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Abstract A unified variational theory is proposed for a
general class of multiscale models based on the concept

of Representative Volume Element (RVE). The entire
theory lies on three fundamental principles: (i) kine-

matical admissibility , whereby the macro- and micro-

scale kinematics are defined and linked in a physically
meanigful way; (ii) duality , through which the natures

of the force- and stress-like quantities are uniquely iden-
tified as the duals (power-conjugates) of the adopted

kinematical variables; and (iii) the Principle of Multi-
scale Virtual Power , a generalization of the well-known

Hill-Mandel Principle of Macrohomogeneity, from which

equilibrium equations and homogenization relations for

the force- and stress-like quantities are unequivocally

obtained by straightforward variational arguments. The

proposed theory provides a clear, logically-structured

framework within which existing formulations can be

rationally justified and new, more general multiscale

models can be rigorously derived in well-defined steps.
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Its generality allows the treatment of problems involv-
ing phenomena as diverse as dynamics, higher order

strain effects, material failure with kinematical disconti-
nuities, fluid mechanics and coupled multi-physics. This
is illustrated in a number of examples where a range

models is systematically derived by following the same

steps. Due to the variational basis of the theory, the for-

mat in which derived models are presented is naturally

well suited for discretization by finite element-based or

related methods of numerical approximation. Numeri-

cal examples illustrate the use of resulting models, in-

cluding a non-conventional failure-oriented model with

discontinuous kinematics, in practical computations.

Keywords Multi-scale formulations · RVE · Duality ·
Constitutive theory · Hill-Mandel · Heterogeneous

kinematics · Variational methods

1 Introduction

1.1 RVE-based multiscale methods. A brief review

Multiscale theories, i.e. theories that link the macro-
scopic behaviour of continua to phenomena occurring

at smaller spatial scales, date back at least to the mid-
twentieth century. Fundamental early contributions are
found in the seminal series of papers by Kirkwood and

co-workers [52,54,55,56], where continuum governing

equations are derived from statistical molecular me-

chanics arguments in the context of transport phenom-

ena. In solid mechanics, significant theoretical devel-

opments in the estimation of macroscopic properties
of heterogeneous materials began with the pioneering
work of Hashin and Shtrikman [41], Hill [42,43,44,45],

Budiansky [17], Mandel [72] and Gurson [40], among

others. A further stream of significant developments
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in this direction took place beginning in the mid- to

late 1970’s, based on the asymptotic analysis of par-

tial differential equations with periodic coefficients in

the modelling of periodic media. Fundamental contri-

butions in this context are the books by Bensoussan

et al. [10] and Sanchez-Palencia [105]. Common across
the range of different approaches is the fact that macro-

scopic continuum quantities (often referred to as ho-
mogenized quantities) are invariably linked to their micro-
scale counterpart fields by means of some kind of aver-

aging process.

Over the last two decades or so, a surge in the use

of multiscale theories has been seen especially within

the context of computational mechanics. Attention has

been focused particularly on theories that rely on the

concept of Representative Volume Element (RVE) where

stresses and strains at the macro-scale are obtained as

volume averages of their micro-scale counterparts over

the RVE. The RVE itself is usually modelled as a con-

tinuum, but may also be described in terms of dis-

crete interactions. The use of RVE-based theories in

situations of practical interest relies almost exclusively

on techniques of computational homogenization, based

on finite element methods [30,57,64,77,78,79,80,81,82,
93,115,121]. In solid mechanics, reported applications
encompass at present the modelling of a wide range

of phenomena, including plasticity, thermomechanical

coupling, size effects, material failure and dynamics,

among others.

In plasticity, for example, the recent review by Mc-

Dowell [76] presents a comprehensive account of the use

of multiscale theories not only in the continuum setting,

but also at the molecular and atomistic scales. The liter-

ature in this area provides clear evidence of the ability

of the multiscale approach to overcome several chal-

lenges in the modeling of the plastic response resulting

from complex phenomena such as dislocation dynam-

ics, crystal plasticity and phase transformation under

complex strain histories. However, many fundamental

problems, related both to the understanding and mod-

eling of micro-scale mechanisms and to the development

of suitable multiscale theories, remain open, even in this

relatively classical field of research (see [76] and refer-
ences therein).

Multiscale formulations have proved useful also in

deriving higher order constitutive models [58,59,65,66,
114]. These formulations are suitable for modeling ma-
terial behavior when the scales are not sufficiently sep-

arated and size-dependent behaviour becomes relevant.

An appealing aspect of RVE-based strategies in this

case is that they are capable of endowing the macro-

scale with higher order constitutive models that are re-

trieved from conventional micro-scale descriptions with

first-order kinematics. The associated length-scale here

arises as a natural consequence of the kinematical trans-
fer between scales, which includes a contribution of
the second-order macro-scale gradient to the first order

micro-scale deformation gradient field. This approach

was shown to be an interesting alternative to phenomeno-

logical models in addressing problems such as strain lo-

calization, as a length-scale parameter does not need to

be artificially introduced.

In the field of thermoelasticity, the use of thermo-

mechanically coupled multiscale formulations has led to

the development of more refined constitutive descrip-

tions. Early work exploring RVE-based theories in this

case embraced the standard scales separation assump-

tion, which is typical of the asymptotic analysis ap-

proach to the problem [10,25,33,106]. For example, in

[91,92,107,118] the problem is addressed under the hy-

pothesis of scales separation, requiring the use of a uni-

form temperature field in the micro-scale mechanical

problem. This is consistent with a standard thermody-

namics setting at the macro-scale. Alternatively, in [15],

a thermomechanical multiscale formulation is proposed

to account for temperature fluctuations in the micro-

scale mechanical problem. This approach is based on
purely variational arguments to define the kinematic
transfer between scales and to naturally derive homog-
enization rules for the flux quantities (stress and heat

flux in this case). The formulation proposed in [15] is

in line with [31,51,83,84] in the sense that the contin-

uum model at the macro-scale features a higher order

thermal behavior, with the stress depending on the tem-
perature gradient. This is consistent with an extended
thermodynamics framework at the macro-scale.

Another interesting area where multiscale theories

have a clear potential to promote significant advances
in modeling, is failure mechanics. Macro-scale failure,

i.e. loss of load carrying capacity leading to eventual

fracturing of the material, is the result of a number of

complex interacting micro-scale mechanisms whose na-

ture depends crucially on the specific material in ques-
tion. One of the main challenges here is the formulation
of objective models, i.e. models for which the energy

dissipated by the failure mechanisms is well-defined –

unaffected by RVE size and convergent with mesh re-

finement. Classical, standard RVE-based formulations

are inherently non-objective in this sense as the in-

herent size-effect associated with strain localization [6]
at the micro-scale translates into a lack of objectiv-
ity of the macro-scale response with respect to RVE

size [37]. To circumvent this problem several strate-

gies have been developed. For instance, in [9,8,109] a

specific stress homogenization procedure has been pro-

posed which excludes strain localization zones from the
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stress averaging domain. In addition, a dependence of

numerical parameters (such as finite element size) on

RVE domain size has been introduced. In [19,20] a

second-order framework has been adapted to model ma-

terial failure, with classical boundary conditions par-

tially modified to account for strain localization, but

without a strict direct relation between the macro-scale

strain and the localized strain. Verhoosel et al. [125]
proposed a method for deriving a homogenized macro-

scale cohesive model from micro-structures with pos-

sible nucleation of micro-cohesive cracks and adhesive

micro-interfaces. In [87] this approach was extended

to include RVEs with a gradient-enhanced regularized

damage material model (see also [85,86,88]).

1.2 Current trends and perspectives

It is clear from the above that the range of applications

of RVE-based formulations is very wide. It should be
added here that, at present, the interest in such ap-
proaches is growing at a faster pace than ever. This is

confirmed by the shear number of papers published on

the subject over the last few years as well as on the num-

ber of conferences and conference sessions organized on

the topic. One of the main driving forces behind the

advancement of multiscale techniques is the pressing
need for more accurate computational tools for predic-
tion of material response in situations where the macro-

scale effects of complex micro-scale mechanisms cannot

be easily captured by the conventional phenomenologi-

cal modelling approach. In this context, computational

RVE-based methods can be used either in the simula-

tion of macroscopic structures by a coupled multiscale

approach (often referred to as FE2) or as a basis for

the development of new phenomenological models, or

calibration of material parameters of existing models,

by means of so-called numerical material testing [32,

38,94,113,119,120,129]. An interesting application in

this context is the development of constitutive laws for

micromorphic materials [27,28,31,50,51]. In this field,

the lack of practicality lies in the development of ex-

periments to aid the identification of constitutive laws.

Multiscale formulations can be employed to create the

link between high-order continua at macro-scale and

first-order continua at micro-scale.

Another key reason for the growing interest in RVE-
based multiscale methods is the need to better under-

stand how micro-scale mechanisms affect macro-scale

behavior [122,126]. This understanding, together with

the ability to numerically predict their impact on macro-

scale behaviour, is crucial to optimize the use of existing

materials as well as to assist the design of new materials

in a rational, scientifically-based manner.

The design of new materials, in particular, is an area

of research where significant resources have been in-
jected in recent years. The wider availability of equip-
ment at relatively low cost, allied to recent advances

in sophisticated manufacturing processes, such as ad-

ditive layer manufacturing, are creating great expec-

tations for the development of materials with bespoke

mecanical, thermal, optical, chemical and electromag-

netic properties. This includes the promising develop-

ment of new alloys, composites in general, bio-inspired

and bio-compatible materials. Of particular interest are

the so-called metamaterials – materials with useful ex-

otic behavior [26]. Auxetic materials – materials with
negative Poisson’s ratio [62,63,128] – are a typical ex-
ample. But exotic, counterintuitive behavior, can be

associated with thermodynamical, electromagnetic [13,

12,11] and other mechanical properties [18,29,67,68,

70,130]. The unusual behavior displayed by such mate-

rials is a consequence of their micro-structural arrange-

ment. Del Vescovo and Giorgio [23] provide an interest-

ing overview covering a range of exotic materials and

the tools currently available to model them. The ability
to design micro-scale architectures that produce a spe-
cific material behaviour is of utmost importance in this
context [39,75,108]. RVE-based computational multi-

scale methods aiming, for instance, the optimization of

certain material properties [3,53,124] have shown to of-

fer a solid tool to assist the material design process.

In summary, the track record of RVE-based compu-
tational multiscale methodologies in dealing with com-

plex phenomena, allied to the current trends in the de-

velopment and design of new materials, makes it rea-

sonable to expect that the demand for more general,

refined and accurate computational multiscale methods

will only increase in the years to come.

1.3 Critical appraisal of the state-of-the-art

Despite the widespread use of RVE-based multiscale

theories, a general unified framework for the develop-
ment and treatment of theories of this class appears
to be lacking at present. In fact, the RVE-based ap-

proach to classical multiscale solid mechanics – with

both macro- and micro-scales described in terms of con-

ventional kinematics – is very well understood and lies

on the solid theoretical grounds set in the works of Hill

[45] and Mandel [72]. However, any attempts to extend
this approach beyond the classical scenario is likely to
face challenges. This is due mainly to the fact that the

classical theory (and existing extensions) evolved with-

out a clear distinction being highlighted between funda-

mental assumptions and their consequences. Hence, it

is not straightforward in general to ascertain precisely
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what changes will be required to the classical theory

if, for instance, dissimilar physical regimes are to be

linked across the scales or, in the case of the purely me-

chanical theory, more complex loading systems become

relevant or more sofisticated kinematical descriptions

are adopted to model phenomena such as strain local-

ization, fracturing or higher order strain effects.

In the treatment of higher order strain effects, for

example, the homogenization formulae for stress-like

quantities is derived from a modified Hill-Mandel prin-
ciple in [58,59]. More recently, in [71], a similar ap-
proach was adopted with kinematical conditions based

on orthogonality restrictions proposed to construct a

consistent kinematical transfer between scales. The re-

sulting boundary conditions in the latter work are slightly

different from those of the former, raising questions

about the validity range and limitations of each for-
mulation, and about what ultimately drives the kine-
matical transfer between the two scales. As they stand,

it is not easy to compare these two theories and find a

definite answer to these questions.

A rather blurred scenario emerges in the multiscale

modeling of material failure – possibly one of the most

challenging applications of RVE-based theories. An in-

teresting point to observe here is that failure kinemat-

ics differs considerably from the classical case due to
the inherent discontinuities that characterize the phe-
nomenon. Hence, an appropriate extension of classical

principles of kinematical transfer across scales requires

very careful consideration and may not be easily estab-

lished correctly on the basis of physical intuition alone.

Note that this is a determining factor in the defini-

tion of RVE boundary conditions. Like the kinemati-

cal transfer (or the RVE boundary conditions), the ho-

mogenization formulae for the stress-like quantities are

also generally postulated [8,9,109], without an under-

lying fundamental principle. More recently, in [104,123]

a failure-oriented multiscale theory has been proposed

where, rather than postulated, the RVE boundary con-

ditions are derived from a robust kinematical princi-

ple and homogenization formulae for stress-like quanti-

ties (including the traction vector associated with the
macro-scale displacement jump) are, in turn, derived
from solid variational arguments based on a suitably ex-
tended Hill-Mandel Principle. This model extends the

classical theory by accommodating a non-uniform in-

sertion of macro-scale strain into the micro-scale under

a strain localization regime in a way that the magnitude

of the kinematical quantities involved are preserved in

the micro-macro transition. This was shown to offer a

possible solution to open problems, such as the con-

struction of objective formulations, even when the pro-

cess evolves from initially continuous media to domains

featuring strong macro-scale discontinuities caused by

micro-scale strain localization. At a closer look, this the-

ory reveals an emerging pattern containing all the nec-

essary ingredients that allow the problem to be dealt

with using a minimum set of fundamental assumptions.

This structure will be explored and generalized in the

present paper.

The study of multiscale dynamics is of particular

relevance to the development of a range of materials

(including metamaterials), as well as to the analysis of

multiscale problems involving high impact loads. Curi-
ously, this topic has so far received relatively little at-
tention in the context of RVE-based formulations and

it is only recently that contributions to this area be-

gan to appear in the literature [69,98]. Similarly to

multiscale material failure theories, a robust theoretical

framework for the treatment of RVE-based multiscale

dynamics appears to be missing at present. This be-
comes clear when we observe some potential shortcom-
mings in the (currently scarce) available literature. For

example, in [98] a split of the micro-scale displacement

fluctuation into a steady-sate and a dynamic contri-

bution is proposed, with each component subjected to

a different kinematical constraint. Interesting numer-

ical results are reported in this contribution, but the

variational consequences of such constraints to the cor-

responding equilibrium equations are not easy to as-

certain within the framework the theory is presented.

Neither is the range of validity of the adopted micro-

macro kinematical transfer which, in principle, should

preserve the magnitude of the displacements involved.

A related problem is briefly discussed in [100] where

body forces (which could also be seen as arising from

micro-scale inertia effects) are added to the classical for-

mulation and then the corresponding macro-scale force

is shown to vanish as a consequence of variational con-

siderations. The conclusions in this case are reached

in a variationally consistent manner, but the lack of a

clear principle of kinematical transfer beween scales ap-

pears to lead to an erroneous conclusion. Inconsistencies

of this type are obviously quite understandable, given

that such theories are just starting to spring. With the

above comments we only wish to emphasize that the

modeling of multi-scale dynamics can also benefit sig-

nificantly if a framework is established, based on clear
fundamental principles, whereby multiscale theories of
this type can be more easily derived in a systematic

manner, free from potential inconsistencies.

Fluid mechanics is an area where, to the authors’

knowledge, RVE-based theories have not been reported

so far in the modeling of multiscale phenomena. This

is probably a consequence of the natural difficulties in

identifying an RVE in fluid flow. Depending on the de-
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scription, the RVE could be understood as a represen-

tative volume of flowing particles (Lagrangian descrip-

tion) or as a representative volume window through

which particles flow (Eulerian description). To date,

multiscale fluid mechanics has been approached mainly

from two points of view: (i) the celebrated two-scale
convergence method , based on asymptotic expansions

[2]; and (ii) the variational multiscale method [47]. The
first approach is largely associated with the develop-

ment of multiscale formulations for flow through porous

media (see [117]). In [1] a basis was set to analyze,

using the two-scale convergence method, the limit of

Navier-Stokes equations in the presence of obstacles

in the micro-scale. A very recent contribution [46] ad-

dressed the problem of multiscale modeling in turbu-

lence based on asymptotic expansions for the Navier-

Stokes equations. The interesting result is that, by mod-

eling the convection of additional quantities at macro-

scale (proper convection of small-scale information), it

is possible to achieve a closed-form representation of

the Reynolds stress for arbitrary geometries. The vari-

ational multiscale method , has also been successfully

employed to model turbulence [7,48,49]. This approach

proposes a direct link between the role of the micro-

scale (called subgrid scale) and the discretization of the

equations at the macro-scale. Despite their success, a
limiting factor of both the two-scale convergence and

the variational multiscale method is that they assume
the problem to be governed by the same phenomenology
at both scales. Distinct physical models at macro- and
micro-scale, such as, for example, a macro-scale high-

order formulation linked to a first-order micro-scale for-

mulation – an approach that has been successfully em-

ployed in solid mechanics [58] – cannot in principle be

treated by such methods. In this sense, an RVE-based
framework could provide a interesting alternative, with
a rather general setting, particularly for problems in
which complete scale separation cannot be assumed.

1.4 Contribution of the present work

In response to the issues highlighted above – the current

lack of a general framework and the pressing need for

development of more sophisticated multiscale models –

the present paper proposes a unified variational theory

for a very broad class of RVE-based multiscale mod-
els. Our main purpose is to create a sufficiently general
framework within which new multiscale models, incor-

porating more general mechanical settings and capable

of accounting for more complex micro-scale phenom-

ena, can be developed in clear, systematic steps. The

proposed theory should be capable of handling multi-

physics problems, material failure due to micro-scale

strain localization or fracturing, dynamical effects and

fluid mechanics, among other phenomena, and we shall
limit ourselves to the use of a single temporal scale com-
mon to both spatial scales.

The work reported here builds on the authors’ past
experience in the axiomatization of the classical theory
[97,110,111,112] and in the treatment of problems in-
volving kinematical discontinuities at both micro- and

macro-scales [104]. Within the proposed framework, named

method of multiscale virtual power , the entire theory
sits on the three fundamental axioms/principles of: (i)

kinematical admissibility1; (ii)mathematical duality , and

(iii) multiscale virtual power . The idea of kinematical

admissibility establishes a link between the macro- and
micro-scale kinematics by means of two operators named

the insertion operator and the kinematical homogeniza-
tion operator , respectively. These effectively define the

kinematical transfer between the scales and must im-

pose constraints on admissible kinematical fields so as

to ensure that, in some sense, their magnitude is pre-

served in the micro-macro transition. In addition, these

kinematical constraints automatically prescribe the func-

tional sets within which the solution of the associated

equilibrium problems is to be sought. The concept of

duality , in turn, plays a fundamental role in the correct

definition of the generalized external force-like and gen-

eralized internal stress-like (or flux) quantities compat-

ible with a given model. That is, force- and stress-like

quantities cannot be defined a priori , independently of

the underlying kinematics. Rather, they are seen here
as consequences of the adopted kinematics. Once the

kinematics is defined by postulating a sound principle
of kinematical admissibility for a particular problem at
hand, the corresponding force- and stress-like quantities
emerge unequivocally as a result of considerations based

on their mathematical duality (power-conjugacy) with

respect to the adopted kinematical variables. Finally,

the principle of multiscale virtual power is a general-

ization of the classical Hill-Mandel Principle of Macro-

homogeneity [45,72], here extended and stated in vari-

ational form in terms of the total virtual power at the

micro- and macro-scales. As we shall see, once this prin-

ciple is applied to a particular problem in question, all
equations of the theory, including equilibrium and ho-

1 Within the generalized setting of the present paper, the
term kinematics (and corresponding kinematical variables,
etc) should be understood, in a broader sense, as relating to
the primal variables of a given formulation. That is, we refer
to kinematical variables as those whose rates produce power
with the corresponding fluxes (stress- or force-like variables).
In mechanical problems – the main motivation of our work –
it has obviously the conventional meaning of generalized dis-
placements and strains and their rates. In thermal problems,
it refers to temperature, temperature gradient, and so on.
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mogenization relations for the relevant force- and stress-

like variables are naturally derived in a straighforward
manner by means of simple variational arguments. This

is in contrast with the usual approach, where such rela-

tions are often postulated instead, and makes the causal

relations between the fundamental assumptions and their
consequences very clear. This, in our view, endows the

proposed framework with a logical structure and a de-
gree flexibility that, not only provides a rational justifi-
cation for many existing models but, more importantly,

significantly facilitates the rigorous development of a

wide range of new, more refined, multiscale theories in

systematic, well-defined steps.

A crucial consequence of this rational structure is

that, in developing any particular model within the

present framework, the only degree of arbitrariness one

has lies in the definition of: (a) the kinematical variables
adopted at macro- and micro-scales; and (b) how these
kinematical variables are linked (subject to the condi-

tion that their magnitudes are preserved in the micro-

macro kinematical transfer). Once these have been pos-

tulated – ideally, so as to capture the kinematics of the

corresponding real physical phenomena in the best pos-
sible way – the remainder of the model equations will
be unequivocally derived on the basis of duality and

multiscale virtual power . Also crucial is the fact that,

as a result of the Principle of Multiscale Virtual Power

any derived RVE equilibrium equations are presented
in a variational format that is naturally well-suited for

discretization by finite element or related methods of
numerical approximation. Through this, a clear separa-
tion and differentiation between the fundamental the-

oretical aspects of the formulation and its numerical

approximation is well-established, something which is

confusing in many scientific publications.

1.5 Article overview

In presenting the proposed theory we have opted to fol-
low a format where all derivations are first presented

in a very general setting. For this purpose, a rather ab-
stract notation is adopted. The need for an abstract
notation is justified by the fact that, as mentioned in
the preceding text, our intention here is to show a very

general framework, capable of dealing with a wide range

of problem descriptions – including, among others, con-

ventional solid mechanics formulations, higher order strain

theories, generalized stresses and strains, structural ele-

ments, discrete formulations in general, potential prob-

lems, and so on. To avoid an excessive level of abstrac-

tion, as the building blocks of the theory are presented,

the meaning of the adopted notations is made clearer

by showing how they specialize in the case of the clas-

sical infinitesimal solid mechanics. Once the complete
theory is set, a number of examples of specializations
are presented. These include existing theories – casting

them within this framework gives, in our view, an inter-

esting insight – as well as the derivation of new models,

including problems involving solid dynamics, distinct

physical models across the scales, fluid mechanics and

thermo-mechanics.

The paper is organized as follows. As the proposed

theory relies heavily on the concept of virtual power , a

brief historical account of the Method of Virtual Power

(MVP) is presented in Section 2 together with a review

of its use in the modelling of general (single-scale) phys-

ical systems. The main purpose here is to emphasize
that the modelling by means of the MVP is a three-
step procedure consisting of: (i) definition of kinemat-

ics; (ii) the use of mathematical duality to character-

ize the virtual power functionals and the corresponding
flux (force- and stress-like) variables consistent with the

theory in question; and (iii) a statement of the Princi-

ple of Virtual Power (PVP) for the problem in question.

With an appropriate PVP at hand, the Euler-Lagrange

form of the equilibrium equations for the system under

consideration can be derived straightaway.

Our main contribution – the proposed general uni-

fied RVE-based multiscale theory – is presented in Sec-

tion 3. The proposed theory is an extension of the PVP-

based modeling approach of Section 2 to problems in-

volving two spatial scales. This extension is devised,

effectively, by generalizing the three-step procedure of
the MVP to problems involving two scales. This exten-
sion is named the Method of Multiscale Virtual Power

(MMVP). It requires the definition of the kinematics at

each of the two scales as well as of how the micro- and

macro-scale kinematics are linked in a physically consis-
tent manner. Another essential feature is the Principle

of Multiscale Virtual Power (PMVP) – an extension
of PVP – linking the virtual power of the macro-scale
to that of the micro-scale. The PMVP proposed here

generalizes the well-known Hill Mandel Principle, upon

which the classical RVE-based multiscale theory lies.

In Section 4, the general model of Section 3 is spe-

cialized to the case where only the internal (macro-

and micro-) virtual powers are accounted for in the

MMVP. Most standard multiscale models available in

the current literature fit within this class. In particu-

lar, multiscale descriptions of this class define macro-

scale constitutive functionals relating the macro-scale

flux (stress-like) variables to the history of the associ-

ated kinematical variables alone.

Section 5 presents an abstract derivation of tangent

operators for the general framework developed in Sec-
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tion 3. Such operators are fundamental in the compu-

tational implementation of the associated theories. For

instance, in the case of non linear multiscale problems

discretized by finite element methods, they provide the

tangential stiffness matrices required by Newton-type

iterative schemes for solution of the associated equilib-

rium problems.

In Section 6 several specializations of the general

theory of Section 3 are presented, involving solid me-

chanics, fluid dynamics and thermomechanical prob-

lems. These illustrate the suitability of the proposed

multiscale framework to model a wide range of physical

phenomena. In addition, they show that the theory pro-

vides a rigorous justification to some otherwise intuitive

postulates and can highlight inconsistencies present in

some existing RVE-based models.

Computational application of the theory is illus-

trated in Section 7 where two finite element-based nu-
merical examples are presented – one describing the

use of a finite plasticity-based phase change model for
polycrystals and another one describing material fail-
ure. In particular, the latter example illustrates how

the present theory can be used with confidence in situ-

ations where the usual, unstructured approach to mul-

tiscale problems has failed to provide a consistent and

clearly justified formulation.

The paper ends in Section 8, where some concluding

remarks are made.

2 Method of virtual power

This section presents a method of primal (kinematical)
variational modeling of a general physical system (of
single scale) based on the Principle of Virtual Power.
Our main aim is to review all essential definitions, math-

ematical operators, functional spaces and principles re-

quired to formulate models of physical systems by means

of the PVP. The concepts reviewed here will be general-

ized in Section 3, where we propose a multiscale exten-

sion of the virtual power-based framework. We remark

that a rather general, abstract notation will be adopted

throughout the text. To avoid an excessive level of ab-

straction in the presentation, as the concepts and the
corresponding abstract notation are introduced, their
specialization to the well-established case of classical in-

finitesimal continuum solid mechanics is also presented.

We begin below with a brief historical review of the

Method of Virtual Power and then move on to the ac-

tual presentation of the PVP-based framework for gen-

eral physical systems.

2.1 Brief historical review

With origins dating back to ancient Greece, the Prin-
ciple of Virtual Power appears to have been formalized

only in the eighteenth century in the work of d’Alembert

[22]. In more modern times, the method of virtual power

(or, equivalently, method of virtual work) has been ac-

knowledged as a systematic, rational and intuitive ap-

proach to formulate models of continua [35,74]. It can

be argued that the concept of virtual velocity or vir-

tual power itself is a very intuitive one to most people.

For example, to estimate the weight of a suitcase, one

usually tries to lift it up instinctively and assess the

“work” required to do so. That is, we intuitively es-

timate a force (the weight of the suitcase) by means
the “work” or “power” expended when it is subjected
to a kinematical action (lifting motion in this case). In

this sense, the concept of work- or power-duality be-

tween forces and displacement or velocities appears to

be somewhat ingrained in human mind.

On one hand, the application of this method to con-
tinuum physics modeling is more mathematically elabo-

rate than the more classical approach deriving from vec-

torial rational mechanics – an approach largely followed

in the undergraduate teaching of mechanics at present.

On the other hand, the method of virtual power has

an extremely appealing aspect in that it provides, in a

most natural, axiomatic way, all the fundamental ingre-

dients required in the formulation of a given problem,

such as natural boundary conditions, jump conditions

and the variational form of the equilibrium equations,

regardless of the constitutive behavior of the underlying

continuum. These advantages become more pronounced

as the physical system under study increases in com-

plexity and this, in our view, significantly outweighs

the seemingly greater mathematical demands of the

method. For example, the method completely avoids
any ambiguities that could otherwise be present in the
definition of force- and stress-like quantities compati-
ble with a given physical system. In fact, the nature of

force- and stress-like quantities associated with a sys-

tem is not a fundamental assumption of the method

but, rather, a derived concept resulting from mathemat-

ical duality. That is, forces are representations of the so-

called external virtual power functional and stresses are

representations of the so-called internal virtual power
functional – they are fully characterized by the virtual

power (or work they exert) and emerge unequivocally
as a result of this duality once the kinematics of the
system in question has been defined.

We remark that, in the context of the present pa-

per, the terms force and stress should be understood

in a generalized sense. This lack of potential ambigu-
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ity in the derivation of force- and stress-like variables is

particularly welcome in the development of new, more

complex continuum models. In addition, it should be

noted that the PVP naturally leads to governing equa-

tions stated in a variational format that is particularly

well-suited for discretization by means of finite element

(in the case of continuum models) or related methods

of numerical approximation.
Some interesting fundamental developments based

on the method of virtual power are particularly worth

of mention. The method was used, for example, in [36]

in the derivation of high order models of continua, mak-

ing the role of kinematics in the modeling of force- and

stress-like quantities very clear. These dual quantities

were introduced exclusively through the characteriza-

tion of virtual power functionals in the context of an

extended kinematics of higher order. In the same spirit,

the method of virtual power was employed in [74] to de-

rive governing equations for electromagnetic high order

continua. The axiomatic framework adopted in this case

had the same goal: the modeling of forces by means of

the mathematical duality between the functional spaces

of forces and velocities. Similarly, in [21] the method of

virtual power was used to deal with the presence of

singular interfaces in continuum media. More recently,

the same approach had its applicability extended to

the field of thermomechanics [99] and thermodynamics

[101]. These are further examples of the success and
enormous potential of the method in dealing with the
modeling of a wide range of physical phenomena.

However, to the authors’ knowledge, the concepts

of virtual power and duality have not been fully ex-
plored yet in the formulation of RVE-based multiscale
theories. Given the current interest in RVE-based ap-

proaches and the demand for more complex models, it
seems to us that it is high time now for the PVP to be
explored in this context. However, before we proceed
to do so, we shall review below the use of this concept

to general physical systems in a conventional (single

scale) setting. These ideas will form the basis for the

multiscale extension of the PVP proposed in Section 3

2.2 Kinematics

The main kinematical concepts required to formulate

models of physical systems in the context of the method
of virtual power are reviewed here. For simplicity, we
shall focus the presentation on continuum models. We

remark, however, that the same concepts can be eas-

ily adapted for use in the modeling of discrete systems.

Let B be a body occupying a domain Ω with sufficiently
smooth boundary Γ and let x ∈ Ω denote any point in

this domain. The set of generalized displacements that

characterize the kinematics of the physical model de-

scribing B, belongs to a functional space U . Elements
u ∈ U are n-tuples of tensor fields, regular enough to

yield mathematically well-posed formulations. Compo-

nents of the n-tuple of an element u ∈ U are denoted

ui, i = 1, . . . , n, so that u = (u1, . . . , un). Each compo-

nent ui can be a zeroth-, first-, second-order (and so on)
tensor field. Each component ui is described through ri

scalar fields. Thus, the total number of scalar descrip-

tors for an element u is R =
∑n
i=1 r

i. Each ui has a

domain of definition ΩUi := Dom(Ui), i = 1, . . . , n, i.e.

ui : ΩUi → Ui

x 7→ ui(x),
(1)

with ΩUi ⊆ Ω. Each domain ΩUi can be a set of points,

surfaces or volumes. In compact form, we write

u : ΩU → U

x 7→ u(x),
(2)

where ΩU := Dom(U) = (Dom(U1), . . . ,Dom(Un)), or
ΩU = (ΩU1 , . . . , ΩUn).

Classical solid mechanics In this case, the domain Ω

is a region of the Euclidean space, the generalized dis-

placement contains one single field – the conventional

displacement vector field of the solid, u = u (a tensor
field of order 1), and U is an appropriate Sobolev space

of functions defined in Ω. Usually, it is considered that
such space is U = H1(Ω) of vector functions is with

square integrable gradient in Ω. Hereafter we take put

all the examples and functional spaces in this standard

setting. Here we have ΩU = Ω. A more elaborate case

arises when multi-physics interactions are considered.

