

6.1 Classical finite strain solid mechanics with
dynamic effects

This section derives a multiscale model of a classical
solid undergoing finite straining, subjected to dynamic
forces. At variance with the vast majority of published
articles on multiscale solid mechanics, we shall con-
sider here the presence of dynamic forces at the micro-
scale and their link to their macro-scale counterpart
(assumed to share the same time scale). In the context
of the framework proposed in this paper, this will re-
quire that the virtual power of dynamic forces at both
macro- and micro-scales be accounted for in the defini-
tion of the Principle of Multiscale Virtual Power.

The model will be formulated in terms of the refer-
ence configurations (taken as the initial configurations)
both at macro- and micro-scales. To start with, let the
open subset £23; C R? be the reference domain occupied
by the macro-scale solid body, with smooth boundary
I'yy and outward unit boundary normal Nj;. Points
of the body will be described by their reference coor-
dinates X. The set of generalized displacements in the
present case contains only the displacement vector field:
ups = Uypy. The space of generalized displacements in
this case is Uy, = Hl(QM). The strain action operator
here is the reference gradient operator, Dy () = Vx(+),
so that the generalized strain action is the displace-
ment gradient, that is, Dy = Gy (Up) = Vx Uy,
Hence, the space of generalized strain actions reads
En = L3(2)). In this case, we have nyr = 1 (Ry = 3)
and myr =1 (S =9).

At the micro-scale the finite strain regime also holds,
and the RVE domain is {2, C R3, with smooth bound-
ary I, (outward unit normal N, ), and coordinates Y.
The generalized displacements are the micro-scale dis-
placement vector field u, = U, = U, + U,. The
corresponding function space is U, = H*(£2,). Anal-
ogously to the macro-scale we have D,(-) = Vy(-), so
that D, = G,(U,) = VyU,, and G, € &, = L*(2,,).
The strain action and displacement are also defined over
the entire RVE domain so that n, =1 (R, = 3) and
my, =1(S,=9).

The space of point-valued macro-scale displacements
is given by RZ{(M = {W (S Rg, W = U]\/[|X, Uy €
Unrr}, and the space of point-valued macro-scale strain
actions is R?M ={HecR*>? H=Gylx, Gy € En}-
In this case we have RX =RX and RX =RX .

Unr Unm Em Em

The displacement insertion operator here is defined

as

*Z?(UM‘X) = Upylx, (155)

while the macro-scale strain action is inserted into the
micro-scale according to

TE(Gulx) = Gulx(Y = Y,),

with Y, the geometrical center of the RVE, i.e. Y, =
Q%L /, 2 Y (2,. Having defined the above kinematical in-
sertion operations, we then have for the micro-scale dis-
placement field:

(156)

U‘u :Uhj|x+GM‘X(Y7Y0)+U1L. (157)

Since D#(jf;{(UMb()) = VyUpulx = 0, it follows that

G, =Gulx +VyU,. (158)
In addition, we have trivially,
Du(J; (Gulx)) = Gurlx. (159)

We now proceed to postulate the kinematical ho-
mogenization operators. For the displacement, we de-
fine

1
HY(U,) = IQMI/Q U, df,, (160)
and, for the strain action,
1
£
G,)=— G, df,. 161
HiG) = o [, Gua (161)

Note that, by construction of the above operators, the
principle of conservation of macro-scale displacements
(59) is automatically satisfied, that is, we have

HZJ(J,?(UMR)) =

L/ TYU(Unrlx) d2, = Uprlx.  (162)
2.1 Ja, "

In order to define kinematical admissibility in the
present case, we begin by specializing (61) with the
above operators. Then, a micro-scale displacement field
is said to be admissible if

1 1
— U, dR :—/ JY(U dn,. (163
|“QH|/Q,1, H Iz |Qu| 2, M( MlX) Iz ( )



32

P.J. Blanco et al.

Further, by observing (157), the above definition of J ;7
and the fact that

1

— | Gulx(Y=Y,)dR, =0,
12| Ja,

(164)
we find that kinematically admissible micro-scale dis-
placement fields must satisfy

1 / ~
12ul Ja,

The principle of conservation of macro-scale strain
actions (60) is, in turn, guaranteed here by the defini-
tion of the above strain action insertion and homoge-
nization operators. Indeed, we have

(165)

HE(Du(TE (Gulx))) =

|9|/D

The strain action is linked between scales by considering
(see (62))

)
— | G,d0, =
12 Jo, "

(Gumlx))dR2, = Gulx. (166)

n / Du(TE (Gurlx)) 2y, (167)
which is met by doing
1 ~

— VyU,ds2, =0, (168)
|92,
and integrating by parts gives

U ®@N,dI}, =0. (169)
ol

Hence, the space of kinematically admissible displace-
ment fields at micro scale is defined as

King = Varg = {UueHl H),/ U, df2, =0,
QM

/ﬁ#®N#dF#0}. (170)
FM

The internal virtual power at macro scale is the
product between the virtual strain rate and the first
Piola-Kirchhoff stress tensor, that is Pij' = [ 0, P

VXUM df2y;. The internal power at point X (poste—
riorly linked with a RVE) is P}é}tx =Puylx e GM|X,
still to be defined. The external virtual power is Pgrt =
o, far - Uns d2ys, and at point X it is P = far|x o
IAJM|X‘ We note that f); can be formed by a passive
external load f}, (e.g. due to the gravity) and/or by an
active dynamic load f§;. We can write fy; = f}, — f§,.

In turn, the internal virtual power at micro scale
results

Pt = /Q P, VyU,d2, =
/ P, (Gulx +VyU,)d2, =

/ P,,GM|XdQ#+/ P, VyU,d0,. (171)

2, u

Dynamic phenomena is considered through the classi-
cal characterization of acceleration forces fj; = p,A,,.
Then, we can write

f;i = puAu = pufju =

pu(Onlx + Fulx(Y = Y,) +U,). (172)

As well, passive forces are considered in the model and
denoted by fF. Thus, the external virtual power can be
expressed as

Pt = / £7. U, d0, —/ p, U, -U,d0, =
Qu I

/ £ (Omlx + Gulx(Y = Y,) +U,) 2,

1%

_/ Puﬂu ‘ (ﬂM\X + GJVI|X(Y -Y,)+U,)d, =
/Q fﬁ'ﬂM|XdQ#+/Q (F2 @ (Y = Y,)) - Gulx df2,

+/ ffjilud(zu—/n 0, U, - Uprlx d2,

W M

- / (U ® (Y = Y,)) - Gurlx de2,

“w

—/ .0, -0, d0,. (173)
2

i

The Principle of Multiscale Virtual Power for the present
case is enunciated next. In the remaining of this section

recall that U, = Up|x + Fulx(Y = Y,) + U,.

PMVP. It is said that (Par|x, far|x) and (P, £,) are
equilibrated if the following variational equation is sat-
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isfied
Pulx ¢ Gurlx — farlx e Uprlx =

/PM~(A}M|XdQM+/ P, -VyU,d0,
02

I3 Qu
—/Q f5~ﬂM|xd(2M—/Q (2@ (Y —Y,)) Gulx d2,

_/m

T / (U ® (Y — Y,)) - Garle 42,

2,

+ / p,U,-U,d0,

I

2. U, d2, + /Q 0. U, - Unrlx d2,

V(Unrle, Garl Us) € RE, x RE, x Varg . (174)
n

The consequences of the principle formulated above
are the following.

Equilibrium problem at micro scale. Take
IjIV[|X = 0 and GM|X = 0. The equilibrium
problem at the micro scale can be stated as fol-
lows

/P#-vyfjud(zf/ £7. 0, d0,
2

w w

+ / p,U,-U,d02, =0

Vﬂﬂ € Varg . (175)

Stress homogenization at macro scale. Let
now fJM\X =0 and [NJM = 0. Then

PM|X.GM|X:/ PH'GAHXCZQM

"

- / (f2 @ (Y = Y,)) - Gurlx d2,
2

©

+/ pu(U, @ (Y — V) - Grlx de2,
(93

I

VGulx € RE, (176)

Therefore, the homogenization formula is

PM|X: Pu—(fﬁ)@(Y—Yo))d.Qu

12ul Ja,

1 .
v [ eOu0 (Y =Y de,. ()
2l Jo,

Here, we have identified the operation Pps|x e
GM|X = |.Q,J|P1\/[|x . GJV[|X7 from which it is
w1 = |‘QH|

Body force homogenization at macro scale.
Now, consider GM\X =0 and INJ# =0, then

Farlxc ® Unilx = / £ Uplx de2,

In

—/ Puﬂu'ﬁMb( s,

"

VﬂM|X S RﬁM. (178)

and then

1 .
fulx = m /Qu(fff —p,Uy,) dS2,. (179)

Here, also the operation is identified as fy/|x ®
Uuplx = [2ufarlx - Unplx, resulting in v =
192,.].

Remark 23 This model considers continuum media at
both scales. A fully analogous development could be car-
ried out for a micro scale including molecular dynamics
or even atomistic models. In such cases, the present the-
ory leads to models similar to those presented in [4,5,
131].

6.2 Bar model at macro scale - Classical micro
mechanics

This section presents a very simple mechanical model
at the macro scale consisting of a bar (one dimensional)
model for which it is desired to obtain constitutive mul-
tiscale information from a micro scale model consisting
of a full (three-dimensional) model. For simplicity we
consider infinitesimal strain hypothesis at both scales.
Notice that the model at micro scale is kinematically
richer than the model at the macro scale. Thus, this
example illustrates a typical case of a multiscale for-
mulation having dimensional heterogeneity in the kine-
matical description at macro and micro scales.

The domain in the macro scale is an open subset
2y C R, that is, a straight segment representing the
configuration of the bar, for which axial coordinates
are x, being e, the unit vector in R? in the axial di-
rection. The generalized displacements is a scalar field
upr = upg, standing for the displacement in the axial di-
rection of the bar. Then the structure of the underlying
space is Uy = H'(§23r). The strain action operator is
simply Dp(-) = 2L(-), so Dy = dasr(unr) = 4424, and
therefore Dy € Ey = L%(2yr). All fields are defined
in 2p. Then, it is nyy =1 (Ryy = 1) and myy = 1
(Sp =1).

At the micro-scale we have full three-dimensional
kinematics, so the RVE domain is {2, C R3, with smooth
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boundary I, (outward unit normal n,). Coordinates in
the micro scale are y. In this case, generalized displace-
ments at micro scale are displacements vector fields,
expressed as u, = u, = U, + 0,, with an underly-
ing structure given by U,, = H'(£2,,). The strain action
operator is the classical symmetric gradient D,(-) =
Vﬁ(-), so it is D, = e, (u,) = Vf;uu, and then &, =
{e, € L?(2,), e, = €1} All fields are defined in £2,,.
Here n, =1 (R, = 3) and m, =1 (S, = 6).

The intermediate space of point-valued displacements
at macro scale is Rf; = {w € R, w = unls, upr €
Uy}, and for the strain actions we have RE = {g €

R, g = dp|e, dv € En}- In this case it is Ry, =R,

and R/gw = Rg,,. The operator that inserts the dis-
placement into the RVE domain is

j;ZL/l(uMlx) = uM|meac7 (180)

resulting in a constant vector field over the entire RVE
pointing in the axial direction of the bar. In turn, the
strain rate from the macro scale is inserted into the
micro scale as

Ty (dule) = darlo(es @ €0)(y = o), (181)

with y, the geometrical center of the RVE, i.e. y, =
Q%L /, 2 y §2,,. Then, the composition of the displace-
ment field at micro scale is

uy :uM|rez +dkl|m(em®em)(y7yo) +ﬁ,u (182)

Since DM(JZL’{(uM\g;)) = V5 (un|z€:) = 0, it results

eu = duls(es ®eg) + Vi, (183)
and also

The homogenization operator for the displacement field
is defined as follows

1
HY (u,) = W/Q u, - e, d,, (185)

and for the strain rate field the homogenization opera-
tor is

1
HE(e,) = |(z,|/9 eu (e ®ey)d,. (186)

By construction, the insertion operator satisfies (i.e.
equation (59) is satisfied)

Myl (T (unt])) =

1
W/Q J;ZZ{(UM|1) ey df2, = uple. (187)
wlJ g,

Then, the kinematical admissibility for the displace-
ment field (see (61)) states that

ol
— u,-e,df2, =
12 Jo, g
1 U
"
Since it is

1
m /_Q dM|av(ew Y ex)(y - YO) d‘Qu =0, (189)
M m

we have that the condition (188) is satisfied by doing

1
WA ﬁu'ewd..(z“:o.

However, this condition is not enough to control all the
kinematic fields at the micro scale. Observe that compo-
nents on the direction of y and z of the fluctuation field
are not controled from the macro scale. In this case,
further restrictions are necessary to have a mathemati-
cally well-posed problem. This can be accomplished by
incorporating the following restrictions

1 -
m /{; u# . ey d.Qp{ :0,

1 -
m /Q u, - €, d.Qp{ =0.

