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Abstract. Sensor placement is an optimisation problem that has recently gained great
relevance. In order to achieve accurate online updates of a predictive model, sensors are
used to provide observations. When sensors location is optimally selected, the predictive
model can greatly reduce its internal errors. A greedy-selection algorithm is used for locating
these optimal spatial locations from a numerical embedded space. A novel architecture for
solving this big data problem is proposed, relying on a Variational Gaussian Process. The
generalisation of the model is further improved via the preconditioning of its inputs: Masked
Autoregressive Flows are implemented to learn non-linear, invertible transformations of the
conditionally modelled spatial features. Finally, a global optimisation strategy extending
the Mutual Information-based optimisation and fine-tuning of the selected optimal location
is proposed. The methodology is parallelised to speed-up the computational time, making
these tools very fast despite the high complexity associated with both spatial modelling and
placement tasks. The model is applied to a real three-dimensional test case considering a
room within the Clarence Centre building located in Elephant and Castle, London, UK.
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1. Introduction1

Indoor Air Quality (IAQ) impacts health, comfort and quality of life [1], and three2

basic strategies have been proposed to improve it: control of pollution sources, use3

of natural/mechanical ventilation, and cleaning of air. In the building context, the4

management and development of smart monitoring tools can support an adequate5
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IAQ within them (e.g. by automatically opening windows or starting a mechanical6

air cleaning system). Sensors coupled with indoor pollutant forecasting models can7

tackle bad IAQ by implementing one of the previously-cited strategies before the8

indoor pollutant concentration reaches dangerous and adverse levels.9

In order to achieve accurate, online updates of the predictive model, sensors can10

be used to provide observations. Spatio-temporal models such as Data Assimilation11

(DA) provide online learning and forecasting of sensor observations by means of12

updating the model’s internal view through the incorporation of collected data [2, 3].13

In this context, sensor positioning has gained relevance [4, 5] as it is crucial to ensure a14

good quality and usefulness of monitored data. Optimal sensor positioning tools pin-15

point the discrete spatial locations that possess most conditional information of all16

other spatial points, thus improving the predictive accuracy of prediction models [6].17

Hence, sensor placement can be seen as an optimisation problem [4, 5].18

Early attempts on sensor placement used geometric approaches, supported by the19

assumption that sensors measure spatial features with a fixed sensing radius [7]. This20

geometric approach does not take into account the non-linear dynamic behaviour of21

air motion so, in order to tackle this problem, parametric models [8], non-parametric22

Gaussian Process (GP) [9] and ensemble Kalman-filters [10] approaches were subse-23

quently proposed.24

The main work on this field implements sensor placement using a GP in a 2D space25

[5]. The time complexity of the placement algorithm is O(N4), where N denotes the26

side of the computational domain. The GP is trained on data collected from fixed27

sensors located in a room, then N is relatively small. The placement algorithm only28

select the best sensors in the set already provided.29

In this work, for the first time, a sensor placement model is developed for a 3D30

domain representing a real case scenario. Also, the model uses temporal sequences31

of data from fluid dynamic simulations facing then a big data problem. In our32

case, N is on an scale such that the use of a GP is unfeasible. To address this33

problem we developed a combination of deep learning, probabilistic frameworks and34

variational methods, reducing the complexity associated with training, inference and35

optimisation and thus, enabling us to achieve optimal placement results in a real case36

scenario. The complexity of our model is, in fact, O(klM4), where k is the number37

of sensors, l is the number of iteration needed to optimise the position and M is such38

that M << N .39
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The rest of this paper is organized as follows: next section introduces the back-40

ground to this work and our main contributions. Section 3 presents the mathemati-41

cal formulation of our proposed model, Variational Gaussian Process optimal sensor42

placement (VGPosp). Section 4 describes the direct application of VGPosp on a real43

indoor environment. The manuscript ends with some conclusions and further work.44

2. Background and main contributions45

Non-parametric models consist in learning a Gaussian Process (GP) associated with46

the phenomenology considered (e.g. pollution levels in indoor environments). In47

general, GPs are highly appropriate to study environmental problems as they allow48

for learning complex, high-dimensional correlations with uncertainty quantification.49

Indeed, non-parametric expressiveness is an advantage over parametric models that50

are more prone to the curse of dimensionality [11]. A GP, sometimes refered as51

the Bayesian interpretation of neural networks, is fully determined by only two pa-52

rameters, namely the mean-function and covariance-function, regardless of their di-53

mensionality [12]. Three main GP methodologies can be identified: the Traditional54

GP [4, 5], the Sparse GP [13] and the Variational GP [14, 15].55

Traditional GP is a stochastic process based on prior distribution over functions and56

it has been successfully applied for indoor optimal sensor positioning [4, 5]. However,57

Traditional GP suffers from the high complexities associated with spatial modelling58

O((mN)3), where N denotes the size of input sensor potential locations and m the59

number of physical variables, which explains why the work presented in [4, 5] was60

only carried out in two dimensions.61

Sparse Variational Process (SGP) tackles the inconvenient O((mN)3) computational62

complexity associated with Traditional GP [16]. This method constructs an approx-63

imation based on a small subset of size N̂ , namely inducing points. This optimisa-64

tion results in a reduced complexity O((mN)N̂2), enabling the scalability of training65

data-points from the previous limit of a few thousand to the range of millions [17].66