In electro-mechanically coupled problems the general-

ized kinematics is characterized as u = (u, φ), com-
prising the displacement vector field u of the solid – a

tensor field of order 1 – and by the electrostatic (scalar)

potential field φ – a tensor field of order 0 (see [24]).

For a general class of micromorphic fluids, the general-

ized displacement u = (v,ν) contains the velocity vector

field v, a tensor field of order 1, and the rate of defor-

mation tensor field ν, a tensor field of order 2 (see [27,
28]). Further examples will be given in Section 6. �

Next, we define the set Kinu ⊂ U of kinematically

admissible generalized displacements. Elements u ∈ Kinu
satisfy some kinematical constraint (for example, pre-

scribed boundary conditions or possible distributed con-

straints). A schematic diagram of the functional sets

and relevant operators is shown in Figure 1. It is within

Kinu that we shall look for the solution of the equi-

librium problem (to be defined later) associated with

the physical system under consideration. For simplicity
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we assume Kinu to be a linear manifold (translation of

a subspace). As a consequence, it is possible to char-
acterize the subspace Varu of kinematically admissible

generalized virtual displacements or velocities as

Varu = {v̂ ∈ U , v̂ = v1 − v2, v1, v2 ∈ Kinu}. (3)

Classical solid mechanics For a body occupying a

region Ω, with boundary Γ subject to the kinematical
constraint u = u∗ on Γu ⊆ Γ , for a given u∗, we have

Kinu = {u ∈ H1(Ω), u|Γu
= u∗}, and Varu = {u ∈

H1(Ω), u|Γu
= 0}. �

Another kinematical concept fundamental to the state-

ment of the PVP is that of generalized virtual strain ac-

tion. Generalized virtual strain rate fields belong to the

space of generalized strain actions , denoted E . In gen-
eral, any field D ∈ E is anm-tuple of tensor fields. That

is,D = (D1, . . . , Dm), where each componentDi can be
a scalar, a first-order, a second-order tensor field, and
so on. Each component Di, i = 1, . . . ,m, is described

by si scalar fields, so that the total number of scalar

descriptors of D is S =
∑m
i=1 s

i. Each components Di

has a domain of definition ΩEi := Dom(Ei), i.e.

Di : ΩEi → Ei

x 7→ Di(x).
(4)

Each ΩEi ⊆ Ω can be a set of points, surfaces or vol-

umes. In compact notation, we have

D : ΩE → E

x 7→ D(x),
(5)

and ΩE := Dom(E) = (Dom(E1), . . . ,Dom(Em)), that

is ΩE = (ΩE1 , . . . , ΩEm).

The spaces U and E are related by a linear operator,
denoted D,

D : U → E ,

u 7→ D = D(u),
(6)

that introduces the concept of generalized strain ac-

tions (and generalized virtual strain rates). This opera-

tor plays a fundamental role in the definition of duality.

Classical solid mechanics In this case, D is the sym-

metric gradient operator, so that D(u) = ∇Su, n = 1,

R = 3, m = 1 and S = 6. The field ∇Su is defined over

the entire body, so that ΩE = Ω, and belongs to the

function space E = L
2
sym(Ω) = {ε ∈ L

2(Ω), ε = εT }
(recall we are in a standard mathematical setting). It
is worth showing here more general examples in addi-

tion to the solid mechanics case. For eletro-mechanical
coupled problems the generalized strain action is given

by D((u, φ)) = (∇Su,∇φ), where u and φ are the dis-

placement (a vector) and the electrostatic potential (a
scalar), respectively. Then, in this case,

D =

(
∇S 0

0 ∇

)
,

n = 2, R = 4, m = 2 and S = 9. For micromorphic
fluids (see [36]), the generalized strain action is given

by the triad D((v,ν)) = (∇v,∇v − ν,∇ν), where v is

the velocity (vector) and ν the micro-velocity gradient

(a second-order tensor). Then,

D =



∇ 0

∇ −I

0 ∇


 ,

n = 2, R = 12, m = 3 and S = 45. It should be noted

that the meaning of ∇ depends on the configuration cho-

sen to describe the problem. In micromorphic fluids, the

adopted configuration is a spatial configuration. Hence,

∇ is the gradient relative to the spatial coordinates. �

An element D ∈ E is said to be a kinematically com-

patible generalized strain action if there exists an ele-

ment u ∈ U such that D = D(u). The domain of defini-

tion of kinematically compatible generalized strain ac-

tions is ΩE and can be expressed as ΩE = Dom(D(U)).

Remark 1 Since D is linear, it has a well-defined (rect-

angular) matrix representation of the form

D =




D11 D12 . . . D1n

D21 D22 . . . D2n

...
...

. . .
...

Dm1 Dm2 . . . Dmn


 . (7)

With this representation, we have ΩEi = Dom(Di1(u1)) =
. . . = Dom(Din(un)), i = 1, . . . ,m.

Another important subspace of U is the kernel of

the operator D, denoted N(D) ⊂ U , defined as

N(D) = {u ∈ U , D(u) = 0}. (8)

That is, the subspace with null generalized strain ac-

tion.

Classical solid mechanics The kernel of the D – the

symmetric gradient operator – is the space of all rigid

infinitesimal displacements, i.e. displacements that ad-

mit the representation u(x) = uo + W(x − xo), with

uo a uniform field, W a skew-symmetric second-order

tensor and xo a point. �

Also important is the image, D(Varu) ⊂ E , of Varu
under the operator D. This is the space of kinematically

compatible generalized virtual strain actions .
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Kinu Varu

D

U

E

û

D

D′

U ′

E′

f

Σ

P ext = 〈f, û〉U ′×U

P int = 〈Σ,D(û)〉E′×E

Fig. 1 Virtual Power Method for physical systems. Schematic diagram of basic functional sets and operators.

2.3 First hypothesis. Mathematical duality.

The first hypothesis of the MVP-based modeling ap-

proach is that the generalized (external) forces and gen-

eralized (internal) stresses admissible by a given phys-

ical system are duals of the kinematical variables cho-

sen to describe that system. This allows the nature of

admissible generalized stresses, denoted Σ, and forces,

denoted f , to be determined solely as a consequence
of duality arguments. That is, the nature of force- and

stress-like variables cannot be postulated a priori. They

are, rather, direct consequences of the adopted kine-

matics. With E ′ and U ′ denoting, respectively, the dual

spaces of E and U , the first hypothesis is stated as
follows:

– The nature of the admissible generalized internal

stresses Σ ∈ E ′ is characterized through a linear
(and continuous) functional in E , defined by the du-

ality pairing denoted 〈〈Σ,D〉〉E′×E .
– Similarly, the nature of the admissible generalized

external forces f ∈ U ′ is characterized through a

linear (and continuous) functional in U , defined by

the duality pairing denoted 〈〈f, u〉〉U ′×U .

These duality products must satisfy the well-known prop-

erties:

– 〈〈Σ,D〉〉E′×E = 0 ∀D ∈ E ⇒ Σ = 0,

– 〈〈Σ,D〉〉E′×E = 0 ∀Σ ∈ E ′ ⇒ D = 0,

– 〈〈f, u〉〉U ′×U = 0 ∀u ∈ U ⇒ f = 0,
– 〈〈f, u〉〉U ′×U = 0 ∀f ∈ U ′ ⇒ u = 0.

The first step in the characterization of the model of

a real physical system is the definition of an appropri-

ate duality pairing 〈〈·, ·〉〉E′×E . Obviously, the definition

of this duality pairing will depend on the physical na-
ture of the phenomena described by the model. And it
will also play a fundamental role in the characterization

of the duality pairing 〈〈·, ·〉〉U ′×U . With the notation in-

troduced in the previous section, for the duality pairing

between generalized stresses and strain actions, we have

〈Σ,D(u)〉E′×E =

m∑

i=1

〈Σi, (D(u))i〉E′
i
×Ei

(9)

or, equivalently, by using (7),

〈Σ,D(u)〉E′×E =
m∑

i=1

n∑

j=1

〈Σi,Dij(uj)〉E′
i
×Ei

, (10)

where 〈·, ·〉E′
i
×Ei

denotes a generalized internal product
over the domain of definition of component i. For exam-

ple, if ΩEi is a surface or a volume in Euclidean space,
we could have

〈Σi, (D(u))i〉E′
i
×Ei

=

∫

ΩEi

Σi · (D(u))idΩEi , (11)

whereas, if ΩEi is a set of points, it could be

〈Σi, (D(u))i〉E′
i
×Ei

=

NEi∑

i=1

Σi · (D(u))i, (12)

with NEi denoting the cardinality of the set ΩEi . Once

this pairing is defined one should be able to promptly

identify the nature of Σ, as in the following example.
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Classical solid mechanics In this case, this dual-

ity pairing reads 〈Σ,D(u)〉E′×E =
∫
Ω
σ · ∇Su dΩ. The

stress σ here is the dual object of the considered strain

rate – the symmetric gradient of u – and, hence, can be

identified as a symmetric second-order tensor, readily

recognized as the Cauchy stress. �

In the PVP-based formulation, the product 〈〈·, ·〉〉E′×E

is restricted to the reduced set D(Varu) of kinemati-

cally compatible generalized virtual strain actions and

is known as the internal virtual power , denoted P int.

That is,

P int(D(û)) = 〈Σ,D(û)〉E′×E û ∈ Varu. (13)

In summary, once the kinematics of a particular

physical system model is defined, together with a cor-

responding duality pairing, the internal virtual power
functional is defined and the nature of the generalized
stresses admissible by the system in question is uni-
vocally identified. It should be noted that the internal

virtual power functional must be defined such as to be

invariant under changes in observer (superimposed rigid

kinematical actions). We shall now see that the adop-

tion of a specific form of duality pairing between gener-
alized stresses and strain actions also defines the gener-

alized external forces, f ∈ U ′, admissible by the model

and the corresponding external virtual work functional.
Indeed, from the definition of the adjoint operator [89]

(also referred to as the equilibrium operator), we have

D′ : E ′ → U ′,

Σ 7→ f = D′(Σ),
(14)

where D′ is the adjoint of D, i.e. the operator that sat-

isfies

〈Σ,D(u)〉E′×E = 〈D′(Σ), u〉U ′×U . (15)

The above functional form characterizes the nature of

the external load f , admissible by the adopted kinemat-
ical model . That is, (15) implies that

f has the structure of D′(Σ) ∈ U ′. (16)

The form 〈D′(Σ), û〉U ′×U has the expanded representa-

tion

〈D′(Σ), û〉U ′×U =
n∑

i=1

〈(D′(Σ))i, ûi〉U ′
i
×Ui

, (17)

or, equivalently, by using (7),

〈D′(Σ), û〉U ′×U =

n∑

i=1

m∑

j=1

〈D′ij(Σj), ûi〉U ′
i
×Ui

. (18)

As in the identification of Σ, the actual nature of f for

a specific model can be identified promptly once the

adjoint operator D′ has been obtained for the model in

question, as in the following.

Classical solid mechanics In this case, the adjoint

operator D′ follows from integration by parts of the
stress-strain rate duality pairing, i.e. 〈Σ,D(u)〉E′×E =∫
Ω
σ · ∇Su dΩ = −

∫
Ω
divσ · u dΩ +

∫
Γ
σn · u dΓ =∫

Ω
b · u dΩ +

∫
Γ
t · u dΓ , where n is the outward unit

normal to Γ . The admissible forces identified in this

case are: a vector field, denoted b, of force per unit vol-

ume acting in Ω and a vector field, denoted t, of force
per unit area acting on the boundary Γ . �

Having identified the nature of f ∈ U ′, whose struc-

ture is prescribed by (15), we can now introduce the

external virtual power functional by restricting the eval-

uation of the corresponding duality pairing to the re-

duced space Varu. That is, we define

P ext(û) = 〈f, û〉U ′×U û ∈ Varu, (19)

or, equivalently

P ext(û) =

n∑

i=1

〈f i, ûi〉U ′
i
×Ui

û ∈ Varu. (20)

The functional P ext must also be defined such that it

is invariant under changes in observer.

Finally, with the above definitions we introduce the

total virtual power functional, defined as

P tot(û,D(û)) = P int(D(û))− P ext(û) û ∈ Varu. (21)

2.4 Second hypothesis. The Principle of Virtual Power

The second hypothesis in the variational formulation

– the Principle of Virtual Power – establishes the con-

dition under which a system of admissible generalized

stresses and a system of admissible generalized external

forces are in equilibrium. This is stated in the following.

Principle of Virtual Power The generalized stress

Σ ∈ E ′ and the generalized external force f ∈ U ′ are

in equilibrium if and only if the following variational
equation is satisfied:2

P tot(û,D(û)) = 0 ∀û kinematically admissible. (22)

Equivalently, we may write

P int(D(û)) = P ext(û) ∀û ∈ Varu, (23)

2 The term equilibrium here is not limited to static equilib-
rium. If the force system f includes generalized inertia forces
associated to the physical problem at hand, then dynamic
equilibrium is automatically accounted for by the Principle
of Virtual Power.
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or

〈Σ,D(û)〉E′×E = 〈f, û〉U ′×U ∀û ∈ Varu. (24)

Further, from (22), we have that f must also satisfy

〈f, û〉U ′×U = 0 ∀û ∈ Varu ∩ N(D). (25)

Application of the PVP is illustrated in the follow-

ing example.

Classical solid mechanics A Cauchy stress field σ

and an external load system (b, t) are said to be in equi-

librium if and only if
∫
Ω
σ · ∇Sû dΩ =

∫
Ω
b · û dΩ +∫

Γ
t · û dΓ ∀û ∈ Varu. Obviously, this equation ex-

presses dynamic equilibrium if, for example, b is an in-

ertia force field, b = −ρü, with ρ the mass density and

ü the acceleration field. Also note that, in the present

context, (25) implies that any system of balanced exter-

nal forces (surface tractions and body forces – including

inertia forces, if dynamical effects are considered) pro-

duces no virtual power under rigid virtual velocities. �

2.5 The equilibrium problem

To complete the description of the physical system model,

a constitutive law must be introduced that determines
Σ as a function of the history of the kinematical vari-

ables of the system. In a rather general constitutive set-

ting, we consider the generalized stress to be a function

of the history , denoted ut, of the generalized displace-

ment field to which the body was subjected up to the

present time, t. Then, we write

Σ = Σ(ut). (26)

For all instants τ ∈ [0, t] the corresponding displace-

ment u(τ) is kinematically admissible, i.e. u(τ) ∈ Kinu.

We shall use the notation ut ∈ Kinu to denote a his-

tory of displacements of B kinematically admissible at
all instants in [0, t].

With the above at hand, we can now state the equi-
librium problem for the physical system in question as

follows.

Problem 1 (The equilibrium problem) For a given
constitutive law of the type (26) and a given history of

admissible generalized external force, f t, find the his-

tory ut ∈ Kinu of kinematically admissible displace-

ments such that

〈Σ(uτ ),D(û)〉E′×E = 〈f(τ), û〉U ′×U

∀û ∈ Varu, ∀τ ∈ [0, t]. (27)

3 Method of multiscale virtual power

In this section we propose a unified variational frame-

work, named Method of Multiscale Virtual Power , for

the development of RVE-based multiscale models of

physical systems. This is the main contribution of the

present paper. The family of multiscale theories ad-

dressed here is based on the idea that any point of a

macro-scale body occupying a domain ΩM is associ-

ated with a representative volume element (RVE) with

domain Ωµ of characteristic length ℓµ much smaller

than the characteristic length ℓM of ΩM (refer to Fig-

ure 2). The domains ΩM and Ωµ are referred to as
the macro-scale and micro-scale, respectively. Points or

coordinates of the macro-scale are denoted x ∈ ΩM ,

while points or coordinates ao the micro-scale are de-

noted y ∈ Ωµ. Here and in what follows we shall use

the subscripts M and µ to denote, respectively, macro-

and micro-scale entities.
Within the proposed framework, multiscale models

are derived by following steps analogous to those de-

scribed of Section 2 in the conventional (single-scale)

setting. In particular, the concepts of duality and vir-

tual power are explored and extended so that a princi-

ple of virtual power involving more than one scale – the

Principle of Multiscale Virtual Power – can be formu-
lated. The method lies on three fundamental principles:

(i) Principle of Kinematical Admissibility , whereby the
macro- and micro-scale kinematics are defined and

the associated variables linked across the scales. The

scale-transition link is defined through appropriate

definitions of insertion (macro-to-micro) and homog-

enization (micro-to-macro) operators, and must en-

sure a physically meaningful transfer of the relevant

kinematical variables across the scales;
(ii) Mathematical duality , through which the nature of

the force- and stress-like quantities are uniquely iden-

tified as the duals (power-conjugates) of the adopted

kinematical variables. This concept has been used in

Section 2. Here it is applied individually to each of

the two scales involved; and

(iii) Principle of Multiscale Virtual Power (PMVP), a
generalization of the well-known Hill-Mandel Prin-

ciple of Macrohomogeneity, from which equilibrium

equations and homogenization relations for the force-

and stress-like quantities are unequivocally obtained

by straightforward variational arguments.

As we shall see, the proposed theory provides a clearly

and logically structured framework within which exist-

ing formulations can be rationally justified and new,
more general multiscale models can be rigorously de-
rived in well-defined steps. The rationality of the pro-

posed approach is entirely akin to that of the Method of
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Macro-scale

Zoom

(RVE)
Micro-scale

Insertion of macro-scale
kinematical quantities

Homogenization of dual
(power-conjugate) quantities

Fig. 2 RVE-based multiscale modeling. The RVE concept.

Virtual Power, reviewed in Section 2, in the derivation

of single-scale physical system models. In particular,

we shall see that, once the kinematical variables at the

two scales are postulated, kinematical admissibility is
established for the system under consideration, and the
corresponding generalized force- and stress-like quanti-
ties are identified by means of duality arguments, all

relevant equations of the model are derived from the

PMVP following standard variational considerations.
Similiarly to the format adopted in Section 2, as

the theory is presented in this section we shall show, in

parallel, its specialization to the case of classical RVE-

based multiscale infinitesimal solid mechanics. This should

help make the newly-introduced concepts clearer.

3.1 Multiscale kinematics. Kinematical admissibility

In considering a two-scale physical system, we assume
at the outset that the kinematics describing the rele-
vant phenomena at the macro-scale may, in general, dif-
fer from the kinematics of the micro-scale. However, the

ideas and definitions presented in Section 2.2 remain ap-

plicable individually to each of the two scales and analo-

gous steps will be followed. In postulating the kinemat-

ics of a given two-scale physical system, one will, ulti-

mately, establish a functional set of kinematically ad-

missible micro-scale displacement fields, denoted Kinuµ
,

which is itself dependent upon the kinematical variables

of the macro-scale.
This process of establishing Kinuµ

is what we refer

to as the Principle of Kinematical Admissibility and

comprises four steps: (i) Definition the governing kine-

matics at the macro- and micro-scales; (ii) Definition of

insertion operators that prescribe how the macro-scale

kinematical variables are inserted into the micro-scale;

(iii) Definition of homogenization operators that specify

how the micro-scale kinematical fields are averaged to

yield the macro-scale kinematical quantities. The kine-

matical homogenization process must be defined so as

to ensure that the magnitude of the kinematical vari-

ables involved are, in some sense, preserved in the scale
transition; and (iv) Kinematical admissibility. Finally,

obtain the functional set Kinuµ
of kinematically admis-

sible micro-scale displacement fields.

It should be noted here that steps (i)-(iii) above are

rather arbitrary with the only constraint being that the

postulated kinematical transfer must ensure that the

magnitude of the variables involved are preserved. The

definition of the kinematical variables themselves will

depend fundamentally on what phenomena (and level of

detail) one is trying to capture with the model and will,

also, be largely influenced by the preferences and back-

ground of the investigator. Here lies the only degree of

arbitrariness of the proposed theory. Once kinematical

admissibility has been established, the nature of the as-

sociated stress- and force-like variables at both scales

will be determined from mathematical duality consider-

ations and their homogenization relations together with

the micro-scale equilibrium equations will be derived

from the Principle of Multiscale Virtual Power

3.1.1 Macro-scale kinematics

Following the material presented in Section 2, the kine-

matics of the macro-scale is characterized by the gen-

eralized displacement uM ∈ UM , an nM -tuple of tensor

fields, with each component uiM described by riM scalar

fields (the total number of scalar fields describing uM
is RM =

∑nM

i=1 r
i
M ). These components have a domain

of definition ΩUi

M := Dom(UMi), i = 1, . . . , nM , i.e.

uiM : ΩUi

M → UMi

x 7→ uiM (x),
(28)
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where ΩUi

M ⊆ ΩM , with ΩUi

M being a set of points,

surfaces or volumes, accordingly. In compact form, we
write

uM : ΩU
M → UM

x 7→ uM (x),
(29)

and, as in Section 2, we have ΩU
M := Dom(UM ) =

(Dom(UM 1), . . . ,Dom(UMnM
)), or equivalently, ΩU

M =

(ΩU1

M , . . . , Ω
UnM

M )

The set of kinematically admissible generalized dis-
placements is KinuM

and the associated space of kine-

matically admissible generalized virtual actions is VaruM
.

The space of generalized macro-scale strain actions is
denoted EM . Each element DM ∈ EM is a mM -tuple

of tensor fields where each component Di
M is described

by siM scalar fields (the total number of scalar fields
describing DM is SM =

∑mM

i=1 s
i
M ). The domain of

definition of these components is ΩEi

M := Dom(EMi),

i = 1, . . . ,mM , that is

Di
M : ΩEi

M → EMi

x 7→ Di
M (x),

(30)

where ΩEi

M ⊆ ΩM can be a set of points, surfaces or

volumes. In compact form, we write

DM : ΩE
M → EM

x 7→ DM (x),
(31)

andΩE
M := Dom(EM ) = (Dom(EM 1), . . . ,Dom(EMmM

)),

or equivalently ΩE
M = (ΩE1

M , . . . , Ω
EmM

M ).

The macro-scale kinematically compatible general-

ized strain actions (and generalized virtual strain rates)

are characterized by the linear operator

DM : UM → EM

uM 7→ DM = DM (uM ).
(32)

The domain of definition of the kinematically compat-

ible strain actions is denoted ΩE
M = Dom(DM (uM )).

Remark 2 As in (7), since DM is linear, we have the
representation

DM =




D11
M D12

M . . . D1nM

M

D21
M D22

M . . . D2nM

M
...

...
. . .

...

DmM1
M DmM2

M . . . DmMnM

M


 , (33)

and ΩEi

M = Dom(Di1
M (u1M )) = . . . = Dom(DinM

M (unM

M )),

i = 1, . . . ,mM .

Figure 3 is the counterpart of Figure 1 showing the

macro-scale entities in a multiscale setting. It should

be noted that additional sets and operations are intro-

duced in the multiscale setting which relate to individ-

ual points of the macro-scale domain. The value of any

entity (·) at an arbitrary point x of the macro-scale is

denoted (·)|x. As we shall see later, point values of rel-

evant macro-scale entities will be associated with the

problem defined at the micro-scale level (the RVE).

3.1.2 Micro-scale kinematics

The fundamental assumption in RVE-based theories is
that each point x of the macro-scale body is associated

with a micro-scale domain (an RVE). Here we shall de-
fine the kinematics of one such general RVE. The do-
main of the RVE is denoted Ωµ and points of the RVE

will be denoted y ∈ Ωµ. The space of generalized micro-

scale displacements is denoted Uµ, with each element

uµ ∈ Uµ an nµ-tuple of tensor fields, and each compo-
nent uiµ described by riµ scalar fields (the total number

of scalar fields describing uµ is Rµ =
∑nµ

i=1 r
i
µ). The

domain of definition of each field is ΩUi
µ := Dom(Uµi),

i = 1, . . . , nµ, that is

uiµ : ΩUi
µ → Uµi

y 7→ uiµ(y),
(34)

with each ΩUi
µ ⊆ Ωµ a set of points, surfaces or volumes.

In compact notation,

uµ : ΩU
µ → Uµ

y 7→ uµ(y),
(35)

and ΩU
µ := Dom(Uµ) = (Dom(Uµ1), . . . ,Dom(Uµnµ

)),

or alternatively, ΩU
µ = (ΩU1

µ , . . . , Ω
Unµ
µ ).

Without loss of generality, it is convenient to split

the generalized micro-scale displacements uµ ∈ Uµ as a
sum,

uµ = ūµ + ũµ, (36)

of a field ūµ, that depends on the macro-scale kine-

matics at point x, and a field ũµ, named the general-

ized displacement fluctuation. The field ūµ is generally

a non-uniform field (it may depend on y). The collec-

tion of all generalized displacements ūµ at micro-level,

forms a subspace which we will denote Ūµ, and the col-
lection of all ũµ forms the subspace Ũµ, of generalized
displacement fluctuations.

We also define the space Eµ of micro-scale general-

ized strain actions. Each Dµ ∈ Eµ is a mµ-tuple of ten-

sor fields with components denoted by Di
µ. Each com-

ponent is described by siµ scalar fields (the total num-

ber of scalar fields describing Dµ is Sµ =
∑mµ

i=1 s
i
µ).



Variational foundations and generalized unified theory of RVE-based multiscale models 15

KinuM
VaruM

DM

UM

EM

ûM

DM

D′

M

U ′

M

E′

M

fM

ΣM

R
x

UM

R
x

EM

uM |x

DM |x

(Rx

UM
)′

(Rx

EM
)′

fM |x

ΣM |x

(·)|x

(·)|x

(·)|x

(·)|x

P ext
M = 〈fM , ûM 〉

U′
M

×UM

P int
M = 〈ΣM ,DM (ûM )〉

E′
M

×EM

P ext
M,x = fM |x • ûM |x

P int
M,x = ΣM |x • D̂M |x

Fig. 3 Method of Multiscale Virtual Power. Basic sets and operations at the macro-scale level.

The components have a domain of definition ΩEi
µ :=

Dom(Eµi), i = 1, . . . ,mµ, i.e.

Di
µ : ΩEi

µ → Eµi

y 7→ Di
µ(y),

(37)

where ΩEi
µ ⊆ Ωµ can be a set of points, surfaces or

volumes. In compact form,

Dµ : ΩE
µ → Eµ

y 7→ Dµ(y),
(38)

so ΩE
µ := Dom(Eµ) = (Dom(Eµ1), . . . ,Dom(Eµmµ

)), or

ΩE
µ = (ΩE1

µ , . . . , Ω
Emµ
µ ).

Further, we define the (linear) micro-scale general-
ized strain action operator,

Dµ : Uµ → Eµ,

uµ 7→ Dµ = Dµ(uµ).
(39)

Its domain of definition is ΩE
µ = Dom(Dµ(uµ)).

Remark 3 Analogously to (33) we have the following
representation for Dµ:

Dµ =




D11
µ D12

µ . . . D
1nµ
µ

D21
µ D22

µ . . . D
2nµ
µ

...
...

. . .
...

D
mµ1
µ D

mµ2
µ . . . D

mµnµ
µ



, (40)

and ΩEi
µ = Dom(Di1

µ (u1µ)) = . . . = Dom(D
inµ
µ (u

nµ
µ )),

i = 1, . . . ,mµ.

3.1.3 Insertion operators

As mentioned at the beginning of this section, the kine-
matics of an RVE (micro-scale kinematics) associated

with an arbitrary point x ∈ ΩM of the macro-scale is
linked to the kinematics at the macro-scale by means of

insertion operators, defining the macro-to-micro kine-

matical transfer, and homogenization operators, defin-

ing the micro-to-macro kinematical transfer. These two

operators are linear in their arguments and must be
adequately constructed to account for a consistent me-

chanical/physical transfer of generalized displacements
and strain actions between the scales. The definition of
such operators will depend on the particular physical

system in question.

Remark 4 For simplicity, we shall assume in what fol-

lows that all macro-scale kinematical variables take part

in the kinematical transfer between scales. In a more

general scenario, we could have only a subset of the

set of macro-scale kinematical variables involved in this

transfer.
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Then, let us define the set Rx
UM

of elements of UM
evaluated at a given point x ∈ ΩM ,

Rx
UM

= {w = (w1, . . . , wnM ), wi ∈ Rr
i
M , i = 1, . . . , nM ,

w = u|x, u ∈ UM}, (41)

where Rr
i
M =

riM︷ ︸︸ ︷
R× · · · × R, with riM the number of scalar

descriptors in the ith tensor field within the nM -tuple.

Note that dim(Rx
UM

) = RM . We will refer to Rx
UM

as

the set of point-valued generalized macro-displacements

of x.

Similiarly, we define the set of point-valued general-
ized macro-strain actions as the set of elements of EM
evaluated at point x ∈ ΩM ,

Rx
EM

= {V = (V 1, . . . , V mM ), V i ∈ Rs
i
M , i = 1, . . . ,mM ,

V = D|x, D ∈ EM}, (42)

where Rs
i
M =

siM︷ ︸︸ ︷
R× · · · × R, with siM the number of scalar

descriptors of the ith tensor field in themM -tuple. Note

that dim(Rx
EM

) = SM .

Further, within the sets of point-valued generalized

macro-displacements and macro-strain actions we can

distinguish the sets of point-valued virtual generalized

macro-displacements, ŵ, and virtual macro-strain rates,
V̂ . We denote these two sets as R̂x

UM
and R̂x

EM
, respec-

tively. It is interesting to note that, depending on the
final application of the present multiscale theory, com-
ponents of such virtual macro-displacements and vir-

tual macro-strain actions may be taken as the null ele-

ment, even though the real kinematics at point x is not

necessarily null.

Classical multiscale solid mechanics The set of

point-valued macro-displacements is defined here as Rx
UM

=
{w ∈ R3, w = uM |x, uM ∈ H1(ΩM )}, while the set

of point-valued macro-strain actions is Rx
EM

= {ǫ ∈

R3×3, ǫ = εM |x, εM ∈ L
2
sym(ΩM )}. �

At this point we introduce the concept of inser-

tion operator . In the present theory, insertion operators

are fundamental in that they define the way in which
the macro-scale kinematical quantities contribute to the

micro-scale kinematics, i.e. they define how the macro-
scale kinematics is inserted into the micro-scale. Two

insertion operators are defined:

– The uM -insertion operator ,

J U
µ : Rx

UM
→ Ūµ,

uM |x 7→ ūµ = J U
µ (uM |x),

(43)

that maps the point-value uM |x of the macro-scale

generalized displacement into a field ūµ that con-

tributes to the micro-scale generalized displacement
field according to (36); and

– The DM -insertion operator,

J E
µ : Rx

EM
→ Ūµ,

DM |x 7→ ūµ = J E
µ (DM |x),

(44)

that maps the point-value DM |x of the generalized

macro-strain action into another field contributing
to the micro-scale generalized displacement accord-

ing to (36).

Both operators are linear in their respective arguments.

Classical multiscale solid mechanics The uM -insertion

operator in this case is postulated as J U
µ (uM |x) = uM |x,

i.e. it maps uM |x into a uniform field over Ωµ. The

DM -insertion operator, in turn, is postulated as J E
µ (εM |x) =

εM |x(y − yo), where yo =
1

|Ωµ|

∫
Ωµ

y dΩµ, i.e. it maps

the macro-scale strain action (in this case, the infinites-
imal strain measure) at point x into a linear displace-

ment distributed over Ωµ. �

Remark 5 The choice of operators J U
µ and J E

µ is not

entirely arbitrary. This lack arbitrariness stems from
the fact that these operators must preserve the magni-
tude of the macro-scale generalized displacements/strain

actions when inserted into the micro-scale. This issue
will be addressed with the enforcement of an additional
constraint on each operator (see, for example, (59) and

(60) below).

From (43)–(44), the kinematical variables uM |x and

DM |x can be combined to deliver a non-uniform gener-

alized displacement field which depends on y. Particu-

larly, we point out that the domain ΩUi
µ , i = 1, . . . , nµ

is the domain of insertion in which component i of the

image of the insertion operators J U
µ and J E

µ is defined.

Classical multiscale solid mechanics The point-

valued kinematical variables of the macro-scale, uM |x
and εM |x, contribute to the micro-scale displacement

field through ūµ, which is contructed as follows:

ūµ = J U
µ (uM |x) + J E

µ (εM |x) = uM |x + εM |x(y − yo).