Regarding strain actions, the insertion operator by def-
inition satisfies the following identity (i.e. equation (60)
is satisfied)

(190)

(191)

(192)

HE(Du(TE (dula))) =
|“Q1M| /Q Du(j;f(dM|m)) ’ (ex & e:r:) d“QH = djw‘z'
u (193)

Hence, the kinematical admissibility is met if we have
(see (62))

1
m/rz gu (es ®ey)d2, =
® W
1 E
] /Q DUl (00 9 )4 (190

which is fulfilled by enforcing

1 -
] /Q Vi, - (e, ®e,)df2, = 0. (195)
Integrating by parts it is

1
1 / (8, @ 1) - (e ® ) dT}, = 0. (196)
121 Jr,
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Then, the space of kinematically admissible displace-
ment fields at micro scale is

King, = Varg, = {ﬁu e H'(2,), / u,df2, =0,

n

/P (1, @ n,,) - (e, ®e,)dl, = 0}. (197)

I

In this case the internal virtual power at macro scale
is given by the product Pt = /. Onr Ayon dg;” A2y,
where recall that (2, is the one-dimensional domain of
the bar, and Ay is the cross sectional area of the bar. In
addition we called oj; to the uniaxial stress in the bar,
that is oy = %M fAM o dApr. The internal power at
any macro scale point (which is to be linked with a
RVE) is denoted by P}\?[tm =0z ® JM|I. In turn, the
external virtual power is PSSt = an Apy far-tar dQ2yy,
where fj; is the uniaxial load, and at a point in the
macro scale is Py, = farle ® Uz

At the micro scale, the internal virtual power results

in S~
PMt = /Q o, -Vyu,d, =
m

2

"

/ o, (e;® ew)ch|w an,

I

+/ o Vit d2,. (198)
2

I

and, the external virtual power is written as

Pt :/ £, 0, d0, =

i

/ fu'(ﬁleez+dAM|:v<ez®ez)(y—yg)+l:lu) dQu =
(]

"

[ (Greninl.ag,+ /Q (Bex)((y—Yo)-ex)darls 2,

"

+/ £, 1,d02,. (199)
2,

Therefore, the formulation of the Principle of Multiscale
Virtual Power is given by the following sentence.

PMVP. It is said that (ou|z, farle) and (o, f,) sat-
1sfy the Principle of Multiscale Virtual Power if the fol-

lowing variational equation is satisfied

O-MI.L.JM|.L_fM|l.aM|I:

/ JH'(eI®eZE)CZM|ZE dﬂﬂ+/ G'u~v5fl#d9#
2

W [

f/ (f, - eg)tinr|z A2,

I

_/ (f,u'ex)((y_}’o) 'ex)dAM|x d-Qu_ fu'ﬁu d-Qp

2 "

V(’&M|I7dAM|ml:1H) S R/ng;J X R/gjd X Varﬁ“ (200)
|

The consequences of the principle enunciated above
are listed below.

Equilibrium problem at micro scale. Now,
consider |, = 0 and CZMLE = 0. The equilib-
rium problem at the micro scale is defined by the
following variational equation

/ oy Vi, d, 7/ £, 0,d02, =0

2, W

v, € Varg,. (201)

Stress homogenization at macro scale. Let
Gnmle =0 and u, = 0, then

U]\/[|:c L dAM|z = / 0'/,1, : (ez ® ea:)dAM|a: de,

24

- / (£, - e)((y — o) - €2)datls 22,

o

Vil € RZ (202)
And the homogenization formula results
1
orle = —/ o (00 ® €0) d12,
12,0 Ja,
1
| ey -y e de, (203)
1921 Ja,

As before, the duality operation is identified to
be 0M|z.dM|z = |Q#| (J’]\4|zd]w|m7 and it is w1 =

|20l
Body force homogenization at macro scale.
Now, consider dys|, = 0 and 1, = 0, which
yields

farlz @ tng|e :/ £, eytin], dS2,

n

Vﬁ]y[‘x S RZ}/CIM' (204)
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and then

1
fule = —/ £, e, d2,. (205)
12,] o,
Here the duality operation is defined to be fy|,®
Unrlz = [2u] frrlalnr]z, and it is 4 = [£2,].

Remark 24 Other models can be derived from the very
same framework presented here. In fact, the model de-
rived from considering the kinematical constrain (196)
results in a model with null traction over the boundary
of the micro scale domain in many of the components.
Suppose that additional constraints are considered in-
spired in (196), i.e.
1 S

—/ (a, ® n,)dl, =0. (206)
2] Jr,

Such model is kinematically more restricted, and results

in a model with uniform traction over the entire bound-
ary of the RVE, part of which is purely reactive.

6.3 High order macro mechanics - Classical micro
mechanics

In this section we work with the multiscale modeling in
solid mechanics applied to higher order continua at the
macro scale, while keeping the classical first order con-
tinuum in the micro scale. That is, unlike the previous
section, here the model at macro scale is kinematically
richer than the model at the micro scale. At both scales
we consider the finite strain mechanical regime.

The domain at macro scale (reference or material
configuration) is an open subset 2); C R3, with smooth
boundary I'y; (outward unit normal Nj;), and coor-
dinates X. Like in the classical setting, the general-
ized displacement is the displacement vector field de-
scribed in the material configuration uy; = Uy (struc-
ture given by the space Uy = H(£2)7)). The strain ac-
tion operator is given by D (+) = (Vx(+), VxVx(*)).
Thus, the structure of the strain action results Dy; =
(Gn(Upn), G (Uypy)) = (Vx Uy, %VXVXUM). All
fields are defined in §2;;. The kinematics in the macro
scale is such that ny; = 1 (Ry = 3) and mpy = 2
(shy =9, 53, = 18 and Sy = 27).

Further, given a third order tensor H, we define
a transpose operation as follows (Hm)n = (H n)m.
Such transpose operation T can be more clearly writ-
ten: being H = a® b ® ¢, we have (Hm)n = ((a ®
b®c)m)n = (c-m)(b-n)a. It follows that (H n)m =
((a®c®b)n)m = (b-n)(c - m)a. Hence, it results
H —=a®c®b. Finally, a symmetrization operation
can be defined as H®> = 3(H+ HT). Therefore, it is
Envr = {(GM,GM) S LZ(QM) X LQ(QJM% Gy = G-II\—/[}

At the micro-scale we adopt classic kinematical de-
scription. The RVE domain is £2, C R3, with smooth
boundary I, (outward unit normal N,) and coordi-
nates Y. The generalized displacements are displace-
ments in the material configuration u, = U, = Ij# +
U, with structure U, = H'(£2,,). The strain action op-
erator is D, (-) = Vy(-), so D, = G,(U,) = VyU,,
from which D, € &, = L*(£2,). Here, the fields are
defined in the entire RVE. So, n, = 1 (R, = 3) and
my, =1(S,=9).

The intermediate space of point-valued displacements
at macro scale is given by R = {W € R*, W =
Unm|x, Uy € Un}, and for the strain actions R?M =
{(Hv H) € R3 x RSXSXS’ (Ha H) = (GM|X’GJVI|X)a
(Gm,Guar) € Enm}. As in previous sections, here it is

R;}M = RZ(,M and R?M = R?;M. The insertion of the
displacement field is given by the following operator

JY(Unlx) = Unlx, (207)
and the insertion of the strain action results
j;f((GMb(a GM‘X)) = GM|x(Y — YO)
1
+5Gulx[(Y = Yo) @ (Y = Y,) = J], (208)

where Y, is the geometrical center of the RVE, that is
Y, =5 [, Ydf2,, and J is defined as
H W

1
g- L / (Y~ Y.) & (Y - Y,)d2,. (209)
12ul o,
As a consequence, at micro scale it results
U, =Upnlx +Gulx(Y - Y,)
1 -
+ EGM|X[(Y - Yo) ® (Y - Yo) - J] + Uua (210)

Since D, (T (Unlx)) = VyUnlx = 0 and J is con-
stant, we have

G, =Gulx +Gulx(Y - Y,) + VyU,. (211)
where
Du(T5 (Gumlx, Gulx)) =

GM|X+GM|X(Y—YO). (212)

Regarding the homogenization of the displacement field
we define
HY(U ):L/ U, df,. (213)
R S, T
n
The homogenization of the strain action is a more sen-

sible step, but equally treated within the current frame-
work. Observe that the homogenization operator maps
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the strain action from micro scale into the macro scale.
So, the present homogenization procedure is represented
by a rectangular matrix operation (two rows, one col-
umn, see Remark 10). These two rows are

11 1
HE @)= 15 /ﬂ G, d2,, (214)

éﬂ <[/Q G, (Y Yo)drz#];ll)S.

(215)

21

where the (-)° operation implies the symmetrization op-
eration as introduced at the beginning of the section.

By construction, the insertion operator satisfies (equa-

tion (59) is verified)

Hﬁ{(Jﬁ{(UMR)) =

I |/ T (Unlx) ds2, = Unlx.  (216)

As well, we must satisfy (see constraint (61))

! / U, df2 ! / TJY(Un|x)de2,. (217)
o - MIX

2l Jo, " 12l e, T !
Trivially, we have

1

—/ Gulx(Y -Y,)d2, =0. (218)
12ul Ja,

and also

1
2|~QM|/Q“GM|X[(Y_YO)®(Y_YO)_J] dQ, = 0.
(219)

Therefore, by forcing

1 / ~
12ul Ja,

it is possible to guarantee the kinematical admissibil-
ity in (217) in terms of displacements. The operator
which inserts the strain action in this case satisfies by
definition (expression (60) is verified)

(220)

HEOMTE (G ) =
51 ., Pr(E (@orlx. 00) 45, = Gurlx,

and also it satisfies

(221)

£
M, (D

|$|(Un DI (0, GMlx>>>®<Y—Y°>d”“}J1>S

W(T5((0,Gur]x)))) =

=Gulx. (222)

In turn, kinematical admissibility concept concerning
the strain action is satisfied if (see (62))

1
- 0 =
mu/ G 42

D, (
1y, >

|9M|<U G, ® (Y- Y)dQ} )s: |
|n|([/ Pl ROTALDE

Observe that (223) is met by doing

((Gumlx,Gumlx))) d2,, (223)

T (Gulx, Gulx))@(Y

1 -
—/ VyU,df2, =0, (225)
12 Ja,
which after integration by parts gives
/ U ®N,dI, =0. (226)
|42,

By exploiting the form of G, we have that (224) is
satisfied if

1 s

J‘1>

which after integration by parts gives

1 r -
( / VyU,® (Y -Y,)dR, =0, (227)
‘Qﬂ

42,1

L (] U,®N ®(Y—YO)dF_J‘1 S:o. (228)
(/ M H M_ )

42,1

Thus, the space of kinematically admissible displace-
ment fields at micro scale is therefore defined as

King = Varg = {U e H' (1),

/ ﬁudrzuzo,/ U,®N,dl, =0,
FI»L

([/FuﬁM®N#®(Y—YO)dF4J1)S :0}.

(229)

Remark 25 In the case of a square geometry (in two
dimensional space) representing the micro scale domain,
with length £,,, we have J = %I. Then, (228) simplifies
to

1 ~
@ / U,®N,®° (Y -Y,)dl}, =0. (230)
wl J,

which is consistent with the boundary condition postu-
lated in [58], and slightly different to that one postulated
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in [71]. However, boundary condition (228) has been de-
rived systematically within the present multiscale frame-
work, and provides a robust argumentation for boundary
conditions previously proposed in the literature.

The internal virtual power at macro scale is the
product between the generalized virtual strain action
and the dual stresses, which in the present case turns
to be P}\?t = fQM [PM-VxﬂM-I—QM'vaxﬂM] A2
This internal virtual power at a given point X is Pyj'yx =
(Pumlx,Qur) @ (GM|X, (A:'uM|X)7 which is specified later
on. As bef;ore7 the external virtual power results Pgyt =
an far - Unr d2uy, and at a point X is Py = far|x o
ﬂN[|X~

Differently, for the micro scale, the internal virtual

power is

PiM = / P, -VyU,d, =

"

/ PM~(G]\4|X+GMlx(Y—YO)+Vyfj#)d9#:

I

/ P#-GM|XdQﬂ+/ (P& (Y ~Y,))-Gurlx de2,

2, M

+/ P, VyU,d2,. (231)

I

And the external virtual power is expressed as

Pt :/ £,-U,d0, =

"

/ f, - (ﬂMx +Gulx(Y - Y,)
£,
1. 2
+ G b(Y  Yo) (Y - Y,) - 9]+ 0. ) do, -

/ f#-fJM\XdQM—s—/ (£, @ (Y = Y,)) - Gurlx df2,
‘QH

2,

w5 [ eI =Y o (Y - Yo - 3) - Gulx de,
0

”w

+/ £,-U,d0,. (232)
2

n

Then, the Principle of Multiscale Virtual Power for the
present case is formulated as follows.

PMYVP. It is said that (P]V[‘X7 QM‘X7 fM|X) and (Pﬂ’fﬂ)

are equilibrated if the following variational equation is

satisfied

(Parlx, Qurlx) o (Garlx, Garlx) — farlx  Unrlx =

/ PM-GM|deH+/ (P,2(Y -Y,)) Gulx df2,

W w

+ / P, VyU,dQ,
2

"

f/ f#-IAJM|deH7/ (£, @ (Y =Y,))-Gulx d2,

I W

1 .
75/9 (fu®[(Y7Yo)®(Y*Y0)*JD~GM‘Xd_Qﬂ
—/ £,-U,dQ,
‘QI»"
Y(Untle, (Farle Garl), Up) € RE x RE x Varg .
(233)
|

The consequences of the principle formulated above
are the following.