In general, sparsity can be achieved by working on a low-rank representation of the67

full kernel [18]. The key idea is to approximate the prior or modify the likelihood68

function, thus creating a model selection problem solving the optimisation for the69

approximation of the truth [13]. However, the main criticism to SGPs is that they70

learn unknown hyperparameters, potentially leading them to underestimate variance71

and thus over-fitting [14, 15].72

Alternatively, Variational Gaussian Process (VGP), a variational method for SGP,73

was developed [14, 15] to deal with the approximation of model components that74
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are hard to compute. Inducing points are variational parameters selected by min-75

imising the Kullback-Leibler (KL) divergence [14, 15]. The kernel hyperparameters76

and inducing points are jointly optimised by maximising a lower bound (Evidence77

Lower BOund (ELBO)) of variational distribution over the functions latent val-78

ues [14, 15, 19]. The key innovation, is that the likelihood and the GP prior are79

not modified, separating the model and the inference. The variational posterior80

iteratively approaches the true posterior.81

The datasets used to train a GP usually comprises data coming from monitoring82

sensors during extensive field experiment periods. This training dataset usually suffer83

from being non-Gaussian distributed, rendering it unusable for GP learning [20]. In84

this regards, several methodologies to precondition, normalise and render the training85

dataset Gaussian can be mentioned: Variational Autoencoder [21], Autoregressive86

Flows [22], Normalising Flows [23], Masked Autoencoder for Distribution Estimation87

(MADE) [24], and Masked Autoregressive Flows (MAF) [20]. The MAF approach88

is a stack of MADE networks [24, 20] and has proved its competitiveness over the89

other methodologies in terms of accuracy [20].90

Even if VGP can deal with non-Gaussian distributed data, the preconditioning phase91

of learning non-linear, invertible transformations between the conditional input dis-92

tributions and output Gaussian family of distributions enables greater generalisation93

of the learned spatial model.94

At this stage, the actual sensors placement problem can then be addressed using95

the trained GP. Indeed, the placement algorithm is solved in an embedded space96

that is predicted by a GP [14, 15]. In other words, the GP serves as a numerical97

setting for the optimisation problem: conditional predictions are used to generate98

the covariance matrix taken as input by the placement algorithm. The complexity99

associated with the placement task is O(N4), where N denotes the size of input100

sensor potential locations.101

Mutual Information (MI) [4, 5] and minimum cross entropy [25, 26] are some of the102

metrics traditionally used. The use of minimum cross entropy tends to maximise the103

distance between sensors. In indoor environment problems, this results in having104

sensors located near the boundary of the domain, i.e. near the walls, thus loosing105

information monitored [26, 5]. One the other hand, information gain or Mutual106

Information [4] shifts the amount of information captured by a single random variable107

to the information each random variable has of the other unobserved one. More108

specifically, considering a finite set of possible placement locations, by maximising109

the objective metric, it evaluates how well a given smaller subset of sensor locations110

describes the values of the unselected other locations. This paper considers the111
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optimisation problem of sensor placement in indoor environments by separating the112

problem into the learning of a spatial model, i.e. Gaussian Process training, and113

the optimisation algorithm itself, i.e. optimal sensor placement. It is demonstrated114

that with a combination of deep learning, probabilistic frameworks and variational115

methods, the complexity associated with training, inference and optimisation can be116

significantly reduced in order to achieve optimal placement results. This paper builds117

on existing 2D sensor placement algorithm [4, 5] and the latest VGP spatial modelling118

technologies [14, 15]. Its value is found primarily in the pairing of technologies that119

in turn improve the existing methods of sensor placement.120

The choice of the technologies used in this work are detailed and argued in the121

following points:122

• Preprocessing input distribution A Masked Autoregressive Flow (MAF)123

is used to normalise the training dataset suffering from being non-Gaussian124

distributed [20] making our methodology greatly generalised as well as im-125

proving the accuracy.126

• Spatial model A major challenge facing scalable sensor placement is over-127

come by deploying a Variational Gaussian Process (VGP), using a low128

rank approximation that is far more scalable and also addresses the ques-129

tion of model generalisation. In particular, this helps to tackle the limit-130

ing O((mN)3), high polynomial time complexities associated with GPs to131

O((mN)N̂2) where N̂ denotes the number of approximate posterior samples132

computed in the VGP. Using a VGP is a good trade-off between efficiency133

and accuracy [14, 15].134

• Sensor placement algorithm The Mutual Information (MI) based place-135

ment algorithm [4, 5] is extended with a Markov-Chain Monte Carlo (MCMC)136

wrapper to fine-tune the sensor placement and tackle the time complexity137

O(N4) and achieve O(klM4), where k is the number of sensors, l is the num-138

ber of iteration needed to optimise the position and M is such that M << N .139

The use of MCMC leads to similar placement results in a fraction of the140

computation time required when not using it. Error propagation through141

the system does exist due to this approximation, however, it is shown in the142

paper to be a worthwhile trade-off.143

The technologies used in this paper are general and are not limited to the test case144

of sensor placement in indoor environments, even though their integrated implemen-145

tation was designed accordingly. In fact, the core underlying technology used in the146
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spatial model, i.e. Variational Gaussian Process, has been successfully deployed for147

a multitude of other domains ranging from kriging to robotics [27].148

In addition to the new pairing of technologies proposed in this paper, the novelties149

of this work also lie in:150

• The simulated training data In order to achieve scalable and reduced cost151

deployment of sensor placement optimisation, simulation data was used for152

model training, replacing the expensive option of collecting large amounts153

measurements from installed sensors. As an example, the training dataset154

used in [5] consists of 52 sensors, located on a 2D plan. In this paper, the155

simulated training dataset is much larger, i.e. more reliable, and consist of156

10,000 sensor locations distributed in 3D.157

• The increase in dimensionality This paper increases the dimensionality of158

the learning problem in order to capture further correlations between hidden159

features as well as the output features, resulting in 3-dimensional spatial160

placement. The 3D placement made it possible for the model to capture more161

realistic and complex physical phenomena such as thermal stratification for162

example.163

• The fine-tuning of sensor placement The MCMC wrapper algorithm is164

used to increase the overall Mutual Information captured. The base set of165

potential sensor location is fine-tuned to include other regions in the contin-166