The domain of insertion at the micro-scale in this case

is, obviously, the whole Ωµ. �

Remark 6 The present theory allows for insertion op-

erations far more general than those found in most ex-

isting formulations. The vast majority of existing for-

mulations only consider an affine mapping of the macro-
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scale generalized strain action into the micro-scale gen-

eralized displacement field (such as in the classical mul-

tiscale solid mechanics case referred to above). For ex-

ample, in failure multiscale analysis, a more complex

insertion operation can be used [104] to account for pro-

gressive strain localization, nucleation and evolution of

cracks at the macro-scale level, caused by shear bands,

damage or any other possible failure mechanism at the
micro-level. In this case, the micro-scale subdomain in
which strain localization is taking place is embedded in

the definition of the insertion operator. As shown in

Section 3.4, these insertion operators are functionally

essential in the characterization of the homogenization

of generalized stress and body forces at macro level.

Remark 7 Since J U
µ and J E

µ are linear, we have the

representations

J U
µ =




J U
µ

11
J U
µ

12
. . . J U

µ

1nM

J U
µ

21
J U
µ

22
. . . J U

µ

2nM

...
...

. . .
...

J U
µ

nµ1 J U
µ

nµ2
. . . J U

µ

nµnM



, (45)

and

J E
µ =




J E
µ

11
J E
µ

12
. . . J E

µ

1mM

J E
µ

21
J E
µ

22
. . . J E

µ

2mM

...
...

. . .
...

J E
µ

nµ1 J E
µ

nµ2
. . . J E

µ

nµmM



, (46)

We now introduce the following definition. We say

that uµ ∈ Uµ is linked to the macro-kinematics at point

x ∈ ΩM if there exist a uM |x ∈ Rx
UM

and a DM |x ∈
Rx

EM
such that

uµ = ūµ + ũµ = J U
µ (uM |x) + J E

µ (DM |x) + ũµ. (47)

Then, for any micro-scale generalized displacement, uµ ∈
Uµ, linked to the macro-kinematics, the corresponding

kinematically compatible micro-scale generalized strain
action is given by

Dµ = Dµ(uµ) = Dµ(ūµ) +Dµ(ũµ) =

Dµ(J
U
µ (uM |x)) +Dµ(J

E
µ (DM |x)) +Dµ(ũµ). (48)

On physical grounds, we impose the following con-
straint on the operator J U

µ to prevent the insertion of

uM from causing generalized straining actions at the
micro-scale,

Dµ(J
U
µ (uM |x)) = 0 ∀uM |x ∈ Rx

UM
. (49)

From the mechanical point of view, this constraint in-
fers that the inserted generalized displacement from the

macro scale must belong to the kernel of Dµ, N(Dµ), i.e.

the image of the operator J U
µ is in the space of rigid

generalized micro-displacements fields.

Classical multiscale solid mechanics By writing
uµ = uM |x + εM |x(y − yo) + ũµ, we ensure that the

micro-scale displacement, uµ, is linked with the macro-

kinematics at point x. Then, since J U
µ (uM |x) = uM |x

is a uniform field, the corresponding micro-scale strain

action is εµ = ∇S
y(uM |x+εM |x(y−yo)+ũµ) = εM |x+

∇S
y ũµ. �

Remark 8 From (48), the generalized micro-scale strain

action can be written as

Dµ = D̄µ + D̃µ, (50)

where D̄µ is a contribution from the macro-scale kine-

matics to the micro-scale strain action, and D̃µ, the

micro-scale strain action fluctuation, depends only on

micro-scale entities, that is

D̄µ = Dµ(J
E
µ (DM |x)),

D̃µ = Dµ(ũµ).
(51)

Remark 9 The contribution of the macro-scale gener-

alized strain action to its micro-scale counterpart field

can be obtained directly by applying the combined inser-

tion operator, defined as Iµ = DµJ
E
µ , to the point-value

DM |x, i.e. we may write

Iµ : Rx
EM

→ Eµ,

DM |x 7→ Dµ = Iµ(DM |x).
(52)

3.1.4 Kinematical homogenization operators

Kinematical homogenization operators also play a fun-
damental role in the present multiscale theory. These

operators must be postulated when devising an RVE-

based model, according to the physical nature of the

system/model in question. They define how the micro-

scale kinematical fields are homogenized (averaged) to

yield the corresponding macro-scale point-valued kine-
matical variables. There are two such operators. The
uµ-homogenization operator , mapping the micro-scale

generalized displacement field into the point-value of

the macro-scale generalized displacement,

HU
µ : Uµ → Rx

UM
,

uµ 7→ HU
µ (uµ) ∈ Rx

UM
,

(53)

and the Dµ-homogenization operator , that maps the
micro-scale generalized strain action field into the point-

value of the macro-scale generalized strain action,

HE
µ : Eµ → Rx

EM
,

Dµ 7→ HE
µ(Dµ) ∈ Rx

EM
.

(54)
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Both operators are linear and involve average measures

over the corresponding domains of insertion, ΩUi
µ , i =

1, . . . , nµ, and Ω
Ei
µ , i = 1, . . . ,mµ.

Classical multiscale solid mechanics The uµ-homogenization

operator is defined as HU
µ (uµ) =

1
|Ωµ|

∫
Ωµ

uµ dΩµ, while

the Dµ-homogenization operator is defined as HE
µ(εµ) =

1
|Ωµ|

∫
Ωµ

εµ dΩµ. That is, uM |x and εM |x are simple

volume averages of their micro-scale counterpart fields

over the RVE. �

Remark 10 From the linearity of operator HU
µ , the fol-

lowing matrix representations hold

HU
µ =




HU
µ

11
HU
µ

12
. . . HU

µ

1nµ

HU
µ

21
HU
µ

22
. . . HU

µ

2nµ

...
...

. . .
...

HU
µ

nM1
HU
µ

nM2
. . . HU

µ

nMnµ



, (55)

and

HE
µ =




HE
µ

11
HE
µ

12
. . . HE

µ

1mµ

HE
µ

21
HE
µ

22
. . . HE

µ

2mµ

...
...

. . .
...

HE
µ

mM1
HE
µ

mM2
. . . HE

µ

mMmµ



. (56)

Now, let us go back to the issue posed in Remark 5

about the constraints on the insertion operators J U
µ and

J E
µ , defined in (43) and (44), respectively. On physical

grounds, we must require that these operators are de-

fined such that the magnitude of the kinematical vari-
ables involved in the transfer across the scales are, in
some sense, preserved. This can be understood as a
principle of conservation of macro-scale generalized dis-

placements and conservation of macro-scale generalized

strain actions . Effectively, we want to ensure that the
homogenization of the insertion of each component uiM |x
of uM |x results in uiM |x itself. The same applying to the
components Di

M |x. To formally state this requirement,

we define u
{i}
M ∈ Rx

UM
and D

{i}
M ∈ Rx

EM
such that

(u
{i}
M )j =

{
uiM |x if j = i

0 if j 6= i,
(57)

(D
{i}
M )j =

{
Di
M |x if j = i

0 if j 6= i.
(58)

Then, the postulated kinematics conservation principle

holds if J U
µ and J E

µ satisfy the constraints

HU
µ (J

U
µ (u

{i}
M )) = u

{i}
M , i = 1, . . . , nM , (59)

HE
µ(Dµ(J

E
µ (D

{i}
M ))) = D

{i}
M , i = 1, . . . ,mM . (60)

Remark 11 If not all macro-scale kinematical vari-

ables are inserted into the micro-scale (refer to Remark

4), then the constraints (59) and (60) must hold only

for the inserted variables.

Classical multiscale solid mechanics In this case,

HU
µ (J

U
µ (uM |x)) = 1

|Ωµ|

∫
Ωµ

uM |x dΩµ = uM |x. Also,

HE
µ(Dµ(J

E
µ (εM |x))) =

1
|Ωµ|

∫
Ωµ

∇S
y(εM |x(y−yo)) dΩµ =

εM |x. Hence, constraints (59) and (60) are satisfied in

the context of the classical theory. �

Remark 12 From (59) we observe that the compound

operation HU
µJ

U
µ is the identity map in Rx

UM
. Similarly,

the compound operation HE
µDµJ

E
µ is the identity map

in Rx
EM

.

3.1.5 Kinematical admissibility

Let us now introduce the fundamental concept of kine-

matical admissibility of the kinematical transfer between
scales. A micro-scale generalized displacement uµ ∈
Uµ, linked to the macro-kinematics, and its generalized
strain action Dµ(uµ) ∈ Eµ are kinematically admissible

with respect to uM |x ∈ Rx
UM

and DM |x ∈ Rx
EM

if the

following relations are satisfied

HU
µ (uµ) = HU

µ (J
U
µ (uM |x)), (61)

HE
µ(Dµ(uµ)) = HE

µ(Dµ(J
E
µ (DM |x))). (62)

The above definition implies additional constraints.

Since uµ ∈ Uµ is linked to the macro-scale kinematics,

(47) holds and, therefore, the left hand side of (61)

yields

HU
µ (uµ) = HU

µ (J
U
µ (uM |x))

+HU
µ (J

E
µ (DM |x)) +HU

µ (ũµ). (63)

Here, we shall impose the following further constraint

on the operator J E
µ :

HU
µ (J

E
µ (DM |x)) = 0. (64)

As consequence of (61), (63) and (64), ũµ must satisfy

the following kinematical constraint:

HU
µ (ũµ) = 0. (65)

Since HU
µ represents an averaging operation involving

the measure of the domain related to each component
of the insertion operators, then equations (59) and (61)
establish a relation between uM |x and the homogeniza-

tion of the micro-displacements uµ. In addition, equa-

tion (65) embodies nM tensorial constraints (i.e. RM
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scalar constraints) that must be satisfied by the gen-

eralized displacement fluctuation ũµ to link the micro-
kinematics to the macro-kinematics.

Classical multiscale solid mechanics With the defi-

nition of the uµ-homogenization operator, the kinemati-

cal admissibility of uµ implies that HU
µ (uµ) = HU

µ (J
U
µ (uM |x)) =

uM |x. Since, by construction, the operator J E
µ is such

that 1
|Ωµ|

∫
Ωµ

εM |x(y − yo) dΩµ = εM |x
(

1
|Ωµ|

∫
Ωµ

(y −

yo) dΩµ
)
= 0, we have 1

|Ωµ|

∫
Ωµ

(uM |x+εM |x(y−yo)+

ũµ) dΩµ = uM |x + 1
|Ωµ|

∫
Ωµ

ũµ dΩµ = uM |x. This is

satisfied if
∫
Ωµ

ũµ dΩµ = 0. �

We can proceed in an analogous manner with equa-

tion (62). By taking equation (49) into account, we have

HE
µ(Dµ(uµ)) =

HE
µ(Dµ(J

U
µ (uM |x))︸ ︷︷ ︸
=0

) +HE
µ(Dµ(J

E
µ (DM |x)))

+HE
µ(Dµ(ũµ)) = HE

µ(Dµ(J
E
µ (DM |x))). (66)

This yields

HE
µ(Dµ(ũµ)) = 0. (67)

Then, equations (60) and (62) determine a relation be-

tween DM |x and the homogenization of the micro-scale
strain action Dµ.

In summary, any kinematically admissible general-

ized micro-scale displacement field uµ must be such that

its fluctuation component, ũµ, satisfies the kinematical
constraints (65) and (67). This motivates the defini-

tion of the space of kinematically admissible generalized
micro-scale displacement fluctuations:

Kinũµ
= {ũµ ∈ Uµ, H

U
µ (ũµ) = 0, HE

µ(Dµ(ũµ)) = 0}.

(68)

Elements ũµ ∈ Kinũµ
satisfy the minimal kinemati-

cal constraints that render the kinematical transfer be-

tween scales admissible. Further kinematical constraints

may be added leading, in general, to different multiscale

models. Also note that, since the constraints over ũµ
are linear and homogeneous, it follows that the space

of kinematically admissible virtual micro-scale general-
ized fluctuation displacements is given by

Varũµ
= Kinũµ

. (69)

Classical multiscale solid mechanics With the def-

inition of the Dµ-homogenization operator, the kine-

matical admissibility of D implies that HE
µ(∇

S
yuµ) =

HE
µ(∇

S
y(uM |x + εM |x(y − yo) + ũµ)) = HE

µ(εM |x +

∇S
y ũµ) = εM |x. Then,

1
|Ωµ|

∫
Ωµ

(εM |x + ∇S
y ũµ) dΩµ =

εM |x + 1
|Ωµ|

∫
Ωµ

∇S
y ũµ dΩµ = εM |x, which is satisfied

if
∫
Ωµ

∇S
y ũµ dΩµ = 0. Equivalently, after integration

by parts,
∫
Γµ

ũµ ⊗S nµ dΓµ = 0, with nµ the unit out-

ward normal to the boundary Γµ of Ωµ. Therefore, the

space of kinematically admissible fluctuation displace-

ments at micro scale and the associated space of ad-

missible virtual variations are Kinũµ
= Varũµ

= {ũµ ∈
H1(Ωµ),

∫
Ωµ

ũµ dΩµ = 0,
∫
Γµ

ũµ ⊗S nµ dΓµ = 0}. �

Remark 13 The constraints imposed by the kinemat-

ical admissibility between macro- and micro-scales re-

duces to nM tensorial constraints given by (65) plus

mM tensorial constraints given by (67). Note that, since

the kinematics at the two scales are allowed to be dif-

ferent, the kinematical fields at micro-scale may not be

properly controlled. That is, some micro-scale kinemati-

cal descriptors may not be visible to the macro-scale. In

such cases, further constraints over ũµ will be required
to ensure the mathematical well-posedness of the micro-

scale problem. Such extra constraints must be homoge-

neous and depend on the modeling hypotheses based on

physical considerations for the micro-scale problem.

Remark 14 As we will show later, the space Kinũµ

plays a fundamental role in the definition of the micro-

scale equilibrium state. If further kinematical constraints

are added to Kinũµ
, the response produced by the mul-

tiscale model will change in general. An easy way to

construct a more constrained space of admissible gener-

alized micro-scale displacement fluctuations is to force
ũ ≡ 0. This leads to the model known as Taylor Model

(or rule of mixtures) in classical multiscale solid me-

chanics. Here, in the general context of the present pa-

per, we shall refer to the space so constrained as the

Taylor Fluctuations Space. It contains only the zero el-
ement of Kinũµ

:

KinTaylorũµ
= {ũµ ∈ Uµ, ũµ = 0 ∈ ΩU

µ } = {0}. (70)

This is obviously the maximally constrained space of

kinematically admissible generalized micro-scale fluctu-

ations. It is possible to adopt other (less constrained)

subspaces of Kinũµ
, each choice delivering, in general,

a different model behaviour as illustrated in the follow-

ing example.

Classical multiscale solid mechanics In addition to
KinTaylorũµ

, other choices of subspaces of Kinũµ
can be

considered. For example, null boundary condition sub-

space, denoted by Kinnbcũµ
, which is obtained prescrib-

ing ũµ = 0, ∀y ∈ Γµ. Another subspace, Kinpbcũµ
, could

be easily constructed for RVEs with periodic geometry

(typical of periodic media). Periodic RVEs have anti-
periodic unit normal vector field nµ to the boundary
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Γµ. In this case, any y ∈ Γµ has a one-to-one corre-

spondance a point y∗ ∈ Γµ lying on the opposite side
of Γµ and such that nµ(y) = −nµ(y

∗). Kinematical

admissibility is guaranteed if the fluctuation field ũµ
is periodic on Γµ, i.e. ũµ(y) = ũµ(y

∗). It is easy to

verify that KinTaylorũµ
⊂ Kinnbcũµ

⊂ Kinpbcũµ
⊂ Kinũµ

.

From a mechanical viewpoint, this means that the RVE-

based model produces the stiffest behavior for the choice
KinTaylorũµ

and the most compliant behavior with the choice

Kinũµ
. �

It is now possible to characterize the subspace Kinuµ

of kinematically admissible generalized micro-scale dis-
placements. This subspace is formed by all generalized
displacements, uµ ∈ Uµ, linked to the macro-kinematics

at point x ∈ ΩM and kinematically admissible with re-

spect to uM |x ∈ Rx
UM

and DM |x ∈ Rx
EM

, i.e.

Kinuµ
= {uµ ∈ Uµ, uµ = J U

µ (uM |x) +J E
µ (DM |x) + ũµ,

uM |x ∈ Rx
UM
, DM |x ∈ Rx

EM
, ũµ ∈ Kinũµ

}. (71)

The corresponding space of kinematically admissible

generalized micro-scale virtual displacements, Varuµ
, is

given by

Varuµ
= {ûµ ∈ Uµ; ûµ = u1µ − u2µ, u

1
µ, u

2
µ ∈ Kinuµ

} (72)

or, in view of (69),

Varuµ
= Kinuµ

. (73)

3.2 Multiscale duality

In this section we proceed to explore the duality con-

cepts reviewed in Section 2.3 in each of the two scales.

In the present multiscale setting, particular attention

is focused on the assessment of the virtual power at a

generic point x of the macro-scale. At the micro-scale,
special attention is given the identification of admissible

genralized forces and stresses.

3.2.1 Macro-scale virtual power

Following Section 2, the macro-scale internal virtual

power is given by

P int
M (DM (ûM )) = 〈ΣM ,DM (ûM )〉E′

M
×EM

ûM ∈ VaruM
(74)

or

P int
M (DM (ûM )) =

mM∑

k=1

〈Σk
M , (DM (ûM ))k〉E′

Mk
×EMk

ûM ∈ VaruM
. (75)

In the present context, we are interested in evaluat-

ing the virtual power associated with a generic point

x of the macro-scale, so that it can be related to the

virtual power of the corresponding RVE by means of

the Principle of Multiscale Virtual Power that will be

established later. Then, note that at a point x ∈ ΩM ,

the kinematical quantity associated with internal power

is DM (ûM )|x. With the notation D̂M |x = DM (ûM )|x,
the macro-scale internal virtual power, P int

M,x(D̂M |x), at
a point x can be expressed as

P int
M,x(D̂M |x) =

mM∑

k=1

ωk(ΣM |x)
k·(D̂M |x)

k =: ΣM |x•D̂M |x

D̂M |x ∈ R̂x
EM
. (76)

where ωk, k = 1, . . . ,mM , are dimensional scalars (see

Remark 18) that guarantee the dimensional compatibil-
ity of the products (ΣM |x)

k · (D̂M |x)
k, k = 1, . . . ,mM ,

taking part in the summation of internal power con-

tributions above. It should be noted here that (76) has

unit of power , whereas each product (ΣM |x)
k ·(D̂M |x)

k

is a power density , i.e. power per unit measure of a

corresponding RVE subset whose measure is ωk. Each

such subset may be of a different dimensionality (e.g.

a volume, surface or point). We remark that this level

of generality is crucial to model physical systems that

feature simultaneously phenomena defined over distinct

RVE subdomains, such as continuum straining, strain

localization, cohesive cracks or even discrete phenom-

ena. The operation denoted (·) • (·) above is then a

duality product defined as

(·) • (·) : (Rx
EM

)′ × Rx
EM

→ R,

(ΣM |x, DM |x) 7→ ΣM |x •DM |x =
mM∑

k=1

ωk (ΣM |x)
k · (DM |x)

k.

(77)

Classical multiscale solid mechanics The internal

macro-scale virtual power is, as usual, given by the prod-

uct between the virtual strain action (a virtual strain

rate in this case) and the Cauchy stress fields: P int
M =∫

ΩM
σM · ∇S

x ûM dΩM . The virtual power of a point x

(which is to be linked to an RVE) is P int
M,x = σM |x •

ε̂M |x = ω1σM |x · ε̂M |x. �

Similarly, we define the macro-scale external virtual
power as

P ext
M (ûM ) = 〈fM , ûM 〉U ′

M
×UM

ûM ∈ VaruM
, (78)
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where fM has the structure of D′
M (ΣM ). The external

virtual power at point x is expressed by

P ext
M,x(ûM |x) =

nM∑

k=1

γk (fM |x)
k · (ûM |x)

k =: fM |x • ûM |x

ûM |x ∈ R̂x
UM
. (79)

The dimensional parameters γk, k = 1, . . . , nM , are en-

tirely analogous to the parameters ωk of (76). Note that

in (79) we have used the same pairing product notation,

(·)•(·), as in (76) but the exact meaning of the product

will be dictated by the context. In this case, the duality

product (·) • (·) is defined as

(·) • (·) : (Rx
UM

)′ × Rx
UM

→ R,

(fM |x, uM |x) 7→ fM |x • uM |x =
nM∑

k=1

γk (fM |x)
k · (uM |x)

k.

(80)

Classical multiscale solid mechanics The external
macro-scale virtual power is P ext

M =
∫
ΩM

fM ·ûM dΩM+∫
ΓM

tM · ûM dΓM . The external virtual power of a point

x ∈ ΩM is P ext
M,x = fM |x • ûM |x = γ1fM |x · ûM |x. �

With the above definitions at hand, we can now de-

fine the total macro-scale virtual power at point x. Using

(76) and (79), we define

P tot
M,x(ûM |x, D̂M |x) = ΣM |x • D̂M |x − fM |x • ûM |x

ûM |x ∈ R̂x
UM
, D̂M |x ∈ R̂x

EM
. (81)

The schematic diagram of Figure 3 shows a repre-

sentation of the various concepts used in the definition

of the macro-scale variational setting that is part of the

present multiscale theory.

Remark 15 Point x is a point belonging to some ge-
ometrical object of the macro-scale body. In general, it

can be a point in a volume, a point on a surface or sim-

ply a point on its own. Thus, the external virtual power,

P ext
M,x, of that point is associated to generalized external

forces defined over the geometric object the point belongs

to, and is characterized by means of duality. In the case

of a point in the bulk of a three-dimensional solid body,
we will have the notion of generalized body forces. This
notion includes generalized passive body forces per unit

volume (e.g. force due to gravity in classical mechan-

ics) and generalized inertia forces (e.g. due to accel-

eration in classical mechanics). The term generalized

body force will be used here to refer to these two kinds
of generalized forces (passive and inertia). Hence, dy-

namic phenomena are automatically taken into account

within the present framework. Note, however, that in

the present theory the macro- and micro-scale share the

same time scale.

3.2.2 Micro-scale virtual power

With the duality concepts already presented in Sec-

tion 2, the internal micro-scale virtual power can be

expressed as

P int
µ (Dµ(ûµ)) = 〈Σµ,Dµ(ûµ)〉E′

µ×Eµ
ûµ ∈ Varuµ

. (82)

By considering (47) and (49), and with a slight abuse

of notation, we obtain the equivalent expression

P int
µ (D̂M |x,Dµ(ˆ̃uµ)) = 〈Σµ,Dµ(J

E
µ (D̂M |x)+ ˆ̃uµ)〉E′

µ×Eµ

D̂M |x ∈ R̂x
EM
, ˆ̃uµ ∈ Varũµ

, (83)

in terms of virtual macro-scale strain actions, D̂M |x,
and virtual micro-scale displacement fluctuations, ˆ̃uµ.

The macro-scale kinematics is mapped into the micro-

scale by the insertion operator J E
µ . The schematic dia-

gram of Figure 4 illustrates the basic concepts of the

variational formulation at the micro-level, which are

fundamental within the proposed unified variational mul-

tiscale formulation.

Classical multiscale solid mechanics By taking into

account the split of the micro-scale virtual strain action,
the micro-scale virtual power can be expressed as P int

µ =∫
Ωµ

σµ · ∇S
y ûµ dΩµ =

∫
Ωµ

σµ · (ε̂M |x + ∇S
y
ˆ̃uµ) dΩµ =

∫
Ωµ

σµ · ε̂M |x dΩµ +
∫
Ωµ

σµ · ∇S
y
ˆ̃uµ dΩµ. �

The external macro-scale virtual power is defined as

a linear functional on the subspace Varuµ
= Kinuµ

:

P ext
µ (ûµ) = 〈fµ, ûµ〉U ′

µ×Uµ
ûµ ∈ Varuµ

. (84)

From (82) and the definition of the adjoint operator D′
µ

we can fully characterize the nature of the admissible

generalized micro-scale external force fµ ∈ U ′
µ. Indeed,

we have

〈Σµ,Dµ(ûµ)〉E′
µ×Eµ

= 〈D′
µ(Σµ), ûµ〉U ′

µ×Uµ
=

〈fµ,J
U
µ (ûM |x) + J E

µ (D̂M |x) + ˆ̃uµ〉U ′
µ×Uµ

ûµ ∈ Varuµ
, (85)

that is,

P ext
µ (ûM |x, D̂M |x, ˆ̃uµ) =

〈fµ,J
U
µ (ûM |x) + J E

µ (D̂M |x) + ˆ̃uµ〉U ′
µ×Uµ

ûM |x ∈ R̂x
UM
, D̂M |x ∈ R̂x

EM
, ˆ̃uµ ∈ Varũµ

. (86)

Again, note the contributions from kinematical enti-

ties defined at the macro-scale and kinematical entities
of the micro-scale to the micro-scale external virtual
power.
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Classical multiscale solid mechanics The micro-

scale external virtual power in this case reads P ext
µ =∫

Ωµ
fµ · ûµ dΩµ =

∫
Ωµ

fµ · (ûM |x + ε̂M |x(y − yo) +

ˆ̃uµ) dΩµ =
∫
Ωµ

fµ · ûM |x dΩµ +
∫
Ωµ

(fµ ⊗S (y − yo)) ·

ε̂M |x dΩµ +
∫
Ωµ

fµ · ˆ̃uµ dΩµ. �

With the above at hand, we can now define the total

micro-scale virtual power ,

P tot
µ (ûM |x, D̂M |x, ˆ̃uµ) =

P int
µ (D̂M |x,Dµ(ˆ̃uµ))− P ext

µ (ûM |x, D̂M |x, ˆ̃uµ)

ûM |x ∈ R̂x
UM
, D̂M |x ∈ R̂x

EM
, ˆ̃uµ ∈ Varũµ

, (87)

given as a sum of (linear) functionals in Varuµ
.

The contribution of the macro-scale virtual quan-

tities, ûM |x and D̂M |x, to the micro-scale total virtual

power (87) has fundamental implications to the present

theory. To see this, we begin by evaluating P tot
µ for

ˆ̃uµ = 0,

P tot
µ (ûM |x, D̂M |x, 0) =

P int
µ (D̂M |x, 0)− P ext

µ (ûM |x, D̂M |x, 0) =

= 〈Σµ,Dµ(J
E
µ (D̂M |x))〉E′

µ×Eµ

− 〈fµ,J
U
µ (ûM |x) + J E

µ (D̂M |x)〉U ′
µ×Uµ

=

= 〈(D′
µΣµ − fµ),J

E
µ (D̂M |x)〉U ′

µ×Uµ

− 〈fµ,J
U
µ (ûM |x)〉U ′

µ×Uµ
. (88)

From this expression, dual (stress- and force-like) enti-

ties, which we shall denote Σµ
M |x ∈ (Rx

EM
)′ and fµM |x ∈

(Rx
UM

)′, associated respectively with the macro-scale

virtual actions ûM |x and D̂M |x, can be promptly iden-
tified as follows. By making use of the adjoint operators

(J E
µ )

′ : U ′
µ → (Rx

EM
)′ and (J U

µ )′ : U ′
µ → (Rx

UM
)′, from

(88) we obtain

Σ
µ
M |x • D̂M |x =

mM∑

k=1

ωk (Σ
µ
M |x)

k · (D̂M |x)
k

:= 〈(D′
µΣµ − fµ),J

E
µ (D̂M |x)〉U ′

µ×Uµ

= 〈(J E
µ )

′(D′
µΣµ − fµ), D̂M |x〉(Rx

EM
)′×R

x

EM

,(89)

f
µ
M |x • ûM |x =

nM∑

k=1

γk (f
µ
M |x)

k · (ûM |x)
k

:= 〈fµ,J
U
µ (ûM |x)〉U ′

µ×Uµ

= 〈(J U
µ )′fµ, ûM |x〉(Rx

UM
)′×R

x

UM

. (90)

Then, by substituting expressions (89) and (90) into
(88) we have

P tot
µ (ûM |x, D̂M |x, 0) =

Σ
µ
M |x • D̂M |x − f

µ
M |x • ûM |x. (91)

In summary, by means of duality considerations it

has been shown in the above that as a result of the
kinematical admissibility link postulated between the
macro- and micro-scales, the micro-scale total virtual

power has contributions from the macro-scale virtual

actions. Comparison between (91) and (81) suggests

that a further link – between the macro- and micro-scale

virtual powers – can be postulated. This is addressed

in the following.

3.3 Principle of Multiscale Virtual Power

The Principle of Multiscale Virtual Power , stated in
this section, establishes a consistency link between the

macro- and micro-scale virtual powers. This principle

lies at the heart of the Method of Multiscale Virtual

Power proposed in this paper and, as we shall see,

yields the following consequences:

– Micro-scale variational equilibrium equation (nµ vari-

ational equations);

– Homogenization formulae for the macro-scale inter-
nal generalized stresses (mM homogenization for-

mulae); and

– Homogenization formulae for the macro-scale exter-
nal generalized forces (nM homogenization formu-

lae).

The principle itself can be regarded as a variational
statement of an extended version of the well-known
Hill-Mandel Principle of Macrohomogeneity [45,72]. It

is postulated in the following.

Principle of Multiscale Virtual Power The total

macro-scale virtual power at a point x must be equal to

the total micro-scale virtual power at the corresponding

RVE for all kinematically admissible macro- and micro-

scale virtual actions. That is,

P tot
M,x(ûM |x, D̂M |x) = P tot

µ (ûM |x, D̂M |x, ˆ̃uµ)

∀(ûM |x, D̂M |x, ˆ̃uµ) kinematically admissible. (92)

or, equivalently, in a more explicit form

ΣM |x • D̂M |x − fM |x • ûM |x =

〈Σµ,Dµ(J
E
µ (D̂M |x) + ˆ̃uµ)〉E′

µ×Eµ

− 〈fµ,J
U
µ (ûM |x) + J E

µ (D̂M |x) + ˆ̃uµ〉U ′
µ×Uµ

∀(ûM |x, D̂M |x, ˆ̃uµ) ∈ R̂x
UM

× R̂x
EM

× Varũµ
. (93)

At variance with the classical Hill-Mandel Principle,

where only internal powers are considered, the PMVP
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Kinuµ Varuµ
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ûµ
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D′

µ

U ′

µ

E′

µ
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Σµ

R
x

UM

R
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EM

uM |x

DM |x

(Rx

UM
)′

(Rx

EM
)′

fM |x

ΣM |x

JU

µ

J E

µ

(JU

µ )′

(J E

µ )′

P ext
µ = 〈fµ,J

U

µ (ûM |x) + J E

µ (D̂M |x) + ˆ̃uµ〉U′
µ×Uµ

P int
µ = 〈Σµ,Dµ(J

E

µ (D̂M |x)) + Dµ(ˆ̃uµ)〉E′
µ×Eµ

P ext
M,x = fM |x • ûM |x

P int
M,x = ΣM |x • D̂M |x

Fig. 4 Method of Multiscale Virtual Power. Basic sets and operations at the micro-scale level.

implies a balance of both the internal and external vir-
tual powers at a point x of the macro-scale with the

total virtual power of the associated RVE.

Classical multiscale solid mechanics The Princi-

ple of Multiscale Virtual Power in this case states that:

The macro-scale stress and body force (σM |x, fM |x) and
their micro-scale counterpart fields (σµ, fµ) satisfy the

Principle of Multiscale Virtual Power if and only if

the following variational equation holds: σM |x • ε̂M |x−
fM |x•ûM |x =

∫
Ωµ

σµ ·ε̂M |x dΩµ+
∫
Ωµ

σµ ·∇
S
y
ˆ̃uµ dΩµ−∫

Ωµ
fµ · ûM |x dΩµ −

∫
Ωµ

(fµ ⊗S (y − yo)) · ε̂M |x dΩµ −
∫
Ωµ

fµ·ˆ̃uµ dΩµ ∀(ûM |x, ε̂M |x, ˆ̃uµ) ∈ R̂x
UM

×R̂x
EM

×Varũµ
.

�

Remark 16 The Principle of Multiscale Virtual Power

will also provide the definition of the scalars ωk, k =

1, . . . ,mM and γk, k = 1, . . . , nM , which appear in the

left hand side of (93) (following the identities (77) and
(80)).

3.4 Dual homogenization operators and micro-scale

equilibrium

The dual homogenization operators (for the macro-scale

generalized stresse- and force-like quantities) and the

micro-scale equilibrium equations are derived here as

natural consequences of the Principle of Multiscale Vir-

tual Power. As we shall see, they are the Euler-Lagrange

equations associated with the variational statement (93).