Equilibrium problem at micro scale. At first,
take UMlX = 0 and (GM|X7G]\/[|X) = (0,0)
The equilibrium problem at the micro scale is
formulated as follows

J,

Stress homogenization at macro scale. Con-
sider [AJM\X =0 and fJM = 0. Then

P#-vyfjudm—/ £,-U,d0, =0
2,

n

VU, € Varg . (234)

(Paslx, Qurlx) @ (Garlx, Gasrlx) =

/ P, Gulx d,

n

+/ (P, @ (Y —Y,)) Gulx d2,
(9]

"

7/9 (£, (Y ~Y,)) - Gurlx d2,

I

5 [ GV -Y )oY -Y.)-3]) Gulx
2

I

V(Gulx, Gulx) € RE ~ (235)

Considering now (G|x,0) we obtain the ho-
mogenization formula for the Piola-Kirchhoff stress
tensor

PM|x:

@A P, — (£, (Y —Y,)d2,. (236)
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In turn, taking (0, Gy |x) we obtain the homoge-
nization formula for the third order stress tensor

1
Qb= 7 /Q (P, ® (Y — Y,)5d2,
_%/ £,0[(Y —Yo)® (Y —Y,) —J]d0,.
(9]

n

(237)

The symmetrization operation acting on the first
term above derives from the orthogonality con-
dition with respect to the symmetric third order
tensor Gar|x (see definition of RZ ). For this
case, theA duality operation isA (Prlx, Qulx) @
(Gurlx, Gulx) = [2,Pa|x-Gor|x+[2,Qns|x-
G |x following that w1 = we = |£2,].

Body force homogenization at macro scale.
Now, let us consider (Gar|x,Gunlx) = (0,0)

and INJH = 0, then

farlx @ Unrlx =/ £, Unlx as,

n

Vﬂ]y[‘x S RZ)}M' (238)

therefore

1
fM|X:7/ £,de2,.
12ul S, "

The duality operation for the external power re-
sults f]y[‘x .UM|X = |Q#| fM‘X . UM|X7 follow-
ing that v = |{2,].

(239)

6.4 Cohesive macro cracks - Strain localization at
micro

In this section we present a multiscale model that ac-
counts for nucleation and evolution of cohesive surfaces
at the macro-scale level as a way to characterize the
degradation phenomena taking place at the micro-scale.
In the RVE, some mechanical processes can lead to
the material failure, such as strain localization, dam-
age, shear band formation, and so on. For simplicity,
the model is developed considering infinitesimal strain
hypothesis at both scales, however its extension to fi-
nite strain theory is straightforward. Body force effects
are also neglected for the sake of simplicity. Further-
more, the application of the present multiscale model
is restricted to a point x after the nucleation of a macro-
cohesive crack Sp;. The interested reader can follow
[104,123] for a detailed description of a very simmi-
lar to that presented here. In such contributions this
approach has been called Failure-Oriented Multiscale
Formulation (FOMF).

The domain at macro scale is £2); € R3, with bound-
ary I'yy (outward unit normal njs) and coordinates x.
At such scale, a crack has been nucleated due to mate-
rial degradation, generating a surface Sy; (with normal
n2’). The kinematics at point x in the macro scale but
not on the surface Sy is given by a displacement field
ups = ups which is continuous, while on the surface Sy
it is characterized by the pair up = (upr, B,), where
B is the displacement jump on the surface at the
macro scale. So, the structure of the kinematics at the
such scale is Uy = HY(2)7) x L?(Sy). The strain ac-
tion operator is Dps(-) = (VZ(-), ). So, over the surface
the strain is given by the pair Dy = (epr(0nr), Bar) =
(VZaars, Byy). Thus, it is En = {(ear, Bar) € L2 (£2ur) X
L2(Sn), en = €%, }. Observe that while the continuous
displacement and strain action are defined in §2;, the
displacement jump is defined in Sp;. Hence, at macro
scale we have ny; = 2 (Rpyr = 6) and mpy = 2 (s}, =6,
s2;, =3 and Sy =9).

At the micro scale, the RVE is denoted as {2, € R3
(boundary I',, unit normal n,, coordinates y). Due to
material degradation mechanisms, a failure zone (where
strain localization takes place) is identified, and de-
noted by Qﬁ C (2, (boundary F#L, unit normal nﬁ)
This domain can be regarded as constructed by the
product of a middle surface S, (generally tortuous at
the micro scale, with coordinates y( and normal n/g(yo))
and a length [,(yo) representing the thickness of the
strain localization zone. Note that n/s(y) = n’s(yo) and
l,(y) = l.(yo) because of the property which states
that IT§y = yo, being IT% the orthogonal projection op-
erator over the middle surface S,,. At this scale, the dis-
placement is characterized by the pair w, = (u,,3,),
where u,, is defined in §2,, and is a continuous compo-
nent of the displacement field, and 8,, is a displacement
field defined in Qﬁ. Then the structure of the kinemat-
ics at this scale is

U, =H'(12,) x L*(12)). (240)

The strain action operator at this scale is given by

D) = (V0 opn) LTI
where

o= { Hve 2
Then, we have

Du(( 8,)) = Vi, + gfy) 2 E B0 o)

ZM(YO)
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from which it is &, = {e, € L*(£2,), &, = €L}. With
this structure we have n, = 2 (r, = 3, 72 = 3 and
R, =6)and m, =1 (S, =6).

For the intermediate point-valued spaces it is Rj; =
{weR3 w =upylx, uy €Uy} and RE, = {(e,b) €
R3*3 x R37 (eab) = (eM‘x,ﬂM|x)7 (EM’ﬂM) € gM}
Note here that not all the kinematic fields from the
macro scale play a role in the kinematic transfer, i.e.
field B,; is not considered as part of the generalized
displacement to be inserted into the micro scale, but
it is consid/egd as a generalized strain action. For this
case it is Ry = Ry =~ and, unlike previous examples,

—

we have now R¥ = {(e,b) € R} , € =0}.
The insertion operator for the generalized macro
displacement is

T (anrlx) = (unlx, 0) (244)

i.e only ups|x is uniformly inserted in the entire domain
{2,,. The generalized strain actions provided from the
macro scale is inserted as follows

Bulx
),

where the first component is the displacement at micro
scale obtained through an affine insertion of the macro
deformation (ej7|x) over the entire RVE, and the sec-
ond component is a displacement field (3,,) obtained
from a uniform insertion over Qﬁ of the jump displace-
ment at macro scale 3,;|x, which is also a component
of the generalized strain action at point x of the macro
crack Sys. In addition, y, = ﬁ fQu y df2, (the geo-

TE (extler Barl)) = (eMx<y v,

metric center of the RVE), and 6 is a non-dimensional
parameter given by

o
/ n’s(yo) dQﬁ
L lu(YO)
where |S,| means the measure of the middle surface
S,,. Taking into account the above definitions and that
l,(yo) measures the thickness of the localization do-

main Qﬁ at point yg, the parameter 6 could be rewrit-
ten as follows

1
/——
Sl

; (246)

1 n'’s(yo)
9:—/ S22 Ak
Sl || g Tuly) 4%
1
5 /S n(yo) dS,| . (247)
1 "

Hence, 0 can be interpreted as a tortuosity index of the
surface S,,. In fact, if S, is a plane we have 6 = 1,
see [104] where this approach was adopted. With the
introduction of the tortuosity index the model in [104]

is extended to take into account more complex situa-
tions. The need to introduce the factor 6 has a strict
kinematical justification in order to preserve the mag-
nitude of the inserted macro-displacement jump 3,,|x,
which becomes evident later (see (260)).

Besides, it is defined Fg as a unit vector given by

fsﬂ n’s(yo) dS,,
‘fSu ns(yo) dSuH .

Moreover, we assume that the fluctuation related to
the field 8,,, denoted by 3,, is null. Then, at micro scale
we have

(248)

e —
ns—’

Balx
fg ) (249)

And the strain action at micro scale results

E/L = D/L((u/uﬁp)) =

E]V[|x + V§ﬁ# + d);[;(y)

(u,,8,) = (uM|x+sM|x<y—yo)+ﬁm

ﬂM|x ®S ng(YO)
0 ZIL(YO)

In view of the characteristics of space @’5‘74, we have
that the virtual strain action (or kinematically admis-
sible variations of the strain) becomes

(250)

BM|x ®° ng(YO)

s _ vS3 L
&, =Vyu, +¢,(y) 61,,(y0) (251)
Here, it is verified that
D, (T (unlx)) = 0, (252)
and
Du(Ts ((emlx: Bulx))) = emlx
S u
+gh(y) Pl & D50 (o

elu(YO)

We now define the homogenization of the generalized
micro displacement fields. This linear aplication maps
generalized displacements from U, to Ry, , so the op-
erator can be represented by a 2 x 1 rectangular matrix
where the only component to be characterized is
H4 (0. 8,)) = Iﬂil\/ u, 2, (254)
A

while the remainder component is zero, since only uns|x
was inserted, see (244).

In turn, the homogenization of the strain action is
performed through a linear rectangular operator (rep-
resented by a 2 x 1 matrix). We postulate the following
block homogenization operators

ell 1
er, (Eu) - |QM| /Q“ E/t dQ;u

for 7 ((emlx,0)) (255)
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21 1 —
%i (en) = mﬂ(ng) {/m Eu dﬁﬁ}

“w

for 75((0,Bylx))  (256)

where IT(-)[-] is a projection defined through the fol-
lowing operation

II(c)[a®®b] = (b-c)a for any a,b,c. (257)

Observe that, as stated by (59), the insertion oper-
ator jf[{ satisfies

H (T () = HY (e, 0)) =

1
W/n warled2, = unrly.  (258)
123 I

Now we show that expression (60) (which constraints
the choice of ji ) also holds. First note that applying
(255) to (253), the definition of jlf satisfies

HE (DW(TE (enr]x, 0)))) =
1

W/n et d2 = enrle. (259)
e

Second, applying (256) to (253), and using the defini-
tions (247)-(248), j,f satisfies

HE (DL(TE((0, Byrlx)))) =
By |x ®° ng (YO)
QL alu(}’O)

5 )|

d()ﬂ _
n<ng)[aM|x® 5 ). M ng(yo)dé‘“] _
(%) [Br]x ©° 08| = Bylx.  (260)

Let us apply the kinematical admissibility concept for
generalized displacements. We require that (see (61))

11 11

M (w, B,)) = 1l (T (warl))- (261)

Constraint (261) is accomplished by forcing

/ @i, df2, = 0. (262)
o)

I

Concerning the kinematical admissibility for strain ac-
tions, we must satisfy (see expression (62))

HE (e,) = HE (DL(TE (el Barlx)))),
HE™ (e,) = HE™ (DL(TE (el Barlx))))-

(263)
(264)

From the structure of the Hiu—component, given by
(255), constraint (263) yields the following definition of
kinematical admissibility

Al
— €, df2, =
|~Qu| 2, g g

|~Qlu|/g ’D#(ji((€M|x”3M|x)))d_Qﬂ (265)

Then, since (259) holds, and considering (250), expres-
sion (265) is fulfilled if

/ Vit d2, =0, (266)

“QM

which is equivalent to

/ i, ®° n, dl, = 0. (267)
T

n

On the other hand, from the ’Hizl—component of the
homogenization operator, see (256), the kinematical ad-
missibility requirement (264) results in

1n<n)[ | DUl (@l Burbel)) as2t |
' (268)

Using (250) and (260), we get that condition (268) is
satisfied whenever

AT d()ﬂ =0, (269)

L
LJ82f

which, after integration by parts, results equivalent to

IT(n'%) / i, ®° n, dfj] =0, (270)
L/rp
and from definition (257), it yields
/ (n, -n%)a, dll = 0. (271)
U

Thus, the space of kinematically admissible fluctuations
for the u,-component of the displacement field at micro
scale is defined as

Kinﬁu = Val“ﬁ“ = {flp, S Hl(Qu)>
/ 0, d02, =0, / i, ®° n,dl, =0,
2, W

/FL i, (n, - nl)dIk = 0}. (272)

We recall here that Bu =0.
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Remark 26 In [104,123], a slightly different kinemat-
ical formulation was derived. This remark describes such
model. Only the kinematical ingredients which are dif-
ferent between the proposal of [104,123] and the present
approach are discussed here.

The kinematical counterpart in terms of macro gen-
eralized strain actions, Dyy, on the cohesive crack, was
reinterpreted in the cited contributions. The strain ac-
tion operator is defined as Dpr(-) = (VZ(-), (-) @ n%).
So, Dy is given by the pair (enr(un), e (Br)) =
(V llM,,BM ®S 5) Then, it is Ey = {(€M7€k1) S
L?(2xn) x L2(Sm), e = €k, ek, = (e5)T}. Observe
that the term EJLV[ has a very intuitive physical inter-
pretation: a strain-like action, or a localized strain-like
mode, induced by the displacement jump B,; acting on
the macro cohesive surface Syy, with unit normal vector
Wl

The structure of the micro-scale generalized displace-
ment vector space results in: U, = H*(£2,) x H'(£2,,) x
L?(20). As before we have: u, = (uu,%,,8,) € Uy.
The insertion operator for the generalized macro strain
actions is the following

B lx
Zg ) (273)

Instead of (256), the following alternative homoge-
nization operator is considered

TE (ertherelal)) = (o,emx(y v,

£21

1
o (E#) = 7|SH| /{;H Eu d'Q/_u
for T2 ((0,e51x))-

From (274), equation (60) is now verified as seen next

H

(274)

HE® (DL(TE((0,e51%))))

1 5M|x® n’s(yo )dQL
|Sul 01,(yo)

Bl ®° nls = efylx  (275)

In this case, the kinematical admissibility concept
for strain actions can be written as

HE (e,) = HE (D(TE (entlws €511x)))), (276)

HE (e,) = HE (DW(TE ((entlns €511)))).