uous space having higher MI. This means the selection pipeline is a more167

optimal set of possible placement coordinates to choose from. Additionally,168

the implementation is easy to be customised and makes our methodology169

generalisable.170

• The fully parallel and scalable implementation The methodology pre-171

sented in this paper is done through a multi-threaded parallel implementa-172

tion. The computational graph based implementation, using the TensorFlow173

library [28], greatly speeds up the computational times.174

3. The Variational Gaussian Process for optimal sensor placement175

(VGPosp) model176

This section introduces the theoretical concepts and mathematical formulation that177

were developed and implemented as part of the proposed model architecture.178

Let X be the solution of a dynamic system:179

(3.1) Ẋ = F (X, t)
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where, t denotes the time and X =
[

X1, . . . , Xm

]

denotes a vector of m state vari-180

ables1 such that Xi ∈ ℜ
N , ∀i = 1, . . . ,m. In the following, Xt = X(t) denotes the181

solution of the dynamic system at time t and Xi,t = Xi(t) the i-th state variable at182

time t.183

Given a temporal sequence Xt1 , . . . , Xtn of n solutions of the dynamical system de-184

fined in equation (3.1), with Xti = [X1,ti , . . . , Xm,ti ] ∀i = 1, . . . , n, the Variational185

Gaussian Process for optimal sensor placement (VGPosp) model consists of the fol-186

lowing main steps described in the sub-sections 3.1 to 3.3.187

• Section 3.1 - Preprocessing and preconditioning188

– Preconditioning of input vector distributions using Masked Autoregres-189

sive Flows (MAF).190

– Convert time-series to vector value distributions at distinct spatial re-191

gions.192

• Section 3.2 - Variational Gaussian Process193

– Sampling algorithm, input vectors spatial training.194

– Variational Gaussian Process (VGP) training.195

• Section 3.3 - Placement algorithm196

– Selection of a set S of considered input coordinates.197

– Generate target vectors with VGP inference at coordinates.198

– Covariance matrix of values indexed by set S.199

– Greedy selection algorithm of coordinates with maximal Mutual Infor-200

mation (MI).201

– Markov-Chain Monte Carlo (MCMC) based fine-tuning of coordinates.202

3.1. Pre-processing and preconditioning. The temporal sequence Xt1 , . . . , Xtn203

requires a pre-processing to be suitable for the spatial model and the inference step204

during the placement algorithm. The pre-processing consists of the following steps,205

also described in Figure 1:206

(1) X is first normalised to a mean value of 0 and standardised to achieve a207

standard deviation of each feature of 1.208

1For example, as shown in Section 4, for fluid dynamic simulations in indoor environment, X =
[T, P,C], where T is the temperature, P the pressure and C the pollutant concentration.

7



(2) Secondly, a Masked Autoregressive Flow (MAF) is implemented to learn209

invertible, non-linear transformations between the non-Gaussian distributed210

features and the target Gaussian family of distributions.211

Figure 1. Pre-processing and pre-conditioning steps.

Firstly, the mean of the temporal sequence for each state variable Xi, i = 1, . . . ,m,212

is computed, i.e. the vector213

(3.2) X =
[

X1, . . . , Xm

]

where214

(3.3) Xi =

∑n

j=1 Xi,tj

n
, ∀i = 1, . . . ,m

The vector X in equation (3.2) is used to train the Masked Autoregressive Flows215

(MAF) in order to make our input variables Gaussian distributed. MAF is a neural216

network that executes a normalising flow non-linear transformation at each neuron.217

MAF can be also computed as a stack of autoregressive Masked Autoencoder for218

Distribution Estimation (MADE) networks [20, 24] where each model uses the vector219

X in equation (3.2). The Autoregressive property of MAF defined from time-series220

analysis, predicts a future value of a variable from a linear combination of its past221

values. Each MADE learns the distribution of the state variables.222

The MAF model can be defined as follows [22]:223

(3.4) XN = fN

(

XN−1, XN−2, . . . , X1

)

where fN has a polynomial form such that [20]:224

(3.5) XN = θ0 + θ1XN−1 + θ2XN−2 + · · ·+ θpXN−p

where θi are the polynomial coefficients.225
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Normalising flows apply a sequence of N invertible, differentiable transformation226

functions fN in p(X). A base distribution p(X
′
) is specified most likely from the227

family of Gaussian distributions [20], where p denotes the probability distribution.228

The procedure begins with this initial distribution p(X
′
) [23].229

(3.6) p(X) = p(X
′
)

∣

∣

∣

∣

det
∂f−1

∂X
′

∣

∣

∣

∣

A chain rule can then be applied to the conditionals of a joint distribution.230

(3.7) p(X) =

N
∏

i=1

p
(

Xi|Xi−1, Xi−2, ..., X1

)

=

N
∏

i=1

p
(

Xi|X<i

)

After each non-linear transformation the distribution becomes more complex. Sam-231

pling from this transformed distribution is done via the flow of a straightforward232

sample from the original p(X) Gaussian distribution through the non-linear trans-233

formations. The entropy of the resultant distribution is computed with the logarithm234

of the transformations:235

(3.8) log p(XN ) = ln p(X0)−
N
∑

i=1

ln

∣

∣

∣

∣

det
∂fN

∂Xi−1

∣

∣

∣

∣

236

(3.9) p(Y ) =

N
∏

i=1

(

f−1
N (Y )