3.4.1 Micro-scale equilibrium

By setting D̂M |x = 0 and ûM |x = 0 in (93), we ob-

tain the variational form of the micro-scale equilibrium
equation:

〈Σµ,Dµ(ˆ̃uµ)〉E′
µ×Eµ

− 〈fµ, ˆ̃uµ〉U ′
µ×Uµ

= 0

∀ˆ̃uµ ∈ Varũµ
. (94)

Obviously, this equation has the same format as the

standard equilibrium of a general physical system writ-

ten as the Principle of Virtual Power, here applied to

an RVE with the corresponding generalized applied ex-
ternal forces and kinematical constraints embedded in
the definition of Varũµ

.

Classical multiscale solid mechanics In this xase,

when we choose ûM |x = 0 and ε̂M |x = 0 in the cor-

responding PMVP, the RVE equilibrium is obtained as
the following variational equation:

∫
Ωµ

σµ ·∇
S
y
ˆ̃uµ dΩµ−∫

Ωµ
fµ · ˆ̃uµ dΩµ = 0 ∀ˆ̃uµ ∈ Varũµ

. �
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By making use of the adjoint operator D′
µ in (94),

we obtain the alternative form

〈D′
µ(Σµ)− fµ, ˆ̃uµ〉U ′

µ×Uµ
= 0 ∀ˆ̃uµ ∈ Varũµ

, (95)

or, equivalently,

D′
µ(Σµ)− fµ ∈ (Varũµ

)⊥ ⊂ Uµ
′. (96)

Further, we recall that fµ must satisfy (25), i.e.

〈fµ, ˆ̃uµ〉U ′
µ×Uµ

= 0 ∀ˆ̃uµ ∈ Varũµ

⋂
N(Dµ), (97)

which implies

fµ ∈ (Varũµ

⋂
N(Dµ))

⊥, (98)

where (·)⊥ denotes the orthogonal complement of (·).
That is, the system fµ of generalized forces is orthogo-

nal to micro-scale rigid admissible virtual fluctuations
of the RVE.

Classical multiscale solid mechanics If we decom-
pose fµ = f̄µ+ f̃µ, where f̄µ = 1

|Ωµ|

∫
Ωµ

fµ dΩµ, and f̃µ =

fµ− f̄µ, we have that
∫
Ωµ

fµ · ˆ̃uµ dΩµ =
∫
Ωµ

f̃µ · ˆ̃uµ dΩµ.

Hence, only fluctuations of the body force, f̃µ, which are

not orthogonal to Varũµ
, play a role in the micro-scale

equilibrium problem. �

Finally, we remark that the micro-scale equilibrium

problem is completely defined by the variational equa-
tion (94) once the external load fµ is known (a given

datum) and a constitutive law Σµ = Σµ(u
t
µ), express-

ing the stress Σµ as a function of the history utµ of

the field uµ, is assigned to each point of the RVE. The

problem is stated in the following.

Problem 2 (Micro-scale equilibrium) For a given

constitutive law Σµ = Σµ(u
t
µ), a given history utM |x

and Dt
M |x, of macro-scale generalized displacement and

strain actions, and a given history of micro-scale admis-

sible generalized external force, f tµ, find the history utµ ∈
Kinuµ

of kinematically admissible generalized micro-scale

displacements such that

〈Σµ(u
τ
µ),Dµ(ûµ)〉E′×E = 〈f(τ), ûµ〉U ′×U

∀ûµ ∈ Varuµ
, ∀τ ∈ [0, t]. (99)

3.4.2 Generalized stress homogenization formulae

Now, we set ûM |x = 0 and ˆ̃uµ = 0 in (93) (see also

(89)) and obtain

ΣM |x • D̂M |x = 〈Σµ,Dµ(J
E
µ (D̂M |x))〉E′

µ×Eµ

−〈fµ,J
E
µ (D̂M |x)〉U ′

µ×Uµ

= 〈D′
µΣµ − fµ,J

E
µ (D̂M |x)〉U ′

µ×Uµ

= 〈(J E
µ )

′(D′
µΣµ − fµ), D̂M |x〉(Rx

EM
)′×R

x

EM

= Σ
µ
M |x • D̂M |x ∀D̂M |x ∈ R̂x

EM
. (100)

From the above, we can promptly identify the general

(linear) ΣM -homogenization operator as

HΣ : U ′
µ → (Rx

EM
)′

(D′
µΣµ − fµ) 7→ Σ

µ
M |x = HΣ(D

′
µΣµ − fµ),

(101)

such that

〈(J E
µ )

′(D′
µΣµ − fµ), D̂M |x〉(Rx

EM
)′×R

x

EM

= HΣ(D
′
µΣµ − fµ) • D̂M |x ∀D̂M |x ∈ R̂x

EM
.

(102)

From (100) and the above definition, we have

(ΣM |x − HΣ(D
′
µΣµ − fµ)) • D̂M |x = 0

∀D̂M |x ∈ R̂x
EM
. (103)

This gives the homogenization formula for the macro-
scale generalized stress:

ΣM |x − HΣ(D
′
µΣµ − fµ) ∈ (R̂x

EM
)⊥ ⊆ (Rx

EM
)′. (104)

Remark 17 The ΣM -homogenization operator and the

corresponding homogenization formula for stress-like quan-

tities is consistently derived here as a consequence of

the proposed PMVP. This is in contrast with most of

the existing literature in the field, where stress homog-

enization formulae are postulated a priori instead.

Classical multiscale solid mechanics In this case,

by setting ûM |x = 0 and ˆ̃uµ = 0 in the PMVP, we
obtain: σM |x • ε̂M |x =

∫
Ωµ

σµ · ε̂M |x dΩµ −
∫
Ωµ

(fµ ⊗
S

(y−yo))·ε̂M |x dΩµ ∀ε̂M |x ∈ R̂x
EM
. The homogenization

formula is obtained by first identifying σM |x • ε̂M |x =

|Ωµ|σM |x·ε̂M |x, which results in σM |x = 1
|Ωµ|

∫
Ωµ

σµ−

(fµ ⊗S (y − yo)) dΩµ. In this case, we have identified

ω1 = |Ωµ| so that the stress homogenization is physi-

cally consistent. Note that this is the ΣM -homogenization
formula that naturally results from the formulation. This

was found using a shortcut. To see this the long way,

we consider the operator Dµ = ∇S
y explicitly as fol-

lows: σM |x • ε̂M |x =
∫
Ωµ

σµ · ∇
S
y(ε̂M |x(y−yo)) dΩµ−∫

Ωµ
(fµ ⊗S (y − yo)) · ε̂M |x dΩµ ∀ε̂M |x ∈ R̂x

EM
. Then,

integration by parts of the first term on the right hand

side gives σM |x • ε̂M |x =
∫
Ωµ

[− divy σµ ⊗S (y − yo)] ·

ε̂M |x dΩµ+
∫
Γµ

[σµnµ⊗
S (y−yo)]·ε̂M |x dΓµ−

∫
Ωµ

[fµ⊗
S

(y − yo)] · ε̂M |x dΩµ ∀ε̂M |x ∈ R̂x
EM

. Now, by using the

strong form of the micro-scale equilibrium, we have that

σM |x•ε̂M |x =
( ∫

Γµ
σµnµ⊗

S(y−yo) dΓµ
)
·ε̂M |x ∀ε̂M |x ∈

R̂x
EM

. Then, by proceeding in the same way as before,

we conclude that the ΣM -homogenization formula reads

σM |x = 1
|Ωµ|

∫
Γµ

σµnµ ⊗S (y − yo) dΩµ. This form is

completely analogous to the previous one. The advan-

tage of the latter formula over the former is that the
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homogenized variable depends only on RVE boundary

fields – something that has been pointed out by Hill [45]

as of fundamental practical importance in RVE-based

theories. However, note that the former formula is re-

quires less regularity of the fields involved and, as such,

is better suited for problems tackled in weak form at all

levels. �

Remark 18 According to expression (100), the coef-
ficients ωk, k = 1. . . . ,mM , appearing on its left hand

side (refer to (77)), are identified from the homogeniza-

tion procedure given by operator HΣ so as to render the

homogenization operation physically consistent (refer to

the above example of classical multiscale solid mechan-

ics). In Section 6 this is illustrated in further practical

examples.

3.4.3 Generalized force homogenization formulae

Now, we specialize (93) by choosing D̂M |x = 0 and
ˆ̃uµ = 0 (see also (90)). This gives

fM |x • ûM |x = 〈fµ,J
U
µ (ûM |x)〉U ′

µ×Uµ

= 〈(J U
µ )′(fµ), ûM |x〉(Rx

UM
)′×R

x

UM

= f
µ
M |x • ûM |x ∀ûM |x ∈ R̂x

UM
. (105)

Similarly to the derivation of the stress homogeniza-

tion operator, from the above variational equation we

identify the fM -homogenization operator ,

Hf : U ′
µ → (Rx

UM
)′,

fµ 7→ f
µ
M |x = Hf (fµ),

(106)

such that

〈(J U
µ )′(fµ), ûM |x〉(Rx

UM
)′×R

x

UM

= Hf (fµ) • ûM |x ∀ûM |x ∈ R̂x
UM
.

(107)

With the above defined Hf , (105) gives

(fM |x − Hf (fµ)) • ûM |x = 0 ∀ûM |x ∈ R̂x
UM
. (108)

Then, we arrive at the homogenization formula for the

generalized macro-scale force:

fM |x − Hf (fµ) ∈ (R̂x
UM

)⊥ ⊆ (Rx
UM

)′. (109)

Classical multiscale solid mechanics By consider-

ing ε̂M |x = 0 and ˆ̃uµ = 0 in the corresponding PMVP,

we get fM |x • ûM |x =
∫
Ωµ

fµ · ûM |x dΩµ ∀ûM |x ∈ R̂x
UM

.

Here we identify: fM |x•ûM |x = |Ωµ| fM |x·ûM |x, so that
we have fM |x = 1

|Ωµ|

∫
Ωµ

fµ dΩµ. This defines the fM -

homogenization operator. Note that γ1 has been identi-

fied here as γ1 = |Ωµ| so as to guarantee the physical

consistency of the homogenization operation. �

Remark 19 According to (105), the coefficients γk, k =

1. . . . , nM , taking part in its left hand side (refer to(80)),
are identified from the homogenization process defined

by Hf so as to make the operation physically consistent

(refer to the above example on classical multiscale solid

mechanics). This will be further illustrated in other ex-

amples presented in Section 6.

3.5 Summary and discussion

In summary, we have established in the above a com-

plete variational theory of RVE-based multiscale mod-
eling of physical systems. Within the proposed theory,
RVE-based models are devised in a systematic way by

means of well-defined steps according to the proposed

Method of Multiscale Virtual Power . Once the kinemat-

ics at both macro- and micro-scales are established, and

the link between kinematical variables across the scales

is defined, the nature of stress- and force-like quanti-
ties at both scales is identified through mathematical
duality and the micro-scale equilibrium equation and

homogenization relations for the stress- and force-like

quantities are univocally derived from the Principle of

Multiscale Virtual Power entirely by means of straight-

forward variational arguments. The overall procedure is

summarized in Box 1 where a recipe for the consistent
derivation of general RVE-based multiscale models is

presented.

An interesting point to note, made clear when the

theory is presented within the proposed framework, is

that the concepts of internal and external virtual pow-

ers are not entirely distinct form each other as in the

conventional single-scale theory. That is, in general, the

macro-scale internal stress, ΣM , which produces macro-

scale internal virtual power, has contributions from both

the micro-scale internal stress Σµ (that produces micro-

scale internal virtual power), and the micro-scale exter-

nal force fµ (that produces external micro-scale virtual

power). The effects of Σµ and fµ on ΣM are combined

in a non-linear way, through the micro-scale equilib-

rium problem defined by (92). These interactions alter

the standard notion of constitutiveness of the material

behavior in that internal forces (e.g. micro-scale iner-

tia forces in dynamical problems) may contribute to

the macro-scale stress. However, one situation where

the standard notion of constitutiveness of the RVE-
based model is retained is when the physical transfer
between scales involves only the balance of internal vir-

tual power. That is, when only P int
M,x and P int

µ are con-

sidered in the Principle of Multiscale Virtual Power and
the macro- and micro-scale external virtual powers are

disregarded. In this case, a purely constitutive modeling

framework is obtained. This is the case of all multiscale
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models based on the Hill-Mandel Principle of Macroho-

mogeneity [72,45]. The interesting aspect in this case is

that the generalized macro-scale stress, ΣM |x, derives
only from micro-scale constitutive and mechanical in-

teractions, for which only the generalized micro-scale

stress Σµ is responsible. While fµ can exist, it is or-
thogonal to the corresponding space of admissible vir-

tual generalized displacements and hence does not gen-
erate virtual power. That is, fµ in this case is a reactive

force to the kinematical constraints embedded in the
definition of Varũµ

[112]. As such, fµ cannot be arbi-

trarily modeled. This particular case will be considered
in detail in Section 4.

4 Multiscale constitutive modeling

Following the above discussion, we present here the spe-

cialization of the general MMVP to the case where only

the virtual powers of the macro- and micro-scale gen-

eralized stresses are accounted for in the PMVP. The

motivation to present this specialization in detail is that

the vast majority of publications on multiscale model-

ing falls into this category of RVE-based theories. For

example, the classical RVE-based theories in continuum

solid mechanics do fall into this category. In this case,

the multiscale model defines a macro-scale constitutive

model where the macro-scale stress ΣM |x is a func-

tion (implicitly defined by means of the operations of

kinematical insertion, micro-scale equilibrium solution

and stress homogenization) of the history Dt
M |x of the

macro-strain actions. That is, ΣM |x=ΣM |x(D
t
M |x).

4.1 On the insertion operators

As in the general case of Section 3, the insertion of ele-

ments uM |x ∈ Rx
UM

into the micro-scale Uµ is performed

by the insertion operator J U
µ defined in (43).

For the present case, where external virtual powers
play no role, the insertion of elements DM |x ∈ Rx

EM
into

the micro-scale is understood to be directly performed
into Eµ, by means of the linear operator

Iµ = DµJ
E
µ : Rx

EM
→ Eµ,

DM |x 7→ D̄µ = Iµ(DM |x),
(110)

which is the composition DµJ
E
µ of operators (defined by

(39) and (44), respectively), as highlighted in Remark 9

(see (52)). The mapping ofDM |x through Iµ may result

in a non-uniform field (dependent on y) in the micro-

scale.

From the developments of Section 3 we observe that

in the present case micro-scale generalized strain ac-

tions are the sum of a macro-scale contribution inserted

through the operator Iµ and a strain action fluctuation

field intrinsically related to the kinematics and equilib-

rium of the micro-scale. That is,

Dµ = Iµ(DM |x) +Dµ(ũµ). (111)

Remark 20 The linearity of operator Iµ allows matrix

the representation

Iµ =




I11
µ I12

µ . . . I1mM
µ

I21
µ I22

µ . . . I2mM
µ

...
...

. . .
...

I
mµ1
µ I

mµ2
µ . . . I

mµmM
µ


 , (112)

where




I11
µ I12

µ . . . I1mM
µ

I21
µ I22

µ . . . I2mM
µ

...
...

. . .
...

I
mµ1
µ I

mµ2
µ . . . I

mµmM
µ


 =




D11
µ D12

µ . . . D
1nµ
µ

D21
µ D22

µ . . . D
2nµ
µ

...
...

. . .
...

D
mµ1
µ D

mµ2
µ . . . D

mµnµ
µ







J E
µ

11
J E
µ

12
. . . J E

µ

1mM

J E
µ

21
J E
µ

22
. . . J E

µ

2mM

...
...

. . .
...

J E
µ

nµ1 J E
µ

nµ2
. . . J E

µ

nµmM



. (113)

The concepts involved in the kinematical transition

between scales (i.e. the kinematical admissibility con-

cept) follow those presented in the general context of

Section 3.

4.2 Multiscale duality

The internal virtual powers at macro- and micro-scales

are exactly as defined in Section 3.2. For the macro-

scale we then have

P int
M (DM (ûM )) = 〈ΣM ,DM (ûM )〉E′

M
×EM

ûM ∈ VaruM
. (114)

At point x ∈ ΩM , we have

P int
M,x(D̂M |x) =

mM∑

k=1

ωk(ΣM |x)
k·(D̂M |x)

k = ΣM |x•D̂M |x

D̂M |x ∈ R̂x
EM
. (115)
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For the micro-scale, the internal virtual power is given

by

P int
µ (D̂µ) = 〈Σµ, D̂µ〉E′

µ×Eµ
D̂µ given by (111), (116)

or, equivalently, with a slight abuse of notation, we

write

P int
µ (D̂M |x,Dµ(ˆ̃uµ)) = 〈Σµ, Iµ(D̂M |x) +Dµ(ˆ̃uµ)〉E′

µ×Eµ

D̂M |x ∈ R̂x
EM
, ˆ̃uµ ∈ Varũµ

. (117)

As in Section 3.2.2, we now set ˆ̃uµ = 0 in the above

formula to assess the contribution of the macro-scale

quantity D̂M |x to the micro-scale internal virtual power.

Then, we obtain

P int
µ (D̂M |x, 0) = 〈Σµ, Iµ(D̂M |x)〉E′

µ×Eµ
. (118)

Further, by making use of the adjoint operator (Iµ)
′ :

E ′
µ → (Rx

EM
)′ we obtain (see also (77))

Σ
µ
M |x • D̂M |x =

mM∑

k=1

ωk (Σµ
M |x)

k · (D̂M |x)
k

:= 〈Σµ, Iµ(D̂M |x)〉E′
µ×Eµ

= 〈(Iµ)
′(Σµ), D̂M |x〉(Rx

EM
)′×R

x

EM

. (119)

Finally, by substituting (119) into (118) we arrive at

the particularization of expression (91) for the purely

constitutive multiscale formulation, in which external

forces play no role in the scale transition,

P int
µ (D̂M |x, 0) = Σ

µ
M |x • D̂M |x. (120)

4.3 Principle of Constitutive Multiscale Virtual Power

In the present case we state a Principle of Constitutive

Multiscale Virtual Power , whose consequences will be:

– Micro-scale variational equilibrium problem (nµ vari-

ational equations); and

– Homogenization formulae for the macro-scale inter-

nal generalized stresses (mM homogenization for-

mulae).

Principle of Constitutive Multiscale Virtual Power

The internal macro-scale virtual power at a point x

must be equal to the internal micro-scale virtual power

at the corresponding RVE for all kinematically admis-

sible macro- and micro-scale virtual actions. That is,

P int
M,x(D̂M |x) = P int

µ (D̂M |x,Dµ(ˆ̃uµ))

∀(D̂M |x, ˆ̃uµ) kinematically admissible, (121)

or, equivalently, in a more explicit form,

ΣM |x • D̂M |x = 〈Σµ, Iµ(D̂M |x) +Dµ(ˆ̃uµ)〉E′
µ×Eµ

∀(D̂M |x, ˆ̃uµ) ∈ R̂x
EM

× Varũµ
. (122)

The above principle is a generalized form of the Hill-

Mandel Principle of Macro-Homogeneity which preserves

the idea that only internal virtual powers are to be bal-

anced in the scale transition.

Classical multiscale solid mechanics The PMVP

in this case is stated as follows: The macro-scale stress
σM |x and the micro-scale stress field σµ satisfy the

Principle of Multiscale Virtual Power if and only if

the following variational equation holds: σM |x• ε̂M |x =∫
Ωµ

σµ · ε̂M |x dΩµ +
∫
Ωµ

σµ · ∇
S
y
ˆ̃uµ dΩµ ∀(ε̂M |x, ˆ̃uµ) ∈

R̂x
EM

×Varũµ
. This is the variational statement of the

classical Hill-Mandel Principle for RVE-based multi-

scale solid mechanics, widely invoked in the current lit-

erature on the subject. �

4.4 Stress homogenization and micro-scale equilibrium

Analogously to Section 3.4, the stress homogenization

relation and the micro-scale equilibrium are derived

here as the Euler-Lagrange equations associated to the

variational statement (122).

4.4.1 Micro-scale equilibrium

By setting, in particular, D̂M |x = 0 in (122), we obtain
the micro-scale variational equilibrium equation:

〈Σµ,Dµ(ˆ̃uµ)〉E′
µ×Eµ

= 0 ∀ˆ̃uµ ∈ Varũµ
. (123)

This equation is a particular case of (94) when fµ is

orthogonal to the space Varũµ
. Equivalently, by using

the adjoint operator D′
µ we have

〈D′
µ(Σµ), ˆ̃uµ〉U ′

µ×Uµ
= 0 ∀ˆ̃uµ ∈ Varũµ

, (124)

which implies

D′
µ(Σµ) ∈ (Varũµ

)⊥ ⊂ Uµ
′. (125)

The micro-scale external forces, fµ, can be identified
from the above as having the structure of D′

µ(Σµ), as

usual. It should be noted, however, that, in the present
case, they must be purely reactive forces (they do not

generate virtual power) as they are orthogonal to Varũµ
.

That is,

〈fµ, ˆ̃uµ〉U ′
µ×Uµ

= 0 ∀ˆ̃uµ ∈ Varũµ
. (126)
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The micro-scale equilibrium problem is completely

defined by the variational equation (94) once a con-
stitutive law Σµ = Σµ(u

t
µ), expressing the generalized

micro-scale stress Σµ as a function of the history utµ of

the field uµ, is assigned to each point of the RVE. The

problem is analogous to Problem 2.

4.4.2 Generalized stress homogenization formula

If we choose ˆ̃uµ = 0 in (122), we obtain (see also (119))

ΣM |x • D̂M |x = 〈Σµ, Iµ(D̂M |x)〉E′
µ×Eµ

= 〈(Iµ)
′(Σµ), D̂M |x〉(Rx

EM
)′×R

x

EM

= Σ
µ
M |x • D̂M |x ∀D̂M |x ∈ R̂x

EM
. (127)

The (linear) constitutive ΣM -homogenization operator
is identified from the above variational equation as

HcΣ : E ′
µ → (Rx

EM
)′

Σµ 7→ Σ
µ
M |x = HcΣ(Σµ),

(128)

such that

〈HcΣ(Σµ), D̂M |x〉(Rx

EM
)′×R

x

EM

= Σ
µ
M |x • D̂M |x

∀D̂M |x ∈ R̂x
EM
.

(129)

With the above defined operator HcΣ , equation (127)

gives

(ΣM |x − HcΣ(Σµ)) • D̂M |x = 0 ∀D̂M |x ∈ R̂x
EM
. (130)

This yields the homogenization formula for the macro-

scale generalized stress,

ΣM |x − HcΣ(Σµ) ∈ (R̂x
EM

)⊥ ⊆ (Rx
EM

)′. (131)

Remark 21 When the given micro-scale constitutive

function is of the type Σµ(y) = Σµ(D
t
µ(y)) – a stan-

dard local constitutive law (in the strict sense of the

word), where the stress depends solely on the local his-

tory of the generalized strain actions – the multiscale

model above defines a macro-scale constitutive function

of the same type, i.e. ΣM |x = ΣM |x(D
t
M |x). That this

is indeed true can be established as follows. According

to (111), micro-scale strain actions are a sum of a con-

tribution from the macro-scale strain actions (inserted
by the operator Iµ) and a contribution from the micro-

scale generalized displacement fluctuation ũµ (the solu-

tion of the micro-scale equilibrium problem). Once the
micro-equilibrium problem is solved (for the history utµ),

with the micro-scale stress field delivered by the given

micro-scale constitutive equation, the macro-scale stress

ΣM |x is obtained by means of the homogenization op-
eration (131).

5 Multiscale tangent constitutive operators

The linearization of non-linear problems plays an im-

portant role both in theoretical and computational con-

tinuum mechanics. This issue is particulary relevant in

non-linear solid mechanics [73]. In the theoretical con-

text, linearization can be essential in the determination

of crucial properties, such as the stability of solutions,

for instance. In the computational setting, linearization

becomes especially important in the solution of approx-

imate (discretized) non-linear problems – typically un-

dertaken by iterative numerical methods relying on the

sequential solution of linearized problems. In particular,

the widely used Newton-Raphson iterative algorithm,

whose key advantage is the quadratic rate of asymp-

totic convergence, requires the exact linearization of the

problem at each iteration.

Our main concern here is the derivation of an exact

canonical form for the constitutive tangent operators

arising in multiscale theories of the type discussed in

Section 4, i.e. theories classed here as purely constitu-

tive, for which only the internal virtual powers play a

role in the scale transition. More specifically, the formu-

lae derived here will be restricted to the case alluded

in Remark 21, where the micro-scale constitutive law

is such that the micro-scale generalized stresses at each
point of the RVE are functions of the history of the cor-
responding generalized strain actions at that point. The

tangent operators will be derived by consistently lin-

earizing the corresponding problems in the continuum

setting, i.e. before any temporal or spatial discretization

is introduced. The specific format taken by the tangent

operators under different discretization schemes can be
determined by simply introducing the relevant numeri-
cal aproximations into the continuum canonical expres-

sions.

Firstly, let us briefly review the notion of tangent

operator. To this end, consider a generic functional F
which, for example, depends on a field D and consider

the perturbation

Dǫ = D + ǫ∆D, (132)

given by a scalar factor ǫ, in the direction of an admis-

sible perturbation ∆D. Then, for sufficiently smooth

functionals, the value of F at Dǫ can be expressed as

F(Dǫ) = F(D) + ǫDF(D)∆D + o(ǫ), (133)

where

DF(D)∆D ≡
d

dǫ
F(Dǫ)

∣∣∣∣
ǫ=0

(134)

denotes the directional derivative of the functional F at
D in the direction of ∆D and o(·) denotes a term such
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that, for any scalar a,

lim
a→0

o(a)

a
= 0. (135)

The first two terms on the right hand side of (133)
define the linearization of functional F at D in the di-

rection of ∆D. If the representation (133) is valid for
any ∆D, then the functional F is said to be differen-

tiable at D and the operator DF defined by (134) is the

gradient – or tangent operator - of F at D.

5.1 Homogenized macro-scale constitutive functional

To start with let us recall that the generalized strain

actions Dµ are related to macro-scale generalized strain

actions DM |x and micro-scale generalized displacement
fields uµ by means of (111). Also, in the present case

(alluded to in Remark 21), we shall limit ourselves to
local micro-scale constitutive descriptions, represented
by constitutive functions Fµ such that

Σµ(y) = Fµ(D
t
µ(y)), (136)

or, in view of (111), with an obvious notation,

Σµ = Fµ(Iµ(D
t
M |x) +D(ũtµ)). (137)

With the above considerations, the micro-scale equi-

librium problem (Problem 2), reduces in the present
case to the following: Given a constitutive function Fµ,

of the above type, and a history Dt
M |x of the macro-

scale generalized strain actions at point x, find the his-

tory ũtµ ∈ Kinũµ
of kinematically admissible micro-scale

generalized displacement fluctuations such that

〈Fµ(Iµ(D
t
M |x) +D(ũtµ)),Dµ(ˆ̃uµ)〉E′

µ×Eµ
= 0

∀ˆ̃uµ ∈ Varũµ
, ∀τ ∈ [0, t].

(138)

Clearly, the solution of the above problem defines a
mapping between histories of generalized macro-scale
displacementsDt

M |x and histories ũtµ of generalized micro-

scale displacements. This will be represented by a (gen-

erally non-linear) operator, Cµ, i.e.

ũtµ = Cµ(Iµ(D
t
M |x)) (139)

By replacing this definition into (137), we have

Σµ = Fµ(Iµ(D
t
M |x) +Dµ(Cµ(Iµ(D

t
M |x)))). (140)

Further, by taking into account the generalized stress

homogenization operator HcΣ introduced in (128), we
obtain

Σ
µ
M |x = HcΣ(Fµ(Iµ(D

t
M |x) +Dµ(Cµ(Iµ(D

t
M |x))))

=: Fhom(Dt
M |x), (141)

where we have defined the homogenized constitutive func-
tional , Fhom, that maps the history the of macro-scale

generalized strain actions at point x into Σµ
M |x.

5.2 Homogenized macro-scale constitutive tangent

The homogenized (macro-scale) constitutive tangent op-

erator is a tangent operator associated with the func-
tional Fhom. To derive it, we first apply the directional

derivative formula (134) to (141), noting that, except

for Fµ and Cµ, all operators involved in the definition

of Fhom are linear. This gives,

DFhom(Dt
M |x)[∆DM |x] =

d

dǫ
Fhom(Dt

M |x + ǫ∆DM |x)

∣∣∣∣
ǫ=0

=

= HcΣ{DFµ(D
t
µ)(Iµ(∆DM |x)+

Dµ(DCµ(Iµ(D
t
M |x))Iµ(∆DM |x)))}, (142)

or, due to the linearity of all operators involved in the

above linearized expression,

DFhom(Dt
M |x)[∆DM |x] =

HcΣ{DFµ(D
t
µ)Iµ(∆DM |x)}+

HcΣ{DFµ(D
t
µ)Dµ(DCµ(Iµ(D

t
M |x))Iµ(∆DM |x))}.

(143)

The first term on the right hand side of the above

expression is the contribution to the directional deriva-
tive when ũµ is held fixed. This corresponds to the lin-

earization of the macro-scale generalized stress response
under the assumption of generalized Taylor kinematical
constraint (referred to in Remark 14). This motivates
the following definition:

DFTaylor(Dt
M |x)[∆DM |x] =

HcΣ{DFµ(D
t
µ)Iµ(∆DM |x)}. (144)

With this notation we re-write expression (143) as

DFhom(Dt
M |x)[∆DM |x] =

DFTaylor(Dt
M |x)[∆DM |x] + L(Dt

M |x)[∆DM |x],
(145)

where L(Dt
M |x) is the linear operator defined by

L(Dt
M |x)[∆DM |x] =

HcΣ{DFµ(D
t
µ)Dµ(DCµ(Iµ(D

t
M |x))Iµ(∆DM |x))}.

(146)

This term is the contribution to the directional deriva-

tive stemming from the linearization of the (generally
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non-linear) operator Cµ, defined by (139) and associ-

ated with the solution of the (generally non-linear) vari-
ational equation (138). Further insight into this contri-
bution can be gained by looking into the linearization

of (138) about an RVE equilibrium state with given

macro-scale generalized strain actions history Dt
M . The

linearized problem reads: Given a field ∆DM |x, find

the field ∆ũµ ∈ Varũµ
that solves the following linear

variational equation:

〈DFµ(D
t
µ)Dµ(∆ũµ),Dµ(ˆ̃uµ)〉E′

µ×Eµ
=

− 〈DFµ(D
t
µ)Iµ(∆DM |x),Dµ(ˆ̃uµ)〉E′

µ×Eµ

∀ˆ̃uµ ∈ Varũµ
. (147)

The above equation defines the linear (tangent) op-

erator DCµ(D
t
M |x) associated to the operator intro-

duced in equation (139). Clearly, DCµ(D
t
M |x) also de-

pends on the choice of the space Varũµ
, i.e. on the cho-

sen kinematical constraints imposed on the RVE-based

model. In the case of the generalized Taylor constraint
(ũµ ≡ 0), the tangent operator DCµ(D

t
M |x) is the null

operator. Moreover, the above equation has an appeal-
ing interpretation. In fact, its right hand side can be

seen as a virtual power associated to a reactive body

force field brµ defined by

〈brµ, ˆ̃uµ〉U ′
µ×Uµ

=

− 〈D′
µDFµ(D

t
µ)Iµ(∆DM |x), ˆ̃uµ〉U ′

µ×Uµ

∀ˆ̃uµ ∈ Varũµ
(148)

that would result if the RVE (with linearized consti-

tutive equation) were subjected to a prescribed gener-

alized strain action Iµ(∆DM |x). With use of a gener-
alized tensorial canonical basis Ei, i = 1, . . . ,mM , of

Rx
EM

, ∆DM |x can be expressed as

∆DM |x = (∆DM |x)iEi, (149)

with implied summation on the repeated index. Then,

the solution∆ũµ of the linear variational equation (147)
can be expressed as

∆ũµ = (∆DM |x)i∆ũ
i
µ, (150)

where ∆ũiµ, here referred to as tangential generalized
displacement fluctuations , are the solutions of the linear

variational problems

〈DFµ(D
t
µ)Dµ(∆ũ

i
µ),Dµ(ˆ̃uµ)〉E′

µ×Eµ
=

− 〈DFµ(D
t
µ)Iµ(Ei),Dµ(ˆ̃uµ)〉E′

µ×Eµ

∀ˆ̃uµ ∈ Varũµ
, (151)

for i = 1, . . . ,mM .