Fulfillment of expressions (276)-(277) requires that

(277)

o / vin,d, =0, (278)
1 S~ L _
5l Jo Vyu, df, = (279)

or integrating by parts

/ i, ®° n,dl, =0, (280)
Iy

I

/ 4, ®° nldlt = (281)
FL

The previous discussion leads to the following space
of kinematically admissible fluctuations of the displace-
ment field at the micro scale

Kin%u = Var%“ = {ﬁu € Hl(Qu),

/ ﬁudQ#:O,/ @, ®° n,dl, =0,
02

W M

/FL 4, ®° n)dll = 0}. (282)

It is now clear that Var~ C Varg,. Then, the multi-
scale model developed in [104, 123], which results from
the use of Varﬁu given by (282), is kinematically more
restricted than the model developed in the body of this
section, which results from using Varg, given by (272).

The internal virtual power associated to point x
over a macro-cohesive crack (which is to be linked with
the RVE) is given by the product Tyl  Bylx =
w1 Tarlx - ﬁM\x, where Tj|x represent the traction
vector acting on the crack, at point x. The cohesive
traction Tpslx is identified as a dual quantity (power-
conjugate) respect to B mlx and its constitutive char-
acterization will be obtained from the homogenization
of a micro-mechanical problem. At the RVE-level, after
exploiting the form of the admissible variations &, (see
(251)), the internal virtual power results

) 3 S
P;Lnt — / 0_# . /BM‘X ® nS(y) dQL
L elu(Y)

+ / o, Viu,d2, (283)
QIJ'
Therefore, the formulation of the Principle of Multiscale
Virtual Power for the present application is given by the
following statement.

PMVP. It is said that Tyr|x and o, are equilibrated
if the following variational equation is satisfied

B lx ®° n5(y)

dnt
01,(y) a

TM|x./3M‘x:/ g, -
2k

+ / oy Vi, d,
£

V((0, Brslx), ) € RE, % Varg,. (284)
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The consequences of the principle formulated above
are the following.

Equilibrium problem at micro scale. Con-
sider B,;|x = 0 then, the equilibrium problem
at the micro scale is formulated as follows

/ o, Viu,d2, =0  Vu, € Varg,. (285)
0,

n

Traction homogenization at macro scale.
Let u, = 0, then

> Bulx @ n(y) 1
Tharlx @ x = / o, ————==2df?
JVI‘ IBM| Qﬁ H 0 l“ (y) o

Working on the right hand side of the above ex-
pression we obtain

/ - Burlx ®° ni5(y) 40k —
L QZM(Y)
1

[/s 57n(Yo)ns(yo) dS,,

n

Barlx, (287)

where &, (yo) is the mean value of o, over the
thickness of the domain of localization Qﬁ at
point yo. Therefore, the homogenization formula
for T pr|x results

T arlx
| 0|8|/

Observe that the dimensional parameter w; in-
volved in the duality product (-) e (-) can be eas-
ily identified from (287) being, in this problem,
w1 = |Su|. Consider the particular case where
S, is a plane (ns(yo) = n') and I,,(yo) = [, are
constants, then we have # = 1, and the above
homogenization formula (288) agrees with that
proposed in [104], which is repeated here

2 (yo)nls(yo) dS,. (288)

1 L
’:[‘]\4)(:|.(Zﬁ|/Q UMnSdQ (289)

Numerical simulations obtained using a very similar
model to the one presented here are discussed in de-
tail in Section 7.2.

6.5 Convective/dissipative macro effects - Classical
micro fluidics

In what follows we consider the multiscale modeling in
fluid mechanics for a steady state problem. At the mi-
cro scale the fluid is considered to behave as Newtonian,
and the focus is on the interplay between forces due to
convective effects (acceleration forces) and constitutive
(viscous) effects phenomena. In addition, incompress-
ibility constraint is considered at both scales. That is,
the materials of the domain at micro scale are all in-
compressible, resulting in an incompressible behavior
at macro scale.

At macro scale, the domain (configuration of the
body) is an open subset 23, C R3, with smooth bound-
ary I'ny (outward unit normal njs), and whose coor-
dinates are x. We consider an Eulerian description of
the physical phenomena. The generalized displacement
is the velocity vector field uy; = vy, with structure
given by Uy = {vir € HY(2y), divx var = 0}. The
strain action operator is not the classical symmetric
gradient, but the full gradient, which will allow us to
retrieve non-symmetric stress tensors due to convec-
tive effects at micro scale, so Dps(+) = gr(-) = Vx(+).
Thus, it is Dy = gy (V) = Vxvas, and therefore
Dy € En = {gu € L*(2u), tr(gy,) = 0}. All fields
are defined in §2;. Then, we have ny; = 1 (Ry = 3)
and my =1 (S =9).

At the micro-scale we have a similar model to the
one used at the macro scale, so the RVE domain is
2, C R3 with smooth boundary I, (outward unit
normal n,), whose coordinates are y. This RVE is a
representative element standing for a fixed window in
the micro scale (Eulerian approach). As well, the gen-
eralized displacement is a velocity field, expressed as
uy, = v, = V,+V,, with structure given by U, = {v, €
H'(£2,), divy v, = 0}. Equivalently, the strain action
operator is the full gradient D,(-) = Vy(-), so D, =
9,(vy) =Vyv,,s0D, €&, ={g, € L%(12,), tr(g,) =
0}. In this case, the strain action and velocity are dis-
tributed throughout the entire RVE domain, implying
that 29 = 2 = . Here, it is n, =1 (R, = 3) and

n=1(5,=9).

The definition of the intermediate space of point-
valued velocities at macro scale is given by Rfy =~ = {w e
R, w= Vrlx, Vi € Unr}, and for the strain action we

have RY = {d € R**3, d = g/|x, gpy € Em}. Note
that tensors in R¥ o ATe such that tr(d) = 0. Here, it is
Rz’ft =Ry, and Rs =Rg,,-

The insertion operator for the velocity field is de-
fined as follows

T (Varlx) = varlx, (290)
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and the insertion operator for the strain action is pro-
posed to be

75(9M|x)

with y, being the geometrical center of the RVE;, i.e.
Yo = Q%A fQu y £2,,. Then, at micro scale we have

= gulx(y = ¥o), (291)

Vi =Vulx + gulx (Y = ¥o) + vy (292)

Considering the divergence of v, taking into account
that vs|x is constant with respect to y and that g, |x
is trace free, we obtain

divy Vu = divy(vM|x =+ 9M|X(y - YO) + {’u) =

divy v, (293)

so, the velocity field at micro scale is divergence free

provided that
divy, v, = 0. (294)

Besides, since D, (TH (v|x)) = Vyvarlx = 0, we have

9 = Gulx+ VyVu (295)

Regarding homogenization, we define the following ho-
mogenization operator for the velocity field

1
u _
HH (VU) = ML‘/!2H VM dQN’ (296)
and for the strain action field
HE (e ):L/ g,de,. (297)
PR ] S, T

By definition of the insertion operator, it is verified
that equation (59) is satisfied, i.e.

HM(J (virlx)) =
“Q#|/Q T (Varlx) dS2 = Varlx. (298)

In addition, the kinematical admissibility concept (see
equation (61)) states that

WZ' /Q v, dQ, = (;|/Q T (Varlx) dS2 (299)
By construction it is
o1 [, ouby ~vdo, <o (300)
So, (299) is satisfied by ensuring

1 -
] /Q i, =0, (301)

For the insertion of the strain action, by construction
we have that equation (60) is satisfied, in fact

My, (Du( T (9arlx)

IQ\/

while the linkage between strain action at macro and
micro scales is performed by the kinematical admissi-
bility concept (see (62)), which states that

9M| ) d2, = gulx, (302)

1
] /Q 9 142y

\QI/

Expression (303) is fulfilled by enforcing

QM| ))ds? we (303)

1
x / V¥, d2, = 0. (304)
192 J a2,
After integrating by parts we reach

1 -
—/ V,®n,dl, =0. (305)
192, Jr,

Thus, we define the space of kinematically admissible
velocity fluctuation fields at micro scale as being

King, = Varg, = {vu e H'(22,), divy v, =0,

/ ,df, =0, / Y, @n,dl, = 0}. (306)
2 T,

M Iz

The internal virtual power at macro scale is given by
P}C}t = fQM o - ViV df2yr. This internal power at a
given point x is Pji\ﬁ}fx = 0 pr|x ® G s |x- The external vir-
tual power in this case is given by acceleration forces,
particularly the convective acceleration forces P§y* =
fQM cir - Var A2y, Here we slightly modified the nota-
tion, using cjs instead of fj;. In the classical single scale
scenario the convective force is cpr = p(Vxvar)var, but
in the present multiscale setting we will retrieve such
term from the micro scale. This external power at a
given point x is Pf}l‘fx =curlx ® Varlx-

After exploiting the composition of the strain ac-
tion, and introducing the hypothesis about the New-
tonian behavior of the fluid at micro scale, i.e. o, =
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ZMV§VW being p the fluid viscosity, the internal vir-
tual power at micro scale results

PiM = /Q 2uVyv,, - Vy ¥, df, =

/ Qﬂvivu (Gumrlx + Vy‘:/,u) df, =

I

/ QHV5V/L “Gurlx dS2,

I

+ / 2uVIv, - Vyv, d2,. (307)

n

The external virtual power accounting for the convec-
tive effects is expressed as

PSXt - /Q Cp -V, de2, = / P(VyVy)Vvy - vy di2, =

M W

/ p(vyvu)vu : (‘A"M|x + gM‘x(y - YO) =+ ‘:’u) dQu =

2,

/Q P(Vy V)V - Var|x df2,

+ / (P(Vyvu)vu ® (Y —¥o)) - Garlx s,
(]

“w

+/ P(Vy Vi)V - v, . (308)

2,

The formulation of the Principle of Multiscale Virtual
Power for the present case is the following.

PMVP. [t is said that (o um|x,cmlx) and (o4, c,) =
(Q/LVivu,(Vyvu)v#) are equilibrated if the following
variational equation is satisfied

oMlx®Garlx FCarlx @ Varlx =

/ 2;LV§VM “Gunlx d2, + /Q 2qu,'vu . vy‘:’u ds,

Iz Iz

—|—/ P(Vy V)V - Varlx df2,
o)

"

+ / (P(Vyvu)vu ® (Y —¥o))  Garlx df,
(]

"

+ /Q P(Vyvu)vy - ‘:’u {2,

"

V(¥ Garles Vi) € RS, X RE x Varg,. (309)

The consequences of the principle enunciated above
are listed below.

Equilibrium problem at micro scale. At first,
consider Vps|x = 0 and g,;|x = 0. The equilib-
rium problem at the micro scale is defined by the
following variational equation

/ 2uV v, - Vyv, df2,

I
+/ P(VyV, )V -V, d2, =0
“QH

Vv, € Varg,. (310)

Stress homogenization at macro scale. Con-
sider now ¥V7|x = 0 and v, = 0. Then it results

onMlx®Gylx = / QNVS?V# “Garlx df2,
(%}

n

4 /Q (Vv )V & (¥ = yo)) - s A2,

I

Vgulx € RE . (311)

Therefore, we have that the element o jr|x —
ﬁ fnu [QMVS?VM + (p(vyvu)vu (Y —¥o))] as,
is in (]1@5‘;)L Since in the macro scale the inter-
nal power is performed by o j; against the space
of divergence free velocity fields, it turns out that
the relevant part of the stress, from the internal
power point of view, is the deviatoric component
of o, called 095¥. Then the homogenization for
this component is

ev 1
o0 | = |.Q#|/Q [2w~jvu
+p((Vyv) v @ (y = ¥0)) '] d2,,  (312)

where dev denotes deviatoric operation. The du-
ality operation is oarlx ® garlx = [2ulon|x -
gM|X = |“QM|O-§\1/?V‘X 'gM|x’ S0, it is w1 = l‘QM|
In this expression, it is clear the contribution
of the different phenomena from the micro scale
onto the homogenized macro scale stress tensor,
which is clearly non-symmetric because of the
last term in (312).
Convective force homogenization at macro
scale. Now, consider g,,;|x = 0 and \:,M = 0,
which yields

curlx @ Varlx :/ P(VyVvu) vy - Varlx dS2,

I
_—

YWarlx € RY (313)

M’

from where we obtain

1
C]\/[‘x = 7/ p(Vva)vH dQu (314)
|~Qu| 2,
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Notice that the duality operation is ¢ |x®Vas|x =
|2ulca|x - Varlx, and then v = [£2,].

Further manipulation of the above expression
by introducing the form of the velocity field at
micro scale, leads to

CM‘x:

1 ~
m/ﬂ PVqu(VM|x+gM|x(y—yo)—|—vu) dQIJ« —
® o

1
(m/Q Pd”“>gM*VM'*
23 M

1
+gonlaube [ oy~ v.)de,
2]

2,
T \/ 7, de2
To 19MIx PV
|'Q/| M 2, 1% I
1
1

+ — / pV\?dQ)V x

i

+ ol (/ PVyV, @ (Y = Yo) dQu)gM|X+
12ul\ Ja

I

1
12l Ja,

For the particular case of a fluid in the micro
scale with constant density it simplifies to

p(Vy¥,)v, dS2,. (315)

culx = p[ngxVM|x

1 -
|“Ql | (/Q vyvu ® (y - yO) dQu).ng

1 o\~
+ m /Q (Vyvu)vu dQH:| . (316)

+

Remark 27 The model will deliver, as an internal re-
active force, a certain pressure field in the macro scale
and a micro pressure field. These are reactions with re-
spect to the macro and micro incompressibility. More
general situations can be thought of if we consider, for
example, the interaction of an incompressible flow with
compressible objects at micro scale, delivering an effec-
tive compressible response.