)

∣

∣

∣

∣

det
∂f−1

N

∂Y

∣

∣

∣

∣

The vector237

(3.10) Y =
[

Y1, . . . , Ym

]

∈ ℜm×N , with Yj ∈ ℜ
N ∀j = 1, . . . ,m

is the set of normalised state variables which are input of the Variational Gaussian238

Process introduced in next section.239

3.2. VGP training and inference. Given the data set {Yj}
m
j=1 of Yj ∈ ℜ

N as240

defined in equation (3.10), the m source-target pairs D = {(Yj , T )}
m
j=1, where T is a241

target2 [29]. We aim to learn a function over all source-target pairs:242

(3.11) T = g(Yj)

2In some application, T = Yj for a fixed j can be assumed.
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where g : RN → R
N is unknown. Let the function g decouple as g = (g1, ..., gN ),243

where each gi : R
N → R. A GP regression [12] estimates the functional form of g by244

placing a prior,245

(3.12) p(g) =

N
∏

i=1

GP
(

gi; 0,Σij

)

,

where Σij denotes a covariance evaluated over pairs of inputs YiYj ∈ R
N [12]:246

(3.13) Σij =

∑

k YikY
T
jk

N

A variational Gaussian process (VGP) is a Bayesian non-parametric variational247

model that admits arbitrary structures to match posterior distributions. As de-248

scribed in the following steps, the VGP generates approximate posterior samples Z249

by generating latent inputs, warping them with random non-linear mappings, and250

using the warped inputs as parameters to a mean-field distribution. The random251

mappings are drawn conditional on variational parameters. The VGP specifies a252

generative process for posterior latent variables Z. At the first step it draws la-253

tent input ξ ∈ R
N : ξ ∼ N (0, I) and a non-linear mapping g : RN → R

N condi-254

tioned on D : g ∼
∏N

i=1 GP(0,Σξξ)|D. Then it draws approximate posterior samples255

Z ∈ supp(p) : Z = (Z1, ..., ZN̂ ) ∼
∏N̂

i=1 q(gi(ξ)). Marginalising over all latent inputs256

and non-linear mappings, the VGP is [29]:257

(3.14)

qV GP (Z; θ,D) =

∫∫





N̂
∏

i=1

q
(

Zi|gi(ξ)
)









N̂
∏

i=1

GP
(

gi; 0,Σξξ

)

|D



N (ξ; 0, I)dfdξ.

The VGP is parametrised by kernel hyperparameters θ and variational data [29, 12].258

The random function interpolates the values in the variational data, which are opti-259

mised to minimise the Kullback–Leibler divergence [30]. It defines a measure between260

two probability density functions: qV GP (Z; θ,D) and q⋆(Z|Y ), where q⋆(Z|Y ) is the261

posterior distribution [31].262

(3.15) DKL

(

qV GP (Z; θ,D)||q⋆(Z|Y )
)

= Eq

[

log
qV GP (Z; θ,D)

q⋆(Z|Y )

]

= Eq

[

log qV GP (Z; θ,D)− log q⋆(Z|Y )
]

where [19] E [f(x, θ)] =
∫

θ
f(x, θ)dθ, where f denotes a distribution function. An263

approximating distribution is chosen from a predefined family of distributions with264
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parameters: θ.265

(3.16) qθ(Z|Y ) = argminθDKL

(

qV GP (Z; θ,D)||q⋆(Z|Y )
)

When the KL-divergence converges to 0 (see the Theorem of the Universal approx-266

imation in [29]), the posterior is approximately the same as the learned posterior.267

Minimising KL-divergence is done via the objective function, defined by the Evidence268

Lower Bound (ELBO), parameterised by the parameters θ. The maximisation of this269

function is equivalent as minimising KL with a difference measured by a constant270

factor [23]. The objective is summed over all data-points [19]:271

(3.17) ELBO(θ) =

N̂
∑

i=1

Eqθ(Z|Xi)[log qV GP (Z;C, Yi)− log qθ(Z|Yi)]

When applied to the marginal probability of the evidence [29, 15], the objective lower272

bound on the marginal likelihood can be quantified by the ELBO:273

(3.18) ELBO(θ) = Eq[log qV GP (Z; θ,X)]− Eq[log qθ(z|x)]

Posterior is therefore the sum of the ELBO and the KL term:274

(3.19) log q(Z) = ELBO(θ) +DKL(qθ(Z|Y )||q⋆(Z|Y )).

An approximate solution in the mean-field [32] is sought to learn parameters of the275

marginal likelihood [33], obtaining an approximate posterior distribution of the true276

posterior. The mean-field approximation of variational inference allowed for the277

approximate qθ(Z|Y ) distribution to be considered as a factor of N̂ independent278

latent variable partitions qθ(Z|Yi).279

(3.20) q⋆(Z|Y ) ≈ qθ(Z|Y ) =

N̂
∏

i=1

qθ(Z|Yi)

then it yields g ∼ q⋆(Z|Y ) [34].280

3.3. Placement Algorithm. In this section,the Placement algorithm of VGPosp281

model is introduced. The algorithm computes optimal coordinates for sensor place-282

ment following three main steps as described in Figure 2 and detailed in Algorithm 1.283