Now, note that the linearization of (139) gives

∆ũµ = DCµ(Iµ(D
t
M |x))Iµ(∆DM |x). (152)

Then, with the solutions of (151) at hand, the contri-

bution L(Dt
M |x)[∆DM |x] to (145) can now be easily

evaluated through the expression

L(Dt
M |x)[∆DM |x] = HcΣ{DFµ(D

t
µ)Dµ(∆ũµ)}, (153)

with∆ũµ given by (150). The linearized operatorDFhom

can be assembled according to (145).

Finally, by linearizing (154) we find that the homog-

enized tangent constitutive operator at the macro-scale

point x, is the operator DΣM |x that satisfies

(DΣM |x −DFhom(Dt
M |x))[∆DM |x] • D̂M |x = 0

∀∆DM |x, D̂M |x ∈ R̂x
EM
. (154)

Remark 22 The derivation of the tangent operator has

been limited here to what we refer to as the purely

constitutive case, i.e. when the macro-scale generalized
stress response functional obeys a standard local consti-

tutive law. This has been motivated by the fact that the

vast majority of multiscale theories reported in the liter-

ature falls into this category. We remark, however, that

the derivation of more general tangent stress-response

operators, within the broader setting of the theory pro-

posed in Section 3, can be carried out by following the

same steps.

6 Applications

In this section, the Method of Multiscale Virtual Power

is applied to formulate a range of multiscale models. In

this context, some existing models already reported in

the literature are cast within the proposed framework
and new multiscale models, incorporating more com-
plex phenomena, are newly derived. Our main aim here

is to demonstrate by means of practical examples that

the methodology proposed in the present paper offers

indeed a very robust theoretical framework whereby ex-

isting multiscale models can be rigorously justified and

new models can be systematically devised in a clear
manner. In particular, it becomes obvious in the ex-
amples presented here that RVE boundary conditions

as well as the dual homogenization operators (for the

stress- and force-like quantities) – issues that may eas-

ily lead to theoretical inconsistencies if not addressed

properly – can be derived in a most natural way as a re-

sult of duality considerations and the Principle of Mul-

tiscale Virtual Power. Each of the multiscale models is
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discussed in an individual subsection and models are de-

rived by following identical steps: We start with a brief

description of the underlying micro- and macro-scale

kinematics, followed by the definition of kinematical

admissibility and application of the Principle of Mul-

tiscale Virtual Power.
At last, the mathematical setting employed in the

presentation of the mechanical models throughout this

section follows the standard choice of Sobolev function

spaces.

6.1 Classical finite strain solid mechanics with

dynamic effects

This section derives a multiscale model of a classical

solid undergoing finite straining, subjected to dynamic

forces. At variance with the vast majority of published

articles on multiscale solid mechanics, we shall con-

sider here the presence of dynamic forces at the micro-
scale and their link to their macro-scale counterpart
(assumed to share the same time scale). In the context

of the framework proposed in this paper, this will re-

quire that the virtual power of dynamic forces at both

macro- and micro-scales be accounted for in the defini-

tion of the Principle of Multiscale Virtual Power.

The model will be formulated in terms of the refer-
ence configurations (taken as the initial configurations)

both at macro- and micro-scales. To start with, let the

open subsetΩM ⊂ R3 be the reference domain occupied

by the macro-scale solid body, with smooth boundary

ΓM and outward unit boundary normal NM . Points

of the body will be described by their reference coor-

dinates X. The set of generalized displacements in the
present case contains only the displacement vector field:

uM = UM . The space of generalized displacements in

this case is UM = H1(ΩM ). The strain action operator

here is the reference gradient operator, DM (·) = ∇X(·),
so that the generalized strain action is the displace-

ment gradient, that is, DM = GM (UM ) = ∇XUM .

Hence, the space of generalized strain actions reads
EM = L

2(ΩM ). In this case, we have nM = 1 (RM = 3)

and mM = 1 (SM = 9).

At the micro-scale the finite strain regime also holds,

and the RVE domain is Ωµ ⊂ R3, with smooth bound-

ary Γµ (outward unit normal Nµ), and coordinates Y.

The generalized displacements are the micro-scale dis-
placement vector field uµ = Uµ = Ūµ + Ũµ. The

corresponding function space is Uµ = H1(Ωµ). Anal-

ogously to the macro-scale we have Dµ(·) = ∇Y(·), so
that Dµ = Gµ(Uµ) = ∇YUµ, and Gµ ∈ Eµ = L

2(Ωµ).

The strain action and displacement are also defined over

the entire RVE domain so that nµ = 1 (Rµ = 3) and

mµ = 1 (Sµ = 9).

The space of point-valued macro-scale displacements

is given by RX
UM

= {W ∈ R3, W = UM |X, UM ∈
UM}, and the space of point-valued macro-scale strain

actions is RX
EM

= {H ∈ R3×3, H = GM |X, GM ∈ EM}.

In this case we have R̂X
UM

= RX
UM

and R̂X
EM

= RX
EM

.

The displacement insertion operator here is defined

as

J U
µ (UM |X) = UM |X, (155)

while the macro-scale strain action is inserted into the
micro-scale according to

J E
µ (GM |X) = GM |X(Y −Yo), (156)

with Yo the geometrical center of the RVE, i.e. Yo =
1
Ωµ

∫
Ωµ

YΩµ. Having defined the above kinematical in-
sertion operations, we then have for the micro-scale dis-

placement field:

Uµ = UM |x +GM |X(Y −Yo) + Ũµ. (157)

Since Dµ(J
U
µ (UM |X)) = ∇YUM |x = 0, it follows that

Gµ = GM |X +∇YŨµ. (158)

In addition, we have trivially,

Dµ(J
E
µ (GM |X)) = GM |X. (159)

We now proceed to postulate the kinematical ho-

mogenization operators. For the displacement, we de-

fine

HU
µ (Uµ) =

1

|Ωµ|

∫

Ωµ

Uµ dΩµ, (160)

and, for the strain action,

HE
µ(Gµ) =

1

|Ωµ|

∫

Ωµ

Gµ dΩµ. (161)

Note that, by construction of the above operators, the
principle of conservation of macro-scale displacements
(59) is automatically satisfied, that is, we have

HU
µ (J

U
µ (UM |X)) =

1

|Ωµ|

∫

Ωµ

J U
µ (UM |X) dΩµ = UM |X. (162)

In order to define kinematical admissibility in the

present case, we begin by specializing (61) with the

above operators. Then, a micro-scale displacement field

is said to be admissible if

1

|Ωµ|

∫

Ωµ

Uµ dΩµ =
1

|Ωµ|

∫

Ωµ

J U
µ (UM |X) dΩµ. (163)
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Further, by observing (157), the above definition of J U
µ

and the fact that

1

|Ωµ|

∫

Ωµ

GM |X(Y −Yo) dΩµ = 0, (164)

we find that kinematically admissible micro-scale dis-
placement fields must satisfy

1

|Ωµ|

∫

Ωµ

Ũµ dΩµ = 0. (165)

The principle of conservation of macro-scale strain

actions (60) is, in turn, guaranteed here by the defini-

tion of the above strain action insertion and homoge-

nization operators. Indeed, we have

HE
µ(Dµ(J

E
µ (GM |X))) =

1

|Ωµ|

∫

Ωµ

Dµ(J
E
µ (GM |X)) dΩµ = GM |X. (166)

The strain action is linked between scales by considering

(see (62))

1

|Ωµ|

∫

Ωµ

Gµ dΩµ =

1

|Ωµ|

∫

Ωµ

Dµ(J
E
µ (GM |X)) dΩµ, (167)

which is met by doing

1

|Ωµ|

∫

Ωµ

∇YŨµ dΩµ = 0, (168)

and integrating by parts gives

1

|Ωµ|

∫

Γµ

Ũµ ⊗Nµ dΓµ = 0. (169)

Hence, the space of kinematically admissible displace-

ment fields at micro scale is defined as

KinŨµ
= VarŨµ

=

{
Ũµ ∈ H1(Ωµ),

∫

Ωµ

Ũµ dΩµ = 0,

∫

Γµ

Ũµ ⊗Nµ dΓµ = 0

}
. (170)

The internal virtual power at macro scale is the

product between the virtual strain rate and the first

Piola-Kirchhoff stress tensor, that is P int
M =

∫
ΩM

PM ·

∇XÛM dΩM . The internal power at point X (poste-
riorly linked with a RVE) is P int

M,X = PM |X • ĜM |X,

still to be defined. The external virtual power is P ext
M =∫

ΩM
fM · ÛM dΩM , and at point X it is P ext

M,X = fM |X •

ÛM |X. We note that fM can be formed by a passive

external load fpM (e.g. due to the gravity) and/or by an
active dynamic load faM . We can write fM = fpM − faM .

In turn, the internal virtual power at micro scale
results

P int
µ =

∫

Ωµ

Pµ · ∇YÛµ dΩµ =

∫

Ωµ

Pµ · (ĜM |X +∇Y
ˆ̃Uµ) dΩµ =

∫

Ωµ

Pµ · ĜM |X dΩµ +

∫

Ωµ

Pµ · ∇Y
ˆ̃Uµ dΩµ. (171)

Dynamic phenomena is considered through the classi-

cal characterization of acceleration forces faµ = ρµAµ.

Then, we can write

faµ = ρµAµ = ρµÜµ =

ρµ(ÜM |X + F̈M |X(Y −Yo) +
¨̃Uµ). (172)

As well, passive forces are considered in the model and

denoted by fpµ . Thus, the external virtual power can be

expressed as

P ext
µ =

∫

Ωµ

fpµ · Ûµ dΩµ −

∫

Ωµ

ρµÜµ · Ûµ dΩµ =

∫

Ωµ

fpµ · (ÛM |X + ĜM |X(Y −Yo) +
ˆ̃Uµ) dΩµ

−

∫

Ωµ

ρµÜµ · (ÛM |X + ĜM |X(Y −Yo) +
ˆ̃Uµ) dΩµ =

∫

Ωµ

fpµ · ÛM |X dΩµ +

∫

Ωµ

(fpµ ⊗ (Y −Yo)) · ĜM |X dΩµ

+

∫

Ωµ

fpµ · ˆ̃Uµ dΩµ −

∫

Ωµ

ρµÜµ · ÛM |X dΩµ

−

∫

Ωµ

ρµ(Üµ ⊗ (Y −Yo)) · ĜM |X dΩµ

−

∫

Ωµ

ρµÜµ · ˆ̃Uµ dΩµ. (173)

The Principle of Multiscale Virtual Power for the present

case is enunciated next. In the remaining of this section

recall that Üµ = ÜM |X + F̈M |X(Y −Yo) +
¨̃Uµ.

PMVP. It is said that (PM |X, fM |X) and (Pµ, fµ) are

equilibrated if the following variational equation is sat-
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isfied

PM |X • ĜM |X − fM |X • ÛM |X =
∫

Ωµ

Pµ · ĜM |X dΩµ +

∫

Ωµ

Pµ · ∇Y
ˆ̃Uµ dΩµ

−

∫

Ωµ

fpµ ·ÛM |X dΩµ−

∫

Ωµ

(fpµ⊗ (Y−Yo)) ·ĜM |X dΩµ

−

∫

Ωµ

fpµ · ˆ̃Uµ dΩµ +

∫

Ωµ

ρµÜµ · ÛM |X dΩµ

+

∫

Ωµ

ρµ(Üµ ⊗ (Y −Yo)) · ĜM |x dΩµ

+

∫

Ωµ

ρµÜµ · ˆ̃Uµ dΩµ

∀(ÛM |x, ĜM |x,
ˆ̃Uµ) ∈ R̂X

UM
× R̂X

EM
×VarŨµ

. (174)

�

The consequences of the principle formulated above
are the following.

Equilibrium problem at micro scale. Take
ÛM |X = 0 and ĜM |X = 0. The equilibrium

problem at the micro scale can be stated as fol-

lows
∫

Ωµ

Pµ · ∇Y
ˆ̃Uµ dΩµ −

∫

Ωµ

fpµ · ˆ̃Uµ dΩµ

+

∫

Ωµ

ρµÜµ · ˆ̃Uµ dΩµ = 0

∀ ˆ̃Uµ ∈ VarŨµ
. (175)

Stress homogenization at macro scale. Let

now ÛM |X = 0 and ˆ̃Uµ = 0. Then

PM |X • ĜM |X =

∫

Ωµ

Pµ · ĜM |X dΩµ

−

∫

Ωµ

(fpµ ⊗ (Y −Yo)) · ĜM |X dΩµ

+

∫

Ωµ

ρµ(Üµ ⊗ (Y −Yo)) · ĜM |X dΩµ

∀ĜM |X ∈ R̂X
EM

(176)

Therefore, the homogenization formula is

PM |X =
1

|Ωµ|

∫

Ωµ

Pµ − (fpµ ⊗ (Y −Yo)) dΩµ

+
1

|Ωµ|

∫

Ωµ

ρµ(Üµ ⊗ (Y −Yo)) dΩµ. (177)

Here, we have identified the operation PM |X •
ĜM |X = |Ωµ|PM |X · ĜM |X, from which it is
ω1 = |Ωµ|.

Body force homogenization at macro scale.

Now, consider ĜM |X = 0 and ˆ̃Uµ = 0, then

fM |X • ÛM |X =

∫

Ωµ

fpµ · ÛM |X dΩµ

−

∫

Ωµ

ρµÜµ · ÛM |X dΩµ

∀ÛM |X ∈ R̂X
UM
. (178)

and then

fM |X =
1

|Ωµ|

∫

Ωµ

(fpµ − ρµÜµ) dΩµ. (179)

Here, also the operation is identified as fM |X •
ÛM |X = |Ωµ| fM |X · ÛM |X, resulting in γ1 =

|Ωµ|.

Remark 23 This model considers continuum media at
both scales. A fully analogous development could be car-

ried out for a micro scale including molecular dynamics

or even atomistic models. In such cases, the present the-

ory leads to models similar to those presented in [4,5,

131].

6.2 Bar model at macro scale - Classical micro
mechanics

This section presents a very simple mechanical model

at the macro scale consisting of a bar (one dimensional)

model for which it is desired to obtain constitutive mul-

tiscale information from a micro scale model consisting

of a full (three-dimensional) model. For simplicity we

consider infinitesimal strain hypothesis at both scales.

Notice that the model at micro scale is kinematically

richer than the model at the macro scale. Thus, this

example illustrates a typical case of a multiscale for-

mulation having dimensional heterogeneity in the kine-

matical description at macro and micro scales.

The domain in the macro scale is an open subset

ΩM ⊂ R, that is, a straight segment representing the

configuration of the bar, for which axial coordinates

are x, being ex the unit vector in R3 in the axial di-
rection. The generalized displacements is a scalar field

uM = uM , standing for the displacement in the axial di-

rection of the bar. Then the structure of the underlying

space is UM = H1(ΩM ). The strain action operator is

simply DM (·) = d
dx
(·), so DM = dM (uM ) = duM

dx
, and

therefore DM ∈ EM = L2(ΩM ). All fields are defined
in ΩM . Then, it is nM = 1 (RM = 1) and mM = 1

(SM = 1).

At the micro-scale we have full three-dimensional

kinematics, so the RVE domain isΩµ ⊂ R3, with smooth
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boundary Γµ (outward unit normal nµ). Coordinates in

the micro scale are y. In this case, generalized displace-
ments at micro scale are displacements vector fields,

expressed as uµ = uµ = ūµ + ũµ, with an underly-

ing structure given by Uµ = H1(Ωµ). The strain action

operator is the classical symmetric gradient Dµ(·) =
∇S

y(·), so it is Dµ = εµ(uµ) = ∇S
yuµ, and then Eµ =

{εµ ∈ L
2(Ωµ), εµ = εTµ}. All fields are defined in Ωµ.

Here nµ = 1 (Rµ = 3) and mµ = 1 (Sµ = 6).

The intermediate space of point-valued displacements

at macro scale is RxUM
= {w ∈ R, w = uM |x, uM ∈

UM}, and for the strain actions we have RxEM
= {g ∈

R, g = dM |x, dM ∈ EM}. In this case it is R̂xUM
= RxUM

and R̂xEM
= RxEM

. The operator that inserts the dis-

placement into the RVE domain is

J U
µ (uM |x) = uM |xex, (180)

resulting in a constant vector field over the entire RVE

pointing in the axial direction of the bar. In turn, the

strain rate from the macro scale is inserted into the

micro scale as

J E
µ (dM |x) = dM |x(ex ⊗ ex)(y − yo), (181)

with yo the geometrical center of the RVE, i.e. yo =
1
Ωµ

∫
Ωµ

yΩµ. Then, the composition of the displace-

ment field at micro scale is

uµ = uM |xex + dM |x(ex ⊗ ex)(y − yo) + ũµ. (182)

Since Dµ(J
U
µ (uM |x)) = ∇S

y(uM |xex) = 0, it results

εµ = dM |x(ex ⊗ ex) +∇S
y ũµ, (183)

and also

Dµ(J
E
µ (dM |x)) = dM |x(ex ⊗ ex). (184)

The homogenization operator for the displacement field

is defined as follows

HU
µ (uµ) =

1

|Ωµ|

∫

Ωµ

uµ · ex dΩµ, (185)

and for the strain rate field the homogenization opera-
tor is

HE
µ(εµ) =

1

|Ωµ|

∫

Ωµ

εµ · (ex ⊗ ex) dΩµ. (186)

By construction, the insertion operator satisfies (i.e.

equation (59) is satisfied)

HU
µ (J

U
µ (uM |x)) =

1

|Ωµ|

∫

Ωµ

J U
µ (uM |x) · ex dΩµ = uM |x. (187)

Then, the kinematical admissibility for the displace-

ment field (see (61)) states that

1

|Ωµ|

∫

Ωµ

uµ · ex dΩµ =

1

|Ωµ|

∫

Ωµ

J U
µ (uM |x) · ex dΩµ. (188)

Since it is

1

|Ωµ|

∫

Ωµ

dM |x(ex ⊗ ex)(y − yo) dΩµ = 0, (189)

we have that the condition (188) is satisfied by doing

1

|Ωµ|

∫

Ωµ

ũµ · ex dΩµ = 0. (190)

However, this condition is not enough to control all the

kinematic fields at the micro scale. Observe that compo-

nents on the direction of y and z of the fluctuation field

are not controled from the macro scale. In this case,

further restrictions are necessary to have a mathemati-

cally well-posed problem. This can be accomplished by

incorporating the following restrictions

1

|Ωµ|

∫

Ωµ

ũµ · ey dΩµ =0, (191)

1

|Ωµ|

∫

Ωµ

ũµ · ez dΩµ =0. (192)

Regarding strain actions, the insertion operator by def-

inition satisfies the following identity (i.e. equation (60)

is satisfied)

HE
µ(Dµ(J

E
µ (dM |x))) =

1

|Ωµ|

∫

Ωµ

Dµ(J
E
µ (dM |x)) · (ex ⊗ ex) dΩµ = dM |x.

(193)

Hence, the kinematical admissibility is met if we have

(see (62))

1

|Ωµ|

∫

Ωµ

εµ · (ex ⊗ ex) dΩµ =

1

|Ωµ|

∫

Ωµ

Dµ(J
E
µ (dM |x)) · (ex ⊗ ex) dΩµ. (194)

which is fulfilled by enforcing

1

|Ωµ|

∫

Ωµ

∇S
y ũµ · (ex ⊗ ex) dΩµ = 0. (195)

Integrating by parts it is

1

|Ωµ|

∫

Γµ

(ũµ ⊗S nµ) · (ex ⊗ ex) dΓµ = 0. (196)
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Then, the space of kinematically admissible displace-

ment fields at micro scale is

Kinũµ
= Varũµ

=

{
ũµ ∈ H1(Ωµ),

∫

Ωµ

ũµ dΩµ = 0,

∫

Γµ

(ũµ ⊗S nµ) · (ex ⊗ ex) dΓµ = 0

}
. (197)

In this case the internal virtual power at macro scale

is given by the product P int
M =

∫
ΩM

AMσM
dûM

dx
dΩM ,

where recall that ΩM is the one-dimensional domain of
the bar, and AM is the cross sectional area of the bar. In

addition we called σM to the uniaxial stress in the bar,

that is σM = 1
AM

∫
AM

σM dAM . The internal power at

any macro scale point (which is to be linked with a

RVE) is denoted by P int
M,x = σM |x • d̂M |x. In turn, the

external virtual power is P ext
M =

∫
ΩM

AMfM · ûM dΩM ,

where fM is the uniaxial load, and at a point in the
macro scale is P ext

M,x = fM |x • ûM |x.

At the micro scale, the internal virtual power results

P int
µ =

∫

Ωµ

σµ · ∇S
y ûµ dΩµ =

∫

Ωµ

σµ · (d̂M |x(ex ⊗ ex) +∇S
y
ˆ̃uµ) dΩµ =

∫

Ωµ

σµ · (ex ⊗ ex)d̂M |x dΩµ

+

∫

Ωµ

σµ · ∇S
y
ˆ̃uµ dΩµ. (198)

and, the external virtual power is written as

P ext
µ =

∫

Ωµ

fµ · ûµ dΩµ =

∫

Ωµ

fµ · (ûM |xex + d̂M |x(ex ⊗ ex)(y− yo) + ˆ̃uµ) dΩµ =

∫

Ωµ

(fµ·ex)ûM |x dΩµ+

∫

Ωµ

(fµ·ex)((y−yo)·ex)d̂M |x dΩµ

+

∫

Ωµ

fµ · ˆ̃uµ dΩµ. (199)

Therefore, the formulation of the Principle of Multiscale

Virtual Power is given by the following sentence.

PMVP. It is said that (σM |x, fM |x) and (σµ, fµ) sat-

isfy the Principle of Multiscale Virtual Power if the fol-

lowing variational equation is satisfied

σM |x • d̂M |x − fM |x • ûM |x =
∫

Ωµ

σµ · (ex ⊗ ex)d̂M |x dΩµ +

∫

Ωµ

σµ · ∇S
y
ˆ̃uµ dΩµ

−

∫

Ωµ

(fµ · ex)ûM |x dΩµ

−

∫

Ωµ

(fµ · ex)((y−yo) · ex)d̂M |x dΩµ−

∫

Ωµ

fµ · ˆ̃uµ dΩµ

∀(ûM |x, d̂M |x, ˆ̃uµ) ∈ R̂xUM
× R̂xEM

× Varũµ
(200)

�

The consequences of the principle enunciated above

are listed below.

Equilibrium problem at micro scale. Now,

consider ûM |x = 0 and d̂M |x = 0. The equilib-

rium problem at the micro scale is defined by the

following variational equation

∫

Ωµ

σµ · ∇S
y
ˆ̃uµ dΩµ −

∫

Ωµ

fµ · ˆ̃uµ dΩµ = 0

∀ˆ̃uµ ∈ Varũµ
. (201)

Stress homogenization at macro scale. Let

ûM |x = 0 and ˆ̃uµ = 0, then

σM |x • d̂M |x =

∫

Ωµ

σµ · (ex ⊗ ex)d̂M |x dΩµ

−

∫

Ωµ

(fµ · ex)((y − yo) · ex)d̂M |x dΩµ

∀d̂M |x ∈ R̂xEM
(202)

And the homogenization formula results

σM |x =
1

|Ωµ|

∫

Ωµ

σµ · (ex ⊗ ex) dΩµ

−
1

|Ωµ|

∫

Ωµ

(fµ · ex)((y − yo) · ex) dΩµ (203)

As before, the duality operation is identified to

be σM |x • d̂M |x = |Ωµ|σM |xd̂M |x, and it is ω1 =

|Ωµ|.
Body force homogenization at macro scale.

Now, consider d̂M |x = 0 and ˆ̃uµ = 0, which
yields

fM |x • ûM |x =

∫

Ωµ

fµ · exûM |x dΩµ

∀ûM |x ∈ R̂x
UM
. (204)
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and then

fM |x =
1

|Ωµ|

∫

Ωµ

fµ · ex dΩµ. (205)

Here the duality operation is defined to be fM |x•
ûM |x = |Ωµ| fM |xûM |x, and it is γ1 = |Ωµ|.

Remark 24 Other models can be derived from the very

same framework presented here. In fact, the model de-
rived from considering the kinematical constrain (196)

results in a model with null traction over the boundary
of the micro scale domain in many of the components.
Suppose that additional constraints are considered in-

spired in (196), i.e.

1

|Ωµ|

∫

Γµ

(ũµ ⊗S nµ) dΓµ = 0. (206)

Such model is kinematically more restricted, and results

in a model with uniform traction over the entire bound-

ary of the RVE, part of which is purely reactive.

6.3 High order macro mechanics - Classical micro

mechanics

In this section we work with the multiscale modeling in

solid mechanics applied to higher order continua at the

macro scale, while keeping the classical first order con-

tinuum in the micro scale. That is, unlike the previous
section, here the model at macro scale is kinematically
richer than the model at the micro scale. At both scales
we consider the finite strain mechanical regime.

The domain at macro scale (reference or material

configuration) is an open subset ΩM ⊂ R3, with smooth
boundary ΓM (outward unit normal NM ), and coor-

dinates X. Like in the classical setting, the general-
ized displacement is the displacement vector field de-
scribed in the material configuration uM = UM (struc-

ture given by the space UM = H1(ΩM )). The strain ac-

tion operator is given by DM (·) = (∇X(·), 12∇X∇X(·)).
Thus, the structure of the strain action results DM =

(GM (UM ),GM (UM )) = (∇XUM ,
1
2∇X∇XUM ). All

fields are defined in ΩM . The kinematics in the macro

scale is such that nM = 1 (RM = 3) and mM = 2

(s1M = 9, s2M = 18 and SM = 27).

Further, given a third order tensor H, we define
a transpose operation as follows (Hm)n = (HTn)m.

Such transpose operation T can be more clearly writ-

ten: being H = a ⊗ b ⊗ c, we have (Hm)n = ((a ⊗
b⊗ c)m)n = (c ·m)(b ·n)a. It follows that (HTn)m =

((a ⊗ c ⊗ b)n)m = (b · n)(c · m)a. Hence, it results
H

T = a ⊗ c ⊗ b. Finally, a symmetrization operation

can be defined as H
S = 1

2 (H + H
T). Therefore, it is

EM = {(GM ,GM ) ∈ L
2(ΩM )×L2(ΩM ), GM = G

T

M}.

At the micro-scale we adopt classic kinematical de-

scription. The RVE domain is Ωµ ⊂ R3, with smooth
boundary Γµ (outward unit normal Nµ) and coordi-

nates Y. The generalized displacements are displace-

ments in the material configuration uµ = Uµ = Ūµ +

Ũµ, with structure Uµ = H1(Ωµ). The strain action op-
erator is Dµ(·) = ∇Y(·), so Dµ = Gµ(Uµ) = ∇YUµ,

from which Dµ ∈ Eµ = L
2(Ωµ). Here, the fields are

defined in the entire RVE. So, nµ = 1 (Rµ = 3) and

mµ = 1 (Sµ = 9).

The intermediate space of point-valued displacements

at macro scale is given by RX
UM

= {W ∈ R3, W =

UM |X, UM ∈ UM}, and for the strain actions RX
EM

=
{(H,H) ∈ R3×3 × R3×3×3, (H,H) = (GM |X,GM |X),

(GM ,GM ) ∈ EM}. As in previous sections, here it is

R̂X
UM

= RX
UM

and R̂X
EM

= RX
EM

. The insertion of the
displacement field is given by the following operator

J U
µ (UM |X) = UM |X, (207)

and the insertion of the strain action results

J E
µ ((GM |X,GM |X)) = GM |X(Y −Yo)

+
1

2
GM |X

[
(Y −Yo)⊗ (Y −Yo)− J

]
, (208)

where Yo is the geometrical center of the RVE, that is
Yo =

1
Ωµ

∫
Ωµ

Y dΩµ, and J is defined as

J =
1

|Ωµ|

∫

Ωµ

(Y −Yo)⊗ (Y −Yo) dΩµ. (209)

As a consequence, at micro scale it results

Uµ = UM |x +GM |X(Y −Yo)

+
1

2
GM |X

[
(Y −Yo)⊗ (Y −Yo)− J

]
+ Ũµ, (210)

Since Dµ(J
U
µ (UM |X)) = ∇YUM |x = 0 and J is con-

stant, we have

Gµ = GM |X + GM |X(Y −Yo) +∇YŨµ. (211)

where

Dµ(J
E
µ (GM |X,GM |X)) =

GM |X + GM |X(Y −Yo). (212)

Regarding the homogenization of the displacement field

we define

HU
µ (Uµ) =

1

|Ωµ|

∫

Ωµ

Uµ dΩµ. (213)

The homogenization of the strain action is a more sen-

sible step, but equally treated within the current frame-
work. Observe that the homogenization operator maps
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the strain action from micro scale into the macro scale.

So, the present homogenization procedure is represented

by a rectangular matrix operation (two rows, one col-

umn, see Remark 10). These two rows are

HE
µ

11
(Gµ) =

1

|Ωµ|

∫

Ωµ

Gµ dΩµ, (214)

HE
µ

21
(Gµ) =

1

|Ωµ|

([∫

Ωµ

Gµ ⊗ (Y −Yo) dΩµ

]
J−1

)S

.

(215)

where the (·)S operation implies the symmetrization op-

eration as introduced at the beginning of the section.

By construction, the insertion operator satisfies (equa-

tion (59) is verified)

HU
µ (J

U
µ (UM |X)) =

1

|Ωµ|

∫

Ωµ

J U
µ (UM |X) dΩµ = UM |X. (216)

As well, we must satisfy (see constraint (61))

1

|Ωµ|

∫

Ωµ

Uµ dΩµ =
1

|Ωµ|

∫

Ωµ

J U
µ (UM |X) dΩµ. (217)

Trivially, we have

1

|Ωµ|

∫

Ωµ

GM |X(Y −Yo) dΩµ = 0. (218)

and also

1

2|Ωµ|

∫

Ωµ

GM |X
[
(Y −Yo)⊗ (Y −Yo)− J

]
dΩµ = 0.

(219)

Therefore, by forcing

1

|Ωµ|

∫

Ωµ

Ũµ dΩµ = 0. (220)

it is possible to guarantee the kinematical admissibil-

ity in (217) in terms of displacements. The operator

which inserts the strain action in this case satisfies by

definition (expression (60) is verified)

HE
µ(Dµ(J

E
µ ((GM |X,0)))) =

1

|Ωµ|

∫

Ωµ

Dµ(J
E
µ ((GM |X,0))) dΩµ = GM |X, (221)

and also it satisfies

HE
µ(Dµ(J

E
µ ((0,GM |X)))) =

1

|Ωµ|

([∫

Ωµ

Dµ(J
E
µ ((0,GM |X)))⊗(Y−Yo) dΩµ

]
J−1

)S

= GM |X. (222)

In turn, kinematical admissibility concept concerning

the strain action is satisfied if (see (62))

1

|Ωµ|

∫

Ωµ

Gµ dΩµ =

1

|Ωµ|

∫

Ωµ

Dµ(J
E
µ ((GM |X,GM |X))) dΩµ, (223)

1

|Ωµ|

([∫

Ωµ

Gµ ⊗ (Y −Yo) dΩµ

]
J−1

)S

=

1

|Ωµ|

([∫

Ωµ

Dµ(J
E
µ (GM |X,GM |X))⊗(Y−Yo) dΩµ

]
J−1

)S

.