Remark 28 Considering v, = 0 in the expressions
derived above, and assuming constant density and vis-
cosity, we obtain a simplified multiscale model for fluid
flow whose homogenized form for the stress becomes

U?V(IN|X = 2Mgf/f|x

+p[gM|nglx<|$H|/Q (y—yo)®(y—yo)d9”)]dev.

' (317)

Therefore, the stress loses symmetry, while accounts for
second order terms due to the convective phenomena at
micro scale. In turn, under the same assumptions as
before, for the convective force, from (316), we obtain

culx = pgarlxvarlx- (318)

That is, such simple model contributes with high order
terms in the behavior of stresses, while does not affect
the convective force.

Remark 29 In fluid mechanics, it is customary to have
obstacles at the micro scale. Consider the case in which
obstacles are fixred and a no-slip condition is consid-
ered over the boundaries. In such case, obstacles intro-
duce external forces, which are the reactive forces to
the no-slip condition the flow must comply. These reac-
tive forces are put in evidence through the corresponding
Lagrange multipliers. The external virtual power at the
micro scale changes in this case to account for such ex-
ternal forces. Consider that I'Yy , i = 1,..., Nobs, are
the boundaries corresponding to the micro scale obsta-
cles. Lagrange multipliers are denoted by )\L €A (A
a proper functional space), i = 1,..., Nops. Then it is

Nobs
Pt :/ -V, d2, + Z/ Al VAl =
2, = Jr

obs

Nobs
/ P(Vy Vi)V Ve ds2, + / XL VD =
2 i=1 7 ous

A DTV (Ol (Y~ ¥0) +,) 42,

Nobs
E3 [N Garlet Glaly = ¥o) + 9 d =
i=1

obs

Nobs
{/ P(Vyvy) vy dsd, +

> [ Neari) - vu
“ =1 Fébs

¥ [ | o¥vivi e - v,

Nobs

m
+Z _ >\Z®(Y*Yc))dpgbs “Gulx
i=1 Y Tobs

+ / P(Vyvi)vy -V de2,
2,

Nobs

+>

i=1

. X v dll,.. (319)

obs
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Thus, the equilibrium problem at the micro scale is

/ Qﬂvivu ’ Vy‘c’u e, + / P(VyViu)vy - 6# ds2,
Q Q

I I
Nobs Nobs )
S ) i )
+Z ) )‘L'Vﬂdl—‘olbs_FZ ) Ap'vudl—zbszo
i=1  Tons i=1 7 Tobe
2 (1 { Nobs 1 Nob,
VYV, Ay Ay, ) € Varg, X A7 X ..o x AT,

(320)

The homogenization form for the (deviatoric component
of the) stress results

0'(]%/?]|x =

|Qlu| [/Q [Q,UV§V;L +p(Vyv)v, @ (y — Vo))dY] a0,

n

Nob:;
£ [ <Azt®<y—yo>>d“drgbs} (321)
i=1 Y Tons

and that of the convective acceleration forces is

1
cMlx = —— / p(Vyv,)v,ds2,
12ul L,

Nobs
+) AL ng'bs} (322)
=1

i
Fobs

6.6 Thermo-mechanics with temperature fluctuations

This section is devoted to the problem of modeling
multiscale phenomena in the field of thermomechanics.
For simplicity, we consider infinitesimal strain theory
at both scales.

The domain in the macro scale is an open subset
2y C R3, with smooth boundary I'y; (outward unit
normal nys) and with coordinates x. The generalized
displacements is now the displacement-temperature pair
upr = (upr, Oar), and then the structure of the space of
generalized displacements is Unr = H(2p7) x H*(24).

The generalized strain action operator is Dy () = (VL (-), V

where V¥ is the symmetric gradient. Thus, we have
Dy = (VZupr, Vi), and therefore Dy, € Ey =
{(err,gm) € L2 () x L2(2n), enr = €1,}. All the
kinematic fields are defined in (25,. It is then ny; = 2
(RM = 4), and mppy = 2 (S]u = 9)

At the micro-scale we have classical thermomechan-
ics with the RVE domain being 2, C R3, with smooth
boundary I, (outward unit normal n,) and coordi-
nates y. Generalized displacements at this scale are also
displacement-temperature pairs, i.e. v, = (u,,0,) =
(U, + 1,0, + éu)7 with underlying structure given by
U, = H'(2,) x H(£2,). Analogously, it is D,(-) =

(V5(),Vy (), so D, = (Viu,, Vyb,), and thus D, €

Eu={(en.8u) € L2(02,) xL?(£2,), £, = €L'}. At micro

scale the fields are defined in the entire RVE domain.

As for the macro scale, we have n, = 2 (R, = 4) and
=2 (5S,=9).

The intermediate space of point-valued generalized
displacements at macro scale is RY = {(w,7) € R® x
R, (w,7) = (upmlx,Onmlx), (Uar,00) € Unr}, and for
the generalized strain actions RY = {(€,h) € R**? x
R3, (e, h) j\(tsz\ﬂx,gj\ﬂx)7 (%gM) € Em}. In this
case it is Ry = Ry —and RE = RE . The opera-
tor which makes the insertion of the pair displacement-
temperature into the RVE domain is postulated to be
T ((uarls, Onrlx)) = (Uar], Onrl), (323)

resulting in uniform fields over the entire RVE. In turn,
the generalized strain action from the macro scale is
postulated to be inserted into the micro scale as

TS (el gumlx)) =
(€M|x(y - YO)a g]ulx(y - YO))v (324)

with y, being the geometrical center of the RVE, i.e.

Yo = Qi /, 0. ¥ £2,. Then, at micro scale we have the fol-
w I3

lowing expansion of the generalized displacement field

(325)
(326)

u, =unlx +emlx(y — ¥o) + Uy,
0 = Onrlx + 8arlx (Y — Yo) + 0.

Naturally, it is D, (JY ((unrlx,0nlx))) = (0,0), from
which it results

(327)
(328)

€y =€mlx + Viﬁu,
8u = gumlx + Vybyu.
Further, by construction the insertion operator jf is

such that

Du(TE (enrlx 8lx)) = (Enlx: 8arlx)

Vy € 2,. (329)

x('))a

Now, we define the following homogenization operator
for the generalized displacement field

Hﬁ’((u#,ﬁﬂ)) =
1 1
o] /Q A /Q 6,42, ), (330)

and for the generalized strain action field
Hi((smgu)) =
(l/ed() 1/ d()) (331)
=7 YT T g .
[2ul Jo, "R S, T
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By construction, the operator jﬁ’ satisfies (see (59))

HAUTH (unrlxs Onrlx))) =
1 1

(m/o “M'xd”“’m/n "M*‘””) -
12 m 1 m

(unrlx, Onrlx).  (332)

To put the kinematical admissibility into action let

us consider the generalized displacement field first. Then
we must fullfil (see constraint (61))

1 1
<|9u| /Q U 4 1 /Q "“d”ﬂ) =

1 1
— A, —— | Omled2, ). (333
(mu/m“”" z |nﬂ|/g,b | > (333)

In addition, observe that by construction it is

1
m /_Q EM‘x(y - yo) dQM =0, (334)
® n

1
ool /Q gatle(y — yo) df2, = 0. (335)
M M

So the expression (333) is met by enforcing

L _ 1 _
(W/Q u, deW/_Q 9# dQN) = (0’0)_ (336)

Regarding the linkage between strain action at macro
and micro scales, first we have that the operator Jf
satisfies by construction (see requirement (60))

Hi(D#(jf((EM|x,gM|x)))) =
1 1
—_— g de ,7/ de > =
(1 [, bt gy [, et

(enrlx> nrlx)-  (337)

Second, we have that the kinematical admissibility con-

dition for generalized strain actions establishes (see con-
straint (62))

1 1
— [ € d(l,—/ dQ)
<|nu|/9u mETR Jg, B

o ) )
e d2u, — [ gmled2,), (338
(w g, Wb | B df ). (338)

which is fulfilled by enforcing

1 ‘. 1 .
<|m| /Q Vy e dS: 10 /Q VO dQ“) -

(0,0). (339)

Integrating by parts yields in the expression above we
obtain

1 B 1 ~
(lrz; \/p W, @7 d |rzu|/p a“n“dp’“‘> N
4 W W

(0,0), (340)

where ®° is the symmetric tensor product. Thus, we
define the space of kinematically admissible fluctuation
displacement fields at micro scale as being

Kin(ﬁmén) = Var(ﬁwéu) =

{(ﬁméw e (' (@) < 1),

2,

@, d2, =0,

/ éudnﬂzo,/ @, ®° n,dl, =0,
(0]

w W

/éunudFM:O}. (341)
FH

The internal virtual power at macro scale is given by
the contribution of the mechanical and thermal powers
Pyt = [g, o Vatn d2u +x [o, dnr - Vb dQur
(x is a dimensional scalar to make the sum of powers
dimensionally consistent, therefore, it has the units of
[temperature] 1). At a point x (linked to the RVE) we
then have P]i\i}fx = (omlx, xanm|x) ® (Enrlx, Errlx). The
external virtual power is P§f* = |, o, I A d2y +
Xf-QJVI has - Oar dS20s, and at a point x it is Py =
(£asrx, xharlx) ® (ﬁM|x,éM|x). Observe that in the ex-
ternal virtual power the macro scale model allows for
classical body forces, fj;, and sources of heat per unit
volume, hps.

The internal virtual power at micro scale, after ex-
ploiting the composition of the generalized strain action
at micro scale, results

J!D;flt:/Q au~v§ﬁ#dﬂu+x/ qu - Vyb,de, =

® 123

/ o (Enmlx + Vyuy,)d2,

2,

+ X/Q a. - (&mlx + Vyb,)d2, =

“w

/o-u~éM|delL+/ oy Vi, d,

M Iz

+X/ qu'gM|xd~Qu+X/ q. - Vyb,d0,. (342)

2, "

In turn, the external virtual power in the present model
incorporates body forces f,, and sources of heat per unit
of volume h,, both defined in the micro scale domain.
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It can be written as follows

Pt = /n £, 0, d02, +x / hy -0, d02, =

M 2,

/ fu : (ﬁM|x +éM|x(y_YO) +ﬁu) d-Qu

2,

+ x hy
2,

[t tuled,+ [ (9% - y0) - eurleds,
0

H I

+/ £, -1,d0Q,
2

"

+X/ huéMlx dQu +X/ hu(y_yo) gM'x dQ;L

2, 2,

: (éM|x +&mlx(y — ¥o) + éu) df2, =

+x / hy0,d0,. (343)

"

The formulation of the Principle of Multiscale Virtual
Power for the present case is the following.

PMVP. It is said that ((oa|x, darlx), (Earlxs harlx))
and ((ou,qu), (£.,hy)) are at equilibrium if the follow-
ing variational equation is satisfied

(a1 |x: xdnrlx) ® (Enrlx, Earlx)

- (fJV[‘xv XhM|x) ° (ﬁM‘)ﬁ éM|x) =

/a#-éM\xd()#+/ oy Vi, d,
2

w ©

er/g qu'éjv1|xd9#+x/9 qu~Vy§HdQ#

*/ f/wﬁMlde,r/ (£, ®% (¥ = ¥o)) - Enrlx dS2,
2, 2,

—/ £, -1, dQ,
2

i

—x/ huOnlx d2, — x / hu(y = ¥o) - &mlx dS2,

—X/ h,0, 02,

V((u]bﬂxa 9M|x)a (€M|xa ngx)a (ﬁ/u éu)) €
Ry xR X Var(ﬁm(;“) (344)

The consequences of the principle enunciated above
are listed below.

Equilibrium problem at micro scale. Firstly,
take (Qarlx,Onlx) = (0,0) and (Enrlx, Emlx) =

(0,0). The equilibrium problem at the micro scale
is defined by the following variational equations

/ a-M-ViﬁudQu—i—x/ .
(] 2

Iz W

—/ fu~ﬁud(2“—x/ hy - 0,d02, =0
(] 2

12 2

(U, 0,) € Varg 5. (345)

V0, d02,

That is, we obtain the classical variational for-
mulations for the mechanical

/ O'H~V§flud(2“—/ £, 0,d2, =0
2, 2,

V(1,,0) € Varg 5, (346)
and thermal subsystems of the body

/q#-vyéﬁdnﬂ—/ hy - 0,d2, =0
2 2

Iz "

¥(0,0,) € Varg, 4., (347)

Generalized stress homogenization at macro

scale. Consider (tiar|x, far|x) = (0,0) and (1,,, 5“) =
(0,0). Then it results

(U]V1|xa XqM|x) i (é]\/f|xa gM‘x) -

/ O'H-éj\ﬂdeM—FX/ q;t'gM|xd“QM
2

- [ 655 5 -y euleas,
2,
- X/ hu(y —¥o) - 8alx dS2,
2,
V(enrlx, Eurlx) € RE, . (348)

Therefore, the homogenization formulae for the
stress and the heat flux is obtained from identify-

ing that (0'1\/1|xa XqM|x).(éM‘x7 gM|x) -

|‘QM| 0M|x'
Eumlx + X|92u| darlx - arlx, resulting in

O-M|x:

|9|/ o

®° (y = ¥o)) df2u, (349)

and

aulx = 0, |/ qQu —

Note that in this case it is w1 = wy = [£2,].

w(Y = ¥o)df2,.  (350)
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Generalized body force homogenization at
macro scale. Now, it is considered (€p/|x, Err|x) =

(0,0) and (1:1”,67“) = (0,0), which yields

(fM|xa XhM|x) L4 (ﬁ]VI|xa éM|x) =

/ f#'ﬁM|xd-Q,u+X/ hp'éMldeu
2, Q

"

V(s |, Oarlx) € @f; (351)

and from the fact that the product (far]x, xharlx)e
(AﬁM|x7 0M|x) = ‘Q,u‘ fM|x . l-A1M|x + X|~Q,u| hM‘x .
Orr)x, we have

1
fZ\/I|x = W /_Q f/L d-Q/u (352)
wlJa,
and
1
wl e,

Here, it is v1 = 72 = [£2,,].