The set of coordinates V initially consists of N grid point: |V| = N . Our place-

ment algorithm is mainly based on the Mutual Information (MI) based placement

algorithm [4, 5] which is extended in this paper with a MCMC wrapper to fine-tune
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Figure 2. Graphical representation of the main steps of the Vari-
ational Gaussian Process for optimal sensor placement (VGPosp)
model

the sensor placement and tackle the time complexity O(N4) and achieve O(klM4),

where k is the number of sensors, l is the number of iteration needed to optimise

the position and M is a predefined small subset of N such that M << N . In fact,

the fist step of Algorithm 1 consists of identifying all the possible locations which

constitutes a set S, |S| = M (see points 1 and 2 in Figure 2). The set S is an input

of Algorithm 1. Other inputs are the number k of sensors to place and the number l

of maximum iterations for the optimisation process. We implement an optimisation

method to identify a set A as the placement output from the predefined set S of

input coordinates [4] such that |A| = k. The second step of Algorithm 1 consists

in sampling m state variables from value distributions in Y at corresponding spatial

regions/cells (see point 3 in Figure 2). For each state variable in Y (see point 4 in

Figure 2), the samples T are produced by the function g which is computed by a

12



Algorithm 1: The Variational Gaussian Process for optimal sensor placement
(VGPosp) algorithm.

Input: number of sensors: k, space of coordinates: S, maximum number of

iterations: l; ǫ

1 A⋆ = ∅ ⊲ initialise the set of optimal sensors locations

2 Σ = ∅ ⊲ initialise the covariance matrix

3 δy = 0 ⊲ initialise the mutual information parameter

4 while ii < k do

5 while it < l do
6 ⊲ compute the covariance matrix

7 for i ∈ S do

8 for tk ∈ [t0, tn] do
9 Tik = g(Yik) ⊲ VGP function in 3.11

10 Ti = [Ti0, Ti1, . . . , Tin]

11 for j ∈ S do

12 for tk ∈ [t0, tn] do
13 Tjk = g(Yjk) ⊲ VGP function in 3.11

14 Tj = [Tj0, Tj1, . . . , Tjn]

15 compute Σij ⊲ using equation (3.13)

16 A, δi⋆ ← Algorithm 2 (Σ, S, k) ⊲ estimate the mutual information

17 if δi⋆ > δi or A
⋆ = ∅ then

18 A⋆ = A

19 δi = δi⋆

20 it++

21 ii++

22 return A⋆

VGP as described in section 3.2 (see points 9-14 in Algorithm 1):

∀j ∈ S, Tjk = g(Yjk), Tj = [Tj0, Tj1, . . . , Tjn]

Then the covariance matrix of the values Tj are computed for the locations specified284

in S using equation (3.13) (see points 5 and 6 in Figure 2). We also define the285

covariance matrices related to a subset A such that:286

(3.21) ΣiA =











Σi1 0 0 . . .
0 Σi2 0 . . .
...

. . .
. . .

...
. . . 0 0 Σik










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where Σij is defined in equation (3.13) and k = |A|. ΣiA is used in the final step of287

Algorithm 1 which maximise the mutual information (see points 7 and 8 in Figure 2),288

as described in Algorithm 2, where H is the conditional entropy function defined as289

(see [5]):290

(3.22) H(i|A) =
1

2
logΣ2

iA +
1

2
(log(2π) + 1)

and where δi denotes the mutual information parameter [5]:291

(3.23) δi =
Σ2

ii − ΣiAΣ
−1
AAΣAi

Σ2
ii − ΣiĀΣ

−1
ĀĀ

ΣĀi

Algorithm 2: Maximise Mutual Information (MI) using lazy evaluations.

Input: Covariance matrix Σij , number of sensors k, set of coordinates S

1 A ← ∅

2 foreach i ∈ S do

3 δi ← +∞

4 for j=1 to k do

5 foreach i ∈ Ā = S \ A do

6 currenti ← false

7 while currenti == true do

8 i∗ ← argmaxi∈S\A δi
9 if currenti∗ == true then

10 break

11 Compute ΣiA ⊲ using equation (3.21) for i and A

12 Compute ΣiĀ ⊲ using equation (3.21) for i and Ā

13 δi∗ ← H(i|A)−H(i|Ā) ⊲ with H defined in (3.22)

14 currenti∗ ← true

15 A ← A∪ i⋆

16 return A

We developed a MCMC based wrapper that works with a smaller grid of points292

S, then identifies the vertices of the grid A that are potential frontiers to be ex-293

plored further. These optimal coordinates in S are thus adjusted. If the adjustment294

has improved the overall mutual information we keep the modification. Using this295

technique we iteratively adjust S until the mutual information value converges.296
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3.4. Implementation. A code implementing Algorithm 1 and Algorithm 2 us-297

ing TensorFlow.1.4 [28] is available at https://github.com/roxarcucci/VGPosp.298

git. Instructions for running the tests and algorithms are described in the file299

README.md. The algorithms were initially implemented in Python and reimple-300

mented later in TensorFlow in order to further improve the efficiency of the run-time301

through multi-threaded, parallelised execution and automatic scalability to more302

computational cores. Our implemented model is represented in the form of a com-303

putational data-flow graph that is instantiated once a session object is defined. The304

built-in TensorFlow compiler identifies all dependencies within our algorithms and305

assigns multi-threaded computational tasks to our resources. TensorBoard creates306

a visual representation of the nodes and connections, it enables the developer to307

debug connectivity errors. The Scalars tool that allows the tracking of any metric of308

interest during model training or optimisation was also used.309

4. Results and Discussions310

In this section, two test cases are used to discuss our Variation Gaussian Process for311

optimal sensor placement (VGPosp):312

• The first test case, named the sine model, is a simplified two-dimensional313

model of a sine function to test the efficiency, accuracy and precision of VGP314

compared to GP. The comparison between GP and VGP is done only for315

the sine model as the complexity of GP is too high to be trained for a real316

test case.317

• The second test case is a real three-dimensional test case considering a room318

within the Clarence Centre building located in Elephant and Castle, Lon-319

don, UK. In this test case, the predictive model is the Computational Fluid320

Dynamics (CFD) software Fluidity. Optimal sensors location is proposed.321

The benefit of using sensors optimally located is proved by showing how the322

predictive model error can be more efficiently reduced by using Data Assim-323

ilation technology.324

4.1. Test case 1: Sine model. This section aims to compare the efficiency, the325

accuracy and the precision of GP and VGP. The test sine function used is defined326

in equation(4.1).327

(4.1) f(x, y) = sin

(

2

3
πx

)

+ sin

(

2

3
πy

)

In order to prove that VGP is more efficient than a GP approach, the training time328

as a function of the number of training points for both method are shown in Figure 3.329
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Figure 3. Training time as a function of number of training points
when using a Gaussian Process (GP) or a Variation Gaussian Pro-
cess (VGP).