(224)

Observe that (223) is met by doing

1

|Ωµ|

∫

Ωµ

∇YŨµ dΩµ = 0, (225)

which after integration by parts gives

1

|Ωµ|

∫

Γµ

Ũµ ⊗Nµ dΓµ = 0. (226)

By exploiting the form of Gµ we have that (224) is

satisfied if

1

|Ωµ|

([∫

Ωµ

∇YŨµ⊗ (Y−Yo) dΩµ

]
J−1

)S

= 0, (227)

which after integration by parts gives

1

|Ωµ|

([∫

Γµ

Ũµ⊗Nµ⊗(Y−Yo) dΓµ

]
J−1

)S

= 0. (228)

Thus, the space of kinematically admissible displace-

ment fields at micro scale is therefore defined as

KinŨµ
= VarŨµ

=

{
Ũµ ∈ H1(Ωµ),

∫

Ωµ

Ũµ dΩµ = 0,

∫

Γµ

Ũµ ⊗Nµ dΓµ = 0,

([∫

Γµ

Ũµ ⊗Nµ ⊗ (Y −Yo) dΓµ

]
J−1

)S

= 0

}
.

(229)

Remark 25 In the case of a square geometry (in two

dimensional space) representing the micro scale domain,

with length ℓµ, we have J =
ℓµ
12I. Then, (228) simplifies

to

1

|Ωµ|

∫

Γµ

Ũµ ⊗Nµ ⊗S (Y −Yo) dΓµ = 0. (230)

which is consistent with the boundary condition postu-

lated in [58], and slightly different to that one postulated
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in [71]. However, boundary condition (228) has been de-

rived systematically within the present multiscale frame-
work, and provides a robust argumentation for boundary
conditions previously proposed in the literature.

The internal virtual power at macro scale is the
product between the generalized virtual strain action
and the dual stresses, which in the present case turns

to be P int
M =

∫
ΩM

[PM ·∇XÛM+QM ·∇X∇XÛM ] dΩM .

This internal virtual power at a given pointX is P int
M,X =

(PM |X,QM ) • (ĜM |X, ĜM |X), which is specified later

on. As before, the external virtual power results P ext
M =∫

ΩM
fM · ÛM dΩM , and at a point X is P ext

M,X = fM |X •

ÛM |X.

Differently, for the micro scale, the internal virtual
power is

P int
µ =

∫

Ωµ

Pµ · ∇YÛµ dΩµ =

∫

Ωµ

Pµ · (ĜM |X + ĜM |X(Y −Yo) +∇Y
ˆ̃Uµ) dΩµ =

∫

Ωµ

Pµ · ĜM |X dΩµ+

∫

Ωµ

(Pµ⊗ (Y−Yo)) · ĜM |X dΩµ

+

∫

Ωµ

Pµ · ∇Y
ˆ̃Uµ dΩµ. (231)

And the external virtual power is expressed as

P ext
µ =

∫

Ωµ

fµ · Ûµ dΩµ =

∫

Ωµ

fµ ·

(
ÛM |X + ĜM |X(Y −Yo)

+
1

2
ĜM |X[(Y −Yo)⊗ (Y −Yo)− J] + ˆ̃Uµ

)
dΩµ =

∫

Ωµ

fµ · ÛM |X dΩµ +

∫

Ωµ

(fµ ⊗ (Y −Yo)) · ĜM |X dΩµ

+
1

2

∫

Ωµ

(
fµ ⊗ [(Y−Yo)⊗ (Y−Yo)− J]

)
· ĜM |X dΩµ

+

∫

Ωµ

fµ · ˆ̃Uµ dΩµ. (232)

Then, the Principle of Multiscale Virtual Power for the

present case is formulated as follows.

PMVP. It is said that (PM |X,QM |X, fM |X) and (Pµ, fµ)

are equilibrated if the following variational equation is

satisfied

(PM |X,QM |X) • (ĜM |X, ĜM |X)− fM |X • ÛM |X =
∫

Ωµ

Pµ · ĜM |X dΩµ+

∫

Ωµ

(Pµ⊗ (Y−Yo)) · ĜM |X dΩµ

+

∫

Ωµ

Pµ · ∇Y
ˆ̃Uµ dΩµ

−

∫

Ωµ

fµ ·ÛM |X dΩµ−

∫

Ωµ

(fµ⊗ (Y−Yo)) ·ĜM |X dΩµ

−
1

2

∫

Ωµ

(
fµ ⊗ [(Y−Yo)⊗ (Y−Yo)− J]

)
· ĜM |X dΩµ

−

∫

Ωµ

fµ · ˆ̃Uµ dΩµ

∀(ÛM |x, (F̂M |x, ĜM |x),
ˆ̃Uµ) ∈ R̂X

UM
× R̂X

EM
×VarŨµ

.

(233)

�

The consequences of the principle formulated above
are the following.

Equilibrium problem at micro scale.At first,

take ÛM |X = 0 and (ĜM |X, ĜM |X) = (0,0).
The equilibrium problem at the micro scale is

formulated as follows
∫

Ωµ

Pµ · ∇Y
ˆ̃Uµ dΩµ −

∫

Ωµ

fµ · ˆ̃Uµ dΩµ = 0

∀ ˆ̃Uµ ∈ VarŨµ
. (234)

Stress homogenization at macro scale. Con-

sider ÛM |X = 0 and ˆ̃Uµ = 0. Then

(PM |X,QM |X) • (ĜM |X, ĜM |X) =
∫

Ωµ

Pµ · ĜM |X dΩµ

+

∫

Ωµ

(Pµ ⊗ (Y −Yo)) · ĜM |X dΩµ

−

∫

Ωµ

(fµ ⊗ (Y −Yo)) · ĜM |X dΩµ

−
1

2

∫

Ωµ

(
fµ⊗[(Y−Yo)⊗(Y−Yo)−J]

)
·ĜM |X dΩµ

∀(ĜM |X, ĜM |X) ∈ R̂X
EM

(235)

Considering now (ĜM |X,0) we obtain the ho-

mogenization formula for the Piola-Kirchhoff stress

tensor

PM |x =

1

|Ωµ|

∫

Ωµ

Pµ − (fµ ⊗ (Y −Yo)) dΩµ. (236)
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In turn, taking (0, ĜM |X) we obtain the homoge-

nization formula for the third order stress tensor

QM |x =
1

|Ωµ|

∫

Ωµ

(Pµ ⊗ (Y −Yo))
S dΩµ

−
1

2

∫

Ωµ

fµ⊗ [(Y−Yo)⊗ (Y−Yo)− J] dΩµ.

(237)

The symmetrization operation acting on the first

term above derives from the orthogonality con-

dition with respect to the symmetric third order

tensor ĜM |X (see definition of R̂X
EM

). For this

case, the duality operation is (PM |X,QM |X) •
(ĜM |X, ĜM |X) = |Ωµ|PM |X·ĜM |X+|Ωµ|QM |X·
ĜM |X following that ω1 = ω2 = |Ωµ|.
Body force homogenization at macro scale.

Now, let us consider (ĜM |X, ĜM |X) = (0,0)

and ˆ̃Uµ = 0, then

fM |X • ÛM |X =

∫

Ωµ

fµ · ÛM |X dΩµ

∀ÛM |X ∈ R̂X
UM
. (238)

therefore

fM |X =
1

|Ωµ|

∫

Ωµ

fµ dΩµ. (239)

The duality operation for the external power re-

sults fM |X • ÛM |X = |Ωµ| fM |X · ÛM |X, follow-

ing that γ1 = |Ωµ|.

6.4 Cohesive macro cracks - Strain localization at

micro

In this section we present a multiscale model that ac-

counts for nucleation and evolution of cohesive surfaces

at the macro-scale level as a way to characterize the

degradation phenomena taking place at the micro-scale.
In the RVE, some mechanical processes can lead to
the material failure, such as strain localization, dam-

age, shear band formation, and so on. For simplicity,

the model is developed considering infinitesimal strain

hypothesis at both scales, however its extension to fi-

nite strain theory is straightforward. Body force effects

are also neglected for the sake of simplicity. Further-

more, the application of the present multiscale model

is restricted to a point x after the nucleation of a macro-

cohesive crack SM . The interested reader can follow

[104,123] for a detailed description of a very simmi-

lar to that presented here. In such contributions this

approach has been called Failure-Oriented Multiscale

Formulation (FOMF).

The domain at macro scale isΩM ∈ R3, with bound-

ary ΓM (outward unit normal nM ) and coordinates x.
At such scale, a crack has been nucleated due to mate-

rial degradation, generating a surface SM (with normal

nMS ). The kinematics at point x in the macro scale but

not on the surface SM is given by a displacement field
uM = uM which is continuous, while on the surface SM
it is characterized by the pair uM = (uM ,βM ), where
βM is the displacement jump on the surface at the

macro scale. So, the structure of the kinematics at the

such scale is UM = H1(ΩM ) × L2(SM ). The strain ac-

tion operator is DM (·) = (∇S
x(·), ·). So, over the surface

the strain is given by the pair DM = (εM (ūM ),βM ) =

(∇S
x ūM ,βM ). Thus, it is EM = {(εM ,βM ) ∈ L

2(ΩM )×
L2(SM ), εM = εTM}. Observe that while the continuous

displacement and strain action are defined in ΩM , the

displacement jump is defined in SM . Hence, at macro

scale we have nM = 2 (RM = 6) and mM = 2 (s1M = 6,
s2M = 3 and SM = 9).

At the micro scale, the RVE is denoted as Ωµ ∈ R3

(boundary Γµ, unit normal nµ, coordinates y). Due to

material degradation mechanisms, a failure zone (where

strain localization takes place) is identified, and de-

noted by ΩLµ ⊆ Ωµ (boundary ΓLµ , unit normal nLµ).

This domain can be regarded as constructed by the
product of a middle surface Sµ (generally tortuous at

the micro scale, with coordinates y0 and normal nµS(y0))
and a length lµ(y0) representing the thickness of the

strain localization zone. Note that nµS(y) = nµS(y0) and

lµ(y) = lµ(y0) because of the property which states

thatΠµ
Sy = y0, beingΠ

µ
S the orthogonal projection op-

erator over the middle surface Sµ. At this scale, the dis-
placement is characterized by the pair uµ = (uµ,βµ),

where uµ is defined in Ωµ and is a continuous compo-
nent of the displacement field, and βµ is a displacement

field defined in ΩLµ . Then the structure of the kinemat-

ics at this scale is

Uµ = H1(Ωµ)× L2(ΩLµ ). (240)

The strain action operator at this scale is given by

Dµ(·) =

(
∇S

y(·), φ
L
µ(y)

(·)⊗S nµS(y0)

lµ(y0)

)
, (241)

where

φLµ(y) =

{
1 if y ∈ ΩLµ

0 otherwise
(242)

Then, we have

Dµ((uµ,βµ)) = ∇S
yuµ + φLµ(y)

βµ ⊗S nµS(y0)

lµ(y0)
(243)
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from which it is Eµ = {εµ ∈ L
2(Ωµ), εµ = εTµ}. With

this structure we have nµ = 2 (r1µ = 3, r2µ = 3 and

Rµ = 6) and mµ = 1 (Sµ = 6).

For the intermediate point-valued spaces it is Rx
UM

=

{w ∈ R3, w = uM |x, uM ∈ UM} and Rx
EM

= {(ǫ,b) ∈
R3×3 × R3, (ǫ,b) = (εM |x,βM |x), (εM ,βM ) ∈ EM}.
Note here that not all the kinematic fields from the

macro scale play a role in the kinematic transfer, i.e.

field βM is not considered as part of the generalized

displacement to be inserted into the micro scale, but

it is considered as a generalized strain action. For this

case it is R̂x
UM

= Rx
UM

and, unlike previous examples,

we have now R̂x
EM

= {(ǫ,b) ∈ Rx
EM
, ǫ = 0}.

The insertion operator for the generalized macro

displacement is

J U
µ (uM |x) = (uM |x,0) (244)

i.e only uM |x is uniformly inserted in the entire domain
Ωµ. The generalized strain actions provided from the

macro scale is inserted as follows

J E
µ ((εM |x,βM |x)) =

(
εM |x(y − yo),

βM |x
θ

)
, (245)

where the first component is the displacement at micro

scale obtained through an affine insertion of the macro

deformation (εM |x) over the entire RVE, and the sec-

ond component is a displacement field (βµ) obtained
from a uniform insertion over ΩLµ of the jump displace-

ment at macro scale βM |x, which is also a component
of the generalized strain action at point x of the macro

crack SM . In addition, yo = 1
|Ωµ|

∫
Ωµ

y dΩµ (the geo-

metric center of the RVE), and θ is a non-dimensional

parameter given by

θ =
1

|Sµ|

∥∥∥∥∥

∫

ΩL
µ

nµS(y0)

lµ(y0)
dΩLµ

∥∥∥∥∥ , (246)

where |Sµ| means the measure of the middle surface
Sµ. Taking into account the above definitions and that

lµ(y0) measures the thickness of the localization do-

main ΩLµ at point y0, the parameter θ could be rewrit-

ten as follows

θ =
1

|Sµ|

∥∥∥∥∥

∫

ΩL
µ

nµS(y0)

lµ(y0)
dΩLµ

∥∥∥∥∥ =

1

|Sµ|

∥∥∥∥∥

∫

Sµ

nµS(y0) dSµ

∥∥∥∥∥ . (247)

Hence, θ can be interpreted as a tortuosity index of the

surface Sµ. In fact, if Sµ is a plane we have θ = 1,

see [104] where this approach was adopted. With the

introduction of the tortuosity index the model in [104]

is extended to take into account more complex situa-

tions. The need to introduce the factor θ has a strict
kinematical justification in order to preserve the mag-

nitude of the inserted macro-displacement jump βM |x,
which becomes evident later (see (260)).

Besides, it is defined nµS as a unit vector given by

nµS =

∫
Sµ

nµS(y0) dSµ∥∥∥
∫
Sµ

nµS(y0) dSµ

∥∥∥
. (248)

Moreover, we assume that the fluctuation related to

the field βµ, denoted by β̃µ is null. Then, at micro scale

we have

(uµ,βµ) =

(
uM |x+εM |x(y−yo)+ ũµ,

βM |x
θ

)
. (249)

And the strain action at micro scale results

εµ = Dµ((uµ,βµ)) =

εM |x +∇S
y ũµ + φLµ(y)

βM |x ⊗S nµS(y0)

θ lµ(y0)
. (250)

In view of the characteristics of space R̂x
EM

, we have

that the virtual strain action (or kinematically admis-

sible variations of the strain) becomes

ε̂µ = ∇S
y
ˆ̃uµ + φLµ(y)

β̂M |x ⊗S nµS(y0)

θ lµ(y0)
. (251)

Here, it is verified that

Dµ(J
U
µ (uM |x)) = 0, (252)

and

Dµ(J
E
µ ((εM |x,βM |x))) = εM |x

+ φLµ(y)
βM |x ⊗S nµS(y0)

θ lµ(y0)
. (253)

We now define the homogenization of the generalized

micro displacement fields. This linear aplication maps

generalized displacements from Uµ to Rx
UM

, so the op-

erator can be represented by a 2×1 rectangular matrix

where the only component to be characterized is

HU
µ

11
((uµ,βµ)) =

1

|Ωµ|

∫

Ωµ

uµ dΩµ, (254)

while the remainder component is zero, since only uM |x
was inserted, see (244).

In turn, the homogenization of the strain action is

performed through a linear rectangular operator (rep-

resented by a 2× 1 matrix). We postulate the following

block homogenization operators

HE
µ

11
(εµ) =

1

|Ωµ|

∫

Ωµ

εµ dΩµ,

for J E
µ ((εM |x,0)) (255)
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HE
µ

21
(εµ) =

1

|Sµ|
Π(nµS)

[ ∫

ΩL
µ

εµ dΩ
L
µ

]
,

for J E
µ ((0,βM |x)) (256)

where Π(·)[·] is a projection defined through the fol-

lowing operation

Π(c)[a⊗S b] = (b · c)a for any a,b, c. (257)

Observe that, as stated by (59), the insertion oper-

ator J U
µ satisfies

HU
µ

11
(J U

µ (uM |x)) = HU
µ

11
((uM |x,0)) =

1

|Ωµ|

∫

Ωµ

uM |xdΩµ = uM |x. (258)

Now we show that expression (60) (which constraints

the choice of J E
µ ) also holds. First note that applying

(255) to (253), the definition of J E
µ satisfies

HE
µ

11
(Dµ(J

E
µ ((εM |x,0)))) =

1

|Ωµ|

∫

Ωµ

εM |x dΩµ = εM |x. (259)

Second, applying (256) to (253), and using the defini-
tions (247)-(248), J E

µ satisfies

HE
µ

21
(Dµ(J

E
µ ((0,βM |x)))) =

1

|Sµ|
Π(nµS)

[ ∫

ΩL
µ

βM |x ⊗S nµS(y0)

θlµ(y0)
dΩLµ

]
=

Π(nµS)

[
βM |x ⊗S

1

θ|Sµ|

∫

Sµ

nµS(y0) dSµ

]
=

Π(nµS)
[
βM |x ⊗S nµS

]
= βM |x. (260)

Let us apply the kinematical admissibility concept for

generalized displacements. We require that (see (61))

HU
µ

11
((uµ,βµ)) = HU

µ

11
(J U

µ (uM |x)). (261)

Constraint (261) is accomplished by forcing

∫

Ωµ

ũµ dΩµ = 0. (262)

Concerning the kinematical admissibility for strain ac-

tions, we must satisfy (see expression (62))

HE
µ

11
(εµ) = HE

µ

11
(Dµ(J

E
µ ((εM |x,βM |x)))), (263)

HE
µ

21
(εµ) = HE

µ

21
(Dµ(J

E
µ ((εM |x,βM |x)))). (264)

From the structure of the HE
µ

11
-component, given by

(255), constraint (263) yields the following definition of

kinematical admissibility

1

|Ωµ|

∫

Ωµ

εµ dΩµ =

1

|Ωµ|

∫

Ωµ

Dµ(J
E
µ ((εM |x,βM |x))) dΩµ (265)

Then, since (259) holds, and considering (250), expres-
sion (265) is fulfilled if
∫

Ωµ

∇S
y ũµ dΩµ = 0, (266)

which is equivalent to
∫

Γµ

ũµ ⊗S nµ dΓµ = 0. (267)

On the other hand, from the HE
µ

21
-component of the

homogenization operator, see (256), the kinematical ad-
missibility requirement (264) results in

1

|Sµ|
Π(nµS)

[ ∫

ΩL
µ

εµ dΩ
L
µ

]
=

1

|Sµ|
Π(nµS)

[ ∫

ΩL
µ

Dµ(J
E
µ ((εM |x,βM |x))) dΩ

L
µ

]
.

(268)

Using (250) and (260), we get that condition (268) is

satisfied whenever

Π(nµS)

[ ∫

ΩL
µ

∇S
y ũµ dΩ

L
µ

]
= 0, (269)

which, after integration by parts, results equivalent to

Π(nµS)

[ ∫

ΓL
µ

ũµ ⊗S nµ dΓ
L
µ

]
= 0, (270)

and from definition (257), it yields
∫

ΓL
µ

(nµ · nµS)ũµ dΓ
L
µ = 0. (271)

Thus, the space of kinematically admissible fluctuations

for the uµ-component of the displacement field at micro

scale is defined as

Kinũµ
= Varũµ

=

{
ũµ ∈ H1(Ωµ),

∫

Ωµ

ũµ dΩµ = 0,

∫

Γµ

ũµ ⊗S nµ dΓµ = 0,

∫

ΓL
µ

ũµ(nµ · nµS) dΓ
L
µ = 0

}
. (272)

We recall here that β̃µ = 0.
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Remark 26 In [104,123], a slightly different kinemat-

ical formulation was derived. This remark describes such
model. Only the kinematical ingredients which are dif-
ferent between the proposal of [104,123] and the present

approach are discussed here.

The kinematical counterpart in terms of macro gen-
eralized strain actions, DM , on the cohesive crack, was

reinterpreted in the cited contributions. The strain ac-
tion operator is defined as DM (·) = (∇S

x(·), (·)⊗
S nµS).

So, DM is given by the pair (εM (uM ), εLM (βM )) =

(∇S
xuM ,βM ⊗S nµS). Then, it is EM = {(εM , ε

L
M ) ∈

L
2(ΩM ) × L

2(SM ), εM = εTM , ε
L
M = (εLM )T }. Observe

that the term εLM has a very intuitive physical inter-
pretation: a strain-like action, or a localized strain-like

mode, induced by the displacement jump βM acting on

the macro cohesive surface SM , with unit normal vector

nµS .

The structure of the micro-scale generalized displace-

ment vector space results in: Uµ = H1(Ωµ)×H1(Ωµ)×
L2(ΩLµ ). As before we have: uµ = (uµ,γµ,βµ) ∈ Uµ.
The insertion operator for the generalized macro strain

actions is the following

J E
µ ((εM |x, ε

L
M |x)) =

(
0, εM |x(y − yo),

βM |x
θ

)
. (273)

Instead of (256), the following alternative homoge-

nization operator is considered

HE
µ

21
(εµ) =

1

|Sµ|

∫

Ωµ

εµ dΩµ,

for J E
µ ((0, ε

L
M |x)). (274)

From (274), equation (60) is now verified as seen next

HE
µ

21
(Dµ(J

E
µ ((0, ε

L
M |x)))) =

1

|Sµ|

∫

ΩL
µ

βM |x ⊗S nµS(y0)

θ lµ(y0)
dΩLµ =

βM |x ⊗S nµS = εLM |x (275)

In this case, the kinematical admissibility concept
for strain actions can be written as

HE
µ

11
(εµ) = HE

µ

11
(Dµ(J

E
µ ((εM |x, ε

L
M |x)))), (276)

HE
µ

21
(εµ) = HE

µ

21
(Dµ(J

E
µ ((εM |x, ε

L
M |x)))). (277)

Fulfillment of expressions (276)-(277) requires that

1

|Ωµ|

∫

Ωµ

∇S
y ũµ dΩµ = 0, (278)

1

|Sµ|

∫

ΩL
µ

∇S
y ũµ dΩ

L
µ = 0, (279)

or integrating by parts
∫

Γµ

ũµ ⊗S nµ dΓµ = 0, (280)

∫

ΓL
µ

ũµ ⊗S nLµ dΓ
L
µ = 0. (281)

The previous discussion leads to the following space
of kinematically admissible fluctuations of the displace-

ment field at the micro scale

Kin◦ũµ
= Var◦ũµ

=

{
ũµ ∈ H1(Ωµ),

∫

Ωµ

ũµ dΩµ = 0,

∫

Γµ

ũµ ⊗S nµ dΓµ = 0,

∫

ΓL
µ

ũµ ⊗S nLµ dΓ
L
µ = 0

}
. (282)

It is now clear that Var◦ũµ
⊂ Varũµ

. Then, the multi-

scale model developed in [104,123], which results from

the use of Var◦ũµ
given by (282), is kinematically more

restricted than the model developed in the body of this

section, which results from using Varũµ
given by (272).

The internal virtual power associated to point x

over a macro-cohesive crack (which is to be linked with

the RVE) is given by the product TM |x • β̂M |x =

ω1 TM |x · β̂M |x, where TM |x represent the traction

vector acting on the crack, at point x. The cohesive

traction TM |x is identified as a dual quantity (power-

conjugate) respect to β̂M |x and its constitutive char-

acterization will be obtained from the homogenization

of a micro-mechanical problem. At the RVE-level, after

exploiting the form of the admissible variations ε̂µ (see
(251)), the internal virtual power results

P int
µ =

∫

ΩL
µ

σµ ·
β̂M |x ⊗S nµS(y)

θ lµ(y)
dΩLµ

+

∫

Ωµ

σµ · ∇S
y
ˆ̃uµ dΩµ (283)

Therefore, the formulation of the Principle of Multiscale

Virtual Power for the present application is given by the

following statement.

PMVP. It is said that TM |x and σµ are equilibrated

if the following variational equation is satisfied

TM |x • β̂M |x =

∫

ΩL
µ

σµ ·
β̂M |x ⊗S nµS(y)

θ lµ(y)
dΩLµ

+

∫

Ωµ

σµ · ∇S
y
ˆ̃uµ dΩµ

∀((0, β̂M |x), ˆ̃uµ) ∈ R̂x
EM

× Varũµ
. (284)
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�

The consequences of the principle formulated above

are the following.

Equilibrium problem at micro scale. Con-

sider β̂M |x = 0 then, the equilibrium problem

at the micro scale is formulated as follows

∫

Ωµ

σµ · ∇S
y
ˆ̃uµ dΩµ = 0 ∀ˆ̃uµ ∈ Varũµ

. (285)

Traction homogenization at macro scale.

Let ˆ̃uµ = 0, then

TM |x • β̂M |x =

∫

ΩL
µ

σµ ·
β̂M |x ⊗S nµS(y)

θ lµ(y)
dΩLµ

∀(0, β̂M |x) ∈ R̂x
EM
. (286)

Working on the right hand side of the above ex-

pression we obtain

∫

ΩL
µ

σµ ·
β̂M |x ⊗S nµS(y)

θ lµ(y)
dΩLµ =

[ ∫

Sµ

1

θ
σµ(y0)n

µ
S(y0) dSµ

]
· β̂M |x, (287)

where σµ(y0) is the mean value of σµ over the
thickness of the domain of localization ΩLµ at

point y0. Therefore, the homogenization formula
for TM |x results

TM |x =
1

θ|Sµ|

∫

Sµ

σµ(y0)n
µ
S(y0) dSµ. (288)

Observe that the dimensional parameter ω1 in-
volved in the duality product (·)• (·) can be eas-

ily identified from (287) being, in this problem,

ω1 = |Sµ|. Consider the particular case where

Sµ is a plane (nµS(y0) = nµS) and lµ(y0) = lµ are

constants, then we have θ = 1, and the above

homogenization formula (288) agrees with that

proposed in [104], which is repeated here

TM |x =
1

|ΩLµ |

∫

ΩL
µ

σµn
µ
S dΩ

L
µ . (289)

Numerical simulations obtained using a very similar

model to the one presented here are discussed in de-

tail in Section 7.2.

6.5 Convective/dissipative macro effects - Classical

micro fluidics

In what follows we consider the multiscale modeling in

fluid mechanics for a steady state problem. At the mi-

cro scale the fluid is considered to behave as Newtonian,

and the focus is on the interplay between forces due to
convective effects (acceleration forces) and constitutive
(viscous) effects phenomena. In addition, incompress-

ibility constraint is considered at both scales. That is,

the materials of the domain at micro scale are all in-

compressible, resulting in an incompressible behavior

at macro scale.

At macro scale, the domain (configuration of the

body) is an open subset ΩM ⊂ R3, with smooth bound-

ary ΓM (outward unit normal nM ), and whose coor-
dinates are x. We consider an Eulerian description of

the physical phenomena. The generalized displacement
is the velocity vector field uM = vM , with structure

given by UM = {vM ∈ H1(ΩM ), divx vM = 0}. The
strain action operator is not the classical symmetric

gradient, but the full gradient, which will allow us to

retrieve non-symmetric stress tensors due to convec-

tive effects at micro scale, so DM (·) = gM (·) = ∇x(·).
Thus, it is DM = gM (vM ) = ∇xvM , and therefore
DM ∈ EM = {gM ∈ L

2(ΩM ), tr(gM ) = 0}. All fields

are defined in ΩM . Then, we have nM = 1 (RM = 3)

and mM = 1 (SM = 9).

At the micro-scale we have a similar model to the

one used at the macro scale, so the RVE domain is

Ωµ ⊂ R3, with smooth boundary Γµ (outward unit

normal nµ), whose coordinates are y. This RVE is a

representative element standing for a fixed window in

the micro scale (Eulerian approach). As well, the gen-

eralized displacement is a velocity field, expressed as

uµ = vµ = v̄µ+ṽµ, with structure given by Uµ = {vµ ∈
H1(Ωµ), divy vµ = 0}. Equivalently, the strain action

operator is the full gradient Dµ(·) = ∇y(·), so Dµ =

gµ(vµ) = ∇yvµ, so Dµ ∈ Eµ = {gµ ∈ L
2(Ωµ), tr(gµ) =

0}. In this case, the strain action and velocity are dis-

tributed throughout the entire RVE domain, implying

that Ωg

µ = Ωv
µ = Ωµ. Here, it is nµ = 1 (Rµ = 3) and

mµ = 1 (Sµ = 9).

The definition of the intermediate space of point-

valued velocities at macro scale is given by Rx
UM

= {w ∈
R3, w = vM |x, vM ∈ UM}, and for the strain action we

have Rx
EM

= {d ∈ R3×3, d = gM |x, gM ∈ EM}. Note
that tensors in Rx

EM
are such that tr(d) = 0. Here, it is

R̂x
UM

= Rx
UM

and R̂x
EM

= Rx
EM

.

The insertion operator for the velocity field is de-
fined as follows

J U
µ (vM |x) = vM |x, (290)
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and the insertion operator for the strain action is pro-

posed to be

J E
µ (gM |x) = gM |x(y − yo), (291)

with yo being the geometrical center of the RVE, i.e.

yo =
1
Ωµ

∫
Ωµ

yΩµ. Then, at micro scale we have

vµ = vM |x + gM |x(y − yo) + ṽµ. (292)

Considering the divergence of vµ, taking into account
that vM |x is constant with respect to y and that gM |x
is trace free, we obtain

divy vµ = divy(vM |x + gM |x(y − yo) + ṽµ) =

divy ṽµ, (293)

so, the velocity field at micro scale is divergence free

provided that

divy ṽµ = 0. (294)

Besides, since Dµ(J
U
µ (vM |x)) = ∇yvM |x = 0, we have

gµ = gM |x +∇yṽµ. (295)

Regarding homogenization, we define the following ho-

mogenization operator for the velocity field

HU
µ (vµ) =

1

|Ωµ|

∫

Ωµ

vµ dΩµ, (296)

and for the strain action field

HE
µ(εµ) =

1

|Ωµ|

∫

Ωµ

gµ dΩµ. (297)

By definition of the insertion operator, it is verified

that equation (59) is satisfied, i.e.

HU
µ (J

U
µ (vM |x)) =

1

|Ωµ|

∫

Ωµ

J U
µ (vM |x) dΩµ = vM |x. (298)

In addition, the kinematical admissibility concept (see

equation (61)) states that

1

|Ωµ|

∫

Ωµ

vµ dΩµ =
1

|Ωµ|

∫

Ωµ

J U
µ (vM |x) dΩµ. (299)

By construction it is

1

|Ωµ|

∫

Ωµ

gM |x(y − yo) dΩµ = 0. (300)

So, (299) is satisfied by ensuring

1

|Ωµ|

∫

Ωµ

ṽµ dΩµ = 0. (301)

For the insertion of the strain action, by construction

we have that equation (60) is satisfied, in fact

HE
µ(Dµ(J

E
µ (gM |x))) =

1

|Ωµ|

∫

Ωµ

Dµ(J
E
µ (gM |x)) dΩµ = gM |x, (302)

while the linkage between strain action at macro and

micro scales is performed by the kinematical admissi-

bility concept (see (62)), which states that

1

|Ωµ|

∫

Ωµ

gµ dΩµ =

1

|Ωµ|

∫

Ωµ

Dµ(J
E
µ (gM |x)) dΩµ. (303)

Expression (303) is fulfilled by enforcing

1

|Ωµ|

∫

Ωµ

∇yṽµ dΩµ = 0. (304)

After integrating by parts we reach

1

|Ωµ|

∫

Γµ

ṽµ ⊗ nµ dΓµ = 0. (305)

Thus, we define the space of kinematically admissible

velocity fluctuation fields at micro scale as being

Kinṽµ
= Varṽµ

=

{
ṽµ ∈ H1(Ωµ), divy ṽµ = 0,

∫

Ωµ

ṽµ dΩµ = 0,

∫

Γµ

ṽµ ⊗ nµ dΓµ = 0

}
. (306)

The internal virtual power at macro scale is given by
P int
M =

∫
ΩM

σM · ∇xv̂M dΩM . This internal power at a

given point x is P int
M,x = σM |x • ĝM |x. The external vir-

tual power in this case is given by acceleration forces,

particularly the convective acceleration forces P ext
M =∫

ΩM
cM · v̂M dΩM . Here we slightly modified the nota-

tion, using cM instead of fM . In the classical single scale

scenario the convective force is cM = ρ(∇xvM )vM , but
in the present multiscale setting we will retrieve such

term from the micro scale. This external power at a

given point x is P ext
M,x = cM |x • v̂M |x.