Remark 30 Let us consider that at micro scale the
material exhibits a classical linear constitutive response
in the thermomechanic setting, i.e.

oc,=C,e, —B,b,, (354)
with C,, and B, the elasticity tensor and the thermal
expansion tensor, respectively. Now, due to the splitting
of fields we have

o, =Culenmlx + Vi)

_Bu(eM‘x""ngx : (y_yo) +éu) (355>

Beyond standard functional dependencies, in this case
o, depends on gar|x, which implies that o yr|x depends
on gnlx. As pointed out in [15], even having consid-
ered a standard thermodynamic setting at micro scale,
the multiscale formulation results in an extended ther-
modynamics setting at the macro scale.

7 Numerical Applications

7.1 A plasticity-like multiscale model of martensitic
transformation

In this section we present a multiscale model of stress-
induced martensitic transformation. The model relies
on a multiplicative plasticity-like description of the phase
transformation phenomenon that occurs at grain level
— here taken as the micro-scale — accounting for the ac-
companying large transformational strains. The overall

behaviour of the alloy is predicted by means of the ho-
mogenization of an RVE containing a sufficient number
of randomly oriented grains. A crucial feature of the
model presented here is that the mechanical dissipation
associated with the martensitic transformation above
the temperature of spontaneous austenite-martensite
transformation is rigorously accounted for in a newly
proposed plasticity-like criterion that incorporate the
ideas of Patel and Cohen [95] in a thermodynamically
consistent finite strain framework. We remark that the
multiscale class within which the present model is devel-
oped is standard in the sense that no discontinuities or
higher-order kinematics are present. In particular, the
model is an instance of the purely constitutive approach
referred to in Section 4. The main contribution here is
the level of refinement of the constitutive model used at
the micro-scale and our main aim is to show that higher
levels of micro-scale constitutive refinement can lead to
macro-scale material behaviour descriptions capable of
capturing the effects of rather complex phenomena —
phase transformation in the present case — usually not
easily captured by standard phenomenological (macro-
scale) constitutive theories. Such levels of refinement
are, in our view, essential in order to move towards
truly predictive (rather than simply descriptive) multi-
scale models with potential use in application-tailored
micro-structure design — an important area of current
research in materials engineering and science.

7.1.1 Martensitic transformation kinematics

Crucial in development of the constitutive model to be
used at the micro-scale is the description of the kine-
matics of the phase transformation under considera-
tion. The transformation of metastable austenite into
martensite is a diffusionless transformation that at any
one point of the transforming crystal can be described
in continuum terms by a shear deformation and an ex-
pansion normal to a so-called habit plane. The potential
habit planes and the possible shear directions within
each such a plane are entirely determined by the geom-
etry of the crystal lattice under consideration, accord-
ing to the theory of Wechsler-Lieberman-Read/Bowles-
Mackenzie [16,127]. With £ denoting the transforma-
tional shear, § the accompanying normal expansion, m’
the unit normal to the habit plane and s* the relevant
shear direction for the variant i, the transformation is
characterized by a deformation gradient

F" =1+d @m’, (356)
where
d’ = ¢s' + om', (357)
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with no summation on repeated indices.

Typically, stress-induced martensitic transformation
occurs as part of a process involving elastic lattice de-
formations and possibly plastic slip prior to the onset
of the transformation. In this context, we shall adopt
a multiplicative kinematics whereby the total deforma-
tion gradient F at any point of the crystal is given as a
product of elastic, plastic and transformational contri-
butions:

F = F°F"F5, (358)

where F¢ denotes the elastic deformation gradient, F%
the plastic deformation gradient associated with plas-
tic slip of the meta-stable austenite phase (prior to
the transformation). If plastic slip of the newly-formed
martensite is to be considered, then the corresponding
plastic deformation gradient F%, can be accounted for
by augmenting the above decomposition according to

F = F°F, FU'F%,. (359)

Martensite plasticity, however, will not be considered
here. We remark that the above multiplicative splits
of the deformation gradient can be rigorously justi-
fied as a continuum model of the kinematics associated
with the lattice geometry changes associated with the
elastic, plastic and transformational phenomena under
consideration. It extends the now standard multiplica-
tive kinematics adopted in finite strain elasto-plasticity
[111].

7.1.2 Thermodynamical considerations. Plasticity-like
model

It is widely accepted [14,96,116] that external mechan-
ical work is required for the martensitic transforma-
tion to occur at temperatures above the temperature
My at which martensite forms spontaneously. This idea
appears to have been formally explored firstly in the
seminal paper by Patel and Cohen [95] and is illus-
trated in Figure 5. It suggests that the total energy
density dissipated by the transformation is a constant.
Below or at M, the difference between the chemical
free-energy density of the (unstable) austenite and (sta-
ble) matensite phases is sufficient to allow the transfor-
mation to occur spontaneously, without external energy
input into the lattice. At temperatures above M and
below Ty (the austenite-martensite equilibrium tem-
perature), where the chemical free-energy drop dur-
ing transformation is smaller than the energy dissi-
pated by the transformation itself, the transformation
may only occur if additional energy is injected into
the lattice. When the transformation does occur un-
der such circumstances, this additional energy density,

Genen

chemical free energy

G, (austenite)

Gy (martensite)
G = AGrmcn

i
I
I
I
I
I
I
| mechanical work
I
I
I
I
!

‘
|
|
|
|
|
|
|
M, T

temperature

Fig. 5 Martensitic transformation. Energies involved.

denoted AG\gc, is provided by mechanical work. The
parameter AGygc can be regarded as a (temperature-
dependent) material property. In summary, we want to
model a mechanism that dissipates a given energy den-
sity AGugec (at a given temperature) and whose phe-
nomenological manifestation is a deformation gradient
F*, in the context of a multiplicative split (358) of the
total deformation gradient.

The situation here is analogous to finite multiplica-
tive plasticity and, as such, the underlying phenomenon
can be modelled in the very same way. Assuming the
mechanical free-energy density 1 to be a function solely
of the elastic deformation gradient F°¢, and accounting
for the split (358), we have

. 31/;..6
V= ope  F
oL RN
:aFe(Fth) T F
eT aw trpp \—T trppP \-
-F (FUF) "« (FUFy), (360)

OFe

or, since the rate of plastic slip vanishes during the
transformation,

h 8’¢ r — v e 81/1 r — ~tr
b= (F"F)~T.F-F T@(Ft F)~ 7. F',
(361)
The dissipation inequality,
D=P:F—4>0, (362)
then reads
o 4 _ .
P - FUFO)~ 7| F
aFe ( A)
oY _ .
eT tr T . ptr
+F IFe (FYFO)~" : F" > 0. (363)
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From the above we identify the constitutive equa-
tion for the first Piola-Kirchhoff stress,

oY -7
P = (F"F5) 7,
and the dissipation inequality during the martensitic

transformation reduces to

(364)

D=T:F" >0, (365)
where
T=r"pP (366)

is the work-conjugate stress to the transformational de-
formation gradient.

A plasticity-like constitutive model that dissipates
exactly the additional energy density AGygc over a
transformation on a variant ¢ can be devised by firstly
postulating a transformation function @£, analogous to
a plastic yield function, of the type

P'(T)=T: (d'®s') — AGurc. (367)

The model is completed by further postulating an asso-
ciative transformation rule (c.f. associative plastic flow
rule)

. oPtr . .
F'=4—L =4d"®s" 368
gy =14 ®s', (368)
where the multiplier 7 satisfies
P <0; 420, Py =0 ify <1,
(369)
4 =0 ify=1.

Note that with initial conditions v = 0 and F%* = I
at the onset of transformation, the evolution problem
defined by (368) and (369) ensures that F** = I+d’®s’
upon completion of the transformation (when v = 1).

The consistency of the model with the ideas illus-
trated in Figure 5 can be trivially demonstrated as fol-
lows. In view of the transformation rule (368) the dis-
sipation rate (365) can be expressed as

D=4T:d" ®s" (370)
Further, note that (369) requires that & = 0 during

the transformation (when 4 > 0) or, equivalently, T :
d’ ® s = AGygc. Substituting this into (370) renders

D =4 AGugc, (371)

so that the total mechanical energy density dissipated
during the transformation reads

1

D= | dyAGurc = AGumEC-
0

(372)

That is, the total mechanical energy density dissipated
by the martensitic transformation mechanism coincides
with the (temperature-dependent) parameter AGygc
alluded to in Figure 5.

7.1.8 Elastic and austenite plasticity descriptions

As a first approximation to the description of the elas-
tic behaviour of the crystal lattices, a regularized neo-
Hookean model is adopted for both the austenite and
the transformed martensite phases. The plasticity of
the meta-stable austenite, in turn, is described by a
rather conventional (time-dependent) crystal plasticity
approach of the type described in [111]. The austenitic
plastic flow is assumed governed by the rule

Nsyst
> (" @m?)
a=1

F = : (373)

where ngygt is the total number of slip systems, r® and
m® are, respectively, the unit vectors in the slip direc-
tion and normal to the slip plane of slip system «. The
multiplier ¥* — the slip-rate on slip system « — is given
by

— 1} sign(r®) if |7 > 7, (374)

if 7| < 7,

with 7% the Kirchhoff resolved Schmid shear stress on
slip system o and p, € and 7, material constants.

7.1.4 Integration algorithm

The numerical integration of the coupled elastic-plastic-
transformation constitutive equations described in the
above follows a procedure analogous to those of crys-
tal plasticity described in [111]. Before the start of the
transformation the material behaviour is given by a
multiplicative elasto-viscoplatic crystal model with slip-
rate given by (374). The integration algorithm adopted
at this stage is that based on the exponential map as
described in [111]. The transformation begins within a
time interval [t,, t,4+1] if the corresponding elastic trial
stress T obtained by the elasto-viscoplastic crystal
model integration algorithm is such that @4 (TH) > 0
for some variant j. In this case, a variant selection pro-
cedure — determining the transformation actual system
i in which the transformation occurs — will select the
most favourable system (the one with highest transfor-
mation function value) and the stress will be updated
by means of a return mapping-type algorithm for the
transformation rule. For the transformation, however,
the return mapping-type algorithm is simpler than that
of crystal plasticity in that: (a) It only accounts for
plastic flow originating from one system — the trans-
forming variant; and, (b) The transformation rule is
discretized by a standard backward-Euler scheme (as
opposed to the more complex exponential map-based
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scheme of crystal plasticity), i.e. (368) has the follow-
ing time-discrete counterpart,

Fii, = Ayd' @s', (375)
where Ay = yp41 — 7y, satisfies
B (Tpi1) < 0; Ay > 0; O (Tyy1)Ay =0, (376)

when 7,41 < 1. The overall algorithm is described in
the following in pseudo-code format, with Fa denot-
ing the incremental deformation gradient between times
t, and t,4+1 and @ the regularized neo-Hookean free-
energy function.

(i) Compute elastic trial state

trial

e trial __ e. trial __ etrial\T O trp -T
Fn+1 =FaF,; Tn+1 = (Fn+1 ) Fe | (FnFAn)

+1

(i) Transformation update
IF a variant ¢ has been selected, THEN
IF @i*(Tira) > 0 THEN
GOTO transformation return mapping
to update Fj;, | and T,
ELSE
update (-),41 := (-)"* and EXIT

variant selection:
Set i := arg{max;=1 .. », {P* : PV > 0}}
IF i=0 THEN

GOTO elasto-plastic algorithm and EXIT
ELSE GOTO (ii)

The elasto-plastic algorithm referred to in the above
is that of conventional time-dependent crystal plastic-
ity with exponential map plastic flow integrator [111]
— here with slip-rate governed by (374) and material
parameters corresponding to the metastable austenite
phase in question. The transformation return mapping,
in turn, is given by:

(a) Solve the scalar equation

P(T(Av)) =0
for the unknown A+, where

T(A) = [Fe(Ay)|" 22

. [F"(Ay)FY 177,
IF® |pe () 4

with F(Ay) = (v, + Ay)d* @ s¢
and F¢(Ay) = Fo g (F )~ [F"(A)] 7

(b) Update v, 41, FS,; and FI
Tnt1 7= Yo + Ay
IF 7541 > 1 THEN
set Ypa1:=1; Ay := Y41 — Vo
ENDIF
Fo 1 =F(Ay); Fy =F"(4y)

Material
(12Cr9NiaMo)

G = 77kN/mm?
K = 167kN/mm?

Polycrystal

2 =2.87351A, a7 = 3.50690A
m = (0.178,0.608,0.774)

AGuech = 60MPa s = (-0.046, —0.156,0.159)
£=023, 6=002
llabst pieres sl to sz
Uricntatian arkantatiin
t=raln idep G0 fdazl
e (13 u 11
M7 12 #.4
d 3.3 13 254
4 N 14 Al
e 14 iid
240 b L E]

-
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1143
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4-noded F-Bar quadrilateral. 580 elements. 629 nodes

Fig. 6 Polycrystalline aggregate RVE. Geometry, mesh and
material parameters

Finally, we remark that, for use within an implicit
finite element framework (adopted in the numerical ex-
ample described below), linearization of the time-discrete
constitutive model resulting from the above numerical
integration scheme and the corresponding constitutive
tangent operators can be obtained in exact form in the
same way as in conventional crystal plasticity [111].