Up to 150 number of training points, the GP and the VGP method both take a little330

bit less then 10 sec to be trained. However, when using more training points, i.e.331

more than 150 number of points, the training time of the GP increases drastically,332

while the VGP training time stays constant, around 10 sec, independently of the333

number of points. For example, when considering 600 training points, the training334

time is divided by 5.5 when using the VGP approach.335

The accuracy e and the root mean squared error (also called precision), RMSE of336

the modelM are:337

(4.2) eM(N) =

N
∑

i=1

|fTrue(xi, yi)− fM(xi, yi)|

where N is the number of training points, and338

(4.3) RMSEM(N) =

√

‖FM − FTrue‖L2

‖FTrue‖L2

where FM and FTrue denote the vectors FM = [fM(x1, y1), . . . , fM(xN , yN )] and339

FM = [fTrue(x1, y1), . . . , fM(xN , yN )], the True model denotes the function in equa-340

tion (4.1) and the modelM stands for GP or VGP.341

The accuracy (equation (4.2)) and the precision (equation (4.3)) of the two models342

as a function of the number of training points are shown in Figure 4. From Figure 4a,343

when using less than 150 training points, the two models highlight the worst accuracy,344

i.e. the highest values. When using more than 150 number of training points, it can345

be seen than the accuracy of GP is lower than 0.03, while the VGP accuracy is lower346
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(a) (b)

Figure 4. (A) Accuracy e and (B) Precision RMSE as a function
of number of training points when using a Gaussian Process (GP)
and a Variation Gaussian Process (VGP).

than 0.02. Globally, the VGP method is slightly more accurate than GP even if the347

accuracy can be considered as the same order of magnitude. However, looking at348

Figure 4b, the GP model is more precise than the VGP. For both model, the RMSE349

is relatively high when using less than 200 number of training points. When using350

more training points, the RMSE reaches a plateau with values for the GP and VGP351

model of about 0.12 and 0.17, respectively.352

Overall, it has been shown that the VGP method is a good trade-off between the353

efficiency, the accuracy and the precision and will then be used as such an assumed354

tool in the second test case.355

4.2. Test case 2: Real test case.356

4.2.1. Predictive model: Computational Fluid Dynamics simulation using Fluidity357

software. The simulated data used to train our VGPosp is obtained using Fluidity, a358

parallel open-source CFD software (http://fluidityproject.github.io/). It uses359

finite elements to solve the following incompressible three dimensional Navier-Stokes360

equations, continuity equation (4.4) and momentum equation (4.5), on unstructured361

grids [35]:362

(4.4) ∇.u = 0

363

(4.5)
∂u

∂t
+ u.∇u = −

1

ρ
∇p+∇.

[

(ν + ντ )∇u
]

where u is the resolved velocity (m/s), p is the resolved pressure (Pa), ρ is the fluid364

density (kg/m3), ν is the kinematic viscosity (m2/s) and ντ is the anisotropic eddy365
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viscosity (m2/s).366

Turbulence is resolved using Large Eddy Simulation (LES), where the eddies smaller367

than a scale ∆ are parametrised using a subgrid-scale module, while the larger eddies368

are fully resolved. The subgrid-scale model in Fluidity is based on the Smagorinsky369

model [36, 37].370

The transport of a scalar field C (i.e, a passive tracer or pollutant concentration) in371

kg/m3 is expressed using the advection-diffusion equation (4.6):372

(4.6)
∂C

∂t
+∇.(uC) = ∇.

(

κC∇C
)

+ F

where u is the velocity vector (m/s), κC is the diffusivity tensor of the pollutant in373

an excess of air (m2/s) and F represents the source terms (kg/m3/s).374

The temperature field T (Kelvin) is expressed using equation (4.7):375

(4.7)
∂T

∂t
+∇.(uT ) = ∇.

(

κT∇T
)

+
Q

ρcp

where u is the velocity vector (m/s), κT is the thermal diffusivity tensor (m2/s), Q376

represents thermal source terms (W/m3), ρ is the fluid density (kg/m3) and cp is the377

fluid specific heat capacity (J/kg/K). The behaviour of the atmospheric boundary378

layer in Fluidity is represented using a turbulent inlet velocity based on a synthetic379

eddy method [38, 39]. Fluidity uses mesh adaptivity where the mesh can be dynam-380

ically refined, during the simulation, in areas of physical significance to the user [40].381

4.2.2. Test case set up description. The test case considered in this paper is a382

room within the Clarence Centre building located at London South Bank Uni-383

versity (LSBU) near Elephant and Castle in London, UK (Figure 5). The test384

room has three windows depicting in blue in Figure 5. This test site was used385

to conduct a one-day field study in January 2018 with the MAGIC project (http:386

//www.magic-air.uk/, [41]) during which 7 sensors were monitoring the indoor tem-387

perature and CO2 concentration. The CFD simulation performed in this paper aims388

to replicate a cross ventilation scenario, where the test room windows on both sides389

of the building were opened.390

As shown in Figure 6, the computational domain considered to do the numerical391

simulations includes the entire Clarence building and the test room, as well as the392

immediate building upwind in order to replicate the local flow conditions near the393

windows. The mesh is defined such that the resolution is increased in the room394

(setting the grid edge length to 0.1 m) and particularly at the openings (grid edge395

length set to 0.02 m). It progressively decreases in the overall domain to reach an396
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Figure 5. The test case room is located in Clarence Centre building
in London, UK. The red dots denotes the location of sensors during a
field experiment and blue rectangles shows the location of the three
windows.