After exploiting the composition of the strain ac-

tion, and introducing the hypothesis about the New-

tonian behavior of the fluid at micro scale, i.e. σµ =
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2µ∇S
yvµ, being µ the fluid viscosity, the internal vir-

tual power at micro scale results

P int
µ =

∫

Ωµ

2µ∇S
yvµ · ∇yv̂µ dΩµ =

∫

Ωµ

2µ∇S
yvµ · (ĝM |x +∇y

ˆ̃vµ) dΩµ =

∫

Ωµ

2µ∇S
yvµ · ĝM |x dΩµ

+

∫

Ωµ

2µ∇S
yvµ · ∇y

ˆ̃vµ dΩµ. (307)

The external virtual power accounting for the convec-

tive effects is expressed as

P ext
µ =

∫

Ωµ

cµ · v̂µ dΩµ =

∫

Ωµ

ρ(∇yvµ)vµ · v̂µ dΩµ =

∫

Ωµ

ρ(∇yvµ)vµ · (v̂M |x + ĝM |x(y − yo) + ˆ̃vµ) dΩµ =

∫

Ωµ

ρ(∇yvµ)vµ · v̂M |x dΩµ

+

∫

Ωµ

(ρ(∇yvµ)vµ ⊗ (y − yo)) · ĝM |x dΩµ

+

∫

Ωµ

ρ(∇yvµ)vµ · ˆ̃vµ dΩµ. (308)

The formulation of the Principle of Multiscale Virtual

Power for the present case is the following.

PMVP. It is said that (σM |x, cM |x) and (σµ, cµ) =

(2µ∇S
yvµ, (∇yvµ)vµ) are equilibrated if the following

variational equation is satisfied

σM |x • ĝM |x + cM |x • v̂M |x =
∫

Ωµ

2µ∇S
yvµ · ĝM |x dΩµ +

∫

Ωµ

2µ∇S
yvµ · ∇y

ˆ̃vµ dΩµ

+

∫

Ωµ

ρ(∇yvµ)vµ · v̂M |x dΩµ

+

∫

Ωµ

(ρ(∇yvµ)vµ ⊗ (y − yo)) · ĝM |x dΩµ

+

∫

Ωµ

ρ(∇yvµ)vµ · ˆ̃vµ dΩµ

∀(v̂M |x, ĝM |x, ˆ̃vµ) ∈ R̂x
UM

× R̂x
EM

× Varṽµ
. (309)

�

The consequences of the principle enunciated above

are listed below.

Equilibrium problem at micro scale.At first,

consider v̂M |x = 0 and ĝM |x = 0. The equilib-

rium problem at the micro scale is defined by the

following variational equation

∫

Ωµ

2µ∇S
yvµ · ∇y

ˆ̃vµ dΩµ

+

∫

Ωµ

ρ(∇yvµ)vµ · ˆ̃vµ dΩµ = 0

∀ˆ̃vµ ∈ Varṽµ
. (310)

Stress homogenization at macro scale. Con-

sider now v̂M |x = 0 and ˆ̃vµ = 0. Then it results

σM |x • ĝM |x =

∫

Ωµ

2µ∇S
yvµ · ĝM |x dΩµ

+

∫

Ωµ

(ρ(∇yvµ)vµ ⊗ (y − yo)) · ĝM |x dΩµ

∀ĝM |x ∈ R̂x
EM
. (311)

Therefore, we have that the element σM |x −
1

|Ωµ|

∫
Ωµ

[2µ∇S
yvµ+(ρ(∇yvµ)vµ⊗(y−yo))] dΩµ

is in (R̂x
EM

)⊥. Since in the macro scale the inter-
nal power is performed by σM against the space

of divergence free velocity fields, it turns out that

the relevant part of the stress, from the internal

power point of view, is the deviatoric component

of σM , called σdev
M . Then the homogenization for

this component is

σdev
M |x =

1

|Ωµ|

∫

Ωµ

[2µ∇S
yvµ

+ ρ((∇yvµ)vµ ⊗ (y − yo))
dev] dΩµ, (312)

where dev denotes deviatoric operation. The du-

ality operation is σM |x • ĝM |x = |Ωµ|σM |x ·
ĝM |x = |Ωµ|σ

dev
M |x · ĝM |x, so, it is ω1 = |Ωµ|.

In this expression, it is clear the contribution

of the different phenomena from the micro scale

onto the homogenized macro scale stress tensor,

which is clearly non-symmetric because of the

last term in (312).

Convective force homogenization at macro

scale. Now, consider ĝM |x = 0 and ˆ̃vµ = 0,

which yields

cM |x • v̂M |x =

∫

Ωµ

ρ(∇yvµ)vµ · v̂M |x dΩµ

∀v̂M |x ∈ R̂x
UM
, (313)

from where we obtain

cM |x =
1

|Ωµ|

∫

Ωµ

ρ(∇yvµ)vµ dΩµ. (314)
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Notice that the duality operation is cM |x•v̂M |x =

|Ωµ|cM |x · v̂M |x, and then γ1 = |Ωµ|.

Further manipulation of the above expression

by introducing the form of the velocity field at

micro scale, leads to

cM |x =

1

|Ωµ|

∫

Ωµ

ρ∇yvµ(vM |x+gM |x(y−yo)+ṽµ) dΩµ =

(
1

|Ωµ|

∫

Ωµ

ρ dΩµ

)
gM |xvM |x

+
1

|Ωµ|
gM |xgM |x

∫

Ωµ

ρ(y − yo) dΩµ

+
1

|Ωµ|
gM |x

∫

Ωµ

ρṽµ dΩµ

+
1

|Ωµ|

(∫

Ωµ

ρ∇yṽµ dΩµ

)
vM |x

+
1

|Ωµ|

(∫

Ωµ

ρ∇yṽµ ⊗ (y − yo) dΩµ

)
gM |x+

1

|Ωµ|

∫

Ωµ

ρ(∇yṽµ)ṽµ dΩµ. (315)

For the particular case of a fluid in the micro

scale with constant density it simplifies to

cM |x = ρ

[
gM |xvM |x

+
1

|Ωµ|

(∫

Ωµ

∇yṽµ ⊗ (y − yo) dΩµ

)
gM |x

+
1

|Ωµ|

∫

Ωµ

(∇yṽµ)ṽµ dΩµ

]
. (316)

Remark 27 The model will deliver, as an internal re-

active force, a certain pressure field in the macro scale
and a micro pressure field. These are reactions with re-
spect to the macro and micro incompressibility. More

general situations can be thought of if we consider, for

example, the interaction of an incompressible flow with

compressible objects at micro scale, delivering an effec-

tive compressible response.

Remark 28 Considering ṽµ = 0 in the expressions
derived above, and assuming constant density and vis-

cosity, we obtain a simplified multiscale model for fluid
flow whose homogenized form for the stress becomes

σdev
M |x = 2µgSM |x

+ρ

[
gM |xgM |x

(
1

|Ωµ|

∫

Ωµ

(y−yo)⊗(y−yo) dΩµ

)]dev
.

(317)

Therefore, the stress loses symmetry, while accounts for

second order terms due to the convective phenomena at

micro scale. In turn, under the same assumptions as

before, for the convective force, from (316), we obtain

cM |x = ρgM |xvM |x. (318)

That is, such simple model contributes with high order

terms in the behavior of stresses, while does not affect

the convective force.

Remark 29 In fluid mechanics, it is customary to have

obstacles at the micro scale. Consider the case in which

obstacles are fixed and a no-slip condition is consid-
ered over the boundaries. In such case, obstacles intro-
duce external forces, which are the reactive forces to
the no-slip condition the flow must comply. These reac-

tive forces are put in evidence through the corresponding

Lagrange multipliers. The external virtual power at the

micro scale changes in this case to account for such ex-

ternal forces. Consider that Γ iobs, i = 1, . . . , Nobs, are
the boundaries corresponding to the micro scale obsta-

cles. Lagrange multipliers are denoted by λiµ ∈ Λi (Λi

a proper functional space), i = 1, . . . , Nobs. Then it is

P ext
µ =

∫

Ωµ

cµ · v̂µ dΩµ +

Nobs∑

i=1

∫

Γ i
obs

λiµ · v̂µ dΓ
i
obs =

∫

Ωµ

ρ(∇yvµ)vµ · v̂µ dΩµ +

Nobs∑

i=1

∫

Γ i
obs

λiµ · v̂µ dΓ
i
obs =

∫

Ωµ

ρ(∇yvµ)vµ · (v̂M |x + ĝM |x(y − yo) + ˆ̃vµ) dΩµ

+

Nobs∑

i=1

∫

Γ i
obs

λiµ · (v̂M |x + ĝM |x(y − yo) + ˆ̃vµ) dΓ
i
obs =

[ ∫

Ωµ

ρ(∇yvµ)vµ dΩµ +

Nobs∑

i=1

∫

Γ i
obs

λiµ dΓ
i
obs

]
· v̂M |x

+

[ ∫

Ωµ

ρ(∇yvµ)vµ ⊗ (y − yo) dΩµ

+

Nobs∑

i=1

∫

Γ i
obs

λiµ ⊗ (y − yo) dΓ
i
obs

]
· ĝM |x

+

∫

Ωµ

ρ(∇yvµ)vµ · ˆ̃vµ dΩµ

+

Nobs∑

i=1

∫

Γ i
obs

λiµ · ˆ̃vµ dΓ
i
obs. (319)
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Thus, the equilibrium problem at the micro scale is

∫

Ωµ

2µ∇S
yvµ · ∇y

ˆ̃vµ dΩµ +

∫

Ωµ

ρ(∇yvµ)vµ · ˆ̃vµ dΩµ

+

Nobs∑

i=1

∫

Γ i
obs

λiµ · ˆ̃vµ dΓ
i
obs +

Nobs∑

i=1

∫

Γ i
obs

λ̂
i

µ · vµ dΓ
i
obs = 0

∀(ˆ̃vµ, λ̂
1

µ, . . . , λ̂
Nobs

µ ) ∈ Varṽµ
×Λ1 × . . .×ΛNobs .

(320)

The homogenization form for the (deviatoric component

of the) stress results

σdev
M |x =

1

|Ωµ|

[ ∫

Ωµ

[2µ∇S
yvµ + ρ((∇yvµ)vµ ⊗ (y − yo))

dev] dΩµ

+

Nobs∑

i=1

∫

Γ i
obs

(λiµ ⊗ (y − yo))
dev dΓ iobs

]
, (321)

and that of the convective acceleration forces is

cM |x =
1

|Ωµ|

[ ∫

Ωµ

ρ(∇yvµ)vµ dΩµ

+

Nobs∑

i=1

∫

Γ i
obs

λiµ dΓ
i
obs

]
. (322)

6.6 Thermo-mechanics with temperature fluctuations

This section is devoted to the problem of modeling

multiscale phenomena in the field of thermomechanics.

For simplicity, we consider infinitesimal strain theory

at both scales.

The domain in the macro scale is an open subset

ΩM ⊂ R3, with smooth boundary ΓM (outward unit

normal nM ) and with coordinates x. The generalized

displacements is now the displacement-temperature pair
uM = (uM , θM ), and then the structure of the space of

generalized displacements is UM = H1(ΩM )×H1(ΩM ).
The generalized strain action operator isDM (·) = (∇S

x(·),∇x(·)),
where ∇S is the symmetric gradient. Thus, we have

DM = (∇S
xuM ,∇xθM ), and therefore DM ∈ EM =

{(εM ,gM ) ∈ L
2(ΩM ) × L2(ΩM ), εM = εTM}. All the

kinematic fields are defined in ΩM . It is then nM = 2

(RM = 4), and mM = 2 (SM = 9).

At the micro-scale we have classical thermomechan-

ics with the RVE domain being Ωµ ⊂ R3, with smooth

boundary Γµ (outward unit normal nµ) and coordi-

nates y. Generalized displacements at this scale are also
displacement-temperature pairs, i.e. uµ = (uµ, θµ) =

(ūµ + ũµ, θ̄µ + θ̃µ), with underlying structure given by
Uµ = H1(Ωµ) × H1(Ωµ). Analogously, it is Dµ(·) =

(∇S
y(·),∇y(·)), so Dµ = (∇S

yuµ,∇yθµ), and thus Dµ ∈

Eµ = {(εµ,gµ) ∈ L
2(Ωµ)×L2(Ωµ), εµ = εTµ}. At micro

scale the fields are defined in the entire RVE domain.

As for the macro scale, we have nµ = 2 (Rµ = 4) and

mµ = 2 (Sµ = 9).

The intermediate space of point-valued generalized

displacements at macro scale is Rx
UM

= {(w, τ) ∈ R3 ×
R, (w, τ) = (uM |x, θM |x), (uM , θM ) ∈ UM}, and for

the generalized strain actions Rx
EM

= {(ǫ,h) ∈ R3×3 ×
R3, (ǫ,h) = (εM |x,gM |x), (εM ,gM ) ∈ EM}. In this

case it is R̂x
UM

= Rx
UM

and R̂x
EM

= Rx
EM

. The opera-
tor which makes the insertion of the pair displacement-

temperature into the RVE domain is postulated to be

J U
µ ((uM |x, θM |x)) = (uM |x, θM |x), (323)

resulting in uniform fields over the entire RVE. In turn,
the generalized strain action from the macro scale is
postulated to be inserted into the micro scale as

J E
µ ((εM |x,gM |x)) =

(εM |x(y − yo),gM |x(y − yo)), (324)

with yo being the geometrical center of the RVE, i.e.

yo =
1
Ωµ

∫
Ωµ

yΩµ. Then, at micro scale we have the fol-

lowing expansion of the generalized displacement field

uµ = uM |x + εM |x(y − yo) + ũµ, (325)

θµ = θM |x + gM |x(y − yo) + θ̃µ. (326)

Naturally, it is Dµ(J
U
µ ((uM |x, θM |x))) = (0,0), from

which it results

εµ = εM |x +∇S
y ũµ, (327)

gµ = gM |x +∇yθ̃µ. (328)

Further, by construction the insertion operator J E
µ is

such that

Dµ(J
E
µ ((εM |x,gM |x))) = (εM |x,gM |x)

∀y ∈ Ωµ. (329)

Now, we define the following homogenization operator

for the generalized displacement field

HU
µ ((uµ, θµ)) =(

1

|Ωµ|

∫

Ωµ

uµ dΩµ,
1

|Ωµ|

∫

Ωµ

θµ dΩµ

)
, (330)

and for the generalized strain action field

HE
µ((εµ,gµ)) =(

1

|Ωµ|

∫

Ωµ

εµ dΩµ,
1

|Ωµ|

∫

Ωµ

gµ dΩµ

)
. (331)
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By construction, the operator J U
µ satisfies (see (59))

HU
µ (J

U
µ ((uM |x, θM |x))) =(

1

|Ωµ|

∫

Ωµ

uM |x dΩµ,
1

|Ωµ|

∫

Ωµ

θM |x dΩµ

)
=

(uM |x, θM |x). (332)

To put the kinematical admissibility into action let

us consider the generalized displacement field first. Then
we must fullfil (see constraint (61))

(
1

|Ωµ|

∫

Ωµ

uµ dΩµ,
1

|Ωµ|

∫

Ωµ

θµ dΩµ

)
=

(
1

|Ωµ|

∫

Ωµ

uM |x dΩµ,
1

|Ωµ|

∫

Ωµ

θM |x dΩµ

)
. (333)

In addition, observe that by construction it is

1

|Ωµ|

∫

Ωµ

εM |x(y − yo) dΩµ = 0, (334)

1

|Ωµ|

∫

Ωµ

gM |x(y − yo) dΩµ = 0. (335)

So the expression (333) is met by enforcing

(
1

|Ωµ|

∫

Ωµ

ũµ dΩµ,
1

|Ωµ|

∫

Ωµ

θ̃µ dΩµ

)
= (0, 0). (336)

Regarding the linkage between strain action at macro

and micro scales, first we have that the operator J E
µ

satisfies by construction (see requirement (60))

HE
µ(Dµ(J

E
µ ((εM |x,gM |x)))) =(

1

|Ωµ|

∫

Ωµ

εM |x dΩµ,
1

|Ωµ|

∫

Ωµ

gM |x dΩµ

)
=

(εM |x,gM |x). (337)

Second, we have that the kinematical admissibility con-

dition for generalized strain actions establishes (see con-

straint (62))

(
1

|Ωµ|

∫

Ωµ

εµ dΩµ,
1

|Ωµ|

∫

Ωµ

gµ dΩµ

)
=

(
1

|Ωµ|

∫

Ωµ

εM |x dΩµ,
1

|Ωµ|

∫

Ωµ

gM |x dΩµ

)
, (338)

which is fulfilled by enforcing

(
1

|Ωµ|

∫

Ωµ

∇S
y ũµ dΩµ,

1

|Ωµ|

∫

Ωµ

∇yθ̃µ dΩµ

)
=

(0,0). (339)

Integrating by parts yields in the expression above we

obtain

(
1

|Ωµ|

∫

Γµ

ũµ ⊗S nµ dΓµ,
1

|Ωµ|

∫

Γµ

θ̃µnµ dΓµ

)
=

(0,0), (340)

where ⊗S is the symmetric tensor product. Thus, we
define the space of kinematically admissible fluctuation

displacement fields at micro scale as being

Kin(ũµ,θ̃µ)
= Var(ũµ,θ̃µ)

=
{
(ũµ, θ̃µ) ∈ [H1(Ωµ)]

3 ×H1(Ωµ),

∫

Ωµ

ũµ dΩµ = 0,

∫

Ωµ

θ̃µ dΩµ = 0,

∫

Γµ

ũµ ⊗S nµ dΓµ = 0,

∫

Γµ

θ̃µnµ dΓµ = 0

}
. (341)

The internal virtual power at macro scale is given by
the contribution of the mechanical and thermal powers

P int
M =

∫
ΩM

σM · ∇S
x ûM dΩM +χ

∫
ΩM

qM · ∇xθ̂M dΩM
(χ is a dimensional scalar to make the sum of powers

dimensionally consistent, therefore, it has the units of

[temperature]−1). At a point x (linked to the RVE) we

then have P int
M,x = (σM |x, χqM |x) • (ε̂M |x, ĝM |x). The

external virtual power is P ext
M =

∫
ΩM

fM · ûM dΩM +

χ
∫
ΩM

hM · θ̂M dΩM , and at a point x it is P ext
M,x =

(fM |x, χhM |x) • (ûM |x, θ̂M |x). Observe that in the ex-
ternal virtual power the macro scale model allows for

classical body forces, fM , and sources of heat per unit
volume, hM .

The internal virtual power at micro scale, after ex-

ploiting the composition of the generalized strain action

at micro scale, results

P int
µ =

∫

Ωµ

σµ · ∇S
y ûµ dΩµ + χ

∫

Ωµ

qµ · ∇yθ̂µ dΩµ =

∫

Ωµ

σµ · (ε̂M |x +∇S
y
ˆ̃uµ) dΩµ

+ χ

∫

Ωµ

qµ · (ĝM |x +∇y
ˆ̃
θµ) dΩµ =

∫

Ωµ

σµ · ε̂M |x dΩµ +

∫

Ωµ

σµ · ∇S
y
ˆ̃uµ dΩµ

+ χ

∫

Ωµ

qµ · ĝM |x dΩµ + χ

∫

Ωµ

qµ · ∇y
ˆ̃
θµ dΩµ. (342)

In turn, the external virtual power in the present model

incorporates body forces fµ and sources of heat per unit

of volume hµ, both defined in the micro scale domain.
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It can be written as follows

P ext
µ =

∫

Ωµ

fµ · ûµ dΩµ + χ

∫

Ωµ

hµ · θ̂µ dΩµ =

∫

Ωµ

fµ · (ûM |x + ε̂M |x(y − yo) + ˆ̃uµ) dΩµ

+ χ

∫

Ωµ

hµ · (θ̂M |x + ĝM |x(y − yo) +
ˆ̃
θµ) dΩµ =

∫

Ωµ

fµ · ûM |x dΩµ +

∫

Ωµ

(fµ ⊗S (y − yo)) · ε̂M |x dΩµ

+

∫

Ωµ

fµ · ˆ̃uµ dΩµ

+ χ

∫

Ωµ

hµθ̂M |x dΩµ + χ

∫

Ωµ

hµ(y − yo) · ĝM |x dΩµ

+ χ

∫

Ωµ

hµ
ˆ̃
θµ dΩµ. (343)

The formulation of the Principle of Multiscale Virtual

Power for the present case is the following.

PMVP. It is said that ((σM |x,qM |x), (fM |x, hM |x))
and ((σµ,qµ), (fµ, hµ)) are at equilibrium if the follow-
ing variational equation is satisfied

(σM |x, χqM |x) • (ε̂M |x, ĝM |x)

− (fM |x, χhM |x) • (ûM |x, θ̂M |x) =∫

Ωµ

σµ · ε̂M |x dΩµ +

∫

Ωµ

σµ · ∇S
y
ˆ̃uµ dΩµ

+ χ

∫

Ωµ

qµ · ĝM |x dΩµ + χ

∫

Ωµ

qµ · ∇y
ˆ̃
θµ dΩµ

−

∫

Ωµ

fµ · ûM |x dΩµ −

∫

Ωµ

(fµ ⊗
S (y− yo)) · ε̂M |x dΩµ

−

∫

Ωµ

fµ · ˆ̃uµ dΩµ

− χ

∫

Ωµ

hµθ̂M |x dΩµ − χ

∫

Ωµ

hµ(y − yo) · ĝM |x dΩµ

− χ

∫

Ωµ

hµ
ˆ̃
θµ dΩµ

∀((ûM |x, θ̂M |x), (ε̂M |x, ĝM |x), (ˆ̃uµ,
ˆ̃
θµ)) ∈

R̂x
UM

× R̂x
EM

× Var(ũµ,θ̃µ)
(344)

�

The consequences of the principle enunciated above

are listed below.

Equilibrium problem at micro scale. Firstly,
take (ûM |x, θ̂M |x) = (0, 0) and (ε̂M |x, ĝM |x) =

(0,0). The equilibrium problem at the micro scale
is defined by the following variational equations

∫

Ωµ

σµ · ∇S
y
ˆ̃uµ dΩµ + χ

∫

Ωµ

qµ · ∇y
ˆ̃
θµ dΩµ

−

∫

Ωµ

fµ · ˆ̃uµ dΩµ − χ

∫

Ωµ

hµ · ˆ̃θµ dΩµ = 0

∀(ˆ̃uµ,
ˆ̃
θµ) ∈ Var(ũµ,θ̃µ)

. (345)

That is, we obtain the classical variational for-

mulations for the mechanical

∫

Ωµ

σµ · ∇S
y
ˆ̃uµ dΩµ −

∫

Ωµ

fµ · ˆ̃uµ dΩµ = 0

∀(ˆ̃uµ, 0) ∈ Var(ũµ,θ̃µ)
, (346)

and thermal subsystems of the body

∫

Ωµ

qµ · ∇y
ˆ̃
θµ dΩµ −

∫

Ωµ

hµ · ˆ̃θµ dΩµ = 0

∀(0, ˆ̃θµ) ∈ Var(ũµ,θ̃µ)
. (347)

Generalized stress homogenization at macro

scale. Consider (ûM |x, θ̂M |x) = (0, 0) and (ˆ̃uµ,
ˆ̃
θµ) =

(0, 0). Then it results

(σM |x, χqM |x) • (ε̂M |x, ĝM |x) =∫

Ωµ

σµ · ε̂M |x dΩµ + χ

∫

Ωµ

qµ · ĝM |x dΩµ

−

∫

Ωµ

(fµ ⊗S (y − yo)) · ε̂M |x dΩµ

− χ

∫

Ωµ

hµ(y − yo) · ĝM |x dΩµ

∀(ε̂M |x, ĝM |x) ∈ R̂x
EM
. (348)

Therefore, the homogenization formulae for the

stress and the heat flux is obtained from identify-

ing that (σM |x, χqM |x)•(ε̂M |x, ĝM |x) = |Ωµ|σM |x·
ε̂M |x + χ|Ωµ|qM |x · ĝM |x, resulting in

σM |x =

1

|Ωµ|

∫

Ωµ

σµ − (fµ ⊗S (y − yo)) dΩµ, (349)

and

qM |x =
1

|Ωµ|

∫

Ωµ

qµ − hµ(y − yo) dΩµ. (350)

Note that in this case it is ω1 = ω2 = |Ωµ|.
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Generalized body force homogenization at

macro scale.Now, it is considered (ε̂M |x, ĝM |x) =

(0,0) and (ˆ̃uµ,
ˆ̃
θµ) = (0, 0), which yields

(fM |x, χhM |x) • (ûM |x, θ̂M |x) =∫

Ωµ

fµ · ûM |x dΩµ + χ

∫

Ωµ

hµ · θ̂M |x dΩµ

∀(ûM |x, θ̂M |x) ∈ R̂x
UM
. (351)

and from the fact that the product (fM |x, χhM |x)•
(ûM |x, θ̂M |x) = |Ωµ| fM |x · ûM |x + χ|Ωµ|hM |x ·
θ̂M |x, we have

fM |x =
1

|Ωµ|

∫

Ωµ

fµ dΩµ, (352)

and

hM |x =
1

|Ωµ|

∫

Ωµ

hµ dΩµ. (353)

Here, it is γ1 = γ2 = |Ωµ|.

Remark 30 Let us consider that at micro scale the

material exhibits a classical linear constitutive response

in the thermomechanic setting, i.e.

σµ = Cµεµ −Bµθµ, (354)

with Cµ and Bµ the elasticity tensor and the thermal

expansion tensor, respectively. Now, due to the splitting

of fields we have

σµ = Cµ(εM |x +∇S
y ũµ)

−Bµ(θM |x + gM |x · (y − yo) + θ̃µ). (355)

Beyond standard functional dependencies, in this case

σµ depends on gM |x, which implies that σM |x depends

on gM |x. As pointed out in [15], even having consid-
ered a standard thermodynamic setting at micro scale,

the multiscale formulation results in an extended ther-
modynamics setting at the macro scale.

7 Numerical Applications

7.1 A plasticity-like multiscale model of martensitic

transformation

In this section we present a multiscale model of stress-

induced martensitic transformation. The model relies

on a multiplicative plasticity-like description of the phase

transformation phenomenon that occurs at grain level

– here taken as the micro-scale – accounting for the ac-
companying large transformational strains. The overall

behaviour of the alloy is predicted by means of the ho-

mogenization of an RVE containing a sufficient number

of randomly oriented grains. A crucial feature of the

model presented here is that the mechanical dissipation

associated with the martensitic transformation above

the temperature of spontaneous austenite-martensite

transformation is rigorously accounted for in a newly

proposed plasticity-like criterion that incorporate the

ideas of Patel and Cohen [95] in a thermodynamically

consistent finite strain framework. We remark that the

multiscale class within which the present model is devel-

oped is standard in the sense that no discontinuities or
higher-order kinematics are present. In particular, the
model is an instance of the purely constitutive approach

referred to in Section 4. The main contribution here is

the level of refinement of the constitutive model used at

the micro-scale and our main aim is to show that higher

levels of micro-scale constitutive refinement can lead to

macro-scale material behaviour descriptions capable of
capturing the effects of rather complex phenomena –
phase transformation in the present case – usually not

easily captured by standard phenomenological (macro-

scale) constitutive theories. Such levels of refinement

are, in our view, essential in order to move towards

truly predictive (rather than simply descriptive) multi-

scale models with potential use in application-tailored
micro-structure design – an important area of current
research in materials engineering and science.

7.1.1 Martensitic transformation kinematics

Crucial in development of the constitutive model to be

used at the micro-scale is the description of the kine-

matics of the phase transformation under considera-

tion. The transformation of metastable austenite into
martensite is a diffusionless transformation that at any
one point of the transforming crystal can be described

in continuum terms by a shear deformation and an ex-

pansion normal to a so-called habit plane. The potential

habit planes and the possible shear directions within

each such a plane are entirely determined by the geom-

etry of the crystal lattice under consideration, accord-
ing to the theory of Wechsler-Lieberman-Read/Bowles-
Mackenzie [16,127]. With ξ denoting the transforma-

tional shear, δ the accompanying normal expansion, mi

the unit normal to the habit plane and si the relevant

shear direction for the variant i, the transformation is

characterized by a deformation gradient

Ftr = I+ di ⊗mi, (356)

where

di = ξsi + δmi, (357)
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with no summation on repeated indices.

Typically, stress-induced martensitic transformation
occurs as part of a process involving elastic lattice de-

formations and possibly plastic slip prior to the onset

of the transformation. In this context, we shall adopt

a multiplicative kinematics whereby the total deforma-

tion gradient F at any point of the crystal is given as a

product of elastic, plastic and transformational contri-

butions:

F = FeFtrFp
A, (358)

where Fe denotes the elastic deformation gradient, Fp
A

the plastic deformation gradient associated with plas-

tic slip of the meta-stable austenite phase (prior to

the transformation). If plastic slip of the newly-formed

martensite is to be considered, then the corresponding

plastic deformation gradient Fp
M can be accounted for

by augmenting the above decomposition according to

F = FeFp
MFtrFp

A. (359)

Martensite plasticity, however, will not be considered

here. We remark that the above multiplicative splits

of the deformation gradient can be rigorously justi-

fied as a continuum model of the kinematics associated
with the lattice geometry changes associated with the
elastic, plastic and transformational phenomena under

consideration. It extends the now standard multiplica-

tive kinematics adopted in finite strain elasto-plasticity

[111].

7.1.2 Thermodynamical considerations. Plasticity-like

model

It is widely accepted [14,96,116] that external mechan-

ical work is required for the martensitic transforma-

tion to occur at temperatures above the temperature

Ms at which martensite forms spontaneously. This idea
appears to have been formally explored firstly in the

seminal paper by Patel and Cohen [95] and is illus-
trated in Figure 5. It suggests that the total energy
density dissipated by the transformation is a constant.

Below or at Ms the difference between the chemical

free-energy density of the (unstable) austenite and (sta-

ble) matensite phases is sufficient to allow the transfor-

mation to occur spontaneously, without external energy

input into the lattice. At temperatures above Ms and
below T0 (the austenite-martensite equilibrium tem-

perature), where the chemical free-energy drop dur-

ing transformation is smaller than the energy dissi-

pated by the transformation itself, the transformation

may only occur if additional energy is injected into

the lattice. When the transformation does occur un-

der such circumstances, this additional energy density,

Fig. 5 Martensitic transformation. Energies involved.

denoted ∆GMEC, is provided by mechanical work. The
parameter ∆GMEC can be regarded as a (temperature-

dependent) material property. In summary, we want to

model a mechanism that dissipates a given energy den-

sity ∆GMEC (at a given temperature) and whose phe-

nomenological manifestation is a deformation gradient

Ftr, in the context of a multiplicative split (358) of the

total deformation gradient.
The situation here is analogous to finite multiplica-

tive plasticity and, as such, the underlying phenomenon

can be modelled in the very same way. Assuming the

mechanical free-energy density ψ to be a function solely

of the elastic deformation gradient Fe, and accounting
for the split (358), we have

ψ̇ =
∂ψ

∂Fe
: Ḟe

=
∂ψ

∂Fe
(FtrFp

A)
−T : Ḟ

− FeT ∂ψ

∂Fe
(FtrFp

A)
−T : (FtrFp

A)
·, (360)

or, since the rate of plastic slip vanishes during the

transformation,

ψ̇ =
∂ψ

∂Fe
(FtrFp

A)
−T : Ḟ− FeT ∂ψ

∂Fe
(FtrFp

A)
−T : Ḟtr.

(361)

The dissipation inequality,

Ḋ ≡ P : Ḟ− ψ̇ > 0, (362)

then reads
[
P−

∂ψ

∂Fe
(FtrFp

A)
−T

]
: Ḟ

+ FeT ∂ψ

∂Fe
(FtrFp

A)
−T : Ḟtr > 0. (363)
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From the above we identify the constitutive equa-

tion for the first Piola-Kirchhoff stress,

P =
∂ψ

∂Fe
(FtrFp

A)
−T , (364)

and the dissipation inequality during the martensitic

transformation reduces to

Ḋ = T : Ḟtr > 0, (365)

where

T ≡ FeTP (366)

is the work-conjugate stress to the transformational de-

formation gradient.