7.1.5 RVE-based simulations

In the simulations presented in this section, the above
constitutive model/algorithm is used to model the ma-
terial behaviour at the micro-scale, taken here to be
the crystal scale of a polycrystalline aggregate. That
is, the RVE is formed by representative sample of crys-
tals assumed to be perfectly bonded together within
the aggregate — each crystal having its own crystallo-
graphic orientation. The specific material modelled here
is 12Cr9NidMo — a low carbon austenitic stainless steel
whose retained austenitic phase can fully transform into
martensite at room temperature under the action of
external mechanical loading [60,61]. A simplified two-
dimensional model is used whereby the twenty four vari-
ants of the three-dimensional fcc austenite crystal are
reduced to a total of four in-plane variants. Crystals are
assumed to be in their metastable austenitic phase at
first and then will be subjected to a mechanical loading
process leading to martensitic transformation accord-
ing to the proposed rule. The RVE representing the
polycrystalline aggregate is shown in Fig. 6 together
with the material parameters published in [34,96]. The
grains are oriented randomly. It should be noted that
the transformation in this case is accompanied by a 2%
dilation normal to the habit plane and 26% shear de-
formation in the corresponding shear direction.

The first test presented here consists of the numer-
ical prediction of the transformation surface in stress
space, i.e. the locus in stress space containing combi-
nations of stresses at the onset of martensitic trans-
formation. The procedure is analogous to that used in
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Fig. 7 Numerically predicted transformation surface in
stress space.

[38] in the determination of a plastic yield surface for
a porous metal (see also [32,94]). Deformation gradi-
ent histories (linear in time) are applied to the RVE
so as to produce a wide range of homogenized stress
paths. For any path for which martensitic transforma-
tion occurs, the homogenized stress is recorded at the
onset of transformation and the stress point plotted in
stress space. The collection of all such points will pro-
vide a numerical approximation for the transformation
locus in stress space. Due to the assumed randomness
of grain orientation, the aggregate may be regarded as
macroscopically isotropic. Under this assumption, the
transformation surface can be plotted in principal stress
space. The numerical results are shown in Fig. 7. It can
be seen that the present multiscale model is able to cap-
ture quite accurately the experimental results produced
by Geijselaers and Perdahcioglu [34]. Interestingly, the
experimental transformation surface resembles a Mohr-
Coulomb yield surface (typical in the modelling of geo-
materials) in stress space. It is worth remarking that, in
fact, the proposed criterion based on the transformation
function (367) is entirely analogous to a Mohr-Coulomb
plasticity criterion, the main difference being that in
the criterion proposed here the critical combination of
normal and shear stresses must occur with respect to
one plane (the transforming habit plane) whereas in the
Mohr-Coulomb criterion critical combinations may oc-
cur at any plane. Obviously with increasing numbers of
randomly oriented planes in an RVE, the predicted lo-
cus here will converge to a Mohr-Coulomb-type locus.
In particular, we should point out that the horizon-
tal and vertical lines of the Mohr-Coulomb-type sur-
face plotted in Fig. 7 (not captured by the present 2D

0 I I I
0 0.02 0.04 0.06 0.08 0.1

equivalent strain

Fig. 8 Stress-strain response under monotonic shearing.

model) will be trivially captured by a three-dimensional
version of the present model.

Finally, in Fig. 8 we plot the results evolution of
the homogenized Cauchy shear stress over a loading
programme consisting of a monotonic shearing of the
RVE. A macro-scale (in-plane) deformation gradient,

_ |1
e=[y 1]

is imposed with  monotonically increasing in time. The
RVE is subjected to the minimal kinematical constraint
(uniform boundary traction). The model is able to cap-
ture the experimental results of Perdahcioglu & Gei-
jselaers [96] with reasonable accuracy. We remark that
further refinements of the model, such as the use of a full
three-dimensional RVE and incorporation of martensite
plasticity are likely to improve the predictive capability
of the model. These are currently under investigation
and shall be the subject of a future publication.

7.2 Failure modeling in heterogeneous materials
7.2.1 Preliminaries

One of the main motivations to develop an abstract
generalization of the concepts behind multiscale formu-
lations has been the modeling of failure in complex het-
erogeneous materials. This kind of problems forced us
to realize a very critical reinterpretation about the un-
derlying foundations of conventional RVE-based mul-
tiscale approaches, in order to be able to model me-
chanical scenarios ruled by strain localization phenom-
ena leading, ultimately, to complete material exhaus-
tion. Such problems cannot be addressed by using con-
ventional multiscale procedures because its mechani-
cal consistency is lost during the unstable macroscopic
material regime [37,87,104]. In this context, the par-
ticular multiscale model exposed in Section 6.4, called
Failure-Oriented Multiscale Formulation (FOMF) (see
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also [103,104]), could be considered as one of the most
representative branches of the unified variational theory
debated in this document. Indeed, the FOMF approach
exploits (at maximum) the potentialities of the gener-
alized framework of Section 3. Hence, the introduction
of a numerical simulation showing the behavior and ca-
pabilities of such class of multiscale model adapts per-
fectly to the objectives of this contribution.

The FOMF approach considers crack nucleation in
the macro scale (i.e displacement discontinuities) and
strain localization in the micro scale domain. Thus,
once the failure mechanism is activated in the macro
scale, the proposed multiscale technique has to deal

the upper mid-span point, Py, see Figs. 9-(e)-(g). The
beam has a very marked heterogeneous microstructure.
Actually three different microstructural patterns have
been considered for modeling purposes, as we explain
in this section.

Two important features are highlighted about the
proposed problem setting: (i) the strain localization
pattern in the microstructure, leading to failure, is pre-
induced to be vertical by means of the material defi-
nitions in each RVE, and (ii) the cohesive macro-crack
path can be easily predicted, indeed it will be a verti-
cal crack which propagates from the notch up to the
top mid-span point of the beam (i.e. towards the point

with kinematical heterogeneity between the involved phys- P; where the vertical descendant displacement is im-
ical length scales, since it establishes a kinematical /constitutgweed). These two features permit us to estimate, a pri-

link between a macro cohesive “interface” and a “volu-
metric” RVE. Furthermore, the mechanics at the level
of the micro scale features different mechanical regimes
with localization phenomena taking place in certain re-
gions of the RVE. In such case, the role of the insertion
operators is of the utmost relevance.

This part of the manuscript focuses around a me-
chanical scenario that becomes intrinsically discontinu-
ous after the nucleation of a macro cohesive crack. The
main mechanism that needs to be captured here is the
intricate interplay between micro degradation phenom-
ena and its influence at macro-scale level. Therefore,
subsidiary effects such as for example, the considera-
tion of finite strain kinematics or the incorporation of
external body forces, are disregarded in the subsequent
analysis.

The numerical implementation of the FOMF ap-
proach is based on a nested (coupled) macro-micro fi-
nite element scheme, which is not described here. In
[123], a detailed description of the numerical and algo-
rithmic aspects can be found.

7.2.2 General description

The numerical example we incorporate in this section
deals with damage, degradation, strain localization and
material failure. See [123] for more details. In particu-
lar, we are interested in the assessment of the multiscale
model performance and accuracy to estimate the (effec-
tive) fracture energy at the macro-scale as a result of
the dissipative processes and complex interactions tak-
ing place at the microscopic level.

To this end we choose a classical problem in the

“phenomenological” fracture mechanics community, which

has been adapted here to a “multiscale” (two-scale) set-
ting. It consists in the so-called Single-Edge Notched
Beam Test at the macro scale (SENBT), undergoing a
vertical descendant displacement which is prescribed in

ori and with sufficient precision, the macro fracture en-
ergy through simple analytical computations and then,
we can compare it with the predictions of the multiscale
model.

In spite of the previous simplifying hypotheses, the
proposed test is complex enough to consider all the fun-
damental (and novel) ingredients which are present in
the FOMF methodology, namely: (i) non-linear damage
and strain localization in the micro scale, (ii) the irre-
versible degradation mechanisms, taking place in the
RVE, trigger a critical material state or material in-
stability in the macro point linked to such RVE, (iii)
the critical condition is evaluated performing a spectral
analysis on the homogenized tangent constitutive ten-
sor, (iv) when material instability is reached, in some
point of the macro scale, a cohesive crack is nucleated
(thus we determine the nucleation time ty), (v) the
constitutive response of the macro crack is evaluated
from specific homogenization rules, naturally provided
by the variational formulation presented in this work,
and (vi) new kinematical restrictions are applied over
the boundary F#L of the strain localization domain Qﬁ
in the RVE (an original ingredient derived from our
unified variational formulation) which are the responsi-
ble of preserving objectivity of the mechanical response
with respect to the RVE size.

7.2.8 Test configuration

The characteristic dimensions of the macro structure

(the beam) is displayed in Figs. 9-(d)-(e)-(g). Three

beams with identical macro-geometries and boundary

conditions but with different microstructures are simu-

lated. The topology of each micro structure (the RVEs),

together with their characteristic dimensions, are showed
in Figs. 9-(a)-(b)-(c). In all cases, plain strain condition

has been considered for both scales.
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Fig. 9 Single-Edge Notched Beam Test with inner heterogeneous microstructure. Geometrical definitions, material distribu-

tions and finite element meshes.

The domains of the macro and the micro scales are
partitioned into several patches or finite element sets,
see Fig. 9. Each set is characterized by its constitu-
tive behavior and by the finite element technology em-
ployed. There are two categories of constitutive mod-
els: (i) the classical or “Phenomenological” material,
where the constitutive response is obtained from stan-
dard, generally non-linear, mono-scale return-mapping
schemes, and (ii) “Multiscale RVE-based” constitutive
model, where the mechanical response is recovered after
homogenization of a micro-mechanical problem. Table
1 gives the required specifications for each set, where
the following terminology has been introduced: E, is
the Young’s Modulus, v, is the Poisson’s ratio, G, is
the fracture energy and o}, is the ultimate tensile limit

stress; all quantities related to the micro scale domain,
thence the sub-index (-),,.

Three types of periodic microstructures, containing
a regular arrangement of voids, are modeled. Figs. 9-
(a)-(b)-(c) show a sketch of the adopted microstructural
patterns. The void volume fraction, f,, in each one of
the three cases is: f, = 0, f, = 0.037 and f, = 0.111,
respectively (quantities referred to the total RVE mea-
sure [£2,]). The micro pores (see set S3 in Fig. 9-(b)) are
modeled by means of an extremely soft (phenomeno-
logical) elastic material (i.e. E5* — 0)%. An additional

3 This treatment simplifies the algorithmic procedure used
for detecting the localization sub-domain .Qﬁ, where the
strain field localizes in the RVE, and thus the boundary FHL
of 2L where new kinematical restrictions must be prescribed

after the cohesive crack nucleation.
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SET Constitutive E, vy Gur aﬁ Finite
Number | Model [GPa] [N/m] | [MPa] | element
S1 Phenomenological 20 0.20 100 2.40 Bilinear
Damage quadrilateral
So Phenomenological 20 0.20 - - Bilinear
Elasticity quadrilateral
Ss Phenomenological 0 0 - - Bilinear
Elasticity (voids) quadrilateral
S4 Multiscale - . = . Strong
RVE-based discontinuity
linear triangle
Ss Phenomenological - - - - Bilinear
Elasticity quadrilateral
(homogenized)

Table 1 Single-Edge Notched Beam Test with inner heterogeneous microstructure. Material properties and finite element

description according to the nomenclature introduced in Fig. 9.

heterogeneity introduced in the material definition of
the RVE is a central vertical band of finite thickness, ¢,,,
which is characterized in terms of a (phenomenological)
isotropic damage model with softening that degrades
under tensile stress states. The softening behavior is
regularized by using the “Smeared Crack Approach” to
fracture [90,102]. This set is denoted as S; in Fig. 9-
(a)-(b)-(c). The softening band is surrounded by the set
S2, made of a (phenomenological) elastic material, see
Figs. 9-(a)-(b)-(c). Considering all previous definitions,
the strain localization mode in the micro scale domain
will develop along the vertical central band, crossing
the pores.

The element set S4, defined at the macrostructural
level, has a complex material behavior which is obtained
through the RVE-based multiscale formulation, via the
homogenization approach developed in the present work,
see Figs. 9-(f)-(g).

Finally, the set Sy, also defined for the macro scale,
behaves as a (phenomenological) elastic material. How-
ever, its elasticity tensor is actually a homogenized ten-
sor, obtained from off-line microstructural analysis for
each RVE, during an elastic loading process. This set
S5 permits us to take into account the complex elas-
tic material behavior, due to the underlying heteroge-
neous microstructure, in large sub-domains of the beam
where we know, a priori, that no dissipative mechanisms
will occur, see Figs. 9-(e)-(f)-(g). Computational effort
is drastically decreased following such a simple model-
ing assumption.

7.2.4 Numerical approaches

For each one of the three beam tests, two different nu-
merical strategies have been considered:

meshes used in the macro scale are shown in Figs.
9-(f)-(g). Note that in correspondence with the ver-
tical zone where the macro cohesive crack is able to
propagate (i.e. from the notch up to the point Pr),
the set S, is considered. A total of 40 multiscale
strong-discontinuity triangular finite elements com-
pose this set. The macroscopic integration points of
such finite element list are linked with their corre-
sponding RVEs. Outside the fracture zone the set
S5 is used, composed of about 1130 standard bilin-
ear quadrilateral finite elements. The discrete mod-
els for each RVE are depicted in Figs. 9-(a)-(b)-(c).
These micro cells are composed by the sets {S1, Sa, S5}
and consider standard bilinear quadrilateral finite
elements.