Figure 6. Computational domain and surface mesh of the area
of interest showing the Clarence Centre and the upwind building
as well as the test case room. The blue arrows denote the wind
direction.

edge length of 10 m away from the room as shown in Figure 6, which gives an overall397

number of 285,700 cells, i.e. grid points, in the mesh. The total number of nodes398

within the room is about 1.5× 105.399

The boundary conditions are set to replicate the experimental conditions. A log-law400

turbulent inlet velocity is imposed upwind, corresponding to a wind direction of 201°.401

It is parametrised with an incoming wind velocity of 2.58 m/s at 28.5 m. No slip402
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(a) t = 15sec (b) t = 1min (c) t = 3min30sec

(d) t = 5min (e) t = 10min (f) t = 15min

Figure 7. Concentration field of CO2 on two vertical slices in the
room at different time. The scale is between 7.2× 10−4kg/m3 (blue
colour) and 2.58× 10−3kg/m3 (red colour).

boundary conditions are imposed at the bottom of the domain and on the walls of403

the test room. The initial temperature is set to 19.5 °C inside the room and 9.1404

°C outside. Before opening the windows, based on sensors data, the average CO2405

concentration in the room is set to 2.58×10−3 kg/m3 (1420 ppm) while 7.2×10−4
406

kg/m3 (400 ppm), is prescribed outside as a background pollution level.407

The simulation was run in parallel on 20 CPU and for an overall simulation time408

of 15 min, leading to about 3500 timesteps. In this paper, the target variables is409

the concentration C of CO2 within the room. As an example, the evolution of the410

concentration field on different planes in the room within the room at different times411

are shown in Figure 7 and Figure 8. At the beginning of the simulation, the outdoor412

air enters the room gradually and concentration stratification starts to occur after413

2 minutes 30 seconds. It can be seen that the concentration in the room starts to414

reach a steady state after 5 minutes and does not change anymore after 15 minutes415

of simulations.416

4.2.3. Results. The training set consists in 10,000 points, exceeding the amount used417

in previous work by a factor of 150 [4, 5]. The quantity and 3D spatial positioning of418
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(a) t = 15sec (b) t = 1min (c) t = 2min30sec

(d) t = 5min (e) t = 10min (f) t = 15min

Figure 8. Concentration field of CO2 on an horizontal plane in the
room at different time. The scale is between 7.2× 10−4kg/m3 (blue
colour) and 2.58× 10−3kg/m3 (red colour).

the training set was sufficient to capture the phenomenology of the indoor environ-419

ment. The CFD results used to train the VGP are taken between 2 min 30 sec and 5420

min, period during which the stratification of the concentration is established. The421

solution of this dynamical system X in (3.1) includes the physical variables [P, T,C],422

where P is the pressure, T the temperature and C, the physical variables target, the423

CO2 concentration.424

The simulated training data had features with non-Gaussian likelihoods, causing425

potential problems for spatial learning with Gaussian Processes. While the use of a426

Variational Gaussian Process helps overcome this issue, we further generalised our427

training data through the use of a Masked Autoregressive Flow model that transforms428

the likelihoods of the input features to the family of Gaussian-distributions.429

The results of the optimal sensor placement are discussed in the following. Firstly,430

the scalability issues related to dense grid initialisations of set S are addressed.431

Secondly, the introduction of the MCMC based fine-tuning algorithm is motivated.432

Finally, the optimal sensor placement solutions provided by our proposed VGPosp433

model are presented.434
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The placement Algorithm 2 is executed on a predefined area of interest, in which a435

density parameter specifies the grid initialisation that defines set S. Figure 9 demon-436

strates the internal state, i.e. mutual information parameter, of the placement algo-437

rithm before making a selection. For each coordinate δi is computed (Algorithm 2)438

and the most optimal coordinate is selected into the final selection set A. For exam-439

ple, in Figure 9a, the first sensor will be chosen to be located where δi is the highest,440

i.e. yellow colour part. From Figure 9, it can be seen that the scale of δi is not441

the same in each sub-figures and becomes narrower. Indeed, the contributions made442

by earlier selections are higher, explaining why the δi quantities decrease after more443

sensors are added to set S.444

The running-times shown in Figure 10 are descriptive of the exponential computa-445

tional cost that is incurred from selecting a larger input set of S. However, it cannot446

be expected from the selection Algorithm 1 to find the optimal locations in contin-447

uous space when defining only distant, discrete points. In order to reduce the time448

complexity of discovering optimal coordinates in continuous space, we proposed an449

MCMC-based fine-tuning method of set S. The impact of this procedure is demon-450

strated by Figure 11, where the percentage increase in the optimisation criterion,451

mutual information parameter can be multiple orders of magnitude larger than that452

of the uniform grid instantiation, which may miss more optimal regions. For example453

in the case of a 7×7×1 grid instantiation, the fine-tuning Algorithm 1 can achieve a454