A plasticity-like constitutive model that dissipates

exactly the additional energy density ∆GMEC over a

transformation on a variant i can be devised by firstly
postulating a transformation function Φtr

i , analogous to

a plastic yield function, of the type

Φtr
i (T) ≡ T : (di ⊗ si)−∆GMEC. (367)

The model is completed by further postulating an asso-

ciative transformation rule (c.f. associative plastic flow

rule)

Ḟtr = γ̇
∂Φtr

i

∂T
= γ̇ di ⊗ si, (368)

where the multiplier γ̇ satisfies



Φtr
i ≤ 0; γ̇ ≥ 0; Φtr

i γ̇ = 0 if γ < 1,

γ̇ = 0 if γ = 1.
(369)

Note that with initial conditions γ = 0 and Ftr = I

at the onset of transformation, the evolution problem

defined by (368) and (369) ensures that Ftr = I+di⊗si

upon completion of the transformation (when γ = 1).

The consistency of the model with the ideas illus-
trated in Figure 5 can be trivially demonstrated as fol-

lows. In view of the transformation rule (368) the dis-
sipation rate (365) can be expressed as

Ḋ = γ̇T : di ⊗ si. (370)

Further, note that (369) requires that Φtr
i = 0 during

the transformation (when γ̇ > 0) or, equivalently, T :

di ⊗ si = ∆GMEC. Substituting this into (370) renders

Ḋ = γ̇ ∆GMEC, (371)

so that the total mechanical energy density dissipated

during the transformation reads

D =

∫ 1

0

dγ∆GMEC = ∆GMEC. (372)

That is, the total mechanical energy density dissipated

by the martensitic transformation mechanism coincides

with the (temperature-dependent) parameter ∆GMEC

alluded to in Figure 5.

7.1.3 Elastic and austenite plasticity descriptions

As a first approximation to the description of the elas-

tic behaviour of the crystal lattices, a regularized neo-

Hookean model is adopted for both the austenite and

the transformed martensite phases. The plasticity of

the meta-stable austenite, in turn, is described by a
rather conventional (time-dependent) crystal plasticity
approach of the type described in [111]. The austenitic

plastic flow is assumed governed by the rule

Ḟp
A =

[
nsyst∑

α=1

γ̇α(rα ⊗mα)

]
, (373)

where nsyst is the total number of slip systems, rα and
mα are, respectively, the unit vectors in the slip direc-

tion and normal to the slip plane of slip system α. The

multiplier γ̇α – the slip-rate on slip system α – is given

by

γ̇α =





1
µ

[(
|τα|
τy

) 1
ǫ

− 1

]
sign(τα) if |τα| ≥ τy

0 if |τα| < τy,

(374)

with τα the Kirchhoff resolved Schmid shear stress on

slip system α and µ, ǫ and τy material constants.

7.1.4 Integration algorithm

The numerical integration of the coupled elastic-plastic-

transformation constitutive equations described in the

above follows a procedure analogous to those of crys-

tal plasticity described in [111]. Before the start of the

transformation the material behaviour is given by a

multiplicative elasto-viscoplatic crystal model with slip-

rate given by (374). The integration algorithm adopted
at this stage is that based on the exponential map as
described in [111]. The transformation begins within a
time interval [tn, tn+1] if the corresponding elastic trial

stress Ttrial
n+1 obtained by the elasto-viscoplastic crystal

model integration algorithm is such that Φtr
j (T

trial
n+1) > 0

for some variant j. In this case, a variant selection pro-

cedure – determining the transformation actual system

i in which the transformation occurs – will select the

most favourable system (the one with highest transfor-

mation function value) and the stress will be updated

by means of a return mapping-type algorithm for the

transformation rule. For the transformation, however,

the return mapping-type algorithm is simpler than that

of crystal plasticity in that: (a) It only accounts for

plastic flow originating from one system – the trans-

forming variant; and, (b) The transformation rule is

discretized by a standard backward-Euler scheme (as

opposed to the more complex exponential map-based



Variational foundations and generalized unified theory of RVE-based multiscale models 53

scheme of crystal plasticity), i.e. (368) has the follow-

ing time-discrete counterpart,

Ftr
n+1 = ∆γ di ⊗ si, (375)

where ∆γ ≡ γn+1 − γn satisfies

Φtr
i (Tn+1) ≤ 0; ∆γ ≥ 0; Φtr(Tn+1)∆γ = 0, (376)

when γn+1 < 1. The overall algorithm is described in
the following in pseudo-code format, with F∆ denot-

ing the incremental deformation gradient between times

tn and tn+1 and ψ the regularized neo-Hookean free-

energy function.

(i) Compute elastic trial state

Fe trial
n+1 = F∆F

e
n; T

trial
n+1 = (Fe trial

n+1 )T ∂ψ
∂Fe

∣∣∣
trial

n+1
(Ftr

nF
p
An)

−T

(ii) Transformation update

IF a variant i has been selected, THEN

IF Φtr
i (T

trial
n+1) > 0 THEN

GOTO transformation return mapping

to update Ftr
n+1 and Tn+1

ELSE

update (·)n+1 := (·)trial and EXIT
ELSE
variant selection:

Set i := arg{maxj=1,··· ,nv
{Φtrial

j : Φtrial
j > 0}}

IF i = ∅ THEN
GOTO elasto-plastic algorithm and EXIT

ELSE GOTO (ii)

The elasto-plastic algorithm referred to in the above

is that of conventional time-dependent crystal plastic-

ity with exponential map plastic flow integrator [111]

– here with slip-rate governed by (374) and material

parameters corresponding to the metastable austenite

phase in question. The transformation return mapping ,

in turn, is given by:

(a) Solve the scalar equation
Φtr(T(∆γ)) = 0

for the unknown ∆γ, where

T(∆γ) ≡ [Fe(∆γ)]T
∂ψ

∂Fe

∣∣∣∣
Fe(∆γ)

[Ftr(∆γ)Fp
A n]

−T ,

with Ftr(∆γ) ≡ (γn +∆γ)di ⊗ si

and Fe(∆γ) ≡ Fn+1(F
p
A n)

−1[Ftr(∆γ)]−1

(b) Update γn+1, F
e
n+1 and Ftr

n+1

γn+1 := γn +∆γ

IF γn+1 > 1 THEN

set γn+1 := 1; ∆γ := γn+1 − γn

ENDIF
Fe
n+1 := Fe(∆γ); Ftr

n+1 := Ftr(∆γ)

Fig. 6 Polycrystalline aggregate RVE. Geometry, mesh and
material parameters

Finally, we remark that, for use within an implicit

finite element framework (adopted in the numerical ex-

ample described below), linearization of the time-discrete

constitutive model resulting from the above numerical

integration scheme and the corresponding constitutive

tangent operators can be obtained in exact form in the

same way as in conventional crystal plasticity [111].

7.1.5 RVE-based simulations

In the simulations presented in this section, the above

constitutive model/algorithm is used to model the ma-
terial behaviour at the micro-scale, taken here to be
the crystal scale of a polycrystalline aggregate. That
is, the RVE is formed by representative sample of crys-

tals assumed to be perfectly bonded together within

the aggregate – each crystal having its own crystallo-

graphic orientation. The specific material modelled here

is 12Cr9Ni4Mo – a low carbon austenitic stainless steel
whose retained austenitic phase can fully transform into
martensite at room temperature under the action of

external mechanical loading [60,61]. A simplified two-

dimensional model is used whereby the twenty four vari-

ants of the three-dimensional fcc austenite crystal are

reduced to a total of four in-plane variants. Crystals are

assumed to be in their metastable austenitic phase at
first and then will be subjected to a mechanical loading
process leading to martensitic transformation accord-

ing to the proposed rule. The RVE representing the

polycrystalline aggregate is shown in Fig. 6 together

with the material parameters published in [34,96]. The

grains are oriented randomly. It should be noted that

the transformation in this case is accompanied by a 2%
dilation normal to the habit plane and 26% shear de-
formation in the corresponding shear direction.

The first test presented here consists of the numer-

ical prediction of the transformation surface in stress

space, i.e. the locus in stress space containing combi-

nations of stresses at the onset of martensitic trans-

formation. The procedure is analogous to that used in



54 P.J. Blanco et al.

Fig. 7 Numerically predicted transformation surface in
stress space.

[38] in the determination of a plastic yield surface for

a porous metal (see also [32,94]). Deformation gradi-

ent histories (linear in time) are applied to the RVE

so as to produce a wide range of homogenized stress

paths. For any path for which martensitic transforma-

tion occurs, the homogenized stress is recorded at the

onset of transformation and the stress point plotted in

stress space. The collection of all such points will pro-

vide a numerical approximation for the transformation

locus in stress space. Due to the assumed randomness

of grain orientation, the aggregate may be regarded as

macroscopically isotropic. Under this assumption, the

transformation surface can be plotted in principal stress

space. The numerical results are shown in Fig. 7. It can

be seen that the present multiscale model is able to cap-
ture quite accurately the experimental results produced
by Geijselaers and Perdahcioğlu [34]. Interestingly, the
experimental transformation surface resembles a Mohr-

Coulomb yield surface (typical in the modelling of geo-

materials) in stress space. It is worth remarking that, in

fact, the proposed criterion based on the transformation

function (367) is entirely analogous to a Mohr-Coulomb

plasticity criterion, the main difference being that in

the criterion proposed here the critical combination of

normal and shear stresses must occur with respect to

one plane (the transforming habit plane) whereas in the
Mohr-Coulomb criterion critical combinations may oc-
cur at any plane. Obviously with increasing numbers of

randomly oriented planes in an RVE, the predicted lo-

cus here will converge to a Mohr-Coulomb-type locus.

In particular, we should point out that the horizon-

tal and vertical lines of the Mohr-Coulomb-type sur-

face plotted in Fig. 7 (not captured by the present 2D
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Fig. 8 Stress-strain response under monotonic shearing.

model) will be trivially captured by a three-dimensional

version of the present model.

Finally, in Fig. 8 we plot the results evolution of

the homogenized Cauchy shear stress over a loading

programme consisting of a monotonic shearing of the

RVE. A macro-scale (in-plane) deformation gradient,

F =

[
1 η

0 1

]
,

is imposed with η monotonically increasing in time. The

RVE is subjected to the minimal kinematical constraint

(uniform boundary traction). The model is able to cap-

ture the experimental results of Perdahcioglu & Gei-

jselaers [96] with reasonable accuracy. We remark that
further refinements of the model, such as the use of a full
three-dimensional RVE and incorporation of martensite

plasticity are likely to improve the predictive capability

of the model. These are currently under investigation

and shall be the subject of a future publication.

7.2 Failure modeling in heterogeneous materials

7.2.1 Preliminaries

One of the main motivations to develop an abstract

generalization of the concepts behind multiscale formu-

lations has been the modeling of failure in complex het-

erogeneous materials. This kind of problems forced us
to realize a very critical reinterpretation about the un-
derlying foundations of conventional RVE-based mul-
tiscale approaches, in order to be able to model me-

chanical scenarios ruled by strain localization phenom-

ena leading, ultimately, to complete material exhaus-

tion. Such problems cannot be addressed by using con-

ventional multiscale procedures because its mechani-
cal consistency is lost during the unstable macroscopic
material regime [37,87,104]. In this context, the par-

ticular multiscale model exposed in Section 6.4, called

Failure-Oriented Multiscale Formulation (FOMF) (see
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also [103,104]), could be considered as one of the most

representative branches of the unified variational theory

debated in this document. Indeed, the FOMF approach

exploits (at maximum) the potentialities of the gener-

alized framework of Section 3. Hence, the introduction

of a numerical simulation showing the behavior and ca-

pabilities of such class of multiscale model adapts per-

fectly to the objectives of this contribution.

The FOMF approach considers crack nucleation in

the macro scale (i.e displacement discontinuities) and

strain localization in the micro scale domain. Thus,

once the failure mechanism is activated in the macro

scale, the proposed multiscale technique has to deal

with kinematical heterogeneity between the involved phys-

ical length scales, since it establishes a kinematical/constitutive
link between a macro cohesive “interface” and a “volu-

metric” RVE. Furthermore, the mechanics at the level

of the micro scale features different mechanical regimes

with localization phenomena taking place in certain re-

gions of the RVE. In such case, the role of the insertion

operators is of the utmost relevance.

This part of the manuscript focuses around a me-

chanical scenario that becomes intrinsically discontinu-

ous after the nucleation of a macro cohesive crack. The

main mechanism that needs to be captured here is the

intricate interplay between micro degradation phenom-

ena and its influence at macro-scale level. Therefore,

subsidiary effects such as for example, the considera-
tion of finite strain kinematics or the incorporation of
external body forces, are disregarded in the subsequent
analysis.

The numerical implementation of the FOMF ap-

proach is based on a nested (coupled) macro-micro fi-
nite element scheme, which is not described here. In

[123], a detailed description of the numerical and algo-

rithmic aspects can be found.

7.2.2 General description

The numerical example we incorporate in this section

deals with damage, degradation, strain localization and

material failure. See [123] for more details. In particu-

lar, we are interested in the assessment of the multiscale

model performance and accuracy to estimate the (effec-

tive) fracture energy at the macro-scale as a result of

the dissipative processes and complex interactions tak-

ing place at the microscopic level.

To this end we choose a classical problem in the

“phenomenological” fracture mechanics community, which

has been adapted here to a “multiscale” (two-scale) set-
ting. It consists in the so-called Single-Edge Notched

Beam Test at the macro scale (SENBT), undergoing a
vertical descendant displacement which is prescribed in

the upper mid-span point, PI, see Figs. 9-(e)-(g). The

beam has a very marked heterogeneous microstructure.
Actually three different microstructural patterns have
been considered for modeling purposes, as we explain

in this section.

Two important features are highlighted about the
proposed problem setting: (i) the strain localization

pattern in the microstructure, leading to failure, is pre-

induced to be vertical by means of the material defi-

nitions in each RVE, and (ii) the cohesive macro-crack

path can be easily predicted, indeed it will be a verti-

cal crack which propagates from the notch up to the

top mid-span point of the beam (i.e. towards the point

PI where the vertical descendant displacement is im-

posed). These two features permit us to estimate, a pri-

ori and with sufficient precision, the macro fracture en-

ergy through simple analytical computations and then,

we can compare it with the predictions of the multiscale

model.

In spite of the previous simplifying hypotheses, the

proposed test is complex enough to consider all the fun-

damental (and novel) ingredients which are present in

the FOMF methodology, namely: (i) non-linear damage

and strain localization in the micro scale, (ii) the irre-
versible degradation mechanisms, taking place in the
RVE, trigger a critical material state or material in-

stability in the macro point linked to such RVE, (iii)

the critical condition is evaluated performing a spectral
analysis on the homogenized tangent constitutive ten-

sor, (iv) when material instability is reached, in some

point of the macro scale, a cohesive crack is nucleated

(thus we determine the nucleation time tN ), (v) the

constitutive response of the macro crack is evaluated

from specific homogenization rules, naturally provided

by the variational formulation presented in this work,

and (vi) new kinematical restrictions are applied over

the boundary ΓLµ of the strain localization domain ΩLµ
in the RVE (an original ingredient derived from our

unified variational formulation) which are the responsi-

ble of preserving objectivity of the mechanical response

with respect to the RVE size.

7.2.3 Test configuration

The characteristic dimensions of the macro structure
(the beam) is displayed in Figs. 9-(d)-(e)-(g). Three
beams with identical macro-geometries and boundary
conditions but with different microstructures are simu-

lated. The topology of each micro structure (the RVEs),

together with their characteristic dimensions, are showed

in Figs. 9-(a)-(b)-(c). In all cases, plain strain condition

has been considered for both scales.



56 P.J. Blanco et al.

a

aa

a

20
9

10
1

a = 4 [mm]

a = 4 [mm]4 [mm]

a

a

a

20

20

9

9

a10
1

a
10
1

a = 4 [mm]

a

a

a

9

9

4

4

9
1

450 [mm]
10

0 
m

m
225 [mm]

(a)      = 0.000

(d) (f)

(e) (g)

20
 [m

m
]

a9
1

S5

S5

S5

S1

S2

S4

S5 S5 S5

S4

S3

S3

S2

S1

S3

S2

S1

Sets
S1

S2

S3

S4

S5

(b)      = 0.037

(c)      = 0.111

S2

S1

PII

PI
PI

Prescribed displacementPrescribed displacement

10 [mm]

2 
[m

m
]

Fig. 9 Single-Edge Notched Beam Test with inner heterogeneous microstructure. Geometrical definitions, material distribu-
tions and finite element meshes.

The domains of the macro and the micro scales are

partitioned into several patches or finite element sets,

see Fig. 9. Each set is characterized by its constitu-

tive behavior and by the finite element technology em-

ployed. There are two categories of constitutive mod-

els: (i) the classical or “Phenomenological” material,

where the constitutive response is obtained from stan-

dard, generally non-linear, mono-scale return-mapping

schemes, and (ii) “Multiscale RVE-based” constitutive
model, where the mechanical response is recovered after

homogenization of a micro-mechanical problem. Table

1 gives the required specifications for each set, where

the following terminology has been introduced: Eµ is

the Young’s Modulus, νµ is the Poisson’s ratio, GµF is

the fracture energy and σuµ is the ultimate tensile limit

stress; all quantities related to the micro scale domain,

thence the sub-index (·)µ.

Three types of periodic microstructures, containing

a regular arrangement of voids, are modeled. Figs. 9-
(a)-(b)-(c) show a sketch of the adopted microstructural

patterns. The void volume fraction, fv, in each one of
the three cases is: fv = 0, fv = 0.037 and fv = 0.111,

respectively (quantities referred to the total RVE mea-

sure |Ωµ|). The micro pores (see set S3 in Fig. 9-(b)) are

modeled by means of an extremely soft (phenomeno-

logical) elastic material (i.e. ES3
µ → 0)3. An additional

3 This treatment simplifies the algorithmic procedure used
for detecting the localization sub-domain ΩL

µ , where the

strain field localizes in the RVE, and thus the boundary ΓL
µ

of ΩL
µ , where new kinematical restrictions must be prescribed

after the cohesive crack nucleation.
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SET Constitutive Eµ νµ GµF σu
µ Finite

Number Model [GPa] [N/m] [MPa] element

S1 Phenomenological 20 0.20 100 2.40 Bilinear
Damage quadrilateral

S2 Phenomenological 20 0.20 - - Bilinear
Elasticity quadrilateral

S3 Phenomenological 0 0 - - Bilinear
Elasticity (voids) quadrilateral

S4 Multiscale - - - - Strong
RVE-based discontinuity

linear triangle
S5 Phenomenological - - - - Bilinear

Elasticity quadrilateral
(homogenized)

Table 1 Single-Edge Notched Beam Test with inner heterogeneous microstructure. Material properties and finite element
description according to the nomenclature introduced in Fig. 9.

heterogeneity introduced in the material definition of

the RVE is a central vertical band of finite thickness, ℓµ,

which is characterized in terms of a (phenomenological)
isotropic damage model with softening that degrades

under tensile stress states. The softening behavior is
regularized by using the “Smeared Crack Approach” to

fracture [90,102]. This set is denoted as S1 in Fig. 9-

(a)-(b)-(c). The softening band is surrounded by the set

S2, made of a (phenomenological) elastic material, see

Figs. 9-(a)-(b)-(c). Considering all previous definitions,
the strain localization mode in the micro scale domain

will develop along the vertical central band, crossing
the pores.

The element set S4, defined at the macrostructural

level, has a complex material behavior which is obtained
through the RVE-based multiscale formulation, via the
homogenization approach developed in the present work,
see Figs. 9-(f)-(g).

Finally, the set S5, also defined for the macro scale,
behaves as a (phenomenological) elastic material. How-
ever, its elasticity tensor is actually a homogenized ten-

sor, obtained from off-line microstructural analysis for
each RVE, during an elastic loading process. This set
S5 permits us to take into account the complex elas-
tic material behavior, due to the underlying heteroge-

neous microstructure, in large sub-domains of the beam

where we know, a priori, that no dissipative mechanisms

will occur, see Figs. 9-(e)-(f)-(g). Computational effort

is drastically decreased following such a simple model-

ing assumption.

7.2.4 Numerical approaches

For each one of the three beam tests, two different nu-

merical strategies have been considered:

Multiscale Simulation (MS). It is based on the proposed

FOMF methodology. In this case, the finite element

meshes used in the macro scale are shown in Figs.

9-(f)-(g). Note that in correspondence with the ver-

tical zone where the macro cohesive crack is able to

propagate (i.e. from the notch up to the point PI),
the set S4 is considered. A total of 40 multiscale

strong-discontinuity triangular finite elements com-

pose this set. The macroscopic integration points of

such finite element list are linked with their corre-

sponding RVEs. Outside the fracture zone the set

S5 is used, composed of about 1130 standard bilin-

ear quadrilateral finite elements. The discrete mod-

els for each RVE are depicted in Figs. 9-(a)-(b)-(c).

These micro cells are composed by the sets {S1, S2, S3}
and consider standard bilinear quadrilateral finite

elements.

Direct Numerical Simulation (DNS). In this approach,

the microstructural heterogeneities are explicitly em-

bedded into the macro scale domain, thus no tech-

nique for scale transition is required. The discrete

models use very refined meshes to capture the de-

tails of the microstructure. In our simulation, the

DNS approach only represents the central part of

the beam, such as shown in Figs. 9-(e)-(d). The re-

maining part of the beam is modeled by using the

set S5, previously described. A total of about 53700

standard bilinear quadrilateral finite elements com-

pose the beam models. The pattern adopted to de-

fine the central zone, where failure is expected to

occur, is based on a periodic repetition of micro-

cells, identical in size and geometry, to those used

for the RVEs of the MS analysis, see Fig. 9-(d) and

Figs. 9-(a)-(b)-(c). Also, the material distributions

corresponding to the sets {S1, S2, S3} are identical
to those defined for the MS models.

Remark 31 The most remarkable difference between

MS and DNS approaches lies on the fact that MS mod-

els utilize strong discontinuity kinematics for simulat-
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ing crack propagation in the macro scale. On the other

hand in the DNS method the failure zone is simulated
within a classical continuum kinematical description,

where the softening response is regularized through the

smeared crack approach.

Remark 32 The results obtained with DNS are taken

as reference solutions to validate the material response
predicted by the MS approach. It is worthwhile to note

that such a comparison represents a consistent, and
probably the most rigorous, form to evaluate the nu-
merical performance of any multiscale formulation.

Next we describe the kinematical restrictions ap-

plied to the RVEs in MS models, differentiating between
the pre-critical and post-critical material regime. Recall
that the underlying finite element technology used to

simulate the failure zone in MS model is a strong discon-
tinuity linear triangle. Thus, a unique integration point
is required during the stable macro material response,

which is called Regular Gauss Point (RGP). The so-

called Minimal Kinematical Restrictions are prescribed

on the RVE-boundaries linked to the RGP, it is

∫

Γµ

ũµ ⊗S nµ dΓµ =

∫

Γµ

ε̃∗µ dΓµ = 0. (377)

In a two-dimensional problem, as the present case, the

previous constraint imposes three independent linear

and homogeneous equations, one for each component of

the symmetric tensor ε̃∗µ (i.e. ε̃∗µ y1y1 , ε̃
∗
µ y2y2

and ε̃∗µ y1y2),

see the sketch in Fig. 10-(a).

Once detected the material bifurcation condition in

a macroscopic regular integration point (t = tN ), a new
quadrature point is activated into the finite element un-

der study, which we call Singular Gauss Point (SGP).
At tN , the SGP is cloned from the RGP, i.e. their me-

chanical states are identical. For t > tN , the RGP and

SGP evolve following different equilibrium branches.
The RVE related to the RGP is forced to respond elas-
tically during the postcritical regime, preserving their
initial boundary conditions already explained4. On the

other hand, the RVE associated to the SGP is endowed
with new kinematical restrictions, according to FOMF
approach. In the present case, we adopt a sub-model

with zero displacement fluctuation increments in the

boundary ΓLµ of ΩLµ , such as sketched in Fig. 10-(b).

Observe that the kinematical restrictions applied on

the RVE associated with the SGP can be identified as

4 The idea of forcing an elastic unloading behavior in those
integration points located outside the cohesive crack in a
strong discontinuity finite element, is a standard technique
widely used in the phenomenological approach to fracture.
We have adapted this procedure to the multiscale modeling
context.

particular case of the minimally constrained model pro-

posed in Section (6.4), Remark 26.

7.2.5 Numerical results

Fig. 11 plots the (macro) structural responses of the

SENB tests in terms of the homogenized vertical loads

vs. the vertical (imposed) displacements of point PI. Re-
markably, observe that the DNS and MS models provide

almost the same macroscopic solutions for the three mi-

crostructures and during the complete loading history,

involving the pre-critical as well as the post-critical

regime. As expected, microstructures with larger void

volume fraction, fv, have less elastic stiffness, less peak

load and require less dissipation energy to completely

exhaust the macro structure.

Fig. 12-(a) features the contours of homogenized co-

hesive traction vs. displacement jump for the singular

integration point (SGP), where the bifurcation condi-

tion is first satisfied during the loading history, i.e. at

point PII (see Fig. 12-(b)). The plots of Fig. 12-(a) rep-

resent the normal components of both vector fields, the

tractions (Tn) and the displacement jumps (βn), where

the sub-index (·)n refers to the normal projection with

respect to the crack path. The tangential components of

both quantities, the tractions (Ts) and the displacement

jumps (βs), are almost zero (the sub-index (·)s refers
to the tangential projection with respect to the crack

path). Then, as expected, the macro cohesive crack
opening mode is a pure Mode I of fracture. The numer-
ically obtained unit vector field, normal to the macro-

scopic discontinuity surface, is depicted in Fig. 12-(b).

In the FOMF approach this result is obtained from a

discontinuous bifurcation analysis.

The cohesive responses observed in Fig. 12-(a) allow
us to evaluate the effective fracture energy (GF ) which

is put into play to fully exhaust the macroscopic cohe-

sive crack, nucleated at point PII. The effective fracture

energy can be simply computed by determining the area

under the plots in Fig. 12-(a):

GF =

∫ ∞

tN

(T · β̇) dt (378)

This parameter is reported in Table 2 (column 3). Al-

ternatively, we can also “estimate” the fracture energy
available in each RVE via an average value of the frac-

ture energy for those finite elements that belong to the

strain localization band ΩLµ , including the voids:

GestF =
1

|ΩLµ |

∫

ΩL
µ

GµF dΩµ (379)

where GS1

µF = 100 [N/m], for the set S1, and GS3

µF =

0 [N/m], for the set S3, as shown in Table 1. The so
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estimated macro fracture energies, GestF , are shown in
Table 2 (column 4) for each microstructure. Note the

well marked effect that the variable fv has on both, the

effective fracture energy GF as well as the estimated

fracture energy GestF .
Comparing the values of GF and GestF it is noticed

that, for the RVE without pores, the agreement be-

tween both quantities is almost exact. A slightly larger

disagreement is observed for the microstructures with

one and three voids. This result has a rational/physical

explanation. From expression (379), the value GestF is
computed by assuming that, during the macroscopic

stable regime (i.e. previous to the crack nucleation at

macro scale: t < tN ), energy dissipation has not oc-

curred. In the case of the RVE without pores, the prob-

lem is homogeneous before bifurcation because all ma-

terials have the same elastic constants, see Table 1.

In this case, macroscopic bifurcation detection happens
just at the same time (tN ) that the central band, de-

scribed with the damage model, reaches its limit ulti-

mate strength. Then, the assumption that there is no

dissipation before bifurcation, is correct. However, in

the micro structures with pores damage during the sta-

ble regime happens. Therefore, the assumption that the

fracture energy can be evaluated by equation (379) is
no longer correct and the parameter GestF overestimates

the actual fracture energy.

Fig. 13 shows structural responses similar to those

explained in Fig. 11. This time we demostrate the me-

chanical consistency of the multiscale response modify-

ing the macroscopic finite element size (mesh size in-

dependence). Just the problem with void volume frac-
tion fv = 0.111 has been considered. The finite element

mesh of Case 2 (Mesh2) displays smaller elements with

respect to Case 1 (Mesh1) in the zone where the multi-

scale set S4 is simulated.

8 Concluding remarks

A unified variational theory has been proposed for a

general class of multiscale models based on the concept

of Representative Volume Element. The entire theory

lies on three fundamental principles: (i) kinematical ad-
missibility , whereby the macro- and micro-scale kine-

matics are defined and linked in a physically meanigful

way; (ii) duality , through which the natures of the force-

and stress-like quantities are uniquely identified as the

duals (power-conjugates) of the adopted kinematical

variables at the two scales; and (iii) the Principle of

Multiscale Virtual Power , requiring the total virtual
powers of the macro- and micro-scales to coincide. This

is a generalization of a variational statement of the well-
known Hill-Mandel Principle of Macrohomogeneity and

allows the RVE equilibrium equations and homogeniza-

tion relations for the force- and stress-like quantities to

be unequivocally derived as Euler-Lagrange equations.

The proposed theory leads to a clear, logically struc-
tured method – named here the Method of Multiscale

Virtual Power – whereby general multiscale models of

complex physical systems can be rigorously derived in

well-defined steps. The method is well-suited for the
treatment of problems involving phenomena as diverse
as dynamics, higher order strain effects, material failure

with kinematical discontinuities, fluid mechanics and

coupled multi-physics, among others.

Particularly noteworthy is the fact that the pro-
posed methodology allows the development of multi-

scale models in an intuitive manner without ambigui-

ties. In fact, the only degree of arbitrariness one has

in the development of a multiscale model lies in pos-

tulating its kinematics. This consists in defining: (a)

the kinematical variables adopted at macro- and micro-

scales; and (b) how these kinematical variables are linked,
subject to the condition that their magnitudes are pre-
served in the micro-macro kinematical transfer – this
amounts solely to the definition of physically sound

kinematical insertion and homogenization operators . Once

the kinematics has been postulated, the function space
of admissible micro-scale generalized displacements is

automatically defined and all remaining model equa-
tions will be unequivocally derived on the basis of the
principles of duality and multiscale virtual power . This

is in sharp contrast with most of the work currently
published in the field, where various such equations are
postulated a priori – a procedure that can potentially
lead to serious inconsistencies in the resulting model.

The theory has been presented in a rather abstract

setting, which allows its use in the modeling of a very

wide range of physical systems. However, practical ex-

amples of its use with several well-known multiscale

formulations have been presented. In our view, cast-

ing known models within the proposed framework has

made the distinction between their kinematics and their

consequences very clear, allowing a better understand-

ing of the limitations of each model and showing direc-

tions for possible improvements that can be incorpo-

rated in a consistent manner. In addition, application

of the theory to the modeling of more complex, less

conventional physical systems – including higher order

kinematics, dynamical effects, material failure with dis-

similar kinematics across scales, thermomechanics and

even fluid mechanics – has also been presented. This

provides very strong evidence of how powerful and use-
ful the proposed variational framework can be as a tool
for the rigorous and consistent development of new mul-

tiscale models.
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Void volume Void volume Effective fracture Estimated fracture
fraction: fv fraction: f∗

v energy: GF energy: Gest
F

(referred to |Ωµ|) (referred to |ΩL
µ |) [N/m] [N/m]

0.0 0.0 99.90 100
0.037 0.111 88.42 88.89
0.111 0.333 66.16 66.67

Table 2 Single-Edge Notched Beam Test with inner heterogeneous microstructure. Comparison between the Effective fracture
energy “GF ” (obtained by using the mutiscale approach) vs. the Estimated fracture energy “Gest

F ”(computed from simple
analytical considerations).
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Fig. 13 Single-Edge Notched Beam Test with inner heterogeneous microstructure. Mesh-size independence of the FOMF
approach.

We believe that the proposed systematization of RVE-

based multiscale modeling is particularly relevant at
present when there is a clear need to further combine
more complex models of continua describing phenom-

ena that take place at different scales in order to im-

prove predictive capabilities. Our experience has shown

that this appears to be even more relevant when resort-

ing to kinematical descriptions for the different scales

that are a priori heterogeneous.

Finally, we remark that the variational format in

which model equations are presented within the present

framework is naturally well-suited for numerical ap-

proximation by means of schemes such as the Finite

Element Method. In this context, examples of practi-
cal numerical computations were presented, including
the use of a non-conventional failure-oriented multiscale

model with discontinuous kinematics.
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92. Özdemir, I., Brekelmans, W., Geers, M.: FE2 computa-
tional homogenization for the thermo-mechanical analy-
sis of heterogeneous solids. Comput. Meth. App. Mech.
Eng. 198, 602–613 (2008)
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97. Perić, D., de Souza Neto, E., Feijóo, R., Partovi, M.,
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