Direct Numerical Simulation (DNS). In this approach,
the microstructural heterogeneities are explicitly em-
bedded into the macro scale domain, thus no tech-
nique for scale transition is required. The discrete
models use very refined meshes to capture the de-
tails of the microstructure. In our simulation, the
DNS approach only represents the central part of
the beam, such as shown in Figs. 9-(e)-(d). The re-
maining part of the beam is modeled by using the
set S5, previously described. A total of about 53700
standard bilinear quadrilateral finite elements com-
pose the beam models. The pattern adopted to de-
fine the central zone, where failure is expected to
occur, is based on a periodic repetition of micro-
cells, identical in size and geometry, to those used
for the RVEs of the MS analysis, see Fig. 9-(d) and
Figs. 9-(a)-(b)-(c). Also, the material distributions
corresponding to the sets {S1,S2,S3} are identical
to those defined for the MS models.

Remark 31 The most remarkable difference between

Multiscale Simulation (MS). It is based on the proposed ~ MS and DNS approaches lies on the fact that MS mod-

FOMF methodology. In this case, the finite element

els utilize strong discontinuity kinematics for simulat-
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ing crack propagation in the macro scale. On the other
hand in the DNS method the failure zone is simulated
within a classical continuum kinematical description,
where the softening response is reqularized through the
smeared crack approach.

Remark 32 The results obtained with DNS are taken
as reference solutions to validate the material response
predicted by the MS approach. It is worthwhile to note
that such a comparison represents a consistent, and
probably the most rigorous, form to evaluate the nu-
merical performance of any multiscale formulation.

Next we describe the kinematical restrictions ap-
plied to the RVEs in MS models, differentiating between
the pre-critical and post-critical material regime. Recall
that the underlying finite element technology used to
simulate the failure zone in MS model is a strong discon-
tinuity linear triangle. Thus, a unique integration point
is required during the stable macro material response,
which is called Regular Gauss Point (RGP). The so-
called Minimal Kinematical Restrictions are prescribed
on the RVE-boundaries linked to the RGP, it is

/ u, ®° n,dl, = /r é; dr, = 0. (377)

w w
In a two-dimensional problem, as the present case, the
previous constraint imposes three independent linear
and homogeneous equations, one for each component of
the symmetric tensor &}, (i.e. €}, .., € and €, ),
see the sketch in Fig. 10-(a).

Once detected the material bifurcation condition in
a macroscopic regular integration point (¢t = tx), a new
quadrature point is activated into the finite element un-
der study, which we call Singular Gauss Point (SGP).
At ty, the SGP is cloned from the RGP, i.e. their me-
chanical states are identical. For ¢ > tn, the RGP and
SGP evolve following different equilibrium branches.
The RVE related to the RGP is forced to respond elas-
tically during the postcritical regime, preserving their
initial boundary conditions already explained*. On the
other hand, the RVE associated to the SGP is endowed
with new kinematical restrictions, according to FOMF
approach. In the present case, we adopt a sub-model
with zero displacement fluctuation increments in the
boundary FML of Qﬁ, such as sketched in Fig. 10-(b).
Observe that the kinematical restrictions applied on
the RVE associated with the SGP can be identified as

*
H Y292

4 The idea of forcing an elastic unloading behavior in those
integration points located outside the cohesive crack in a
strong discontinuity finite element, is a standard technique
widely used in the phenomenological approach to fracture.
We have adapted this procedure to the multiscale modeling
context.

particular case of the minimally constrained model pro-
posed in Section (6.4), Remark 26.

7.2.5 Numerical results

Fig. 11 plots the (macro) structural responses of the
SENB tests in terms of the homogenized vertical loads
vs. the vertical (imposed) displacements of point Py. Re-
markably, observe that the DNS and MS models provide
almost the same macroscopic solutions for the three mi-
crostructures and during the complete loading history,
involving the pre-critical as well as the post-critical
regime. As expected, microstructures with larger void
volume fraction, f,, have less elastic stiffness, less peak
load and require less dissipation energy to completely
exhaust the macro structure.

Fig. 12-(a) features the contours of homogenized co-
hesive traction vs. displacement jump for the singular
integration point (SGP), where the bifurcation condi-
tion is first satisfied during the loading history, i.e. at
point Py (see Fig. 12-(b)). The plots of Fig. 12-(a) rep-
resent the normal components of both vector fields, the
tractions (7},) and the displacement jumps (8,,), where
the sub-index (-),, refers to the normal projection with
respect to the crack path. The tangential components of
both quantities, the tractions (7%) and the displacement
jumps (Bs), are almost zero (the sub-index (-)s refers
to the tangential projection with respect to the crack
path). Then, as expected, the macro cohesive crack
opening mode is a pure Mode I of fracture. The numer-
ically obtained unit vector field, normal to the macro-
scopic discontinuity surface, is depicted in Fig. 12-(b).
In the FOMF approach this result is obtained from a
discontinuous bifurcation analysis.

The cohesive responses observed in Fig. 12-(a) allow
us to evaluate the effective fracture energy (Gr) which
is put into play to fully exhaust the macroscopic cohe-
sive crack, nucleated at point Py;. The effective fracture
energy can be simply computed by determining the area
under the plots in Fig. 12-(a):

Gp = /OO(T - B) dt (378)

tn
This parameter is reported in Table 2 (column 3). Al-
ternatively, we can also “estimate” the fracture energy
available in each RVE via an average value of the frac-
ture energy for those finite elements that belong to the
strain localization band Qﬁ, including the voids:
1

est __
GF -

G,r df2
2] Jor pl T

(379)

where Gi} = 100 [N/m], for the set S;, and Gis =
0 [N/m)], for the set Sz, as shown in Table 1. The so



Variational foundations and generalized unified theory of RVE-based multiscale models

59

L

| L ol

L)

D P>

e

e

~

(a) Pre-critical regime

yui
™ A

(b) Post-critical regime

P

Node with zero displacement fluctuations

Node with zero vertical displacement fluctuation

Node where one equation of the
minimal kinematical restrictions is applied

L Node where two equations of the
minimal kinematical restrictions are applied

Fig. 10 Single-Edge Notched Beam Test with inner heterogeneous microstructure. RVE kinematical restrictions. (a) Standard

Boundary Conditions for the stable macroscopic regime (¢ < tn). (b) Non-Standar Boundary Conditions for the unstable
macroscopic regime (¢t > tn).

1 ——MS (,=0.000)

0] --A-DNS (/, = 0.000)
— _30_
£ ] —MS (/,=0.037)
el
g
o
s |
= -20+ _
Q
= —MS([,=0.111) \
2] --8-DNS (f,=0.111)

-104

0

--o--DNS ( /,=0.037)

2005  -01 015 -02

-0.25
Mid-span vertical displacement [mm]

Fig. 11 Single-Edge Notched Beam Test with inner heterogeneous microstructure. Vertical load vs. vertical displacement

curve for point P1. Comparison between MS and DNS approaches for different void volume fractions.

Traction (normal component) [N/mm?]

2.5

1.5

0.5

macro crack

0.02 0.04 0.06 0.08
Displacement dicontinuity (normal component) [mm]

(a)

0.1

(b)

Fig. 12 Single-Edge Notched Beam Test with inner heterogeneous microstructure. Homogenized cohesive responses (T, vs.
Bn) obtained using the Failure-Oriented Multi-Scale Formulation. Curves evaluated at point Pyr (see picture-(b)), for different

void volume fractions.



60

P.J. Blanco et al.

estimated macro fracture energies, G55, are shown in

Table 2 (column 4) for each microstructure. Note the
well marked effect that the variable f, has on both, the
effective fracture energy G as well as the estimated
fracture energy G%.

Comparing the values of Gp and G4 it is noticed
that, for the RVE without pores, the agreement be-
tween both quantities is almost exact. A slightly larger
disagreement is observed for the microstructures with
one and three voids. This result has a rational/physical
explanation. From expression (379), the value G%* is
computed by assuming that, during the macroscopic
stable regime (i.e. previous to the crack nucleation at
macro scale: t < ty), energy dissipation has not oc-
curred. In the case of the RVE without pores, the prob-
lem is homogeneous before bifurcation because all ma-
terials have the same elastic constants, see Table 1.
In this case, macroscopic bifurcation detection happens
just at the same time (tx) that the central band, de-
scribed with the damage model, reaches its limit ulti-
mate strength. Then, the assumption that there is no
dissipation before bifurcation, is correct. However, in
the micro structures with pores damage during the sta-
ble regime happens. Therefore, the assumption that the
fracture energy can be evaluated by equation (379) is
no longer correct and the parameter G55* overestimates
the actual fracture energy.

Fig. 13 shows structural responses similar to those
explained in Fig. 11. This time we demostrate the me-
chanical consistency of the multiscale response modify-
ing the macroscopic finite element size (mesh size in-
dependence). Just the problem with void volume frac-
tion f, = 0.111 has been considered. The finite element
mesh of Case 2 (Mesh,) displays smaller elements with
respect to Case 1 (Mesh;) in the zone where the multi-
scale set Sy is simulated.

8 Concluding remarks

A unified variational theory has been proposed for a
general class of multiscale models based on the concept
of Representative Volume Element. The entire theory
lies on three fundamental principles: (i) kinematical ad-
missibility, whereby the macro- and micro-scale kine-
matics are defined and linked in a physically meanigful
way; (ii) duality, through which the natures of the force-
and stress-like quantities are uniquely identified as the
duals (power-conjugates) of the adopted kinematical
variables at the two scales; and (iii) the Principle of
Multiscale Virtual Power, requiring the total virtual
powers of the macro- and micro-scales to coincide. This
is a generalization of a variational statement of the well-
known Hill-Mandel Principle of Macrohomogeneity and

allows the RVE equilibrium equations and homogeniza-
tion relations for the force- and stress-like quantities to
be unequivocally derived as Euler-Lagrange equations.

The proposed theory leads to a clear, logically struc-
tured method — named here the Method of Multiscale
Virtual Power — whereby general multiscale models of
complex physical systems can be rigorously derived in
well-defined steps. The method is well-suited for the
treatment of problems involving phenomena as diverse
as dynamics, higher order strain effects, material failure
with kinematical discontinuities, fluid mechanics and
coupled multi-physics, among others.

Particularly noteworthy is the fact that the pro-
posed methodology allows the development of multi-
scale models in an intuitive manner without ambigui-
ties. In fact, the only degree of arbitrariness one has
in the development of a multiscale model lies in pos-
tulating its kinematics. This consists in defining: (a)
the kinematical variables adopted at macro- and micro-
scales; and (b) how these kinematical variables are linked,
subject to the condition that their magnitudes are pre-
served in the micro-macro kinematical transfer — this
amounts solely to the definition of physically sound
kinematical insertion and homogenization operators. Once
the kinematics has been postulated, the function space
of admissible micro-scale generalized displacements is
automatically defined and all remaining model equa-
tions will be unequivocally derived on the basis of the
principles of duality and multiscale virtual power. This
is in sharp contrast with most of the work currently
published in the field, where various such equations are
postulated a priori — a procedure that can potentially
lead to serious inconsistencies in the resulting model.

The theory has been presented in a rather abstract
setting, which allows its use in the modeling of a very
wide range of physical systems. However, practical ex-
amples of its use with several well-known multiscale
formulations have been presented. In our view, cast-
ing known models within the proposed framework has
made the distinction between their kinematics and their
consequences very clear, allowing a better understand-
ing of the limitations of each model and showing direc-
tions for possible improvements that can be incorpo-
rated in a consistent manner. In addition, application
of the theory to the modeling of more complex, less
conventional physical systems — including higher order
kinematics, dynamical effects, material failure with dis-
similar kinematics across scales, thermomechanics and
even fluid mechanics — has also been presented. This
provides very strong evidence of how powerful and use-
ful the proposed variational framework can be as a tool
for the rigorous and consistent development of new mul-
tiscale models.
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Void volume Void volume Effective fracture | Estimated fracture
fraction: f, fraction: f energy: Gp energy: G5t
(referred to |£2,]) | (referred to |Qﬁ‘|) [N/m] [N/m]
0.0 0.0 99.90 100
0.037 0.111 88.42 88.89
0.111 0.333 66.16 66.67

Table 2 Single-Edge Notched Beam Test with inner heterogeneous microstructure. Comparison between the Effective fracture
energy “Gp” (obtained by using the mutiscale approach) vs. the Estimated fracture energy “G%*”(computed from simple

analytical considerations).
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Fig. 13 Single-Edge Notched Beam Test with inner heterogeneous microstructure. Mesh-size independence of the FOMF

approach.

We believe that the proposed systematization of RVE-

based multiscale modeling is particularly relevant at
present when there is a clear need to further combine
more complex models of continua describing phenom-
ena that take place at different scales in order to im-
prove predictive capabilities. Our experience has shown
that this appears to be even more relevant when resort-
ing to kinematical descriptions for the different scales
that are a priori heterogeneous.

Finally, we remark that the variational format in
which model equations are presented within the present
framework is naturally well-suited for numerical ap-
proximation by means of schemes such as the Finite
Element Method. In this context, examples of practi-
cal numerical computations were presented, including
the use of a non-conventional failure-oriented multiscale
model with discontinuous kinematics.
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