3 order of magnitude improvement in the overall mutual information, associated with455

our final selection set A. This improvement is achieved after 15 grid optimisation456

attempts. In Figure 12, a 6 × 6 × 4 grid is considered associated with 40 grid opti-457

misation attempts for each selection. The optimal selection of 7 sensors are plotted458

with crosses as well as all modified grid positions that had achieved improved mutual459

information parameter values. Their colour corresponds with the mutual informa-460

tion parameter that the coordinate had achieved. The final optimal coordinates of461

the room are depicted in Figure 13.462

Data Assimilation technology is coupled with the predictive model Fluidity. Data463

Assimilation uses observed data from sensors to improve and correct the numeri-464

cal results from the simulation. 7 sensors are assimilated in the predictive model.465

The DA algorithm and methodology used was previously successfully coupled with466

Fluidity and is presented in details in [2, 42]. The accuracy of the DA results are467

evaluating using the mean squared error: MSE(C) =
‖C−Cv,n‖

L2

‖Cv,n‖
L2

, where C is either468

Cn the Fluidity concentration at time step n or CDA the corrected concentration469

using DA and Cv,n is the control variable, i.e. the true observed data. The MSE470

is computed using the 7 optimal sensor locations shown in Figure 13 and compared471
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(a) Sensor 1

(b) Sensor 2 (c) Sensor 3

(d) Sensor 4 (e) Sensor 5

(f) Sensor 6 (g) Sensor 7

Figure 9. Mutual Information parameter δi onM grid points (11×
11 × 1) for k = 7 sensors. The colours show the value of δi and
the scale is different on each sub-figures. Yellow and violet colours
denote high and low δi values respectively.
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Figure 10. Execu-
tion time t of Algo-
rithm 1 as a func-
tion of the number
of initial grid points
M . The y-axis is log-
arithmic.

Figure 11. Per-
centage increase in
mutual information
parameter after the
fine-tuning Algo-
rithm 1.

Figure 12. Fine-tuning of grid-points and final selection coordi-
nates. Colour represents mutual information parameter of place-
ment. The colour of the point shows the value of the Mutual Infor-
mation. The crosses depict the final optimal sensor locations.

with the MSE obtained using 7 sensors located randomly. 2000 random sensors472

positioning were performed. Assimilating the seven optimally positioned sensors,473

the error of the predictive model, i.e. Fluidity, is reduced by up to three order of474

magnitude: MSE(Cn) = 0.17 and MSE(CDA) = 0.0005. Moreover, this error is475
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Figure 13. Optimal final location of seven sensors in the room of
Clarence Centre obtained using the Variational Gaussian Process
optimal sensor placement VGPosp in Algorithm 1.

up to two order of magnitude lower than the ones computed using random sensors476

placement. In one of the worst random case scenario: MSE(CDA) = 0.023.477

5. Conclusion478

This work described a novel pipeline for sensor placement, incorporating a Masked479

Autoregressive Flows (MAF) [20] for preconditioning, a Variational Gaussian Process480

(VGP) [14, 15] spatial model and a mutual information-based placement algorithm481

[5]. In this paper, the alterations to the existing placement pipelines are significant482

as they introduce multiple layers of approximations in order to reduce time complex-483

ities. More specifically, VGP was introduced for the sensor placement pipeline to484

tackle the O(N3) complexity associated with traditional GP for spatial modelling.485

Increased model generalisation was achieved with MAF that learn non-linear in-486

vertible transformations between complicated transformations and the more flexible487

Normal distribution. All models and algorithms were implemented as a TensorFlow488

computational graph to further reduce run-times as opportunities for parallel compu-489

tation are automatically recognised by the graph compiler. Furthermore, this work490

proposed and developed two extension algorithms. One focused on incorporating491

information and sampling environmental features from the time-series for computing492

mutual information. Secondly, a wrapper algorithm was built to iteratively sub-493

sampling and globally optimise the instantiated set of base grid-coordinates, leading494

to a three-fold increase in mutual information associated with the final selection. The495

combination of these two algorithms achieved stability and a global improvement in496

the selection coordinates.497
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[13] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse approx-535

imate gaussian process regression. Journal of Machine Learning Research, 6(Dec):1939–1959,536

2005.537

[14] Michalis K. Titsias. Variational model selection for sparse gaussian process regression. Report,538

University of Manchester, UK, 2009.539

[15] Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In540

Artificial Intelligence and Statistics, pages 567–574, 2009.541

[16] John Hagan, AR Gillis, and Janet Chan. Explaining official delinquency: A spatial study of542

class, conflict and control. The sociological quarterly, 19(3):386–398, 1978.543

[17] James Hensman, Nicolo Fusi, and Neil D. Lawrence. Gaussian processes for big data. arXiv544

preprint arXiv:1309.6835, 2013.545

26



[18] Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. When gaussian process meets big546

data: A review of scalable gps. arXiv preprint arXiv:1807.01065, 2018.547

[19] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint548

arXiv:1312.6114, 2013.549

[20] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density550

estimation. In Advances in Neural Information Processing Systems, pages 2338–2347, 2017.551

[21] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.552

[22] Hadley Wickham. ggplot2: elegant graphics for data analysis. Springer, 2016.553

[23] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.554

arXiv preprint arXiv:1505.05770, 2015.555

[24] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoen-556

coder for distribution estimation. In International Conference on Machine Learning, pages557

881–889, 2015.558

[25] Noel Cressie. Statistics for spatial data. Terra Nova, 4(5):613–617, 1992.559

[26] Satish Tadepalliy Naren Ramakrishnany, Chris Bailey-Kellogg and Varun N. Pandey. Gaus-560

sianprocessesfor active dataminingof spatial aggregates. In SIAM Data Mining, pages 427–438,561

2005.562
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